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Abstract: At the stage of design load analysis for offshore installations such as wave energy systems,
a critical step is the determination of environmental cases to be evaluated for the definition of the
characteristic design load. A commonly used methodology for load case selection, applied in multiple
studies and recommended by technical specifications and guidelines, is the environmental contour
approach. Here, 50-year environmental contours were generated for four study sites located in the
North Sea, Skagerrak and the Baltic Sea by considering both observations and hindcast (model) data.
For the construction of the contours, the well-established inverse first-order method (I-FORM) and a
modified version using principal component analysis (PCA) were both examined. Furthermore, a
2-dimensional peaks-over-threshold (2D POT) method was evaluated. It was found that a version
of the regular I-FORM was able to produce satisfactory contours which properly accounted for the
highest waves. When using PCA, the dependency in the data was not properly captured by the
probability functions under consideration. The 2D POT method, where applicable, was found to
underestimate the extreme sea states. Comparisons between contours obtained from observations
and hindcast data showed that the contours may differ substantially depending on the site and
method, and thus care must be exercised when using hindcast data for such purposes.

Keywords: WEC design; wave hindcast; Baltic Sea; North Sea; environmental contours;
peaks-over-threshold

1. Introduction

The advancement of offshore renewable energy technologies, such as offshore wind or
wave energy technologies, towards commercial viability demands that methods for deter-
mining extreme environmental loads are further developed. In this paper, the focus is on
determining environmental conditions to evaluate extreme loads for wave energy convert-
ers (WECs). The authors of Coe et al. [1] define extreme conditions as met-ocean conditions
causing unusually large stress on the WEC system. The loading on a device can be 100
times higher than the average loading in extreme weather conditions [2], which provides
a significant challenge to the structural design and consequent capital costs. Simultane-
ously, cost-effective design demands that the considered loads are without overestimation;
therefore, accurate prediction of the characteristic design load is of high importance.

The methodology of WEC design includes many techniques adopted from oil and gas
offshore technology as well as shipping; however, due to the dynamics and small scale
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of offshore renewable systems, the physical functioning of most of the WEC systems is
different from such traditional offshore structures, and established results from the oil and
shipping industry cannot be readily translated [1,3]. The WECs are designed to maximize
the energy production, implying that WECs are often highly dynamical and operate close
to resonance with the waves. A small number of standards and technical specifications are
available for WEC design, useful guidelines are provided in IEC TS 62600-2 [4], N-003 [5],
and DNV-RP-C205 [6].

However, identifying extreme conditions is a nontrivial task. In both numerical [7,8]
and experimental [9,10] studies, it has been confirmed that the largest load on the devices
may not be caused by the highest waves, and there may be load extremes related to a com-
bination of the motion history and certain wave period and height combinations [7,11,12].

There are several methods for the evaluation of extreme ocean waves and several
studies are focused on their comparison [13,14]. In particular, the univariate extreme value
analysis considers the maximum significant wave height for a specified return period
applying the peak-over-threshold (POT) approach or annual maxima method. However, it
is important to consider the wave loading as the combination of several parameters, making
the bivariate analysis to be a widely applied method in the design stage. The wave period
cannot be neglected during the design of wave energy conversion systems, justifying
the fact that the environmental contour is a widely applied approach for the design sea
state selection as it is numerically less expensive and provides reliable estimations [15–17].
The authors of Coe et al. [18] summarized the standard methodologies for the selection
of the design environmental conditions: (1) all sea states approach, (2) environmental
contour approach, and (3) 1D design load selection. Figure 1 displays different steps
involved in determining the characteristic load, starting from the environmental data.
For a more exhaustive workflow which includes additional steps in the WEC design
process, see Figure 1 in Coe et al. [18]. For WEC applications, a 50-year environmental
contour is commonly used [18]. Following the methodology described in Coe et al. [18]
regarding the evaluation of the design loads, several sea states along the contour are
selected for further analysis. Each sea state is characterized by the significant wave height,
wave period, and wave spectrum. Numerical modeling and/or experimental testing is
conducted (see Figure 1), reproducing the selected sea states in order to investigate the
wave–structure interaction under extreme wave conditions. The sea state for which the
WEC has the largest response can be considered as the extreme design load, which can be
evaluated against the structural capacity. The goal is to ensure that the WEC design being
considered can withstand the environmental conditions of a specific site, while minimizing
the structural cost [18]. For the industrial success of WEC technologies, survivability under
extreme wave conditions is important as it is the key cost driver during the construction
process. The present study focuses on the environmental contour approach and evaluates
environmental data from both observations and hindcast models.

The traditional approach for creating environmental contours uses the Inverse-First
Order Reliability Method (I-FORM) [19] and is recommended in the DNV standards [6].
This approach requires the development of a joint probability distribution model of the
ocean parameters and then the I-FORM is applied for the definition of the environmental
contour for a target exceedance probability. The correlation between the inputs is captured
though a Rosenblatt [20] or Nataf [21] transformation. A Monte Carlo approach of a joint
probability model to develop environmental contours has recently been published [22,23].
However, the Monte Carlo method has been found to yield unreasonable results for
mixed sea systems, i.e., a combination of wind sea and swell, so the continued use of
traditional Rosenblatt approach based on I-FORM is still warranted [14]. The I-FORM for
the environmental contours definitions includes fitting distributions and models for the
significant wave height and period. In many applications, the marginal distribution of
significant wave height is modeled through a 3-parameters Weibull distribution [22–25]
but it seems to misrepresent the upper tail of the distribution [13]. The interdependency
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of the significant wave height and wave period is captured through a joint log-normal
distribution as suggested by Haver and Winterstein [26] and is also applied in [22–25].

Experimental
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Figure 1. Workflow for determining the characteristic load, with the environmental data as the starting point. The aspects of
this workflow that are treated in this paper—observational and hindcast data, and the contour approach—are highlighted.

Eckert-Gallup et al. [27] proposed techniques for improving the traditional I-FORM
using principal component analysis (PCA) and enhanced extreme value models. The PCA
generates variables which are uncorrelated and sorted such that the first variable represents
the direction with largest variance data and each subsequent variable leads to the next
largest variance. The new variables are called principal components. In particular for the
creation of the environmental contour, PCA was applied to remove the correlation between
the energy or peak period and significant wave height, resulting in two new variables
named component one and component two, where component one has the largest variance.
Applying PCA, more realistic representations of environmental contours of extreme sea
states are expected, but at the same time the method is sensitive to the distribution fitting
of the components.

Extreme sea states are not only important in the design of offshore renewable energy
structures, but also in the operation and maintenance and site selection process [28,29].
Such considerations further highlight the importance of understanding and characterizing
extreme sea states. A recent publication by Neary et al. [30] compared environmental
contours for buoy observations and different hindcast data sets for several locations on the
West Coast and East Coast of USA with a focus on extreme sea states for WEC applications.
They employed the I-FORM with PCA to estimate environmental contours, and found
that the model data generally lead to smaller contours compared with those from observa-
tions and that estimates of extreme sea states with high Hs were underestimated by the
models. This highlights the fact that care must be taken when results from model data
are interpreted.

As stated in Eckert et al. [31], there is a need to compare environmental contour
methods both at a single site and also across several different sites in order to make
environmental contours useful in practice. They make a comparison of several sites along
the US coasts, while also highlighting the need to investigate other geographic regions.
The Northern European basins are of interest for the installation of offshore renewable
energy structures (RES), and thus environmental contour methods should be investigated
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in the Baltic Sea and North Sea. In the present work, several environmental contour
methods are evaluated and compared for four sites located in Baltic Sea and North Sea.

To our knowledge there are no previous studies which evaluate environmental con-
tour methods in the Baltic Sea region. In this region, extreme wave heights have been
investigated (see, e.g., Björkqvist et al. [32]); however, for the design of offshore RES, addi-
tional wave parameters are of interest, such as the wave steepness (which depends on both
wave height and period). For identification of extreme waves in North Sea, the environ-
mental contour method has been applied based mainly using I-FORM [26,33,34]. However,
the PCA method of Eckert-Gallup et al. [27] has not been investigated for the North Sea
wave climate, which will be done in this study.

The present paper focuses on the prediction of extreme sea states—using a 50-year
return period—for four study sites: Ölands Södra Grund in the Baltic Sea, Väderöarna in
Skagerrak, and Tyne Tees, and Dowsing in the North Sea. For all the sites, both hindcast
data and observations were considered.

The purpose of this study is twofold: one objective is, for a specific set of data,
to evaluate different methods for constructing 50-year environmental contours. The sec-
ond objective is to compare the contours obtained from observational and hindcast data.
Such contour comparisons include numerical properties, such as the maximum significant
wave height along the contour. However, there are several other important aspects to com-
paring different environmental contours for a specific site. First of all, it is sensible that the
contour encloses the data in a reasonable way, e.g., if 10 years of data are used to construct
a contour, it is unlikely that a sea state would exceed the 50-year environmental contour.
However, if 50 years of data are used, it is reasonable that the environmental contour is
not too far away from the outermost data points. As a second point, the environmental
contour should capture the dependence between the two variables. Another aspect to keep
in mind is that the sea states with high wave height is of special interest from a practical
(design) viewpoint, and it is important that the environmental contour properly reflect
these sea states.

For the environmental contours in this study, the classical I-FORM method was
applied, as was the recent I-FORM modification developed by Eckert-Gallup et al. [27]
where a coordinate transformation is used. Furthermore, a 2-dimensional peak-over-
threshold (2D POT) method, commonly used in the study of compound extremes in,
e.g., hydrology, was applied by considering high thresholds of wave height and wave
steepness. A novel statistical approach to compare performance of methods for a range of
return periods was also used.

This paper is organized as follows. Section 2 discusses the study sites and the different
data sets. A short description of the hindcast model is also provided in this section.
Different methodologies used to estimate the environmental contours are described in
Section 3, and the results are presented in Section 4. Finally, a general discussion (Section 5)
and conclusions (Section 6) are provided.

2. Data

In this study, four sites are considered, located in Skagerrak (a strait on the west coast
of Sweden), the Baltic Sea, and the North Sea. Figure 2 shows the location of the four sites,
and in Table 1 some properties of each site are displayed. At each site, two data sets are
considered: observations and hindcast data, which allows for a comparison between the
two data sets. Time series of significant wave height Hs and zero mean crossing period Tz
are used to construct environmental contours.
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Figure 2. The four sites considered in this study.

Table 1. Properties of the four sites considered in this study. The water depth and the distance to the closest coast are shown.
The mean significant wave height is denoted Hs and is given for the observational and hindcast data sets. Also shown is the
data availability, in years, for the observations.

Site Lat Lon Depth
[m]

Distance
[km]

Hs (obs.)
[m]

Hs (hind.)
[m]

Availability
[years]

Ölands Södra Grund 56.0667° N 16.6833° E 38 22 1.03 1.09 16.7
Väderöarna 58.4833°N 10.9333°E 72 18 1.12 1.05 12.6
Tyne Tees 54.9190° N 0.7487° W 66 37 1.34 1.51 10.8
Dowsing 53.5318° N 1.0538° E 22 56 1.23 1.36 15.4

In order to facilitate visualization of the data, the data density approach of Eckert-
Gallup et al. [27] was used. Each point in a scatter plot is given a color based on the density
of nearby points. To determine the density at a specific point, a circle of radius of 0.15 is
considered and the density is simply the number of points in this circle. In the scatter plots,
blue means low density and red means high density of points (e.g., Figure 11). In each
plot, the color scale is set using the highest data density, which effectively normalizes the
density with respect to the total number of points.

2.1. Observations

The observations at Ölands Södra Grund and Väderöarna were obtained from SMHI
(Swedish Meteorological and Hydrological Institute) Opendata (https://opendata.smhi.se/).
The temporal resolution of the data is 1 h.

For Ölands Södra Grund, data are available during 1978–2004, with 145,982 avail-
able measurements which corresponds to a data coverage of 65.5% of the full time span.
For Väderöarna, 110,745 measurements during 2005–2019 were used, corresponding to a
data coverage of 85.4%.

The observations at Dowsing and Tyne Tees were obtained from WaveNet
(www.cefas.co.uk/wavenet), a network of wave buoys located near the UK coastline.
WaveNet is operated by Centre for Environment, Fisheries and Aquaculture Science (Cefas).
The temporal resolution of the available WaveNet data is 30 min; however, to conform with

https://opendata.smhi.se/
www.cefas.co.uk/wavenet
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the other data used in the study, a subset of the available WaveNet data is used which has
a temporal resolution of 1 h.

For Tyne Tees, data during 2006–2019 are used, with a total of 95,021 measurements
(89.2% data coverage). For Dowsing, the data spans a slightly longer period 2003–2019,
with 134,656 measurements (98.5% data coverage).

The wave period used for both the WaveNet and SMHI data is the average zero
crossing wave period. In order to determine if a seasonal bias is present in the observations,
the data availability was compared for the different months for each data set. It was found
that generally the data availability is relatively constant throughout the year, with the most
notable exception being Väderöarna where there is a slight reduction during February
and March likely due to removal of the wave buoy from the water during risk of icing.
Measurement gaps before and after the ice time can potentially impact extreme wave
statistics [35].

2.2. Hindcast Data

For the hindcast data, the coastDat-1 data sets are used [36]. They provide hindcast
data both for the Baltic Sea [37] and for the Southern North Sea [38]. The spatial resolution
of coastDat-1 is about 5.5 km× 5.5 km and the temporal resolution is 1 h. For the Southern
North Sea the model data is available for 1958–2007 (50 years) and for the Baltic Sea
1958–2002 (45 years).

The starting point for the coastDat-1 data sets is the NCEP/NCAR Reanalysis [39]
which provides gridded global atmospheric data, such as wind and pressure fields. The main
steps Weisse et al. [36] used when constructing the hindcast data are displayed in Figure 1.
As described in Weisse et al. [36], starting from global atmospheric reanalysis data, the re-
gional atmospheric model REMO [40] was used to obtain a dynamically downscaled wind
field with higher spatial resolution.

This high-resolution wind field is then used as input to the wave model WAM [41],
using nested grids [36]. At each grid point, WAM represents the current sea state by using
a 2D wave spectrum. For each time step, a new 2D wave spectrum is obtained at each
grid point by solving a transport equation. By integrating the 2D wave spectrum over all
wave directions, one obtains the regular 1D frequency wave spectrum from which wave
parameters such as Hs and Tz can be obtained [42].

For the sites in this study, hindcast data for Ölands Södra Grund and Väderöarna are
taken from the coastDat-1 Baltic Sea data set, and for Tyne Tees and Dowsing the coastDat-1
Southern North Sea data set. For the Baltic Sea, the model contains a sea ice component,
and for this reason all sea states associated with icing periods were excluded from the
analysis in order to only retain ice-free sea states.

Several parameters are available for the coastDat-1 data sets; in this study, the sig-
nificant wave height and mean zero-crossing period Tz were used (in this context, Tz is
also referred to as Tm02 or similar, see, e.g., in [43]). It should be noted that Tz can be
hard to estimate as it may be sensitive to high-frequency noise [42]. A known issue of
the coastDat-1 data sets is possibility of overestimation of the highest waves in shallow
areas [36]. This highlights the importance of comparing environmental contours obtained
for both hindcast data and measurement data, as is done in this study for four study sites.

The hindcast data span well beyond 30 years, which allows for long-term analysis
of wave parameters [44]. For this reason, a simple linear regression was used on Hs to
investigate the linear trend in the hindcast data for the four sites. It was found that the
trends were relatively small: +1.9 mm/year at Ölands Södra Grund, +3.5 mm/year at
Väderöarna, +0.85 mm/year at Tyne Tees, and +1.4 mm/year at Dowsing. Note that trends
in reanalysis data (which can translate into trends for hindcast data) may be due to changes
in the global observing network and not actual climate trends [45].

For each site, wind and wave roses were produced in order to obtain a better under-
standing of the wind and wave climate. Data from coastDat-1 was used. The wind rose
consists of the 10-m wind speed and wind direction, and the wave rose consists of Hs
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and wave direction. Figure 3 shows the wind and wave roses for Ölands Södra Grund
and Väderöarna, and Figure 4 shows the corresponding roses for Tyne Tees and Dowsing.
It is seen for Ölands Södra Grund and Väderöarna that the dominant wind direction is
similar to the dominant wave direction. This is not the case for Tyne Tees and Dowsing,
which indicates a more complicated wave climate, e.g., due to swell waves, shape of the
coastline, etc. More specifically, at Ölands Södra Grund and Väderöarna the wind and
wave direction differed by most 30° during 79% and 74% of the time, respectively. At Tyne
Tees and Dowsing the corresponding numbers were 52% and 62%, which again indicates a
more complicated wave climate for these two sites.

For the hindcast data, the wave age was investigated. It is computed as the phase speed
divided by the 10 meter wind speed, and if the wave age exceeds 1.2, it is expected that the
sea state predominantly consists of swell waves, see, e.g., Semedo [46]. For Dowsing and
Tyne Tees, 26% and 31%, respectively, of the sea states had a wave age above 1.2. For the
Ölands Södra Grund and Väderöarna, the corresponding numbers were 14% and 18%.
Thus, the wave climate at Dowsing and Tyne Tees has a larger swell wave component than
that of Ölands Södra Grund and Väderöarna.

Figure 3. Wind and wave roses at Ölands Södra Grund and Väderöarna.
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Figure 4. Wind and wave roses at Tyne Tees and Dowsing.

3. Methods
3.1. I-FORM

The inverse first-order reliability method (I-FORM) is described, e.g., in Berg [24]
and is briefly outlined here. The method was first proposed by Winterstein et al. [19].
The joint probability distribution of Hs and Tz is modeled using a conditional approach [6]
[section 3.6.3.4], such that

fHsTz(h, t) = fHs(h) fTz |Hs(t|h).

where the arguments h and t refer to values of Hs and Tz, respectively. The marginal distri-
bution of Hs ( fHs ) can be taken as a three-parameter Weibull distribution, and the distribu-
tion of Tz conditional on Hs ( fTz |Hs ), can be taken as a log-normal distribution [24]. It should
be noted that there are other generalizations of the regular Weibull distribution then the
one given in [24], see, e.g., Nadarajah et al. [47] for a review of one such generalization.

The data is split into bins with respect to Hs, in this paper a bin width of ∆Hs = 1 m is
used. In each bin, a log-normal distribution is fitted and its parameters are determined for
that particular bin. A fit is then performed to facilitate interpolation and extrapolation of
these parameters; in this study, the fitting functions of DNV [6] [section 3.6.3.4] are used.



J. Mar. Sci. Eng. 2021, 9, 96 9 of 24

After this, a Rosenblatt transformation [20] is performed where the original data
(Tz, Hs) are transformed into uncorrelated normal variables (see, e.g., in [48]). In these
new coordinates, a contour is constructed by considering a circle of radius β. This contour
is then transformed back to the original coordinates (Tz, Hs). As described by Berg [24],
one may inflate β to obtain a more satisfactory environmental contour:

β∗ =
β√

1− α2
0

, (1)

where α2
0 typically is taken as 0.10–0.20. The motivation behind this is that without such

an inflation, the method may produce contour lines which fails to properly represent the
underlying data [27].

Also considered here is a hybrid fit proposed by Haver and Nyhus [49] (see also [26,50]).
This hybrid fit consists of a log-normal distribution for Hs ≤ η, and a (2-parameter) Weibull
distribution for Hs > η:

fHs(h) =


1√

2πb̃h
exp

{
− [ln h− ã]2

2b̃2

}
, for h ≤ η

d̃
c̃

(
h
c̃

)d̃−1
exp

[
−
(

h
c̃

)d̃
]

, for h > η.

(2)

Here, ã can take on any value and b̃, c̃, and d̃ are positive. At the threshold η, both the
cumulative distribution function and the probability density function of Hs are required
to be continuous. In Haver [50], the threshold η is determined as follows. First, fit the
log-normal part of Equation (2) to all of the data. Due to the continuity constraints, once
η is chosen the parameters of the Weibull tail are fixed. By testing different values of η,
the value of η which provides the best fit according to a χ2-type goodness-of-fit metric can
be chosen.

In this paper, a slightly different approach was used, where only the upper 10% of
the Hs data was considered for the goodness-of-fit in the η selection. The motivation
behind this is that for the final environmental contour, it is important to achieve a good
representation of the sea states with the most extreme values of Hs [27]. In order to avoid
a goodness-of-fit metric, which requires binning (i.e., to avoid complications due to the
arbitrary choice of bin size), the Cramér–von Mises goodness-of-fit was employed instead
(see, e.g., in [51]).

3.2. I-FORM with PCA

Eckert-Gallup et al. [27] have proposed an improvement to the regular I-FORM
method. The idea is that one transforms the original data (Tz, Hs) into new coordi-
nates (C1, C2) where the data are uncorrelated. Having performed this transformation,
the I-FORM is carried out, however, with different probability distributions and fitting
functions than the standard approach.

It is important to keep in mind that although the correlation is zero in the new coordi-
nates, there is still the possibility of a dependence, which must be taken into consideration.
For the new coordinates, C1 is chosen as the direction in which the variance is the largest,
and orthogonal to this direction is C2. The transformation into (C1, C2) is discussed in
detail in Eckert-Gallup et al. [27] and will not be shown here.

For C1, Eckert-Gallup et al. [27] use the inverse Gaussian distribution and for C2
conditioned on C1 a normal distribution is used. In their paper, a special binning technique
for C1 is employed where bins are defined as containing 250 sea state events. In the present
study, however, bins of a constant width ∆C1 = 1 were employed. This is further discussed
in Section 4.1.2. Whereas Eckert-Gallup et al. [27] employs a linear fit for the mean value of
the normal distribution, in this study a quadratic fit was used instead.
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3.3. 2D POT

In the 2-dimensional peaks-over-threshold (2D POT) method, a set of extreme events
are selected by only considering events which exceed thresholds of two variables.
Having obtained this set of extreme events, the joint 2-dimensional probability distri-
bution is modeled which in turn allows an estimation of return level curves to be computed.
This paper follows closely the methodology of Mazas and Hamm [52]; however, some
modifications are required, as they consider compound flooding caused by waves and sea
level variation.

The two variables considered here are Hs and steepness s, defined as s = Hs/L, where
L is the wavelength. The wavelength can be obtained from the dispersion relationship (see,
e.g., in [42])

L =
g T2

z
2π

tanh
(

2πh
L

)
,

where h is the depth. This is a nonlinear equation for L which must be solved numerically.
Recent developments of very accurate approximations to the linear dispersion relationship
for gravity waves can also be considered [53,54] to reduce computational cost for some
applications. The motivation for considering the steepness is that certain WEC designs
may have a response which is quite sensitive to the steepness [11].

A key aspect of this method is choosing the threshold. A central issue common in POT
methods is that if the threshold is set too low, many threshold-exceeding events are not
too extreme which can lead to bias in the parameter estimation. On the other hand, if the
threshold is set too high, the sample size will be small, which can lead to a large sampling
uncertainty in the parameter estimation [55].

Several tools are available to facilitate threshold selection, see, e.g., Coles [55]. This study
utilizes plots showing how the Generalized Pareto-parameters (ξ and σ) [52] vary with
threshold choice. It can be shown that ideally ξ should be constant with respect to the
threshold, and σ should vary linearly [55].

Once the thresholds are set, a set of independent events are extracted by only consid-
ering one event per storm, see, e.g., Mazas and Hamm [52] and de Oliveira et al. [56] for
details. In this paper, a sampling function z = Hs + 100s was used to select the “most ex-
treme” event during a storm, which in this case is the event with highest z. The motivation
for using a linear sampling function is its simplicity, and also that linear sampling functions
have been used for other applications (see, e.g., in [52]). It was found for the various data
sets that events simultaneously exceeding high thresholds of Hs and s typically had values
of Hs (in meters) that were around two orders of magnitude larger than s. Thus, a factor of
100 was chosen in z to ensure that roughly equal weight was placed on the two variables
in the sampling process as it was not a priori clear that either variable should be given
a larger weight. A sampling time of 48 h is chosen to ensure that different events belong
to different mid-latitude storms [57]. By this process the final set of extremes should be
statistically independent, and as the autocorrelation has been removed/reduced the events
are typically referred to as being “decorrelated”.

The joint two-dimensional probability distribution of the extremes is modeled using
a copula approach, whereby the distribution is separated into two distinct parts: (1) the
marginal distributions for Hs and s, and (2) the dependency structure (copula) of Hs
and s. Following Mazas and Hamm [52] the marginal distributions are modeled using
the Generalized Pareto distribution, and the copula is chosen by testing several copula
families and choosing the one with the best fit. In this study, the copula families considered
are Gauss, Frank, Galambos, Gumbel–Hougaard, Husler–Reiss, and Clayton. Finally,
the return level contour is computed using the standard equation for the joint return
period [58]. It should be noted that care always has to be taken when interpreting return
periods, particularly when dealing with multiple variables and/or nonstationarity [59,60].
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4. Results
4.1. Implementing Each Method
4.1.1. I-FORM

A comparison was performed for the I-FORM method using the two different fits for
Hs described in Section 3.1: the 3-parameter Weibull fit and the hybrid fit (Equation (2)).
It was found that the hybrid fit for Hs provided a better fit for the high quantiles, which is
not surprising considering that the hybrid fit was implemented in a way which emphasized
the highest 10% of the waves. As an example, Figure 5 shows the two different fits for
Hs for the observational and hindcast data for Tyne Tees. It is seen that both fitting
functions produced satisfactory fits for the bulk of the data, but the hybrid fit is better at
higher quantiles.

Figure 5. Goodness-of-fit plots for Hs in the I-FORM method, showing both the 3-parameter Weibull fit (gray dotted line)
and the hybrid fit (black dashed line). The hindcast data and observations at Tyne Tees are shown in red in their respective
plots. In order to facilitate a comparison for the higher waves, a plot showing only the highest 5% of Hs is given for both
data sets.

For the environmental contours based on the 3-parameter Weibull fit, an inflation of
β was performed using α2

0 = 0.2 in Equation (1) in order to obtain a more conservative
contour which better reflected the data, particularly at high Hs. No such inflation was
performed for the I-FORM with the hybrid fit.

The hybrid fit (see Section 3.1) places special emphasis on sea states with Hs above
the 90-percentile. A sensitivity analysis was performed with respect to this percentile in
order to investigate the impact on the contours. The 50-year I-FORM contours with the
hybrid fit were computed for percentiles in the range 80 to 99, and it was found that for
percentiles in the range 80 to 95 the impact on the contour was small. For percentiles above
95 it was found that the impact typically was somewhat larger, with the largest difference
noted at Ölands Södra Grund: Figure 6 shows the corresponding contours.

For the hindcast data at Ölands Södra Grund, the threshold η was found to decrease
with increasing percentiles, leading to changes in the tail of the distribution. It is seen in
the figure that increases in percentiles used in the fitting correspond to decreases in the
extreme Hs-quantiles. The observational data at the same site showed the opposite trend:
η increased with increasing percentiles, leading to an increase in the extreme Hs-quantiles.
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Figure 6. Sensitivity analysis for the hybrid fit (Equation (2)) for Hs in the I-FORM method for 50-year contours. As explained
in the text, a percentile of Hs is chosen which affects the choice of the threshold η. The region with the largest contour
variability is enlarged to more clearly show the colors. Only data from Ölands Södra Grund is shown.

4.1.2. I-FORM with PCA

It was found that the inverse Gaussian distribution provided a satisfactory fit for the
C1-component for the observations and hindcast data at all stations. However, for the
conditional fitting of C2, it was generally found that the normal distribution left room for
improvement, one reason being that the C2 data typically exhibited non-zero skewness,
making a symmetrical distribution such as the normal distribution not an ideal choice.
This is in contrast to the results of Eckert-Gallup et al. [27], where the C2 data showed a
large degree of symmetry. Another difference was that in the present study, the mean of
the normal distribution showed a clear quadratic dependence with respect to C1, which
motivated the use of a quadratic fitting function (see Section 3.2).

It was found that for the standard deviation parameter of the normal distribution used
for the conditional fitting for C2, the bins with the largest values of C1 typically produced
irregular values. For this reason, bins with less than 50 events were excluded from this
fitting procedure.

As the binning procedure in this study differs from that of Eckert-Gallup et al. [27], it is
not a priori clear that the same results would be obtained for similar data. To investigate this,
observations from National Data Buoy Center [61] were used to see if similar results would
be obtained for 100-year environmental contours. This buoy, here called “NDBC 46022”,
is located outside California, USA. To enable a comparison, the energy period was used
and only data from January 1996 to December 2012 were considered. The result is shown
in Figure 7a, and it can be confirmed that both the standard I-FORM (with the 3-parameter
Weibull) and I-FORM with PCA produced similar 100-year environmental contours as
Figure 11b in Eckert-Gallup et al. [27], here reprinted in Figure 7b with permission from
Elsevier, Copyright 2016. This similarity is taken as an indication that the binning procedure
does not have a major influence on the environmental contours.
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(a) (b)

Figure 7. In subfigure (a) data from NDBC 46022 [61] are used to obtain contours to be compared with Figure 11b in
Eckert-Gallup et al. [27], here reprinted in subfigure (b) with permission from Elsevier, Copyright 2016. In the two plots,
the black solid lines show the I-FORM with PCA, and the black dashed lines show the I-FORM with 3-parameter Weibull fit
for Hs. Note that the data density coloring scheme differ slightly for the two plots and thus no comparison regarding data
density can be made.

4.1.3. 2D POT

Figure 8 shows the implementation of the 2D POT method for the hindcast data
at Ölands Södra Grund. In Figure 8a, the original data in the (Tz, Hs)-plane has been
transformed to the (s, Hs)-plane, where s is the steepness. Both thresholds are shown, as are
the decorrelated events which are used to estimate the 2D joint probability distribution.
The 50-year return level curve has been computed, note that it is only drawn in the region
where both thresholds are exceeded. Going back to the (Tz, Hs)-plane, Figure 8b shows the
same 50-year return level curve and thresholds.

Figure 9 shows the Generalized Pareto parameters as functions of the threshold (see
Section 3.3) for the hindcast data at Dowsing. It is seen that ξ for the respective marginal
distributions remains relatively constant for thresholds between 92 and 98%, and that the
corresponding values of σ are approximately linear in the same threshold range. It was
generally found that the threshold choice only had a small impact on the 50-year return
level curves, and for simplicity a 95% threshold was selected for both observations and
hindcast data at all stations.

(a) (b)

Figure 8. The 2D Peaks-Over-Threshold method. In subfigure (a), the data are shown in the (s, Hs)-plane and the 95-
percentiles are drawn. The 50-year return level curve is shown in blue. In subfigure (b), the data has been transformed back
to the (Tz, Hs)-plane.
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Figure 9. A threshold plot utilized in choosing the thresholds for the 2D POT method. The upper two
subplots show how the Generalized Pareto-parameter ξ varies with the choice of threshold for the
hindcast data at Dowsing, both for the steepness (ξx) and for the wave height (ξy). Correspondingly
the lower two subplots show how the parameter σ varies with threshold.

4.2. Comparing the Different Data Sets and Different Methods

As noted earlier, for the I-FORM the hybrid fit performed better at higher quantiles
compared to the 3-parameter Weibull fit (Figure 5). This indicates that for the corresponding
environmental contours, the hybrid fit should produce contours which better reflects the
data at high Hs. This is indeed observed, which shows the importance of using a fit for
Hs which is able to properly capture the highest waves. Figure 10 shows environmental
contours for the two fits. The two different curves differ primarily in how well they reflect
the data at high Hs, but there is also some difference regarding sea states with high wave
period and relatively small Hs. For the hindcast data, these latter sea states were found to
correspond to sea states with large wave age—above 1.2, i.e., consisting mostly of swell
waves (see Section 2.2). It is not surprising that the contours do not properly capture these
sea states, as the contours are predominantly based on the wave climate of the bulk of the
data (i.e., wind waves).
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Figure 10. Comparing 50-year environmental contours for three different methods: (1) I-FORM with 3-parameter Weibull
fit for Hs, with β inflated using α2

0 = 0.2 (gray solid line); (2) I-FORM with a hybrid fit for Hs, without inflation (black solid
line); and (3) 2D Peaks-Over-Threshold (blue solid line). The threshold percentiles for both Hs and the steepness are also
shown (black dotted lines).

The 2D POT method is interesting to compare with the various I-FORM methods as it
differs fundamentally from such methods in several aspects: (1) it is only based on a subset
of the data which only contains extreme events, (2) it only uses statistically independent
events from the original data (the autocorrelation has been reduced/removed), and (3)
it models the dependency between Hs and Tz using (2-dimensional) copulas rather than
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using conditional fitting of 1-dimensional distributions. One obvious drawback of the 2D
POT method is that its return levels are only valid above both thresholds, and thus any
comparison can only be made in this region of the (Tz, Hs)-plane. However, even in this
region the different methods are not expected to match perfectly as there are many different
mathematical definitions of return level curves in two dimensions and they typically yield
different contours (see, e.g., in [60], and also in [59]). Despite this, it is still interesting to
investigate if the different methods yield similar contours.

Figure 10 shows the results from the 2D POT method. It is seen that in many cases,
the 2D POT contour is located relatively close to the data, meaning that it gives rise to less
conservative 50-year estimates. Keep in mind that for the model data, 45–50 years of data
are used to construct the contour and on average one would expect that during this period,
circa one (decorrelated) event would exceed this contour. It is seen for the hindcast data
that typically more events than expected exceed the 50-year curve obtained from the 2D
POT method, indicating that this method tends to underestimate the extreme sea states.

The contours for the I-FORM with PCA are shown in Figure 11 for Väderöarna and
Dowsing for both the observations and the hindcast data. Note how the steepness is
very large along some parts of the contour for the observations (for a given value of
Hs, the steepness increases as Tz decreases). This method generally performed poorly,
especially for the observations, with very large maximum steepness along some contours.
This is not surprising as it was noted in Section 4.1.2 that the fitting for C2 generally did
not perform well. It is important to keep in mind that by changing the fitting function for
C2 it is expected that a better fit could be obtained, and thus more sensible environmental
contours could be acquired. The main issues with the contours were that the dependency
was not properly captured and that the sea states with the highest Hs were not reflected by
the contour in a reasonable way.

Returning to Figure 7a, it is clear that for this site outside California, USA, the I-FORM
with PCA produced a reasonable contour which handled both the dependency between
Hs and the wave period, as well as the sea states with the highest Hs, in a satisfactory
manner. It can also be seen in this plot that the I-FORM with the hybrid fit fails to properly
enclose the sea states with the highest Hs (considering the 17 years of data and the 100-year
contour). This highlights that different wave climates may require different methods for
estimating environmental contours.

Figure 11. Comparing 50-year environmental contours for two methods: (1) I-FORM with a hybrid fit for Hs, without infla-
tion (black solid line) and (2) I-FORM with principal component analysis (PCA) (red dashed line).
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As for comparing the observations and hindcast data for a specific site, care must be
taken as the underlying data sets differ in several aspects. One aspect is that observations
may have a seasonal bias if some months are overrepresented; however, for the data
considered here, it was noted in Section 2.1 that most months generally have similar data
availability. Another aspect is that as the environmental contours are based on fewer
data for the observations, the sampling error is expected to be larger for such contours.
Moreover, the longer the time series, the more extremes are expected to occur.

To facilitate comparisons between contours produced by the different data sets,
Figure 12 shows the I-FORM contours from both data sets for each of the four sites. It
is clear that the agreement between contours for the observations and hindcast data de-
pend both on the site and on the method. It is interesting to note that the more standard
I-FORM which uses the three-parameter Weibull fit actually gives comparably more similar
contours for the observations and hindcast data at both Tyne Tees and Dowsing. This is
likely a reflection of the fact that the bulk of the data is represented reasonably well by the
model, and as the sea states with very high Hs only have a relatively small impact with
this fitting procedure for Hs, the final contour is similar for observations and hindcast data
(it has been shown that coastDat-1 generally has a good representation of the mean wave
parameters [36]).

Figure 12. Comparing 50-year environmental contours for the observations (solid lines) and the model data (dashed lines).
Two methods are shown: (1) I-FORM with 3-parameter Weibull fit for Hs, with β inflated using α2

0 = 0.2 (blue lines) and
(2) I-FORM with a hybrid fit for Hs, without inflation (black lines).

It is useful to have quantitative measures when comparing different contours, and not
solely rely on visual inspection. Table 2 shows a comparison of the contours of Figure 12.
The maximum values of Hs along each contour are shown for the observations and hindcast
data for all sites. For Ölands Södra Grund and Väderöarna the maximum value of Hs
differs by 1.24 m and 0.94 m, respectively, for the hybrid fit, whereas the same method
gives a much larger discrepancy for Tyne Tees and Dowsing. As the hybrid method relies
heavily on sea states with high values of Hs this result indicates that the hindcast is unable
to properly represent such sea states at Tyne Tees and Dowsing potentially related to a
higher contribution of swell conditions.
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Also shown in Table 2 is the conditional maximum of the steepness s. The maximum
value of s was conditioned on points along the contour with Hs > Hs,max/2 where Hs,max
is the maximum value of Hs for the observations at each site. This corresponds to a value
of Hs of 3.61 m (Ölands Södra Grund), 4.26 m (Väderöarna), 4.14 m (Tyne Tees), and 3.09 m
(Dowsing). The reason for this restriction is that a relatively large steepness was typically
observed in the lower left-hand part of the contours and it was deemed more interesting to
only compare sea states where Hs was relatively large.

At Väderöarna, it is seen that the maximum steepness for each method is very similar
when comparing the observations and hindcast data sets. For the other sites, the hindcast
data set gives rise to a larger steepness compared to the contour based on the observations.

Table 2. Comparison between the 3-parameter Weibull fit and the hybrid fit (Equation (2)) for the
I-FORM method. The maximum value of Hs along the 50-year contour is shown. Also shown is the
maximum steepness s, conditioned on Hs > Hs,max/2 where Hs,max is the maximum value of Hs for
the observations at each site.

Max Hs (m) Cond. max s

Site Data 3-Wbl Hybrid 3-Wbl Hybrid

Ölands Södra Grund obs.
hind.

7.61
7.80

7.88
9.12

0.099
0.109

0.093
0.103

Väderöarna obs.
hind.

9.97
8.25

10.32
9.38

0.105
0.104

0.098
0.099

Tyne Tees obs.
hind.

9.07
9.10

10.58
13.94

0.121
0.147

0.112
0.133

Dowsing obs.
hind.

7.51
7.87

7.13
11.71

0.138
0.164

0.125
0.145

As the 2D POT method deals with independent events, it is straightforward to calculate
the number of independent events that exceed the contour, and compare this to what
is statistically expected. Such calculations, although fairly straightforward, are to our
knowledge novel for the application of evaluation of probabilities of compound events of
high significant wave height and high wave steepness. The calculations were carried out
for a range of different return periods, which also gives an idea of how sensitive the 2D
POT method is to changes in the return period.

Figure 13 shows the results for Väderöarna and Tyne Tees, both for hindcast data and
observations. Return periods from 1 year to 100 years are shown. To avoid difficulties
involving plotting 0 in a log scale, a special transformation by Webber [62] was applied
to the y-axis which uses a linear scale for the interval [0, 1]. It was found that for all
sites and data sets, the 2D POT method consistently underestimated the extreme sea
states for most return periods, leading to a larger number of exceedances than what was
statistically expected.

Analogous calculations for the I-FORM were carried out in the same region in the
(Tz, Hs)-plane using the same independent events. For the I-FORM, it is not a priori clear
what the expected number of exceedances is in this region (see e.g., Haselsteiner et al. [60]
for more details regarding the probabilistic interpretation of the I-FORM contour).
Nevertheless, as this is a region of high importance, it is interesting to investigate the ex-
ceedances for the 3-parameter Weibull fit and the hybrid fit for the I-FORM. This is included
in Figure 13, and it was found that for the hindcast data at all four sites, the 3-parameter
Weibull I-FORM contours generally had more exceedances compared to the corresponding
contour with the hybrid fit.

For the 50-year contours for the four hindcast data sets, the 3-parameter Weibull fit
led to an average of 3.25 independent exceedances, whereas the corresponding number
for the hybrid fit was 1.00. Considering the length of these data sets (45 or 50 years),
it can be concluded that the hybrid fit leads to a more reasonable number of independent
exceedances. However, this conclusion does not necessarily hold true for lower return
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periods. In Figure 13, it is, e.g., clear for the hindcast data sets, that the number of
exceedances for these two methods has a different scaling with the return period compared
to the 2D POT method. This indicates that it may be difficult to draw general conclusions
that hold true for all return periods. For the observational data the limited data availability
made it difficult to draw any conclusions for the I-FORM using such plots.

Figure 13. Number of independent (decorrelated) sea states which exceed the contour lines in the region above the
95-percentiles of Hs and steepness s. Also shown is the expected—in a statistical sense—number of events for the 2D POT
method. The return period which is used in this study, 50 years, is highlighted with a vertical gray line.

5. Discussion

For our study sites it is clear that relatively large differences in contour properties
(e.g., Figure 12 and Table 2) can occur depending on whether observations or hindcast
data is used, as well as contour method. This is particularly true for Tyne Tees and
Dowsing, i.e., the sites which displayed the more complicated wave climate, as was noted
in Section 2.2, with, e.g., more swell waves and a larger difference between wind and
wave directions.

Visual inspection was found to be practical for comparing contours, but the quanti-
tative comparison of the steepness (in Table 2) is hard to infer from visual means alone
and provided insight into how the various data sets and methods differ. Additionally,
the plots showing the number of independent sea states that exceeded the different con-
tours provided information not only about the performance of the 50-year contours, but for
return periods spanning a larger interval (Figure 13). This is useful as it is not a priori clear
how sensitive a contour method is with regards to the chosen return period, and different
applications call for different return periods. Being a statistical tool, it is important to keep
in mind that one expects more accurate and robust results as more samples are gathered,
and that one should not draw too general conclusions from a limited statistical sample.

It is critical neither to underestimate nor overestimate the characteristic load that
will be used in designing the WEC. When using a contour method which places large
weight on the extremes—such as the hybrid method—then those extremes must be reliable.
If not, the end result is a contour which is unreliable which may still fit the data very well.
If both observations and hindcast data are available, a bias correction may be applied to
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the hindcast data to make it more similar to the observations, see, e.g., in [63]. Recall that
(Section 2.2) the coastDat-1 hindcasts have been reported to overestimate extreme waves in
shallow areas, which may account for some of the discrepancies between the contours.

It should be noted that if there is a clear nonstationarity in the data—for example, if
climate change has a strong impact on the wave climate at a particular location, then the
idea of return levels has to be reconsidered [59,64]. The lifetime that an offshore structure
is designed for also plays a role in determining the importance of investigating—and
possibly accounting for—nonstationarity in the data. In the present study, it was noted
that the hindcast data displayed linear trends in Hs that were relatively small, which
provides some justification for using a stationary approach. A possible line of future
research might be to perform a more formal analysis of the degree of nonstationarity
using, e.g., the nonparametric Mann–Kendall test and also considering additional wave
parameters such as the wave period or high monthly percentiles of Hs (see, e.g., in [65,66]).

It is clear that in theory, applying PCA could be very advantageous as (1) the linear
correlation is removed and (2) the new coordinates single out the most important direction
with respect to the variance of the original data set. However, for our study sites, it was
found that the fitting procedure of Eckert-Gallup et al. [27] did not work as well as hoped,
as it generally led to environmental contours which did not properly represent the data.
A remedy would be to try different families of probability distributions, and investigate how
this changes the goodness-of-fit as well as the contour itself. Another line of attack would
be to use a nonparametric approach, e.g., as suggested in Eckert-Gallup and Martin [67].
Improving the PCA approach for these data sets is one possible topic for future research.

Although the I-FORM method is commonly used and straightforward to implement,
it can be hard to interpret and understand the resulting contours from a statistical point
of view. As is illustrated in Haselsteiner et al. [60], in the I-FORM method the probability
density is not constant along the contour, which makes it difficult to understand what the
enclosed region represents.

DNV-RP-C205 [6] [section 3.6.2.3] notes that when modeling the marginal distribu-
tion of Hs, the POT method should be used with caution as the threshold selection may
affect the results. In the present study, the POT method was applied in two dimensions.
Here, the main limitation for the application of selecting design conditions was not the
threshold selection, but rather the limited region of applicability in the (Tz, Hs)-plane
(i.e., above both thresholds). The 2D POT method is more readily suited towards appli-
cations where the only area of interest is above the two thresholds, as is common when
studying, e.g., the compound nature of certain types of flooding. For example, Bevacqua
et al. [58] applied a 2D POT methodology using the variables sea level and precipitation to
study compound flooding.

The main appeal of the 2D POT method is that a wide range of available copulas
can be used which allows for the modeling of different types of dependency structures.
Drawbacks such as threshold selection and obtaining a set of independent events can make
such an approach difficult, and other methods may be preferred. In a review of compound
extremes in hydrology and meteorology, Hao et al. [68] highlights that several methods
are available for the study of events where several variables need to be taken into account,
e.g., methods based on quantile regression and various extremeness indicators.

In this study, visual inspection as well as maximum values of scalar quantities (Table 2)
were used to compare different contours. Another method which could be employed for
such comparison is a measure of goodness-of-fit for the bivariate distribution of Hs and Tz
(see, e.g., in [52]). An issue with such an approach is that for extreme events, one is typically
more interested in the regions of low probability, as this is the region where, e.g., the 50-year
contours would be located. Restricting attention to this part of the distribution or using
a weighting to increase the relative importance of such regions are possible approaches
when implementing a relevant goodness-of-fit measure. It is not clear what the best way is
to implement such a scheme and no such approach was used in this study, while keeping
in mind the limitations of visual inspection.
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6. Conclusions

In this study, a comparison was made between 50-year environmental contours for
observations and hindcast (model) data. Moreover, different methods for estimating the
contours were studied and compared. The comparison was made using visual inspection
and also by considering the maximum Hs and steepness along the contours. Four sites
were considered: one in the Baltic Sea, one in Skagerrak, and two sites in the North Sea.

As for the different methods, it was found that the standard I-FORM method [19] with
a hybrid fit for Hs [49] generally provided a satisfactory environmental contour which was
able to account for the sea states with the highest Hs. In this paper, a slight modification was
introduced for the hybrid fit where only the highest 10% of the sea states were considered
for the threshold selection in order to ensure that the sea states with the highest Hs were
properly represented by the I-FORM. A sensitivity analysis was performed and it was
found that the contours were robust with respect to the choice of using the highest 10%
of the sea states: using the highest 5–20% produced nearly identical contours for the four
sites under investigation.

For Ölands Södra Grund and Väderöarna, it was found that the observations and
hindcast data both produced reasonably similar contours; however, the maximum value of
Hs did not generally agree (Figure 12 and Table 2). For Tyne Tees and Dowsing, the two
sites in the North Sea, the hindcast data tended to overestimate the sea states with high Hs,
resulting in quite different contours for the highest values of Hs for the I-FORM with the
hybrid fit. If one instead considered the more traditional I-FORM with a three-parameter
Weibull fit for Hs, the maximum Hs along the contours for observations and hindcast data
were similar for Tyne Tees and Dowsing. This is an indication that the bulk of the data is
represented reasonably well by the model at these two locations, whereas the extremes
(high Hs) are not, which is a known issue for this hindcast data [36]. As noted in Section 1,
Neary et al. [30] reported, on the other hand, a hindcast underestimation of sea states with
high Hs along the environmental contours for their study sites. However, differences in
wave climate, hindcast models, and contour method makes a direct comparison difficult.

A 2D POT method was applied by considering high thresholds of Hs and steepness
s, and using copulas to construct 50-year return level contours. The contours were then
transformed to the original variables which allowed for a comparison with other methods.
It was found that the 2D POT method tended to underestimate the extreme sea states,
and produced less conservative estimates compared to the other methods. This underes-
timation was found to be consistent for a range of return periods for the different data
sets. Despite the limited region of applicability in the (Tz, Hs)-plane, such a compari-
son is still interesting considering the popularity of the 2D POT method in the study of
compound events.

To summarize, care must be taken both in choosing the data and the contour method.
Unreliable data inevitably leads to unreliable contours, and contour methods that work
well in some wave climates need not work well in others. There is some indication from
this work that sites with a larger proportion of swell waves compared to wind waves are
more difficult for obtaining reliable contours, but more research into this topic is needed.
The environmental contour approach was here examined to determine environmental cases
for evaluation of the characteristic design load. This constitutes an important stepping
stone in a methodological and modeling chain (Figure 1) aspiring to further develop wave
energy converter design.

The pursuit of methods to assess, characterize, and utilize alternative renewable energy
sources remains an overarching goal for the scientific community. To meet future energy
demands, and simultaneously meet long-term climate goals, renewable energy sources are
needed, and the oceans store a significant part of the global energy resources [69].
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