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A B S T R A C T   

Generalized additive models are increasingly used to identify and describe environmental trends. A major 
advantage of these models, as compared to simpler statistical tools such as linear regression or Mann-Kendall 
tests, is that they provide estimates of prevailing levels and trend magnitudes at any given point in time 
instead of an overall measure. For multiple time series, this versatility has to be followed by flexible visualization 
methods that can summarize and visualize trend analysis results for many series simultaneously. Here, we 
propose several types of visualizations and illustrate the methods by showing trends in variables related to the 
recovery from acidification in Swedish riverine data over the period 1988–2017. By this, we show that gener-
alized additive models, together with a small number of selected plots, can comprehensively illustrate prevailing 
trends and summarize complex information from multiple series.   

1. Introduction 

Environmental questions are complex by nature. The effects of 
environmental pressures are often observed on a regional scale, because 
they are driven by large-scale factors such as airborne deposition, land- 
use, or climatic variables. In addition, policy measures are introduced on 
a national or international level and thereby influence many monitoring 
series simultaneously. This requires statistical evaluations that can be 
applied on multiple series without a substantial modeling effort and 
thereby provide simple summaries that can be tabulated or visualized to 
reveal the essential information contained in the trend analysis. 

In this paper, we investigate the high potential of generalized addi-
tive models for trend analysis by developing a unified framework to 
visualizing long-term nonlinear trends for multiple environmental se-
ries. The overall goal is to give a comprehensive overview when, where 
and to what extent levels of the studied variables have changed. This is 
done using a small number of selected visualizations, while retaining the 
possibility to extract single-site model results for in-depth understanding 
of the present data. 

To quantify trend slopes and to identify when changes over time are 
significant or not linear regression might be applied. However, due to 
the complex and non-linear nature of environmental trends in long time 
series, regression methods assuming a linear increase or decrease are 

seldom used. Mann-Kendall tests (Mann, 1945; Hirsch and Slack, 1984) 
and Sen-Theil slopes (Theil, 1959) can quantify trends and trend mag-
nitudes that are not linear as long as they are monotone (i.e. either only 
increasing or only decreasing), and hence these approaches are often 
chosen for environmental trend analysis focused on single and multiple 
series. 

Results of Mann-Kendall tests on multiple series are often presented 
in tables or graphs. For example, Grimvall et al. (2014) presented trends 
in river nutrient concentrations by color coding tables of p-values. 
Stoddard et al. (1999) presented trends in acid anion concentrations and 
alkalinity in lakes and streams by using site-specific Seasonal Kendall 
tests, which were visualized with bar charts of estimated slopes for 
different regions in North America and Europe. Similarly, Monteith et al. 
(2007) used Mann-Kendall tests and Sen-Theil slopes to analyze dis-
solved organic carbon (DOC) concentrations in lakes and streams at a 
number of stations in Europe and North America, and those investigators 
presented values for individual sites on a map and summarized trend 
slope distributions as boxplots for six larger regions. Futter et al. (2014) 
also used Sen-Theil slopes to quantify trends in water quality for 
acid-sensitive lakes in Sweden, and the results of that study were re-
ported as the median and range of slope magnitudes over 35 lakes 
separately for 16 variables. 

Similar to linear regression, in Mann-Kendall tests the results 
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obtained are usually summarized as single numerical values (i.e. p- 
values or slope estimates). Unfortunately, this reduces the amount of 
available information about the existing trends and, even worse, can be 
very dependent on the time period selected for trend analysis. For 
example, if a time series has an initial increasing trend followed by a 
decreasing trend, linear regression and Mann-Kendall approaches will 
lead to insignificant test results for the entire series, but will indicate a 
decreasing trend if the analysis is performed only for the later part of the 
series, leading to very different conclusions. 

To be able to identify the structure of present trends more correctly, 
individual time series plots are often used to complement trend tests. For 
example, Futter et al. (2014) presented individual time series of lake 
water quality together with annual minimum, median, and maximum 
values over all sites. A more common approach is to present one plot per 
time series, often in combination with a smooth curve that visualizes the 
structure of the long-term trend (Curtis and Simpson, 2014; Erlandsson 
et al., 2008; Monteith et al., 2014). The estimation of a smooth trend is 
usually achieved using a generalized additive model (GAM, Hastie and 
Tibshirani, 1986; Wood, 2017) or by loess smooths (Cleveland, 1979). 

Several attempts based on simple tables and plots have been made to 
compile large amounts of information produced by such smooth trends. 
Orr et al. (2015) analyzed temperature measurements at 231 stations by 
fitting smooth trends to each series and determining the difference be-
tween the start and the end of each estimated smooth trend. For these 
differences, 95% confidence intervals were empirically produced by 
sampling series from the posterior distribution for the coefficients; 
thereafter, point estimates of the differences together with the 95% 
confidence intervals were plotted for all stations on a geographical 
gradient. Polansky and Robbins (2013) used generalized additive 
models to estimate levels of fruiting probabilities of several tree species, 
and the predicted levels were illustrated in a plot presenting species as 
rows and time points as columns. Similarly, response surfaces can be 
used to represent results from smoothing models. For example, Wahlin 
and Grimvall (2008) computed trend surfaces of nutrients that were 
smoothed in time on a yearly basis and over river sites sorted by the 
mean level of flow-normalized concentrations to illustrate trends over a 
larger region. Also, Xie et al. (2018) produced surface plots using 
empirical mode decomposition for climatic variables. In general, it is 
common to visualize modeled levels of the response variable rather than 
trend slope estimates. 

Several approaches to test and visualize trends at multiple stations 
are based on combining such series with a single trend test or trend 
estimate. Mann-Kendall tests can be combined using the approaches 
described by van Belle and Hughes (1984) or Loftis et al. (1991), as 
illustrated by Stoddard et al. (1999) in an evaluation of trends in acid 
deposition. Similarly, Renard et al. (2008) suggested use of regional 
averages of Mann-Kendal test statistics to detect regional consistency in 
hydrological trends over hydroclimatic regions. Considering generalized 
additive models, Pedersen et al. (2019) explored the use of hierarchical 
general additive models to analyze ecological data with different smooth 
functions for individual groups or sites, while pooling them towards a 
common shape. 

Many of the above-mentioned attempts to achieve a common anal-
ysis of multiple series were made in the context of acidification or 
climate change, that is, in research areas in which pressures are expected 
to have an effect on a regional level rather than on single series. 
Considering acidification, emission-controlling legislations such as the 
Convention on Long-Range Transboundary Air Pollution have led to 
reductions in factors such as airborne sulphur (S) deposition over the 
past 30 years (Vuorenmaa et al., 2018). Measurements from Sweden 
show a pronounced gradient with decreasing acid deposition from south 
to north (Garmo et al., 2014; Monteith et al., 2014; Stoddard et al., 1999; 
Vuorenmaa et al., 2018) and are, therefore, especially interesting to use 
as illustration of visualization tools that show the benefit of extensive 
and detailed screening of trends for follow up of regional-scale envi-
ronmental pressures. 

In this paper, we suggest a toolbox of specific visualizations to 
summarize results obtained from trend analyses done by generalized 
additive models. Their general nature and accessibility as easy-to-use 
functions in open-source software allows a fast overview of environ-
mental trends in multiple series, while containing detailed information 
about single series, which can be used for further in-depth analysis. 

2. Statistical and visualization methods 

2.1. Statistical methods 

Generalized additive mixed models (GAMMs; Hastie and Tibshirani, 
1986; Wood, 2017) facilitate modeling of environmental series without 
prior definition of the shape of the trend curve. 

A general model for trend analysis for monthly data could be 

yi = μ + f1(timei) + f2,cycl(monthi) + βX + εi i = 1,…, n  

ε̃N(0, Λθ)

where the trend component f1(timei) is a smooth function in time, e.g. 
using a date variable, modeled as a thin plate spline, while the seasonal 
variation f2,cycl(monthi) is described by a cyclic cubic regression spline 
with an annual period based on the month the observation is made. The 
model can easily be adjusted to more frequent data replacing month 
with Julian day. For less frequent data the seasonal variation could be 
modeled using a seasonal indicator variable instead of a smooth. 

βX denotes the influence of one or several explanatory variables 
estimated by a parametric function. The explanatory variables can be 
either continuous (e.g., run-off or temperature) or categorical (e.g., 
describing analytical method changes or introduction of new policy 
measures, von Brömssen et al., 2018). Explanatory variables can also be 
included using smooth functions if the relationship to the response 
variable cannot be described parametrically. 

The error term in a time series model is assumed to be dependent in 
time, and thus it is necessary to include autocorrelation in the variance- 
covariance matrix Λθ. The typical choice is a continuous autoregressive 
process of lag 1, assuming that correlations between two different points 
in time is a function of the time difference. It has been shown that in-
clusion of an autocorrelation term is important in generalized additive 
models, because otherwise there is a risk that the trend estimates will 
exhibit too much wiggliness, which might introduce spurious trends in a 
trend analysis, as has been demonstrated by Simpson (2018). 

To be able to determine when interesting changes occur in time se-
ries, it is necessary to identify the uncertainty of the slope of the smooth 
trend curve at any time point. The computation of uncertainties for 
smooths has been described by Marra and Wood (2012) and Wood 
(2017). First derivatives of the smooth function can be computed by 
finite differencing, and their uncertainties can be deduced from the 
variance-covariance matrix of the original smooth (e.g., see documen-
tation of the predict.gam function in the mgcv package; Wood, 2019). 
When using these uncertainty computations, a number of different 
confidence intervals can be constructed for smooth components, model 
predictions or trend smooth derivatives, and the most common types are 
component-wise, simultaneous, and pointwise intervals. 

Simultaneous intervals (Ruppert et al., 2003) are determined by 
simulating representations of the whole estimated smooth function from 
its posterior distribution. The confidence bands determined are then 
required to cover (1- α)% of all simulated smooths. Component-wise 
intervals, which have been suggested by Wahba (1983) and Silverman 
(1984), cover (1- α)% of the smooth across the function. Pointwise 
confidence intervals represent uncertainty around the smooth at specific 
time points, and they are constructed by adding an error margin to the 
modeled smooth (Simpson, 2018; Wood, 2017). Pointwise intervals 
have been shown to have good component-wise coverage (Nychka, 
1988), which means that their coverage is close to the nominal level 
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when averaged across the function, as long as the variance of the 
smoothed function is substantially larger than the bias. Marra and Wood 
(2012) have suggested an adjustment to improve the component-wise 
coverage in situations in which the variance is small. Here, we use 
confidence intervals for the derivatives of the trend smooth too identify 
important changes over time. The trend is significantly downward if the 
entire confidence band of the derivative lies below zero, but the trend is 
significantly upward if the entire confidence band lies above zero. This is 
also described by Simpson (2018). 

Generalized additive models are fitted by the package mgcv (Wood, 
2019). Derivative function and confidence intervals are computed using 
the package gratia (Simpson, 2019). In addition, we provide the function 
screeningmodeling() that fits a generalized additive model to each series 
in the dataset. Seasonal variation is estimated by default as a cyclic cubic 
regression spline. Other explanatory variables are not supported by the 
function at present. Autocorrelation in the error term is estimated by a 
continuous autoregressive process of order 1. This can be removed by 
the user (autocor = FALSE) and is removed automatically in case the 
model with autocorrelation does not converge. Both pointwise (confi-
dence, default) and simultaneous (simultaneous) confidence intervals can 
be chosen. The function is described in greater detail in the 
supplementary. 

2.2. Visualization methods 

2.2.1. Visualization of single series 
Single time series trends can be visualized by time series plots of 

observed data including the trend smooth. Using the estimated confi-
dence intervals for the derivative of the trend smooth makes it possible 
to identify the periods during which the trend slope is significantly 
different from zero. In the plot, such periods can be illustrated with 
different colors (e.g., red for increasing trends and blue for decreasing), 
as has previously been done by Curtis and Simpson (2014) and Monteith 
et al. (2014) to elucidate trends. Single series plots can be produced from 
the output of the function screeningmodeling() by using the function 
plot_individual_trend(). 

2.2.2. Trend screening plots 
Single series plots are convenient only for a small number of different 

stations and variables. To be able to present a large number of series 
simultaneously, the information from the single series plots can be 
condensed series-wise, retaining the color information (i.e., the infor-
mation on during which time periods the change in the estimated spline 
meets the requirement for significance at the 5% level). This color in-
formation for all sites is then presented in one plot, using site as row 
indicator and time as columns. While this is a common approach to 
illustrate mean levels at different sites (Wahlin and Grimvall, 2008; Xie 
et al., 2018) or deviations from an overall mean (Polansky and Robbins, 
2013), it has, to our knowledge, not been used to visualize periods of 
change. 

The function plot_screeningtrends() is applied to the output of 
screeningmodeling() to produce a trend plot with one row for each indi-
vidual series that contains the color information of when significant 
changes have taken place. The order of the rows can be adjusted using 
the sorting statement to allow for different geographical or thematical 
orderings and the wrapparvar statement if different variabels or series 
should be presented in separate plots. 

As an alternative, the function plot_screeningtrends_pvalues() presents 
the same model fits but illustrates significant periods by pointwise p- 
values. These p-values are computed under the null hypothesis that the 
derivative is zero. To visualize pointwise p-values, they are first trans-
formed using − log10(p − value) to obtain values close to zero for high p- 
values. This means that low p-values are transformed into high positive 
values. To distinguish between positive and negative trends, the trans-
formed p-values are multiplied by the sign of the derivative and color 
coded on a continuous scale from blue (decreasing) to red (increasing). 

Inasmuch as single very low p-values easily overshadow other trends in 
such plots, a limit of 0.00001 is set for the p-value (i.e., all p-values 
below that level are changed to 0.0001). 

2.2.3. Visualization by proportion plots 
Additional summarization of results can be useful to present 

comprehensive overviews. The function plot_proportions() shows, at any 
given time point, how many of the series exhibit increasing, decreasing, 
or non-significant trends at the 5% significance level. In other words, 
this function summarizes the information provided by plot_screening-
trends() over all series for each time point. A dashed line indicates what 
percentage of the series have observations at the given time point. 

2.2.4. Visualizing the magnitude of trends 
When trends are analyzed, the magnitude of any trend that is present 

over a longer period is especially interesting. Generalized additive 
models allow different trend magnitudes and directions during different 
periods, and hence it is not straightforward how to quantify an overall 
trend magnitude. Here, we choose to visualize the trend magnitude by 
comparing levels at any given time point with a reference level set to the 
mean of the first three years of the series. This gives an informative plot 
in series in which mean levels have changed markedly during the 
observation period. The proposed plot is created by the function plot_-
screeningtrends_reference(). In other situations, it might be more inter-
esting to relate current levels to a reference level that, for example, 
describes pristine levels or target levels that should be reached. Such 
reference levels would be easy to implement but are not available at 
present. 

Another visualization that can be interesting relates the magnitude of 
the trend at a specific time point to the estimated level of the smooth at 
the same time point. This approach can make it possible to identify 
situations in which a drastic relative change occurs, such as short epi-
sodes of unusually high or low values that are due to either natural 
conditions (e.g., snow melting periods) or data quality issues (e.g., 
instrumental errors or unaccounted discontinuities in the time series). 
These plots are created by the function plot_screeningtrends_relative(). 

2.2.5. Visualization of local trends in multiple time series 
When trends for multiple series are visualized using the methods 

proposed above, it is possible that similar patterns will be observed for 
series that are geographically close or belong to the same thematic 
group. Therefore, a subsequent step in the analysis can be to look closer 
at trends for a number of stations on a smaller regional scale or in a 
thematic group, or for a group of related variables at the same time. If 
the goal is to produce an overall trend estimate within this subset, hi-
erarchical generalized additive models can be used as suggested by 
Pedersen et al. (2019), who applied a global trend function combined 
with series-specific deviations from that global function (denoted model 
GS). Visualization of such models can be done using the package gratia 
(Simpson, 2019). Here, we modify these plots by letting the global and 
series-specific trend smooths also include the intercept and thus repre-
sent the average level and trend, as well as the series-specific trends. 
This plot is not part of the suggested toolbox, but is useful for further 
in-depth analysis on a smaller regional scale. 

2.3. Data 

In this study, application of the presented tools for screening of 
environmental trends is exemplified by the well-recognized recovery 
from acidification since 1970–1980s (e.g., Stoddard, 1999). We used 
time series from 37 soft-water rivers for the period 1988–2017 selected 
from the Swedish national monitoring program (Fölster et al., 2014), in 
particular focusing on surface water pH and SO4 concentrations. 
Considering that our aim is to explore statistical methods to visualize 
trends, not to understand the trends themselves, the dataset we use does 
not contain any potential drivers of variation other than seasonality. No 
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pre-processing of the data has been done. Stations are identified by their 
coordinates given in the in the SWEREF-system (N/S-E/W; SWER-
EF99TM EPSG:3006), where the first 7 digits number represent the 
latitudal gradient. 

The water chemistry data used here are included in the Swedish 
national program for monitoring of freshwater quality. The chemical 
analyses were performed by the Department of Aquatic Sciences and 
Assessment at the Swedish University of Agricultural Sciences. All the 
analyses were carried out in the same laboratory over the entire study 
period (1988–2017), which has led to a high level of continuity. His-
torical flaws and changes in methodology are well documented. SO4 was 
analyzed using an ion chromatography, and pH was assessed using a 
Metrohm 855 autosampler with a built-in pH meter in a thermostated 
flow cell. In the visualization of trends for multiple variables (3.7), in 
addition to pH and SO4, the data we use include alkalinity, filtered 
absorbance, acid neutralizing capacity (ANC), dissolved base cation 
(BC), chloride, as well as nitrite and nitrate. All underlying chemical 
analyses followed standard methods, and the performing laboratory is 
certified for all methods applicable in the present investigation (https 
://www.slu.se/institutioner/vatten-miljo/laboratorier/vattenkemiska-l 
aboratoriet/). The data set is available for download at Zenodo (von 
Brömssen et al., 2020). 

3. Results 

The following sections describe the analysis of trends in SO4 and pH 
in Sweden to show how different approaches in generalized additive 
models and visualizations can be applied to evaluate the trends in detail. 
This is done by presentation of trend analysis results side-by-side for 
multiple series and several variables. Results are further condensed into 
proportion plots or by computing common trend estimates on a regional 
scale. 

A first overview of the data is given in Fig. 1 indicating the location of 
the series over Sweden as well as their average levels in the beginning 
(1988–1990) and the end (2015–2017) of the available time series. 
Average values are given in Table A1 in the Supplementery. 

3.1. Visualization of local trends in multiple time series 

Fig. 2 illustrates single series plots with a trend smooth and color 
coding of significant periods of change in pH and SO4 in the river 
Alsterälven (6585489-420879). Red sections reflect significant upward 
trends according to pointwise tests. Correspondingly, blue sections show 
significant downward trends, whereas yellow shows the fitted trend line 
when the trend is not significant. The curves indicate an initial increase 
in pH from 1988 to the mid 1990s (Fig. 2, left) and a clear downward 
trend in SO4 over most of the time period (Fig. 2, right). 

3.2. Trend screening plots 

3.2.1. Screening of significant trend periods 
The increase in pH and decrease in SO4 apparent in the river 

Alsterälven (Fig. 2) are also common in many series throughout Sweden. 
Using trend screening plots, this information can be summarized in a 
combined figure retaining the data of significance at different time 
points for all individual sites, as shown in Fig. 3. It can be seen that the 
pH increased in the late 1980s and early 1990s in all series except a few 
in the northernmost part of Sweden, whereas it has remained rather 
constant since the late 1990s. The trends in SO4 have been especially 
pronounced in south and mid Sweden, with a decrease starting in the 
mid 1990s and continuing until the mid or end of the 2000s. The series 
marked end-to-end in red or blue are those for which a linear trend was 
suggested as best model fit. 

3.2.2. Trend screening using p-values 
If the goal is instead to retain additional information about the level 

of significance for trends during different time periods, it can be 
appropriate to produce a plot like the one in Fig. 3 but colorized by 
obtained p-values, as illustrated in Fig. 4. Obviously, this slightly altered 
approach provides very similar information. The increase in pH during 
the first years in the series is shown in different shades of red, whereas 
the decrease in SO4 is shown in stronger shades of blue, indicating the 
more drastic decrease that occurred in the late 1990s (i.e., the signal-to- 
noise ratio was higher for SO4 than for pH). Again, this agrees with what 
is observed in the example shown for the Alsterälven (Fig. 2). 

3.3. Visualization by proportion plots 

By summarizing the results provided in Fig. 3, the proportion plot in 
Fig. 5 illustrates the percentage of stations showing upward, downward, 
and no significant trends at each time point. It is apparent that, in the 
early 1990s, about 75% of all stations in our data set showed an increase 
in pH and, equivalently, about 75% of the series showed a decrease in 
SO4 in the late 1990s. Since 2010, significant changes have occurred in 
only a few series. After 2015, one and four series showed trends in pH 
and SO4, respectively. Most of these series were fitted with a linear trend 
over the entire time range. As to whether a linear trend is indeed a good 
fit for these series (i.e., whether there was actually a continued increase 
or decrease) needs to be evaluated individually for each series. 

Also in Fig. 5, a dashed line indicates what percentage of the series 

Fig. 1. Maps showing mean SO4 and pH values in Sweden for the periods 
1988–1990 and 2015–2017. 
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have observations at the given time point. The data set used here was 
nearly complete, with only about 3% of the series (corresponding to only 
one series in our data) missing observations during the first one and a 

half years (Fig. 5, upper left corner). 

Fig. 2. Trend curves for pH and SO4 in the river Alsterälven (6585489-420879) produced by a generalized additive model. Color indicates periods with significant 
trends, downward (blue) or upward (red), and no significant trend (yellow), respectively. The plots were created using the function plot_individual_trend(). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Trend screening plot for pH and SO4 in 37 Swedish rivers. Stations are denoted by their coordinates in the SWEREF-system (N/S-E/W) and are listed north to 
south according to the coordinates. The plot was created using the function plot_screeningtrends(). 
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3.4. Visualizing the magnitude of trends 

The magnitude of the present trends is visualized as the level of the 
trend smooth at a specific time point divided by a reference level, which 
here is the mean of the first three observed years of each series (Fig. 6). 
The decrease in SO4 was quite dramatic in several series in the south of 
Sweden, amounting to at least 50% compared to the levels occurring in 
1988–1990. The increase in pH was less pronounced, with a maximum 
of about 7% compared to reference levels. However, this comparison is 
not informative about actual rises in pH, because the increase was 
already ongoing during this reference period (1988–1990). 

Choosing the first three years of each series as reference level is 
reasonable in this context, as it is interesting to see how much pH and 
SO4 have changed since the late 80, which was the end of a period with 
high deposition. However, to be able to compare changes between series 
it is necessary that all series are equally long. Observations at the station 
Laxbäcken (6635190-525485) were started in August 1989, which 
means that about one and a half years of observations are missing 
compared to the other series. Accordingly, the time period August 1989 
to July 1991 is used as reference period for this station, and hence trend 
magnitudes computed at this site are not comparable with those at other 
sites. This is well illustrated for pH, because no noticeable change in pH 
level at any time point can be seen for Laxbäcken, whereas a clear in-
crease is apparent for most other stations in the same area. 

3.5. Visualization of different features by adjusting site order 

In the illustrated plots, the sites are presented in order from north to 

south according to latitude. This approach enables the detection of 
trends on a geographical scale that can be associated with the gradient in 
acid deposition in Sweden. It can also be interesting to arrange sites in 
order according to average SO4 or pH levels. In Fig. 7, we only present 
trend results for SO4 sorted by average values for the reference years, 
placing sites with the lowest levels at the top of the plot. It can be seen 
that many series with high reference levels show strongly decreasing 
trends. However, there are also series with high levels that have no 
trends at all. For example, the station Visman Nybble (6551023-452213) 
has the highest SO4 level of around 1 meq/l (Fig. 1, Table A1, Supple-
mentary) but does not show a trend. This station is a local recipient of 
discharge from a paper mill and is only marginally affected by deposi-
tion, and therefore no changes due to decrease in airborne acidifying 
substances can be seen. 

Also considering SO4, the stations Alterälven Norrfjärden (7270752- 
800624) and Kalix ̈alv Karlsborg (7326323-872437) show no trends and 
have relatively high levels during the reference period (0.158 and 0.103, 
respectively; Fig. 1, Table A1). Both of these stations are located in 
northern Sweden, which again is affected to only a limited degree by 
airborne deposition. It is plausible that the high levels of SO4 in these 
rivers can be attributed to the presence of acid SO4 soils in these areas 
(Becher et al., 2019). 

3.6. Visualization of local trends in multiple time series 

The results thus far (e.g., those shown in Fig. 3) suggest that there is 
considerable covariation in trends in southern and central Sweden. 
Therefore, it seems appropriate to take a closer look at trends on a 

Fig. 4. Trend screening plot for pH and SO4 in 37 Swedish rivers visualized by p-values. Stations are denoted by their coordinates in the SWEREF-system (N/S-E/W) 
and are listed north to south according to the coordinates. The plot was created using the function plot_trendscreening_pvalues(). 
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Fig. 5. Proportion plot illustrating the percentage of rivers with significantly increasing or decreasing trends in pH and SO4 among all available stations. The 
percentage of stations observed for a specific time point is indicated by a dashed line. The plot was created using the function plot_proportions(). 

Fig. 6. Changes in pH (left) and SO4 (right) in relation to levels observed during the reference period 1988–1990. Stations are denoted by their coordinates in the 
SWEREF-system (N/S-E/W) and listed north to south according to the coordinates. The plots were created using the function plot_screeningtrends_reference(). The 
behavior of river 7334144-846887 will be further discussed in section 3.8. 
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smaller sub-regional level. To achieve this, we select eight sites in 
Värmland County and fit a hierarchical generalized additive model 
including an overall trend function and site-specific deviations. We then 

plot the results including the overall intercept to represent the overall 
(Fig. 8, left) and the site-specific trends (Fig. 8, right). The eight series in 
this assessment exhibit a strong common trend. The general trend 

Fig. 7. Trends in SO4 for 37 rivers arranged in order according to the reference level in 1988–1990, those with the highest levels at the bottom and those with the 
lowest levels at the top. This plot was created using the function plot_screeningtrends_reference() using the reference level per series in the sorting statement. 

Fig. 8. The overall estimated trend for SO4 in the Värmland County (left) and individual site-specific trends for the eight included sites (right).  
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estimate shows a mean decrease in SO4 from an average of 0.107 meq/l 
to about 0.042 meq/l, which indicates an average magnitude of trend of 
about 60% in the region of Värmland over the analyzed 30 years. The 
absolute decrease was higher at sites with high initial levels, whereas the 
relative level of decrease was approximately 60% for all of the series. An 
exception to this is Norsälven Norsbron (6586310-399589), which 
started with an increase in SO4 and thus showed a smaller decrease of 
only 40% over the analyzed time period. 

3.7. Visualization of trends for multiple variables 

Analyzing fewer series also makes it possible to take advantage of the 
wrapping and sorting function for the screening plots. This enables 
presentation of the trends for several chemical variables and several 
stations at the same time, as shown in Fig. 9 for the subset of series from 
Värmland. Even though this plot is quite “cluttered”, some similarities in 
trends can be identified. For example, increasing trends early in the 
series can be seen for absorbance, alkalinity, ANC, BC, chloride, and pH 
at several stations, whereas mainly decreasing trends can be noted for 
SO4 as well as nitrite and nitrate. A closer examination of the trend es-
timates’ concurvity could give additional information about underlying 
processes. 

3.8. Visualization to identify high-level episodes 

In the plots presenting trend magnitudes (Figs. 6 and 7), it is 
apparent that one station, Töre älv (7334144-846887), deviates from 

general results by showing a sudden strong increase in SO4 during a 
short period in the mid 2000s. For that station, several episodes of high 
SO4 can be seen during the period of observation (Fig. 10, left), although 
only the longer episode in 2004 is seen in the trend screening plots, 
because other episodes, that were shorter and less pronounced, and are 
not and should not be picked up by the trend estimate. 

To better visualize such periods of drastic change, we suggest an 
additional plot for which the estimated trend magnitude is divided by 
the level of the trend smooth at the same time point (Fig. 10). In contrast 
to Fig. 6, which identifies only one high SO4 episode, the plot to the left 
in Fig. 10 shows several peaks for Töre älv (interchanging red and blue 
indicators), implying three to four episodes of higher SO4 levels that can 
also be observed in the single series plot to the left in Fig. 10. None of the 
other stations in this analysis show similar signs of high SO4 episodes. 
For those, once again, the plot to the right in Fig. 10 gives an indication 
of the sudden drop in SO4 that occurred in southern and central Sweden 
in the late 1990s, which was dramatic compared to the prevailing levels. 

3.9. Summary of trend analysis for pH and SO4 

The results of our assessments show that pH increased in the late 
1980s and early 1990s in all series except for a few rivers in the north of 
Sweden. Since the late 1990s, the pH level has remained rather constant. 
Decreases in SO4 concentrations started in the mid 1990s in most cases 
and continued until the middle or end of the 2000s. These changes were 
observed in about 75% of all included series. Trends of increasing pH 
and decreasing SO4 were stronger in the more acid-sensitive rivers in 

Fig. 9. Trend screening plots for ten different water chemistry variables at eight stations in Värmland County. The plots were created using the function plot_-
screeningtrends_pvalues() using site ID as wrapper variable and variable name for sorting. 
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south and mid Sweden than in the rivers in the northern part of the 
country. At some stations the concentrations at the end of the observa-
tion period are at a magnitude of only 40% of the prevailing levels 
during the late 1980s. Episodes with high SO4 levels were observed only 
in a single series in the river Töre ̈alv, which has acid sulphur soils in the 
catchment. Runoff from an adjacent river indicated unusually dry con-
ditions the year before the highest peak in Sulphur, which can lead to 
oxidized soils resulting in discharge of suphuric acid. 

For a subset of series in the region of Värmland an additional analysis 
was done to illustrate individual and common trend magnitudes for SO4, 
showing concordant trend curves and trend magnitudes that vary with 
initial SO4 levels. A side by side presentation of trends for 10 different 
variables suggested association between several of these variables. 

4. Discussion 

Monteith et al. (2014) identified a marked decrease in SO4 in lakes 
and rivers in the UK during the latter half of the 1990s by using first 
derivatives of trend smooths produced by generalized additive models. 
Such methods have a high potential for in-depth statistical analysis of 
complex trends for long time series. An issue that has not yet been 
satisfactorily addressed is the visualization of such long-term nonlinear 
trends for multiple series. Here, we propose a number of trend screening 
plots that allow a combined presentation of many trend analyses. The 
overall goal of the proposed functions and plots is to give a compre-
hensive overview of when, where, and to what extent levels of the 
studied environmental variables have changed. It is important that this 
information is provided in a small number of different plots. Using the 
proposed models and visualization methods addresses several of the 
problems with simple summaries produced by more generally used 
methods, such as the Mann-Kendall test and Theil-Sen slope. 

First, results based on generalized additive modesl are not dependent 
on the time period of investigation, but are given point-wise in time. 
Mann-Kendall tests suffer from the subjectivity of defining specific time 
periods for the trend analysis, which can greatly influence the conclu-
sions drawn. To determine if trends level out over time it is, furthermore, 
necessary to use distinct time periods as used by e.g. Garmo et al. (2014), 
who compared estimates of SO4 trends in acidified lakes and rivers for 
the time period 1990–1999 with those for 1999–2008. Similarly, 
Vuorenmaa et al. (2018) computed mean annual changes in SO4 in 

deposition and runoff in forested catchments in Europe for the periods 
1990–2000 and 2001–2015. Using visualization plots for trend analysis 
based on generalized additive models we can determine in much greater 
detail when significant changes were observed and how long they 
persisted. 

Even though the trend test results do not directly depend on the 
length of the series, some dependence remains, as the smoothing 
parameter in the generalized additive models is determined globally (i. 
e., the same amount of smoothing is used for the entire time series). In 
series with strong trends during limited time periods, adaptive 
smoothing can be used (Wood, 2017), although this makes additional 
demands on the data and can potentially lead to overfitting issues 
(Simpson, 2018) and has therefore not been investigated here. 

A second advantage of generalized additive models and the ways we 
suggest to present their results is that they can be used with series of 
different lengths. Inasmuch as the model fit is data-driven, and the 
determination of significance of trends is made pointwise rather than for 
the entire series, the results are comparable between series, even if start 
and end times are not the same. For proportion plots, information about 
how many series contain missing values is given to allow interpretation. 
In our proposal, magnitude of trends is quantified compared to a 
reference period defined as the first three years of each series, respec-
tively. Accordingly, this specific type of plot is vulnerable to series 
length and is difficult to interpret if start times differ between series. 
This is not a problem in our series, because they all started at approxi-
mately the same time point, and thus the plot provides a good overview 
of the total increase or decrease over time. For other applications, the 
magnitude of trends can be interpreted for single series or compared 
with reference values that are not dependent on the series length or start 
time (e.g., a target value). We also present a plot showing the magnitude 
of trend at a specific time point in relation to the prevailing level of the 
variable at the same time point, which can help identify short-term 
episodes of high values in the time series driven by factors like snow 
melting periods or data quality issues. Such plots are not dependent on 
the start and end time points of the analyzed series. 

A third advantage of the proposed methods compared to more 
traditional approaches is that they allow a number of different ways to 
sort and group sites and variables to enhance visualization of various 
features. We use geographical ordering as well as sorting with respect to 
reference levels. Several other ways to sort series are conceivable. For 

Fig. 10. SO4 levels observed in Töre älv (left) and point-wise trends in relation to the average level at the same time (right). The plot on the left was created using the 
function plot_individual_trend(), and the plot on the right was created using the function plot_screeningtrends_relative(). 
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example, depending on the context, it can be possible to use mean values 
of drivers, such as water discharge or percentage of arable soil or forest. 

The proposed plots present similar information to what could be 
obtained by plots of the absolute or standardised levels, but are also 
different in a very important aspect. They focus on the time periods of 
change rather than when high levels are observed, i.e. they focus on the 
process of ongoing pollution or recovery rather than the obtained status. 
This is an advantage when the level itself is not of interest, as is the case 
with our example data, where levels of pH and SO4 are naturally varying 
over the geographical gradient of Sweden. Furthermore, we also iden-
tified one locally polluted station and stations with high natural level 
due to acid soils where the effect of changes in deposition could not be 
observed. 

The formal test of a statistical hypothesis is not a priority in this 
context, because the focus is on exploring and finding covarying trends 
in larger areas or multiple chemical variables. Instead, the trend 
screening can be used to generate new hypotheses, especially when 
applied together with analysis of potential drivers. Such hypotheses 
might then be followed up on a local scale using sites that monitor these 
variables more intensively. 

The suggested visualization methods are general and can be used for 
any types of smooth trends. It could, e.g, be interesting to illustrate 
trends caused by pressures or climatic changes that are more pro-
nounced during certain seasons (e.g., driven by agricultural or forestry 
practices or snow cover and snow melting periods). For this, trend 
smooths can be computed for separate seasonal series and visualized by 
the proposed graphs. Similarly, in some situation it is not the main in-
terest to model the trends in the mean of a variable, but how extremes, e. 
g. quantiles, change over time. A trend model for quantiles can be 
accomplished with generalized additive models and, again, the same 
visualizations can be used to summarize the results. 

In this study, we have initiated a trend analysis for SO4 and pH in 37 
rivers in Sweden. As expected, our assessment indicates that most of the 
rivers, especially those located in the southern or central parts of the 
country, show strong decreases in river SO4 and increases in pH as a 
consequence of reduced S deposition. The results obtained distinctly 
describe the steeper decrease in SO4 in the 1990s compared to after the 
2000s, as well as the increase in pH up to the mid 1990s that subse-
quently leveled out. The time-continuous feature of the trend tests used 
give a substantial advantage over previous investigations that used 
Mann-Kendall tests, where results were dependent on the selected time 
period, e.g. studies on changes in riverine SO4 or pH in Sweden have 
been described by Löfgren et al. (2011, 2009), Skjelkvåle et al. (2007), 
and Fölster and Wilander (2002). 

The use of Mann-Kendall test also makes it more complex to inves-
tigate how strong trends are during different time periods. Our proposed 
visualizations clearly show the differences in timing and magnitude of 
increases in pH and decreases in SO4 related to geographical location, 
with a higher recovery rate in the more acid-sensitive rivers in the south 
of Sweden compared to the north. Furthermore, water chemistry vari-
ables can be affected by each other or by climatic conditions, which can 
be explored by using informative plots for multiple variables and, in the 
process, series properties such as data quality problems or high level 
episodes can easily be detected. 

5. Conclusion 

Generalized additive models provide a reliable basis for trend anal-
ysis of environmental data. These flexible models, in combination with a 
variety of plots to visualize their results, constitute powerful tools for 
analyzing many series and many variables at the same time. The present 
study shows that use of a small number of screening plots can compre-
hensively illustrate trends in SO4 and pH in Sweden over the time period 
1988–2017. A more in-depth analysis is needed to understand drivers 
and characteristics of the individual trends, but the approach proposed 
here can guide users in the right direction. 

Software and data availability 

The data set and function code are available at https://github. 
com/claudiavonbromssen/Trend-screening and the function versions 
used for this article can be downloaded at Zenodo (von Brömssen et al. 
(2020), https://doi.org/10.5281/zenodo.3935305. Functions are writ-
ten in the freely available statistical computing software R (R Core 
Team, 2020). 
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