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i Executive summary 

The assessment for the Gulf of Bothnia herring (SD 3031) in 2019 was not accepted by the Advice 
Drafting Group and was changed from category 1 to 3. The assessment was not accepted 
based on the poor retrospective diagnostics where the Mohn’s rho values were above 20% 
for SSB, F and recruitment. The aim for the Benchmark was to evaluate a new model, Stock 
Synthesis (SS3) as a candidate for the assessment of Gulf of Bothnia Herring SD30–31 in order to 
minimize the retrospective pattern previously observed. 

Following the path of the Benchmark data related issues were revealed. This led to a situation 
that the benchmark was prolonged one year in order to correct the data related issues. Apart 
from a misspecification in the model about how the trapnet index was used (abundance index 
vs. biomass index), the data problem had been related to the acoustic survey. The acoustic survey 
index used in the assessment was thoroughly examined by the Baltic international fish survey 
working group (WGBIFS) in a meeting in December 2020. A number of model runs (six prior to 
meeting, and an additional 16 during the benchmark) were conducted for evaluation at this 
benchmark. The analysis presented extensive diagnostic tests including the standard ICES crite-
rion related to retrospective patterns. This was considered an enhancement over using one 
method for accepting or rejecting an assessment. It was noted that the final retrospective pattern 
had low and acceptable values of Mohn’s rho. 

In general, the benchmark using the stock synthesis platform with the settings specified during 
the benchmark are considered acceptable for assessment and advice and have features that 
should ensure stability as new data are added (e.g. selectivity is assumed to be constant over 
time). 
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1 Introduction 

The assessment for the Gulf of Bothnia herring (SD 3031) in 2019 was not accepted by the Advice 
Drafting Group and was downgraded from category 1 to 3. The results from the SAM run for 
the 2019 assessment can be found in Figure 1. The assessment was not accepted based on the 
poor retrospective diagnostics where the Mohn’s rho values were above 20% for SSB (37%), F 
(27%) and recruitment (68%) (Figure 1). 

 

Figure 1. The retrospectives for the stock assessment run in SAM in 2019, which was not accepted. SSB, F and recruitment. 

This benchmark was setup in order to investigate the reasons behind the bad retrospective diag-
nostics. In addition, a stock synthesis model was setup in parallel that showed good perfor-
mance. Therefore, it was concluded that the benchmark would also investigate the potential use 
of a new model (SS3) for the herring SD 3031 assessment. 

1.1 Terms of Reference 

A Benchmark Workshop on herring (Clupea harengus) in the Gulf of Bothnia (WKCluB), chaired 
by Johan Lövgren and Noél Holmgren, Sweden and attended by two invited external experts 
Jim Ianelli, US and Santiago Cerviño, Spain was established. WKCLuB for the data meeting by 
correspondence on 19 November 2019 and then for a three-day Benchmark meeting in Copen-
hagen, Denmark, on 4–6 February 2020: 

a) Evaluate the appropriateness of data and methods to determine stock status and investi-
gate methods for short-term outlook taking agreed or proposed management plans into 
account for the stocks listed in the text table below. The evaluation shall include consi-
deration of: 
1. Examine SS3 as an alternative assessment model to SAM; 
2. Explore impact of all tuning fleets on assessment estimates; 

b) Agree and document the preferred method for evaluating stock status and (where appli-
cable) short-term forecast, and update the stock annex as appropriate. Knowledge about 
environmental drivers, including multispecies interactions, and ecosystem impacts 
should be integrated in the methodology. If no analytical assessment method can be 
agreed, then an alternative method (the former method, or following the ICES data-limi-
ted stock approach) should be put forward; 

c) Update the stock annex as appropriate; 
d) Re-examine and update MSY and PA reference points according to ICES guidelines (see 

Technical document on reference points); 
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e) Prioritize recommendations for future improving of the assessment methodology and 
data collection. 

f) Produce working documents to be reviewed during the Benchmark meeting at least se-
ven days prior to the meeting. 

1.2 Description of the Benchmark process 

The data meeting was held by correspondence on 19 November 2019. An error in the acoustic 
data was found and corrected at the data meeting. Two weeks prior to the benchmark meeting, 
three working documents were finalised and presented to the group. One working document 
covered the SS3 model with initial runs, the second one the data input and the third working 
document consisted of comparison runs with SAM and SS3.  The benchmark meeting took place 
in Copenhagen on 4–6 February 2020, where the assessment with SS3 was presented and ac-
cepted, after which the group could proceed with the calculation of the reference points. 

However, after the benchmark report was done and before the assessment working group 
(WGBFAS) in April 2020 a model misspecification was found in the reference run. The trap-net 
index of abundance had been used in the original reference run as an index of biomass, when it 
should have been entered as an index of abundance. Therefore, after the benchmark meeting, the 
reference run for the assessment was run again with the correct specification of the trapnet sur-
vey index, reference points were re-calculated and the updated work was included in the re-
viewers’ report. 

Unfortunately, just prior to the assessment working group in April 2020, it was detected that the 
acoustic index input data used in the assessment was not area-corrected (i.e. multiplied) for the 
years 2013–2018 with a factor taking into account the shallow coastal  areas that had not been 
surveyed. This led to that the benchmark results were considered invalid, and that the assess-
ment of the stock was downgraded from a category 3 to a 5. The WGBIFS was asked to review 
the acoustic data in a meeting set to December 2020. After the WGBIFS meeting the Benchmark 
was continued in January 2021 where the reference run with full-reviewed acoustic survey data 
and new reference points were calculated. 
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2 Gulf of Bothnia Herring (SD 3031) 

2.1 Examine SS3 as an alternative assessment model to 
SAM 

Assessment of herring in SDs 30–31 was conducted using the Stock Synthesis (SS) model (Methot 
and Wetzel, 2013). Stock Synthesis is programmed in the ADMB C++ software and searches for 
the set of parameter values that maximize the goodness-of-fit, then calculates the variance of 
these parameters using inverse Hessian and MCMC methods. The assessment was conducted 
using the 3.30 version of the Stock Synthesis software under the windows platform (WD 2). 

The assessment model of herring in SDs 30–31 is a one area, annual, age-based model where the 
population is comprised of 20+ age-classes (with age 20 representing a plus group) with sexes 
combined (male and females are modelled together). 

The model starts in 1963 and the initial population age structure was assumed to be in an ex-
ploited state, so that the initial catches was assumed to be the average of last three years (1963–
1965) in the time-series. Fishing mortality was modelled using hybrid F method (Methot and 
Wetzel, 2013). Option 5 was selected for the F report basis; this option represents a recent addi-
tion to Stock Synthesis and corresponds to the fishing mortality requested by the ICES frame-
work (i.e. simple unweighted average of the F of the age classes chosen to represent the Fbar (age 
3–7)). Overview of the data included in the final Stock Synthesis model is shown in Figure 3 and 
described in WD1 (input data). 

 

Figure 3. Herring SDs 30–31. Summary of the input time-series included in the model. 

The parameter and the configuration for the final assessment run and alternative runs that was 
tested in the Benchmark meeting is described thoroughly in WD2. After a series of statistics to 
test the robustness of the final assessment model the model was accepted by the group and ex-
ternal reviewers (WD2). 
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The 3-years retrospectives of the final model were stable (Figure 4). The estimated Hurtado-Ferro 
et al. (2014) variant of the Mohn´s rho indices were inside the bounds of recommended values 
for both SSB (-0.11) and F (0.18). 

 

Figure 4. Herring SDs 30–31. Retrospective analyses of the reference model. 

2.2 Comparison with SAM (Exploratory run) 

A SAM run was performed with the final data used in SS3 assessment model. The comparison 
of these runs (SSB, F and Recruitment) are presented in Figure 5. The SAM and the SS3 model 
show the same dynamics of the stock (Figure 5 and Annex 3). 



ICES | WKCLUB   2021 | 5 
 

 

 

Figure 5. Comparison of runs with same input data for SAM (light blue) and SS3 (dark blue) for SSB, F and Recruitment. 

2.3 Short-term projection 

The short-term projections were performed in the meeting in 2020, and hence remain with the 
same settings also for the new runs carried out in 2021. The short-term projections are made with 
Stock Synthesis using MCMC or the delta-Multivariate log-Normal’ (delta-MVLN) estimator 
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(Walter and Winker, 2019; Winker et al., 2019). MVLN infers within-model uncertainty from max-
imum likelihood estimates (MLEs), standard errors (SEs) and the correlation of the untrans-
formed quantities and it has demonstrated to be able to mimic the MCMC fairly closely. 

 Recruitment in the forecast period is set to the average of the last ten years for which recruitment 
deviations are estimated in the Stock Synthesis model. For maturity and weight-at-age an aver-
age of the last three years is used. Constant selectivity is used. Probabilistic forecasts were used. 
In this approach, catch and SSB levels corresponding to different catch options are calculated as 
in typical deterministic short-term forecast but using MCMC to make it possible to also include 
the most correct associated probability of the SSB to be below biomass reference points, for each 
year of forecast. Therefore, an MCMC with 1 100 000 iterations, 100 000 burn-in and 1000 thin-
ning was run for the different levels of assumed F in the assessment year and assessment year+1, 
assuming F constraint in the intermediate year. It is important to note that the inputted F values 
for the forecast will sometime be different from the model realized F in the MCMC (but also in 
the MLE if this is used for the forecast). This is because the F used is an average across ages and 
those ages have different F, because they are affected by selectivity. Each draw of the MCMC has 
different selectivity so the F produced for each draw will be slightly different due to the different 
selectivity. We have tested running three different MCMC with 110 000 iterations and compared 
the difference in F inputted and model realized F. 

2.4 Explore impact of all tuning fleets on assessment esti-
mates 

2.4.1 Data issues detected 

At the data meeting (on 19th November 2019) a mistake in the input data used in the April 2019 
assessment was detected. The acoustic survey index used was calculated wrongly from the years 
2013 to 2015 from the survey. The 2015 year class in the acoustic survey was calculated much 
higher than it actually was. However, there were more issues detected that were corrected by 
the WGBIFS (ICES, 2021) and then used in the additional benchmark meeting in January 2021. 

2.4.2 Expanding the age groups in the tuning fleets and catch 

In the data meeting it was decided to expand the age groups (both in catch and tuning fleets) 
from 1–15+. We also expanded the time-series of the catch data from 1963 to the assessment year. 

 

Type Year range Age 

Commercial fleet 1963–assessment year 1–15+ 

Acoustic survey 2007–assessment year 1–15+ 

Trapnet survey 1990–2006 1–15+ 
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3 Recommendation for future benchmarks 

We recommend that the standardization procedure of the acoustic survey abundance and bio-
mass should be done using spatio-temporal models like for example VAST. The standardization 
should always include a spatial-time interaction factor and a vessel effect. Also, standardization 
should include observations (e.g. hauls or trips) with zeroes. The year should also be modelled 
as a factor and not as a smoother when the CPUE time-series is used in the assessment. (WGBFAS 
and WGBIFS). Preliminary analysis on the reference point showed a small change on FMSY and 
BMSY year to year, similar to those observed in the retrospective analysis for F and SSB. This is not 
critical in the short-term forecast. However, it is worth to follow the progress in reference points, 
at least every three years, particularly if retrospective patterns increase (WGBFAS). 

Two different age-reading methods have been used for ageing. During 1980–2001 whole otoliths 
were used while from 2002 and onwards cut otoliths were used for ageing. We recommend that 
a recalibration of the age readings from the period when whole otoliths were used (1980–2001) 
should be performed. The major concern is that older ages of herring are underestimated when 
ageing whole otoliths. (WGBIOP) 

Adaptation of a more balanced sampling covering all quarters, fishing métiers and the two sub-
divisions (SD 30 and 31) is recommended in order to estimate fish biological parameters (age, 
weight, etc.). For historical catch data it is recommended to split the data by subdivision, fishery 
and quarter. (RCG) 

A recommendation to calculate a CV for the acoustic survey and if possible also for the trapnet 
survey. (WGBFAS and WGBIFS) 

3.1 Considerations for future benchmarks 

Calculation of a smoothed maturity ogive and a smoothed weight-at-age with an aim to reduce 
annual unexplained variation in retrospective analysis for fishing mortality, stock biomass and 
recruitment parameters. (WGBFAS). 
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Annex 1: Final assessment model reference run 
of herring in the Gulf of Bothnia (ICES 
SD 30–31) 

By Massimliano Cardinale and Alessandro Orio 

A model misspecification was found in the reference run. The trapnet index of abundance was 
used in the original reference run as an index of biomass while instead it was supposed to be 
used as an abundance index. The acoustic index has also been reviewed by WGBIFS. The abun-
dance calculations have been made in the StoX software based on the BIAS survey data available 
in the ICES database for acoustic and trawl surveys. The acoustic survey index time-series in 
numbers shows a pronounced jump from 2013, and also in 2017 which coincides to changes in 
survey vessels (RV DANA to RV ARANDA). The survey vessels used by years were RV ARGOS 
in 2007–2010, RV DANA in 2011–2012 and 2017, RV ARANDA in 2013–2016 and 2018–2020. This 
pattern is common also to the average CPUE in biomass of herring in the acoustic survey trawl 
hauls and when excluding age 1 from the index and indicates that a model standardization is 
necessary to account for a likely vessel effect and possibly for other effects in the survey. In the 
meantime, to account for this pattern, the CV assigned for years after 2013 (0.2) was 0.3 compared 
to 0.1 for other years. This improved the retrospective and could be a temporary solution before 
a full standardization of the acoustic survey index is conducted. This standardisation should also 
provide annual CV estimates. Therefore, the assessment was run again with the correct specifi-
cation of the trapnet survey index, with the updated acoustic survey index, with the different CV 
for the later part of the time-series (2013–2019), and with data up to 2019. 

All data inputs are summarized in Table 1 while in Table 2 the configuration of the updated 
reference model is reported. Note that the selectivity of the fleet has been reduced by one param-
eter in the updated run to stabilize estimate of selectivity parameters. All the updated diagnostics 
have been run using the ss3diags package for R (Winker et al., 2020). 
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Table 1. Herring SDs 30–31. Input data used in the Stock Synthesis models. 

Type Description Year range Range  

Catches Catches in tonnes for 
each year 

1963–2019   

Age compositions Catch in numbers 
(thousand) per age 
group 

Commercial fleet: 
1980–2019 
Acoustic survey:  
2007–2019 
Trapnet survey: 
1990–2006 

0–15+  

Weight at age Weight in kg per age 
group 

Commercial fleet: 
1970–2019 
Acoustic survey:  
2007–2019 
Trapnet survey: 
1990–2006 

0–17+  

Maturity ogives Empirical maturity-at-
age estimated from 
commercial data 

   

Natural mortality Natural mortality by 
age class costant for the 
entire time-series de-
rived from Then et al., 
2015 

 0–20+  

Surveys indices Abundance index from 
acoustic survey and 
abundance index from 
trapnet survey 

Acoustic survey:  
2007–2019 
Trapnet survey: 
1990–2006 

  

SSB index SSB proportional to fe-
cundity 
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Table 2. Herring SDs 30–31. Settings of the Stock Synthesis assessment reference model. The table columns show: num-
ber of estimated parameters, the initial values (from which the numerical optimization is started), the intervals allowed 
for the parameters, the priors used, the value estimated by the model and its standard deviation. Parameters in bold are 
set and not estimated by the model. 

Parameter Number 
estimated 

Initial value Bounds 
(low,high) 

Prior  Value 
(MLE) 

Standard 
deviation 

Natural mortality 
(age classes 0.5, 1, 
3, 5, 8, 15) 

 0.563, 0.472, 0.332, 
0.290, 0.267, 0.257 

    

Stock and 
recruitment 

      

Ln(R0) 1 17.43 (16, 25) No_prior 17.41 0.07 

Steepness (h) 1 0.775 (0.1, 1) 0.74 0.77 0.11 

Recruitment 
variability (σR) 

 0.60     

Ln (Recruitment 
deviation): 1963–
2019 

56      

Recruitment 
autocorrelation 

 0     

Initial catches  Average of 1963–
1965 

    

Initial F 
Commercial fleet 

1 0.2 (0.001, 1) No_prior 0.03 0.005 

Selectivity (random 
walk) 

      

Commercial fleet       

Change from age1 to 
age2 

1 1.45 (-5, 9) No_prior 1.29 0.07 

Change from age2 to 
age3 

1 0.4 (-5, 9) No_prior 0.35 0.06 

Change from age3 to 
age4 

1 0.15 (-5, 9) No_prior 0.12 0.06 

Change from age4 to 
age5 

1 0.14 (-5, 9) No_prior 0.11 0.07 

Change from age5 to 
age6 

1 0.03 (-5, 9) No_prior -0.003 0.07 

Acoustic Survey       

Change from age1 to 
age2 

1 0.6 (-5, 9) No_prior 0.49 0.17 

Change from age2 to 
age3 

1 0.2 (-5, 9) No_prior 0.23 0.18 

Change from age3 to 
age4 

1 0.02 (-5, 9) No_prior 0.02 0.22 

Change from age4 to 
age5 

1 0.11 (-5, 9) No_prior 0.02 0.25 

Change from age5 to 
age6 

1 0.14 (-5, 9) No_prior 0.12 0.22 

Trapnet Survey       

Change from age3 to 
age4 

1 0.30 (-5, 9) No_prior 0.10 0.15 
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Parameter Number 
estimated 

Initial value Bounds 
(low,high) 

Prior  Value 
(MLE) 

Standard 
deviation 

Catchability (Using 
float option in 
Stock Synthesis) 

      

Acoustic survey        

Ln(Q) – catchability  -2.47811     

Extra variability 
added to input 
standard deviation 

 0     

Trapnet survey       

Ln(Q) – catchability  3.86604     

Extra variability 
added to input 
standard deviation 

 0     

 

Final model run 

Overview of the datasets included in the final Stock Synthesis model is shown in Figure 1. 

 

Figure 1. Herring SDs 30–31. Summary of the input time-series included in the model. Circles are proportional to total 
catch for catches, to precision for indices, and to total sample size for age compositions. 

 

The selectivity of commercial fleet, acoustic and trapnet surveys is well estimated (Figure 2). 
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Figure 2. Herring SDs 30–31. Age based selectivity of the commercial fleet, acoustic and trapnet surveys. 

 

The fitting of the model was good, with the age compositions well reconstructed. The residuals 
are quite low, never below -2.2 and above 2.2, and without particular worrying patterns (Figure 
3 and 4). However, there is a positive residual pattern by cohort for acoustics, and a residual 
pattern with negative residuals in the historical part followed by positive residuals in recent 
years for older ages changing from negative to positive around year 2000.  Figure 3 also shows 
an overestimation at age 13 for Fleet and Trapnet, which has been associated to a change in the 
procedure for reading the otoliths. 
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Figure 3. Herring SDs 30–31. Model fits to age composition data for commercial fleet, acoustic and trapnet surveys. 

 

Figure 4. Herring SDs 30–31. Residuals of fits to age composition data for the commercial fleet and acoustic and trapnet 
surveys. 

 

Overall, the model doesn’t provide a very good fit to the trend of the acoustic survey (Figure 5) while 
the trapnet survey shows a good fit to the data (Figure 6). 
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Figure 5. Herring SDs 30–31. Model fits to the acoustic survey abundance index. 

 

Figure 6. Herring SDs 30–31. Model fits to the trapnet survey abundance index. 

 

A non-random pattern of residuals may indicate that some heteroscedasticity is present, or there 
is some leftover serial correlation in sampling/observation error or model misspecification. Sev-
eral well-known nonparametric tests for randomness in a time-series include: the runs test, the 
sign test, the runs up and down test, the Mann-Kendall test, and Bartel’s rank test (Gibbons and 
Chakraborti, 1992). Here we used the runs test (RMSE and ordinary runs test) to evaluate the 
residuals of surveys and age frequency distributions (e.g. SEDAR 40, 2015; Winker et al., 2018). 
The results of the runs test are presented in Figures 7 and 8. The RMSE runs test indicated that 
the fit of the CPUE index was good because no residuals were larger than 1 and the root-mean-
square error (RMSE) was less than 30%, indicating a random pattern of the surveys residuals and 
the age frequency distributions. The RMSE plot is considered as a tool for identifying trends in 
residuals. If the standard deviation is small on a given year this means the fleets are in agreement, 
even if not fitting well. Its purpose is to visualize multiple residuals at once, pick up on periods 
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of substantial data conflicts (width of boxes) and systematic departures in median residuals (lo-
ess). In this case, as we have two non-overlapping in time surveys, the RMSE is the only useful 
metric. The ordinary runs test was passed for both acoustic and trapnet surveys residuals and 
also for all age frequency distributions with the exception of the trapnet (Figure 7). 

 

Figure 7. Herring SDs 30–31. Residuals from runs test analyses for the age distributions, and the fit to the acoustic and 
trapnet survey indices. 

 

 

Figure 8. Herring SDs 30–31. Residuals from the JABBA runs test analyses for the age distributions and the fit to the 
acoustic and trapnet survey indices. 
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Retrospective analyses 
Retrospective analysis is a diagnostic approach to evaluate the reliability of parameter and ref-
erence point estimates and to reveal systematic bias in the model estimation. It involves fitting a 
stock assessment model to the full dataset. The same model is then fitted to truncated datasets 
where the data for the most recent years are sequentially removed. The retrospective analysis 
was conducted for the updated reference model for the last five years of the assessment time 
horizon to evaluate whether there were any strong changes in model results. Given that the var-
iability of Mohn’s rho index depends on life history, and that the statistic appears insensitive to 
F, Hurtado-Ferro et al. (2014) proposed the following rule of thumb when determining whether 
a retrospective pattern should be addressed explicitly. Values of Mohn’s rho index higher than 
0.20 or lower than -0.15 for long-lived species (upper and lower bounds of the 90% simulation 
intervals for the flatfish base case), or higher than 0.30 or lower than -0.22 for short-lived species 
(upper and lower bounds of the 90% simulation intervals for the sardine base case) should be 
cause for concern and taken as indicators of retrospective patterns. However, Mohn’s rho index 
values smaller than those proposed should not be taken as confirmation that a given assessment 
does not present a retrospective pattern, and the choice of 90% means that a "false positive" will 
arise 10% of the time. In both cases, model misspecification would be correctly detected more 
than half the time. The retrospectives of the updated reference model were rather stable (Figure 
9). The estimated Hurtado-Ferro et al. (2014) variant of the Mohn’s rho indices were inside the 
bounds of recommended values for SSB (-0.17) but outside the bounds for F (0.28). Also, the 
forecast Mohn’s rho which is a measure of the predictive power of the model for SSB and F is 
outside the bounds for both SSB (-0.21) and F (0.3). 

 

Figure 9. Herring SDs 30–31. Retrospective analyses of the updated reference model. 

 

Following the most recent ACOM guidelines, when the five years retrospective results in a 
Mohn’s rho outside the recommended bounds, results for the three-years retrospective should 
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be calculated and compared. If the Mohn’s rho values of the three years retrospective are within 
the bounds, the model is considered to be robust enough for providing advice. 

When using a 3-years retrospective both the estimated Hurtado-Ferro et al. (2014) variant of the 
Mohn’s rho indices and the forecast Mohn’s rho were inside the bounds of recommended values 
for SSB (-0.11 and -0.13) and for F (0.18 and 0.19). 

There is little or no information in the data to estimate the sizes of the 2019 and 2018 year class. 
Retrospective analyses of year-class strength for young fish shown the estimates of recent re-
cruitment to be unreliable prior to at least between age 1 and 2 (Figure 10), which implies that 
you need to observe an year class at least twice to estimate it with a good precision. 

 

Figure 10. Herring SDs 30–31. Retrospective recruitment estimates scaled relative to the most recent estimate of the 
strength of each cohort. 

 

Hindcasting 
The provision of fisheries management advice requires the assessment of stock status relative to 
reference points, the prediction of the response of a stock to management, and checking that 
predictions are consistent with reality. A major uncertainty in stock assessment models is the 
difference between model estimates and observed quantities as CPUE or age distribution. To 
evaluate uncertainty often a number of scenarios are considered corresponding to alternative 
model structures and dataset choices (Hilborn, 2016). It is difficult, however, to empirically val-
idate model prediction, as fish stocks can rarely be observed and counted. Various criteria are 
available for estimating prediction skill (see Hyndman and Koehler, 2006). One commonly used 
measure is root-mean-square error (RMSE). RMSE, however, is an inappropriate and misinter-
preted measure of average error (Willmott and Matsuura, 2005). On the other hand, mean abso-
lute error (MAE) is a more natural measure of average error, and unlike RMSE is unambiguous. 
Scaling the average errors using the Mean Absolute Scaled Error (MASE) allows forecast accu-
racy to be compared across series on different scales. MASE values greater than one indicates 
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that in-sample one-step forecasts from the naïve method perform better than the forecast values 
under consideration. MASE also penalizes positive and negative errors and errors in large fore-
casts and small forecasts equally. 

Kell et al. (2016) showed how hindcasting can be used to evaluate model prediction skill of the 
CPUE. When conducting hindcasting, a model is fitted to the first part of a time-series and then 
projected over the period omitted in the original fit. Prediction skill can then be evaluated by 
comparing the predictions from the projection with the observations using for example the 
MASE indicator (Hyndman and Athanasopoulos, 2013). 

Hindcasting was conducted for the reference model (Figure 11). The results showed that the 
acoustic survey performs well in hindcasting given that the MASE value is lower than the 1.0 
threshold when predicting the index one year ahead. 

 

Figure 11. Herring SDs 30–31. Results of hindcasting for the acoustic survey. Black dashed lines are the forecasts while 
colour coded observations are the corresponding observations that were dropped when making the prediction residual 
for that specific year. 

 

Trends in SSB, F and R of the updated reference model 
The stock status and the trends in SSB, R and F are based on the MLE model. The spawning–
stock biomass (SSB) has been declining from the beginning of the time-series up to the 1970s, 
then it increased during the 1980s reaching levels comparable to the 1960s. During the mid-1990s 
the SSB decreased and has remained stable at that level since then. Fishing mortality (F) has 
increased markedly since 1990s, with a peak in 2016. Recruitment (R) has been fluctuating 
throughout the time-series. In 2002 a very strong year class appeared (Figure 12 and Table 3). 
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Figure 12. Herring SDs 30–31. Summary of the stock assessment. SSB, F and R with 95% confidence intervals. Catches by 
fleet and SSB are in tonnes R is in thousands of individuals. 
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Table 3. Herring SDs 30–31. Summary of the stock assessment. Catches and SSB are in tonnes R is in thousands of indi-
viduals. 

  

  

Year SSB F3-7 Recruitment Catch
1963 1079580 0.03 19482800 29739
1964 1077700 0.03 17851100 25204
1965 1054580 0.03 16323500 27541
1966 972143 0.02 14835300 22164
1967 892272 0.03 13247100 27772
1968 809109 0.04 12215600 28966
1969 719077 0.05 11631400 35996
1970 661513 0.05 17537800 32790
1971 506985 0.08 13103000 36347
1972 541414 0.07 17454900 34092
1973 582867 0.05 23371400 26507
1974 501267 0.05 18695300 26776
1975 533827 0.04 39893000 21811
1976 543697 0.06 14572100 30520
1977 586582 0.06 9348120 33634
1978 664493 0.06 9176120 34873
1979 608636 0.05 23837800 26109
1980 533515 0.06 13401700 29809
1981 544390 0.04 20260200 21526
1982 562869 0.05 33025300 26499
1983 614942 0.04 43064900 26208
1984 674200 0.05 35806900 34545
1985 740536 0.05 15061700 35432
1986 831970 0.05 29816500 35579
1987 921518 0.04 14346400 32628
1988 894602 0.04 61763800 36418
1989 1022130 0.03 56377900 33086
1990 1150840 0.04 31563200 39180
1991 1283730 0.03 36649400 33419
1992 1247380 0.04 39059800 46610
1993 1200110 0.04 24634300 49314
1994 1323160 0.05 31716400 61986
1995 1169380 0.06 25375700 65547
1996 1152110 0.06 22315800 61303
1997 964787 0.08 41019000 69808
1998 920915 0.07 23742000 62474
1999 897984 0.08 35395200 66502
2000 834620 0.08 28576400 58852
2001 818147 0.08 43208900 57806
2002 826030 0.07 86561900 53969
2003 837165 0.07 19652600 53644
2004 878085 0.07 20981200 61423
2005 890207 0.08 28815200 62911
2006 795963 0.10 40137900 71318
2007 776043 0.11 28968200 78678
2008 738291 0.10 38734100 67914
2009 731941 0.11 31944200 71248
2010 877844 0.11 21711500 72590
2011 778787 0.12 29734900 81850
2012 785765 0.17 22215800 106007
2013 781211 0.19 25476200 114396
2014 718138 0.21 44768400 115366
2015 673905 0.23 23387500 114942
2016 631475 0.27 32281900 130029
2017 610912 0.23 20236000 104358
2018 628807 0.22 24319300 97366
2019 555343 0.21 22709300 88907
2020 535314
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Comparison with the unweighted model 

In Figure 13 it is possible to see the comparison between the reference run weighted using the 
Francis method and the unweighted one. The two runs are almost identical. Moreover, a model 
which uses Dirichlet multinomial distribution for weighing the different components, shows that 
the Dirichlet parameters are estimated to be 1 for all components. Therefore, we propose to use 
the unweighted model for advice. 

 

Figure 13. Herring SDs 30–31. Comparison between the reference run weighted using the Francis method (in blue) and 
the unweighted one (in red). SSB, F and R with 95% confidence intervals. SSB is in tonnes and R is in thousands of indi-
viduals. 

 

Ensemble of alternative model runs 

An ensemble of four alternative model configurations and the reference run was also run. The 
alternative four model configurations were created based on hypothesis testing and feedback 
from the WK and the reviewers. The results of the ensemble were not used to provide advice but 
as a demonstration of the procedures and the workflow used to build an ensemble model. The 
models used in the ensemble are summarised in Table 4. 

Table 4. Characterisation of the models used in the ensemble. 

Model Main change from reference model 

E1 Reference 

E2 Age2 

E3 Survey CV 

E4 Survey CV Biomass 

E5 T-distribution 
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In particular, model E2 refers to the model without age 2 individuals in the acoustic time-series, 
E3 is the model with CV as estimated by WGBIAS for the acoustic time-series, while E4 is also 
using estimated CV but with an index of biomass instead of abundance as in the reference model. 
Finally, E5 uses a t-distribution with four degrees of freedom instead of a log-normal distribution 
for the acoustic surveys. Figure 14 shows the comparison between the five models used in the 
ensemble for the main derived quantities (i.e. SSB, F and R). The models were then weighted by 
diagnostics which are summarised in Table 5 using the threshold method (i.e. assigning 1 to a 
diagnostic test if passed and 0 if failed). Based on the diagnostics, the average score for each 
model was calculated and used to weight the models in the final ensemble. Reference models 
scored best of all models with 0.643, while all other models scored 0.500. In the last step, the 
ensemble model was build stitching the model results of all models weighted by diagnostic. The 
delta-Multivariate log-Normal’ (delta-MVLN) estimator (Walter and Winker, 2019; Winker et al., 
2019) was used to generate bootstrapped observations and estimate model uncertainty, with the 
number of bootstrapped observation draws for each model proportional to the diagnostic 
weights. It infers within-model uncertainty from maximum likelihood estimates (MLEs), stand-
ard errors (SEs) and the correlation of the untransformed quantities F/FMSY and SSB/SSBMSY and 
it has demonstrated to be able to mimic the MCMC fairly closely. These quantities are derived 
with Stock Synthesis using the delta-method to calculate the asymptotic variance estimates from 
the inverted Hessian. To generate Kobe posteriors from a delta-MVLN distribution requires the 
means and the variance-covariance matrix (VCM) of log(SSB/SSBMSY) and log(F/FMSY). Figure 15 
shows the ensemble un-weighted (i.e. Equal) and weighted (i.e. Threshold) by the threshold 
method as described above including a 3-year forecast with F set at FMSY and R set at the average 
of the last three years. Finally, the kobe plot of the ensemble model and the proportion of the 
bootstrapped observation in each of the quadrant as estimated in 2021 is show in Figure 16. 
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Figure 14. Herring SDs 30–31. Comparison between the five models used in the ensemble. 

 

Table 5. Results of the diagnostics for the 5 models used in the ensemble. 

Run Runs_test_1 Runs_test_2 Runs_test_3 RMSE_Perc RMSE_Perc_1 MASE_1 

E1 Passed Passed Failed 21.1 6.6 0.67 

E2 Passed Passed Passed 19.2 6.8 1.52 

E3 Passed Passed Passed 20.2 6.5 1.01 

E4 Passed Passed Passed 27.4 6.8 1.26 

E5 Passed Passed Passed 29.9 6.9 1.50 

 Retro_Rho_1 Forecast_Rho_1 Retro_Rho_2 Forecast_Rho_2 MASE_3 MASE_4 

E1 -0.17 -0.22 -0.17 -0.22 0.92 0.90 

E2 -0.32 -0.40 -0.32 -0.40 1.49 1.25 

E3 -0.28 -0.34 -0.28 -0.34 1.12 1.02 

E4 -0.42 -0.48 -0.42 -0.48 1.73 1.55 

E5 -0.41 -0.47 -0.41 -0.47 1.69 1.51 
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Figure 15. Herring SDs 30–31. Ensemble of the 5 models using equal weight or weighted by threshold method. 
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Figure 16. Herring SDs 30–31. Kobe plot of the ensemble model. 
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Annex 2: Final reference points analysis 

Herring in Subdivision 30 and 31 (Gulf of Bothnia) 

Current reference points 

Summary table of current stock reference points following ICES (2017, 2017a) protocols: 

Reference point Value Technical basis 

Current FMSY 0.21 Maximizes median long-term yield, based on stochastic simula-
tions 

Current Blim 202272 Bpa/1.4 (as it is not possible to estimate Blim from stock–recruit-
ment data) 

Current Bpa 283180 MSY Btrigger (as it is not possible to estimate Blim from stock–recruit-
ment data) 

Current Btrigger 283180 5th percentile of the distribution of SSB when fishing at FMSY, 
based on stochastic simulations 

 

Source of EqSim inputs 

The results from the Stock Synthesis assessment (1980–2019) were processed for application in 
EqSim. 

EqSim settings and configuration 

Data and parameters Setting Comments 

SSB-recruitment data 1980–2019  

Exclusion of extreme values (option ex-
treme.trim) 

Selected  

Mean weights, proportion mature and 
F-at-age pattern 

2017–2019  

Exploitation pattern 2017–2019  

Assessment error in the advisory year. 
CV of F 

0.212 ICES default value 

Autocorrelation in assessment error in 
the advisory year 

0.423 ICES default value 

Autocorrelation in recruitment Selected  

 

Results 

Stock–recruitment estimates 
The stock–recruitment fit using the three models (Ricker, B&H and segmented regression) 
weighted by the default "Buckland" method available in EqSim gave 84% of the points as derived 
from a segmented regression curve. However, the estimated breakpoint for this curve is at 
718 138 t, which is around 54% of the maximum observed values. This was considered to be high 
because it is estimated to be much larger than BMSY and around 54% of the max observed SSB. 
The influence of the 2002 year class on the estimate of the breakpoint was examined and found 
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to be minimal; when excluding the 2002 year class, the breakpoint is estimated at 700 761 t. In 
this case the group decided to follow the “type 6” stock–recruitment relationship as described in 
the ICES guidelines (ICES, 2017b). Therefore, Bpa was set at the lowest observed SSB between 
1980–2019 (i.e. the period where the recruitment is estimated in the assessment model; Bpa = Bloss 
= 533 515 t). Bloss was observed in the 1980s during a period of very low F and high M (due to cod 
predation). Blim was then calculated as Bpa/(exp(1.645*SSBvar) which results in a value of 376 571 t. 
The quantity “SSBvar” was taken as the uncertainty associated to the SSB in last assessment year 
(i.e. 2020; σ = 0.212). Applying this variance to BMSY and computing the lower 5th percentile of 
305 544 t. This is lower than Bpa (533515 t) and thus eliminated as a candidate and Btrigger was thus 
set equal to Bpa. 

Given the Blim, Bpa and Btrigger estimates, the ICES procedure was implemented to compute the 
remaining reference points. The S–R relationship selected was a hockey-stick with the breakpoint 
set at Bpa (equal to Bloss). The number of samples used to fit the S–R relationship and the number 
of runs used in all EqSim simulations were 1000 and 200, respectively. Autocorrelation of recruit-
ment was used in all EqSim simulations. According to the ICES guidelines Fpa is set equal to FP.05 
with Btrigger. 

Proposed reference points 

Applying the ICES (2017) procedure as detailed above resulted in the following proposed stock 
reference points: 

Stock  

Reference point Value 

FP.05 (5% risk to Blim) with Btrigger 0.384 

FP.05 (5% risk to Blim) without Btrigger 0.312 

FMSY 0.384 

FMSY lower 0.308 

FMSY upper 0.384 

Fpa 0.384 

Flim 0.497 

FMSY upper precautionary 0.384 

FMSY range with Btrigger 0.384 

FMSY range without Btrigger 0.312 

MSY Btrigger 533 515 t 

Bpa 533 515 t 

Blim 376 571 t 

 

Discussion / Sensitivity 

According to the EqSim estimations, FP0.05 (0.384) is lower than FMSY (0.407) estimated without 
Btrigger and thus the FMSY and FMSY range are considered precautionary. As an integrated model, 
Stock Synthesis provides estimate of B0. The calculated Blim using ICES guidelines, corresponds 
to around 27% of B0. It was noted that in other settings and parts of the world, lower limits of 
spawning biomass are typically a smaller fraction of B0 (e.g. the minimum stock size threshold 
in the USA is considered to be half of BMSY, and a standard proxy for BMSY is 40% of unfished). 
Consequently, the value of Blim (given the model settings and assumptions) would be more pre-
cautionary. 
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The S–R relationship shows no clear recruitment trend. However, the historical fishing mortality 
has always been well below conventional FMSY (=0.407) and historically SSB has been always well 
above BMSY (333 000 t) estimated by the Stock Synthesis model. This means that the dynamic 
range of SSB is little because since this stock has not experienced high Fs. As a consequence, Bloss, 
is well above BMSY, and therefore is not a right proxy for Blim as suggested for Category 5 of the 
S–R relationship. Category 6, designed for stocks with little dynamic range and low F, suit best 
in this case, which implies setting Bpa as Bloss. 
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 Figure 1. EqSim results for Herring in subdivisions 30 and 31 with Btrigger. 

 

https://doi.org/10.17895/ices.pub.7679
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Figure 2. Stock–recruitment relationship (i.e. segmented regression with breakpoint at Bpa) for Herring in subdivisions 30 
and 31 used in the EqSim simulations for the estimation of the FMSY reference points. 
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Annex 3: Comparison of SS3 reference run and 
SAM 

Model comparison (SS3 vs SAM) and general performance of 
the SAM model 

The SAM model was rejected in February 2020 benchmark meeting because the five years aver-
age Mohn’s rho bias was higher than the upper limit defined in the ICES rule/guideline (Mohn’s 
rho ±20%). Thereafter, ACOM set the new (alternative optional) three years retrofit rule/guide-
line for the Mohn’s rho bias. In the 2021 meeting, the same SAM model was applied with the 
revised rule/guideline and new revised acoustic survey data, which showed much smaller ret-
rospective bias. Hence, the SAM model was used as a contrast (evaluation) model for the SS3 
model (Figure 1, Table 1). 
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Figure 1. Comparison of the main SS3 and SAM results based on new revised acoustic survey data (after December 2020 
WGBIFS meeting). 
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Table 1. Estimates of retrospective pattern (Mohn’s Rho bias in %) with five and three years retrofit, based on the most 
recent ACOM guidelines and model fit (log(L), AIC) of the SAM model using the old (last year 2018) and new revised (last 
year 2019) acoustic survey data. 

Mohn’s Rho Old survey 
data2018 

New survey 
data 2018 

New survey 
data 2019 

New survey 
data 2019 

SSB -17 (5 yrs) -18 (5 yrs) -10 (5 yrs) 4 (3 yrs) 

F 34 (5 yrs) 34 (5 yrs) 21 (5 yrs) 0 (3 yrs) 

R -8 (5 yrs) -8 (5 yrs) -5 (5 yrs) 6 (3 yrs) 

     

Model fit     

log(L) -526.9 -520.62 -528.84 -528.84 

AIC 1083.79 1071.24 1087.67 1087.67 

 

The changes made in acoustic survey data in December 2020 WGBIFS meeting did not much 
affect the SAM based recruitment, SSB and fishing mortality estimates (Figure 2). 
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Figure 2. SAM model based estimates of R(age1), SSB and Fbar(3–7) using the old and new acoustic survey data. 
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Annex 4: Report of External reviewers for Gulf of 
Bothnian herring (SD 30 and 31) 

Comments from Michael O’Malley 

Invited expert to WGBIFS to review the acoustic survey index 

As co-chair of WGIPS (Working Group of International Pelagic Surveys) I was asked to partici-
pate in this meeting and acted as an additional reviewer, at the request of ACOM. The meeting 
was held online from 1–3 December 2020 and the focus was to investigate the herring abundance 
indices generated for SD30 using the StoX software and to compare these with the previous old 
BIAS calculation methods. The amount of work completed before this meeting was impressive, 
and the reviewer would like to commend the effort that went into getting the entire survey cal-
culation method for SD30 copied from the old method and converted into a new StoX project 
framework. This included getting all the data into the ICES DB in the correct format beforehand 
in order to generate the correct StoX input file format.  It was inevitable that there would be 
errors is such a wholesale change in working up the data from the surveys to an appropriate 
index.  The differences in total number of herring per rectangle between the two methods were 
generally low, but in some years differences appeared to be greater. It was difficult to get to the 
bottom of where the differences were in the short time we had, but great effort was put in to 
investigating this was done by the people involved.  This included revisiting the input data to 
investigate possible errors there. There were some small errors found in the input data, which 
made proper investigation difficult during the meeting.  For example, an error was found in the 
original BIAS calculations where wrong mean weight for herring length samples were used. Also 
there were errors found in some rectangles where the allocation of hauls was not given equal 
weight for all hauls.  Comparison of NASC values showed that with some few exceptions the 
differences in the data were generally small and could usually be explained after investigation 
of the input data. 

Conclusion 

Generally, differences in overall estimates appeared to occur from small methodological differ-
ences between the new StoX project and the old BIAS calculation method. This is somewhat ex-
pected, and although the new StoX project for the survey was developed specifically for WGBIFS, 
it is not exactly the same as the old method used by WGBIFS previously.  It is recommended that 
the herring abundance time-series of SD30 should be calculated with StoX after all investigations 
into errors are exhausted, and that this should be used for assessment purposes. The benefits of 
StoX include better transparency, harmony of calculation methods and replication across sur-
veys.  Similar comparisons should be done with all abundance index series in the group before 
the transition to StoX can be done for the entire area. The results from the SD30 changeover to 
StoX has given members valuable lessons for the other areas and this should make the process 
easier. 
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Further recommendations 

Survey design issues were discussed during the meeting and the variability in survey design in 
the past was acknowledged.  The group agreed that it would be better to cover the Bothnian Sea 
using parallel transects east to west if possible in the future.  Survey design should consider the 
degree of area coverage for all survey rectangles and try to harmonise biological sampling pro-
cedures across surveys as much as possible.  A lot of the discrepancies appeared to come from 
differences in methods across surveys (e.g. length–weight relationship procedures, stickleback 
protocols) and lack of familiarity between methods across surveys.  The group also agreed that 
hauls should be distributed more evenly throughout the survey area. 

The reviewer finds that the StoX survey index calculation method is appropriate to be used as 
input data in the stock assessment for the survey in SD30, once the group agrees that all errors 
in the input data have been eliminated. 

Conclusions from Jim Ianelli and Santiago Cerviño 

In general, the benchmark using the stock synthesis platform with the settings specified during 
the benchmark are considered acceptable for assessment and advice, and have features that 
should ensure stability as new data are added (e.g. selectivity is assumed to be constant over 
time). 

The base model’s retrospective pattern is acceptably small and is primarily due to the character-
istics of the acoustic survey data. Notably, the acoustic index is relatively flat during a period 
when catches increased substantially in the past decade. This suggests that there must be an 
improved recruitment event. If the age composition data are inconsistent with such an event then 
this could be the cause of the observed retrospective pattern. 

Future work could continue to evaluate changes in selectivity over time. For the SAM runs, the 
partial Fs should be considered as standard output for comparisons in future assessments. This 
was noted above in the section on an alternative assessment model done by the review team. 
Alternatively, splitting the fishery components into separate fleets may reflect spatial patterns 
that have varied over time. Time varying natural mortality might be explored given the high cod 
predation in the early period of the model. 

Both assessment approaches presented have capabilities for reflecting the uncertainty in the ad-
vice. ICES should develop advice that more formally considers uncertainty. This would provide 
a path for including structural and estimation uncertainty from stock assessment models. For 
example, given that age-specific schedules of maturity and weight-at-age have changed over the 
assessment period, it seems appropriate to reflect this variability/uncertainty in providing advice 
based on future projections. 

During follow-up meetings, it was reiterated that fishers have indicated their experiences in rel-
ative abundance contrasted from what the assessment indicated. Specifically, that fishing condi-
tions had deteriorated rather than in a stable to improving state suggested by the assessment. To 
the extent practical, retaining input from fishing conditions during future assessments should 
play a role. Where such contradictions occur, assessment scientists should strive to understand 
and articulate (as they did in this case) why perceptions might differ. 
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Annex 6: Stock Annex for Herring (Clupea ha-
rengus)in subdivisions 30 and 31 (Gulf 
of Bothnia) 

The table below provides a link of the stock annex for herring in subdivisions 30 and 31 (Gulf of 
Bothnia). Stock Annexes for other stocks are available on the ICES website library under the 
publication type “Stock Annexes”. Use the search facility to find a particular Stock Annex, refin-
ing your search in the left-hand column to include the year, ecoregion, species, and acronym of the 
relevant ICES expert group. 

Stock ID Stock name Last updated Link 

her.27.3031 Herring (Clupea harengus) in subdivisions 3031 (Gulf of Bothnia) February 2021 Herring in SD 3031  

 

http://www.ices.dk/publications/library/Pages/default.aspx
http://tinyurl.com/lemtn4t
https://www.ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2021/her.27.3031_SA.pdf
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Annex 7: Working Documents 

The following working documents were presented at WKCLuB (February 2020 meeting) and are 
inserted in full in the following pages: 

WD1: Input data for Stock assessment of herring in the Gulf of Bothnia (ICES SD 30–31), February 2020. 
Jukka Pönni, Zeynep Hekim, Jari Ratianiemi and Pekka Jounela. 

WD2: Stock assessment of herring in the Gulf of Bothnia (ICES SD 30–31), February 2020. Massimiliano 
Cardinale and Alessandro Orio 

WD3: Updated exploratory run using SAM, February 2020. Zeynep Hekim. 

WD4: Additional reviewers’ comments related to WD2 and WD3. February 2020. 



Data for Stock assessment of herring in the Gulf of Bothnia (ICES SD 30-31) 

By Jukka Pönni, Zeynep Hekim, Jari Raitaniemi and Pekka Jounela 

1. Commercial catch

Finnish commercial herring catch statistics is based on catch notifications submitted by 
fishermen at set intervals. The application of the Act (1139/94) on implementing the 
Common Fisheries Policy of the European Union obliges all commercial fishermen to submit 
catch notifications. 
The discards are negligible in both countries’ commercial fisheries (i.e. Finland and Sweden) 
and therefore not sampled either. Also, the information of discards from Finnish fishermen’s 
reports is not used in assessment, but the Swedish reported discards are added to the total 
catches. 
The fishing data of vessels ≥ 10 metres long are entered in the EU fishing logbook. The data 
entered are the dates of fishing by fishing trip, the size of the catch by species, the fishing 
(statistical) rectangle, the gear and number of gears used in fishing, and the trawling time in 
hours. A fisherman is obliged to keep an up to date logbook onboard his vessel. The logbook 
must be returned to the regional authorities within 48 hours of the catch being landed. 
With the exception of salmon catches, the Finnish fishing data of vessels ≤ 10 metres long are 
entered monthly in a coastal fishery form. The data entered are the size of the catch by 
species by the statistical rectangle, the type and number of gears used in fishing, and the 
number of fishing days. The forms must be returned to the regional authorities by the fifth 
day of the following month. All logbooks and most of the other catch notification forms are 
checked by national authorities.  
The proportion of the Baltic herring catch, landed in Finland for the food and processing 
industry in relation to the total catch of that species, is estimated with the aid of the fish 
purchasing register that is maintained by the Ministry of Agriculture and Forestry.  
Because all the main fisheries (pelagic trawling, deep mid-water trawling and trap-nets) have 
different exploitation patterns, their catches are also sampled separately. The sampling in the 
Gulf of Bothnia herring fishery is performed according to EU DCF requirements, covering 12 
strata (3 fleets and 4 year-quarters). 
Since the study projects funded by DG XIV (International Baltic Sea Sampling Programs I & 
II) in 1998–2001, a length stratified sub-sampling scheme has been applied to estimate age
compositions of the Finnish catches of Baltic herring. This sampling scheme is designed to be
compatible with international databases and uses standardized methodologies in data
processing. Baltic herring samples are collected mainly in fishing harbours and, if necessary,
also on board commercial fishing vessels. In the sampling scheme the annual life cycle of
Baltic herring and the presence of the ice coverage during the winter in the Gulf of Bothnia
have been taken into account. Because of icing conditions, the three fishing gears are not in
use year-round (e.g. trap net fishery is usually conducted only in spawning time during
quarters 2 and 3). The sampling effort is roughly based on the proportions of catches in
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different fisheries. Moreover, the sampling intensity in general is locally adjusted during the 
year according to temporal and regional changes in fisheries. The seasonal herring fishing 
intensity is predominantly dependent on the TAC, which may cause fishing restrictions in 
certain fisheries and/or seasons and may therefore change the sampling intensity from the 
original plan. A minimum coverage target is at least one sample by fishery per month (or 
three samples by fishery per year-quarter). The sampling strategy is to have age-length 
samples from all major gears in each quarter.  
The Finnish and Swedish input files are uploaded to ICES InterCatch database. The data can 
also be found in the national laboratories and with the stock co-ordinator. The national data 
have been aggregated to international data in InterCatch. 

 

Table 1. Description of the types of data available per country. 

 Kind of data 

Country Caton  
(catch in weight) 

Canum  
(catch-at-age in 
numbers) 

Weca  
(weight-at-age in 
the catch) 

Matprop 
(proportion mature 
by age) 

Length 
composition in 
catch 

Finland 
Sweden 

x 
x 

x 
x 

x 
x 

x 
 

x 
x 

2. Biological sampling 

The age and the individual weight data is obtained from both Finnish and Swedish landings 
from all year-quarters as well as from the catch samples in acoustic surveys in 3rd and 4th 

quarter. The annual weights at age are weighted by the year-quarterly catch-numbers. The 
maturity ogives are based on the proportions of mature individuals of each age group before 
spawning time in the Finnish sampling of commercial data, and are updated every year. 

2.1 Calculation of catch at age  

In Finland the calculation of catch at age is based on year-quarterly performed length-
stratified random sampling of individual fish (at minimum 10 aged individual fish from all 
prevailing 0.5 cm length-classes) and length-samples of at least 300 specimens per sample 
from different commercial fisheries per quarter. The average number of individual-samples is 
1100 from commercial fisheries and 2500 from surveys in SD 30 and 600 from commercial 
fisheries in SD 31 annually, and the average number of length measurements is 18500 and 
6000 respectively. 
The quarterly collected length distributions (from gear-specific length sampling ) are 
converted into age distributions with year quarterly prepared age-length keys, ALKs, which 
are derived from the sampling of individuals from all gears combined. 
The quarterly catches from the main herring fisheries (OTM [Midwater Otter Trawl, single 
trawling] + PTM [Midwater Otter Trawl, pair trawling] carried out in midwater and deep 
midwater trawling and trapnets, FPN [pound nets]+ FYK [fyke nets]) are divided by the 
mean weight of the herring from length samples of respective fisheries in order to get the 
total catch number of fish for all strata (for all above mentioned national fisheries, 4 
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quarters). The total catch numbers from each fishery and quarter are then multiplied by the 
proportions of the age-classes in the age distributions and summed up to get the annual catch 
at age. 
In Sweden, the length-samples of at least 300 specimens per sample from two (main) 
commercial fisheries (bottom trawls (XTB) and gillnets (GNS)) in SD 30 and only from 
gillnets in SD 31 are collected quarterly each year. The catches of pelagic trawls (OTM and 
PTM) fisheries are not sampled, although they can constitute more than 70% of the total 
Swedish catches (i.e. 2018). Length-stratified random sampling of individual fish (around 20 
aged individual fish from all prevailing 0.5 cm length-classes per quarter) is performed only 
for gillnet fisheries. In SD 30, the average total number of annual length measurements is 
5600 from bottom trawls and 2300 from gillnet fisheries, and the average total number of 
sampled fish individuals is 490, and in SD 31 the average total number of annual length 
measurements is 1700, and the average number of sampled fish individuals is 450. 
The length distributions (from length sampling) by gear are converted into age distributions 
with quarterly prepared age-length keys (ALKs) using all gears together. For that purpose, 
additionally Finnish ALK and mean weight at length data from trawl fisheries are borrowed. 
Finnish deep midwater-trawl ALK and weights are used for Swedish Bottom (demersal) 
trawls. 
The calculation of total annual catch-at-age follows the same procedure as in Finland. 

2.2 Calculation of mean weight 

The mean weights at age are derived from the individual data collected from commercial 
catches all year round as well as from the individual data of acoustic survey trawl samples 
during September-October (2600 individuals annually), and averaged over year and quarters. 
The annual mean weights at age for assessment are derived by weighting the year-quarterly 
mean weights by the year-quarterly catch numbers. 

2.3 Maturity  

The maturities are defined from the individual data that is collected all the year round from 
commercial catches with other so called “stock related variables” as length, weight and age, 
and from the trawl samples of the acoustic survey. The data for the maturity ogive used in 
assessments is collected from commercial samples before spawning (i.e. January to March in 
SD 30 and March to May in SD 31), because the idea is to get the proportion of spawners by 
age from the whole population, before the spawning part separates itself from non-spawners 
by approaching the coastline spawning areas. 
The share of mature fish in each age-group is calculated from annual data and the annual 
number of the individual samples for maturity definitions that are used for the maturity 
ogives has been on average (2010–2015) 283 in SD 30 and 212 in SD 31. 
The maturity scale (Table 2) in use is the modified European standard 9-stage scale and the 
same scale is used both in Finland and Sweden. The stages II–VIII (VIII–A and VIII–B) are 
considered mature while stage I and IX are counted as “non-mature” although stage nine 
(abnormal) is usually mature, but not accounted to take part to spawning. 
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The maturities collected during a Swedish acoustic survey in 4th quarter and the maturities 
derived from Finnish 1st quarter sampling of commercial catches have showed very small 
differences. 
In the WKPELA 2012 benchmark (ICES, 2012), the sensitivity of the annually changing 
proportions of spawners in age-groups was tested (by several types of averages over time1) 
and even though there are clearly visible annual changes in mostly 2-year-olds, there was 
only negligible impact to e.g. the estimates of SSB. It was concluded then that it was still 
better to have the latest real information on maturity at age. 
The reason for the “instability” was found to be the high inter-annual variation in the 
maturation of 2-year olds in the whole time-series and especially in 2010. The maturity 
calculations from raw data were examined carefully, and no mistakes were revealed. 

Table 2. Maturity scale in use in Finland and Sweden. 

 

From 2002 to 2006, Finnish samples were age determined with two different methods in 
parallel, using traditionally whole otoliths and as a new method, neutral red stained slices of 
cut otoliths. The effects of the age determination method were presented at the WGBFAS 
meeting in 2006 (Raitaniemi and Pönni, 2006, working document). The method affects the 
age distribution as well as the proportion of mature fish at age. Especially in old age groups 
(from age 5 or 6 on), determination from cut otoliths generally results in an older assessed 
age compared to whole otoliths. In the comparison, the numbers at age in the total catch 
differed about 2% on average, but ranged from 0.4% to 52% depending on year and age. On 
average the proportion of 4 to 8 years old individuals in the catch was 11% lower, and the 
proportion of ages 9+ was 32% higher, when using neutral red stained slices compared to 
whole otoliths. 
According to Peltonen et al. (2002), the agreement between the determinations of different 
age readers was better with the cut otoliths technique than with whole otoliths. A 
combination of age data from Finnish cut otoliths (representing 98% of the catch) and 

1 Four new combinations of maturity ogives were introduced to XSA (maturity ogive with 3- and 5 years 
running averages for the whole time series, constant maturity ogive for the whole time series as an average of 
the whole time series and two different averages over the time series according to periods before and after the 
alleged regime shift (1973–-1988 and 1989–-2010)). Resulting estimates of SSB were compared to the annually 
updated maturity ogive in SPALY run, and the differences were found to be negligible with the exception of 
year 2010 only. 
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Swedish whole otoliths (representing 2% of the catch) was used between 2002–2006. The 
slicing method was calibrated between Finland and Sweden in 2007, and it has been applied 
also to Swedish catches as well as Bothnian Sea surveys since 2007. Since age determination 
using cut otoliths is considered to be more accurate (Raitaniemi and Pönni, 2006), this 
method is used as the standard method for ageing all the samples, and the time series 
including ages from whole otoliths from 1980–2001 and cut otoliths from 2002 onwards is 
used in the assessments of this stock. 

2.4 Natural mortality 

An age-varying natural mortality is assumed to be constant for the entire time series (Figure 
1, Table 1). M was estimated based on the methods described in Then et al. (2015) and 
Lorenzen (1996). Then et al. (2015) estimation of M is based on maximum observed age 
(tmax = 25) and parameters of the von Bertalanffy growth curve as derived from 
www.fishbase.org for the same area. The Lorenzen type (Lorenzen, 1996) of M-at-age 
function assumes a declining relationship between M and the mean weight of fish in 
successively older age classes. The growth and the length-weight parameters used for the M 
estimation are reported in Table 2. In all model configurations tested, M gradually decrease 
from 0.563 to 0.257 for ages 0 to 20. In order to reduce the number of parameters to be used 
in the model, natural mortality was set using 6 breaks: age 0.5, 1.5, 3.5, 5.5, 8.5 and 15.5, 
where M for the adjacent ages is simply linearly interpolated using the values estimated for 
the age breaks. 

 
Figure 1. Herring SDs 30-31. The age-specific natural mortality used in the model. 

 

Table 1. Herring SDs 30-31. Natural mortality vector by breaks used in the model. 

 
Age 0.5 Age 1.5 Age 3.5 Age 5.5 Age 8.5 Age 15.5 
0.563 0.472 0.332 0.290 0.267 0.257 
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Table 2. Herring SDs 30-31. Parameters used to estimate the natural mortality vector by age. 

Life history parameters 

k (combined sex) 0.34 From Fishbase 

 L
inf

 (combined sex) 21 From Fishbase 

t0 (combined sex) -1.1 From Fishbase 

a 3.99E-03 Estimated from LW 
BIAS survey data 

b 3.145258 Estimated from LW 
BIAS survey data 

2.5 Surveys 

Annual hydroacoustic surveys have been conducted in SD 30 in October from 2007 until 
2010 with Swedish R/V Argos. In 2011 and in 2012, the survey was performed with the 
Danish R/V Dana, 2013–2016 with Finnish R/V Aranda, and in 2017 with R/V Dana again. 
This survey is co-ordinated by ICES within the Baltic International Acoustic Surveys (BIAS). 
The annual survey-indices are collected and calculated with standardised methods within the 
international coordination of ICES WGBIFS and stored in international databases. The actual 
calculations have been performed in years 2007–2012 in the Swedish marine research 
institute (Havsfiskelaboratoriet) by Niklas Larson and from 2013 onwards in the Natural 
Resources Institute Finland by Juha Lilja.  
 
Based on the implementation progress to development StoX software for calculations of 
WGBIFS acoustic stock indexes it was decided that members of WGBIFS StoX task sub-
group should analyze their national survey data with StoX software and compare the results 
with their official results. In SD 30, the comparison between StoX and official results showed 
significant difference between 2013 and 2015 but no differences was found between 2016-
2018. Consequently, all official results (based on Excel spreadsheets) were recalculated and 
an error was discovered in calculations for 2013-2015 indexes. The error was corrected and 
updated values were presented. 
The acoustic survey has been considered a reliable tuning fleet and has been included into the 
SD 30 assessment in 2013 after an independent review process (ICES, 2015). 
The SD 30 acoustic estimates are used as abundance indices (tuning fleet) for the assessment 
of Gulf of Bothnia herring stock (SDs 30 & 31) (see the text table in section C, Assessment: 
data and method). In the acoustic tuning fleet, age-groups 0–15 (true ages) are applied 
(Figure 1). 
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Figure 1. Consistency between consecutive age-classes in acoustic tuning fleet.  

 

The coverage of the acoustic transects and trawl samples has mostly been good. In 2012 the 
coverage was only half of the “normal” because of a sudden 50% reduction in funding. In 
2014 there were problems with the fishing gear, which reduced the trawl hauls, but the spatial 
acoustic coverage was not affected significantly. In 2015 a storm damaged the ship so that the 
most northern part of the area had to be skipped due to lack of time after fixing the damage in 
harbour. 
The 2012, 50% reduction in the survey effort, as well as the 2014 and 2015 results were, 
however, considered acceptable for the index by the survey expert working group, WGBIFS 
(ICES, 2013; 2015; 2016). 
The survey is based on Baltic International Acoustic Surveys (BIAS) manual (ICES, 2016, in 
annex) with the aim of 60 Nm of acoustic transect and 2 trawl hauls per statistical rectangle. 
In the catch sampling, at least 300 fish are measured in 0.5 cm length-classes for length 
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distributions, and 10 individuals from all prevailing length-classes are aged per rectangle, 
comprising normally about 20 000 length-measurements and 2600 age-readings annually. 
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Stock assessment of herring in the Gulf of Bothnia (ICES SD 30-31) 

 

By Massimliano Cardinale and Alessandro Orio 

 

Assessment method and settings 

Assessment of herring in SDs 30-31 was conducted using the Stock Synthesis (SS) model (Methot 

& Wetzel 2013). Stock Synthesis is programmed in the ADMB C++ software and searches for the 

set of parameter values that maximize the goodness-of-fit, then calculates the variance of these 

parameters using inverse Hessian and MCMC methods. The assessment was conducted using the 

3.30 version of the Stock Synthesis software under the windows platform.  

Uncertainty measures and likelihood 

The total likelihood of the model is composed of a number of components, including the fit to the 

survey and CPUE indices, tag recovery data (when tagging data are used), fishery length frequency 

data, age compositions and catch data. There are also contributions to the total likelihood from the 

recruitment deviates and priors on the individual model parameters (if any). The model is configured 

to fit the catch almost exactly so the catch component of the likelihood is generally small (although 

catch penalties might be created and catches are entered with uncertainty). Details of the formulation 

of the individual components of the likelihood are provided in Methot & Wetzel (2013). 

Samples sizes, CVs, data weighting 

For the commercial fleet the CV of the catches was set to 0.05. The CV of the initial catches of the 

commercial fleet was set to 0.1 to add extra variability. The annual sample size associated with the 

age distribution data for commercial catches is reported as number of trips sampled.  

The CV of both the acoustic and trapnet survey indices are not available. Therefore, a value of 0.1 is 

assumed for all years.  

The relative weighting of the age compositions of the reference model were estimated using Francis 

method as implemented in r4ss package. The Hessian matrix computed at the mode of the posterior 

WKCLuB 47



distribution was used to obtain estimates of the covariance matrix, which was used in combination 

with the Delta method to compute approximate confidence intervals for parameters of interest. 

Assessment model runs: Reference model 

The assessment model of herring in SDs 30-31 is a one area, annual, age-based model where the 

population is comprised of 20+ age-classes (with age 20 representing a plus group) with sexes 

combined (male and females are modelled together).  

The model starts in 1963 and the initial population age structure was assumed to be in an exploited 

state, so that the initial catches was assumed to be the average of last three years (1963-1965) in the 

time series. Fishing mortality was modelled using hybrid F method (Methot & Wetzel 2013). Option 

5 was selected for the F report basis; this option represents a recent addition to Stock Synthesis and 

corresponds to the fishing mortality requested by the ICES framework (i.e. simple unweighted 

average of the F of the age classes chosen to represent the Fbar (age 3-7)). 

 

Spawning stock biomass and recruitment 

Spawning biomass was estimated at the beginning of the year and it was considered proportional to 

fecundity. In the model, the recruitment was assumed to be only a single event occurring at the 

beginning of the year. Recruitment was derived from a Beverton and Holt (BH) stock recruitment 

relationship (SRR) and variation in recruitment was estimated as deviations from the SRR. 

Recruitment deviates were estimated for 1963 to 2018 (55 annual deviations). Recruitment deviates 

were assumed to have a standard deviation (σR) of 0.6, which was derived using the likelihood profile 

function in r4ss (See section below). The reference model estimates steepness (h) for the SRR within 

the model using with a full Beta prior of 0.74 with a standard deviation of 0.113 as derived for herring 

in Myers et al. (1999).  

 

Growth, weights and maturity 

Empirical weight at age matrices for both commercial fleet and survey indices are provided as input 

for the model and are estimated using commercial and survey data. Maturity at age matrix is also 

provided as input and derived from commercial data. Details on how weight and maturity at age 

were derived are included in the stock annex. 
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Natural mortality 

An age-varying natural mortality is assumed to be constant for the entire time series (Figure 1, Table 

1). M was estimated based on the methods described in Then et al. (2015) and Lorenzen (1996). 

Then et al. (2015) estimation of M is based on maximum age (tmax = 25) and parameters of the von 

Bertalanffy growth curve as derived from www.fishbase.org for the same area. The Lorenzen type 

(Lorenzen, 1996) of M-at-age function assumes a declining relationship between M and the mean 

weight of fish in successively older age classes. The growth and the length-weight parameters used 

for the M estimation are reported in Table 2. In all model configurations tested, M gradually 

decrease from 0.563 to 0.257 for ages 0 to 20. In order to reduce the number of parameters to be 

used in the model, natural mortality was set using 6 breaks: age 0.5, 1, 3, 5, 8 and 15, where M for 

the adjacent ages is simply linearly interpolated using the values estimated for the age breaks. 

 
Figure 1. Herring SDs 30-31. The age-specific natural mortality used in the model. 

 

Table 1. Herring SDs 30-31. Natural mortality vector by breaks used in the model. 

 
Age 0.5 Age 1 Age 3 Age 5 Age 8 Age 15 
0.563 0.472 0.332 0.290 0.267 0.257 

 

Table 2. Herring SDs 30-31. Parameters used to estimate the natural mortality vector by age. 

Life history parameters 

k (combined sex) 0.34 From Fishbase 

 L
inf

 (combined sex) 21 From Fishbase 

t0 (combined sex) -1.1 From Fishbase 
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a 3.99E-03 Estimated from LW 
BIAS survey data 

b 3.145258 Estimated from LW 
BIAS survey data 

 

 

 

Fishery dynamics 

Fishery selectivity of the reference model is assumed to be age-specific and time-invariant. For both 

commercial fleet and surveys, a random walk selectivity was used. This selectivity pattern provides 

for a random walk in ln(selectivity). For each age a ≥ Amin, where Amin is the minimum age for which 

selectivity is allowed to be non-zero, there is a selectivity parameter, pa, controlling the changing 

selectivity from age a − 1 to age a. All data inputs are summarized in Table 3 while in Table 4 the 

configuration of the reference model is reported. 

 

Table 3. Herring SDs 30-31. Input data used in the Stock Synthesis models. 

TYPE NAME  YEAR RANGE RANGE  
Catches Catches in tonnes for 

each year 
1963- 2018  

 

Age compositions Catch in numbers 
(thousand) per age 
class 

Commercial fleet: 
1980-2018 
Acoustic survey:  
2007-2018 
Trapnet survey: 
1990-2006 
 

0 – 15+  

Maturity ogives Empirical maturity at 
age estimated from 
commercial data 

  
 

Natural mortality Natural mortality by 
age class costant for 
the entire time series 
derived from Then et 
al., 2015 

 
0 - 20+  

Surveys indices Density index from 
acoustic survey and 
biomass index from 
trapnet survey 

Acoustic survey:  
2007-2018 
Trapnet survey: 
1990-2006 
 

  

SSB index SSB proportional to 
fecundity 
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Table 4. Herring SDs 30-31. Settings of the Stock Synthesis assessment reference model. The table columns show: number of 
estimated parameters, the initial values (from which the numerical optimization is started), the intervals allowed for the parameters, 
the priors used, the value estimated by the model and its standard deviation. Parameters in bold are set and not estimated by the 
model. 

 

Parameter Number 
estimated 

Initial value Bounds 
(low,high) 

Prior  Value 
(MLE) 

Standard 
deviation 

Natural mortality (age 
classes 0.5, 1, 3, 5, 8, 
15) 

 0.563, 0.472, 0.332, 
0.290, 0.267, 0.257 

    

Stock and recruitment       

Ln(R0) 1 18.03 (16, 25) No_prior 17.36 0.07 

Steepness (h) 1 0.66 (0.1, 1) 0.74 0.77 0.10 

Recruitment variability 
(σR) 

 0.60 
 

   

Ln (Recruitment 
deviation): 1963 - 2018 

55      

Recruitment 
autocorrelation 

 0     

Initial catches  Average of 1963-1965     

Commercial fleet 1 0.2 (0.001, 1) No_prior 0.034 0.006 

Selectivity (random 
walk) 

      

Commercial fleet       

Change from age1 to 
age2 

1 1.45 (-5, 9) No_prior 1.31 0.07 

Change from age2 to 
age3 

1 0.4 (-5, 9) No_prior 0.37 0.06 

Change from age3 to 
age4 

1 0.15 (-5, 9) No_prior 0.14 0.06 

Change from age4 to 
age5 

1 0.14 (-5, 9) No_prior 0.14 0.07 

Change from age5 to 
age6 

1 0.03 (-5, 9) No_prior 0.07 0.08 
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Change from age6 to 
age7 

1 0.01 (-5, 9) No_prior 0.04 0.08 

Acoustic Survey       

Change from age1 to 
age2 

1 0.6 (-5, 9) No_prior 0.50 0.17 

Change from age2 to 
age3 

1 0.2 (-5, 9) No_prior 0.35 0.18 

Change from age3 to 
age4 

1 0.02 (-5, 9) No_prior -0.05 0.22 

Change from age4 to 
age5 

1 0.11 (-5, 9) No_prior 0.07 0.25 

Change from age5 to 
age6 

1 0.14 (-5, 9) No_prior 0.18 0.22 

Trapnet Survey       

Change from age3 to 
age4 

1 0.30 (-5, 9) No_prior 0.13 0.15 

Catchability       

Acoustic survey       

Ln(Q) – catchability  -2.47811     

Extra variability added 
to input standard 
deviation 

 0.001     

Trapnet survey       

Ln(Q) – catchability  3.86604     

Extra variability added 
to input standard 
deviation 

 0.001     

 

Exploratory runs  
 

The following alternative configurations were explored: 

 

Table 5. Herring SDs 30-31. Alternative model runs with different configurations. 

id 
Number of age 0 
individuals from the 
BIAS acoustic survey 

Selectivity of 
the fleet Weighting 

Reference_run_age0 
Included 

Time invariant Francis 

Reference_run_DIRICH 
Excluded 

Time invariant Dirichelet 
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Reference_run_Ianelli 
Excluded 

Time invariant Ianelli 

Reference_run_TVSEL 
Excluded 

Time variant Francis 

Reference_run_UW 
Excluded 

Time invariant None 

 

The five alternative models reported in Table 5 generally did not improve the likelihood or 

convergence of the model, or the fits to different data sources, compared to the reference run (Table 

6). The reference run achieved the lowest value of AIC (although the comparison with Age0 model 

is not statistically correct as the data used in the two models are different) similar values of final 

convergence.  

 

Table 6. Herring SDs 30-31. Likelihood component, parameter values and derived model quantities for the alternative 
model configurations. The values in the likelihood component of each model indicate changes in likelihood units 
compared to the reference model. Values +/- 2 likelihood units are considered significantly different.  

 

 

The alternative model configuration with the inclusion of BIAS survey estimates of age 0 individuals 

estimates a smaller SSB and a higher F in 2018 compared to the reference model and also to all other 

Type Reference Age0 Dirichlet Ianelli TVSEL UW
Convergence 5.3E-06 2.8E-05 2.6E-05 1.9E-05 1.1E-05 2.1E-06

TOTAL_likelihood 128 144 149 303 102 147
AIC 404 437 447 754 545 442

deltaAIC 0.0 33.7 43.1 349.9 141.4 38.3
Survey_likelihood

ALL 1.9 1.1 7.6 -1.8 1.0
Acoustics 17.2 15.8 18.1 14.4 15.8
Trapnet 11.4 12.0 16.2 10.5 12.0

Age_likelihood
ALL 14.3 19.2 159.1 -24.4 16.7
Fleet 0.0 21.7 85.3 -25.0 20.4

Acoustics 14.3 0.5 15.7 0.4 -0.1
Trapnet 0.0 -2.9 58.1 0.2 -3.5

Derived quantities
SB0 517425 519650 521995 509920 537000 519300

SSB_2018 407361 374826 411624 406500 417677 409588
F_2018 0.18 0.20 0.18 0.19 0.17 0.18

SSB_MSY 170574 169334 171119 166364 179325 170316
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model configurations. Otherwise, the results from the different model configurations are rather 

similar (Figure 2).    
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Figure 2. Herring SDs 30-31. Sensitivity to alternative model configurations as described in the text. Boxes correspond 
to the 95% confidence interval of a derived quantity (indicated by color) in the reference model. Values outside the box 
would indicate significant difference from the uncertainty provided in the reference model. The metric used were: SB0 
(a), SSB (b) in 2018, BMSY (c), FMSY (d) and F in 2018 (F). 
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Final model run and diagnostics 

Overview of the datasets included in the final Stock Synthesis model is shown in Figure 3. The 

diagnostic figures included in the following chapters are related to the reference model developed 

before the benchmark. Those were used to compare between model configurations and are considered 

valid for this purpose. The final model as agreed at the benchmark with its retrospective diagnostic is 

presented in the next sections. 

 
Figure 3. Herring SDs 30-31. Summary of the input time series included in the model. 

 

The selectivity of all fleets is well estimated (Figure 4).  
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Figure 4. Herring SDs 30-31. Age based selectivity by fleet. 

 

The fitting of the model was good, with the age compositions well reconstructed. The residuals are 

quite low, never below -2.6 and above 2.6, and without particular patterns (Figure 5 and 6).  

 

Figure 5. Herring SDs 30-31. Model fits to age composition data. 
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Figure 6. Herring SDs 30-31. Residuals of fits to age composition data for the different fleets. 

 

Overall, the model doesn’t provide a very good fit to the trends in both the acoustic and trapnet surveys 

(Figures 7 and 8).  

 

 

Figure 7. Herring SDs 30-31. Model fits to the acoustic survey density index. 
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Figure 8. Herring SDs 30-31. Model fits to the trapnet survey biomass index. 

 

A non-random pattern of residuals may indicate that some heteroscedasticity is present, or there is 

some leftover serial correlation (serial correlation in sampling/observation error or model 

misspecification). Several well-known nonparametric tests for randomness in a time-series include: 

the runs test, the sign test, the runs up and down test, the Mann-Kendall test, and Bartel’s rank test 

(Gibbons and Chakraborti, 1992). Here we used the runs test (JABBA and ordinary runs test) to 

evaluate whether residuals of the surveys and of the age frequency distributions were normally 

distributed or/and had time trends because this test has been used recently to diagnose fits to indices 

and other data components in other assessment models (e.g. SEDAR 40, 2015; Winker et al., 2018). 

The results of the runs test are presented in Figures 9 and 10. The JABBA runs test indicated that the 

fit of the CPUE index was good because no residuals were larger than 1 and the RMSE was less than 

30%, indicating a random pattern of the surveys residuals and the age frequency distributions. The 

JABBA plot is considered as a tool for identifying trends in residuals and if the standard deviation is 

tight on a given year this means the fleets are in agreement, even if not fitting well, which is a useful 

diagnostic. Its purpose is to visualize multiple residuals at once, pick up on periods of substantial data 

conflicts (width of boxes) and systematic departures in median residuals (loess). In this case, as we 

have two surveys not overlapping in time, the RMSE is the only useful metric. The ordinary runs test 

was passed for both acoustic and trapnet surveys residuals and also for all length frequency 

distributions.   
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Figure 9. Herring SDs 30-31. Residuals from runs test analyses for the age distributions and the fit to the acoustic and 
trapnet survey indices. 

 
Figure 10. Herring SDs 30-31. Residuals from the JABBA runs test analyses for the age distributions and the fit to the 
acoustic and trapnet survey indices. 

 

Jittering 

The jitter procedure allows to verify the stability of the model examining the effect of varying the 

starting values of the model input estimated parameters on the model results. An accurate model 

should converge on a global solution (i.e. not being stuck in local minima of likelihood surface) across 

a reasonable range of starting values input parameters. In this case, 100 runs were performed 

considering a 10% of jitter of the initial parameters, which means that a small random jitter is added 

to the initial parameter values. Starting values are jittered based on a normal distribution based on the 

pr(PMIN) = 0.1% and the pr(PMAX) = 99.9%.  

The 100 iterations of the jitter test for global convergence resulted in the same results as the reference 

run (Figure 11), so no local minima are observed as no runs have a likelihood lower than the reference 

run. It is however important to stress that the absence of a local minima when running jittering is not 

a guarantee that the model is not indeed stuck in a local minimum, although its absence reduced the 

risks that this occurs (Subbey 2018).  
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Figure 11. Herring SDs 30-31. Results from jitter using 100 iterations and an average jitter of 10%.  

 

Retrospective analyses 

Retrospective analysis is a diagnostic approach to evaluate the reliability of parameter and reference 

point estimates and to reveal systematic bias in the model estimation. It involves fitting a stock 

assessment model to the full dataset. The same model is then fitted to truncated datasets where the 

data for the most recent years are sequentially removed. The retrospective analysis was conducted to 

the reference model for the last 5 years of the assessment time horizon to evaluate whether there were 

any strong changes in model results. Given that the variability of Mohn's rho index depends on life 

history, and that the statistic appears insensitive to F, Hurtado-Ferro et al. (2014) proposed the 

following rule of thumb when determining whether a retrospective pattern should be addressed 

explicitly. Values of Mohn's rho index higher than 0.20 or lower than -0.15 for long-lived species 

(upper and lower bounds of the 90% simulation intervals for the flatfish base case), or higher than 

0.30 or lower than -0.22 for short-lived species (upper and lower bounds of the 90% simulation 

intervals for the sardine base case) should be cause for concern and taken as indicators of retrospective 
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patterns. However, Mohn's rho index values smaller than those proposed should not be taken as 

confirmation that a given assessment does not present a retrospective pattern, and the choice of 90% 

means that a "false positive" will arise 10% of the time. In both cases, model misspecification would 

be correctly detected more than half the time. The retrospectives of the reference model were rather 

stable (Figure 12). The estimated Hurtado-Ferro et al. (2014) variant of the Mohn´s rho indices were 

inside the bounds of recommended values for both SSB (-0.07) and F (0.13), but outside the bounds 

for recruitment (-0.56). 

 

 

Figure 12. Herring SDs 30-31. Retrospective analyses of the reference model. 
 

There is little or no information in the data to estimate the sizes of the 2018 and 2017 year-class. 

Retrospective analyses of year class strength for young fish shown the estimates of recent recruitment 

to be unreliable prior to at least age 2 (Figure 13), which likely explain the retrospective pattern in 

recruitment. 
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Figure 13. Herring SDs 30-31. Retrospective recruitment estimates scaled relative to the most recent estimate of the 
strength of each cohort. 

 

Likelihood profiles 

Likelihood profiling is an automated routine in Stock Synthesis, which allows to evaluate model 

performance across a range of values of an input parameter (generally R0, σR and steepness). Here we 

performed the likelihood profile of R0 and σR for the reference model. The likelihood profile of R0 

shows a minimum at the model estimate minimum, which corresponds to 17.5. There is an apparent 

conflict between the index and age versus the recruitment likelihood components in the estimate of 

R0 (Figure 14). 
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Figure 14. Herring SDs 30-31. Likelihood profile of R0. The vertical dashed line represent the value estimated in the 
reference model. The horizontal dashed line represents the threshold of the chi-square test for 95% significance value. 

 

For sigmaR (σR), the values ranging from 0.5 to 1.2 did not affect significantly (i.e. they are under 

the dashed line, which represent the threshold of the chi-square test) the log-likelihood of the surveys 

(Figure 15). Differently, the values of σR tested affect significantly the log likelihood of Recruitment 

and Age composition, which represent an apparent conflict between the different information. 

However, those changes in log likelihood resulted low considering that the max change obtained 

values of around 40 (Figure 15). For the total likelihood, values between 0.45 and 0.7 are not 

significantly different. Thus, a σR of 0.6 was used in all models. 

 

σR is the stochastic recruitment process error and the estimation of this parameter within integrated 

models is generally recognised to be problematic (Kolody et al., 2019) so that σR individual 

recruitment estimates is fixed at a values that is large enough to prevent the SSR from constraining 

individual recruitment estimates (e.g. analogous to traditional VPA) (Kolody et al., 2019). A meta-

analysis of the estimation of σR done outside the operative model (ISSF, 2011) yielded a median 

estimate between 0.2 and 0.5, which suggested that σR is often inflated in assessment models.   

However, models with σR down to 0.3 do not change substantially the results, which is reassuring 

that the management advice is not affected by the choice of the σR value (Figure 16).  
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Figure 15. Herring SDs 30-31. Likelihood profile for σR. The horizontal dashed line represents the threshold of the chi-
square test for 95% significance value. 

 

 

 

Figure 16. Herring SDs 30-31. Trajectories of SSB (left panel) and F (rigth panel) at different values of σR. 

 

Hindcasting 

The provision of fisheries management advice requires the assessment of stock status relative to 

reference points, the prediction of the response of a stock to management, and checking that 

predictions are consistent with reality. A major uncertainty in stock assessment models is the 

difference between model estimates and reality. To evaluate uncertainty often a number of scenarios 

are considered corresponding to alternative model structures and dataset choices (Hilborn, 2016). It 

is difficult, however, to empirically validate model prediction, as fish stocks can rarely be observed 
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and counted. Various criteria are available for estimating prediction skill (see Hyndman and Koehler, 

2006). One commonly used measure is root-mean-square error (RMSE). RMSE, however, is an 

inappropriate and misinterpreted measure of average error (Willmott and Matsuura, 2005). On the 

other hand, mean absolute error (MAE) is a more natural measure of average error, and unlike RMSE 

is unambiguous. Scaling the average errors using the Mean Absolute Scaled Error (MASE) allows 

forecast accuracy to be compared across series on different scales. MASE values greater than one 

indicates that in-sample one-step forecasts from the naïve method perform better than the forecast 

values under consideration. MASE also penalizes positive and negative errors and errors in large 

forecasts and small forecasts equally.  

Kell et al. (2016) showed how hindcasting can be used to evaluate model prediction skill of the CPUE. 

When conducting hindcasting, a model is fitted to the first part of a time series and then projected 

over the period omitted in the original fit. Prediction skill can then be evaluated by comparing the 

predictions from the projection with the observations using for example the MASE indicator 

(Hyndman and Athanasopoulos, 2013).  

Hindcasting was conducted for the reference model (Fig. 17). The results showed that the acoustic 

survey performs well in hindcasting given that the MASE value is lower than the 1.0 threshold when 

predicting the index one year ahead.   
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Figure 17. Herring SDs 30-31. Results of hindcasting for the acoustic survey. Black dashed lines are the forecasts while 
colour coded observations are the corresponding observations that were dropped when making the prediction residual 
for that specific year. .   

 

MCMC 

Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a 

probability distribution. It is used in integrated models for detecting misspecification in key fixed 

parameters or issues with estimation of the parameters. By constructing a Markov chain it is possible 

to obtain a sample of the desired distribution by observing the chain after a number of steps. The 

more steps there are, the more closely the distribution of the sample matches the actual desired 

distribution. MCMC methods create samples from a possibly multi-dimensional continuous random 

variable, with probability density proportional to a known function. These samples can be used to 

evaluate an integral over that variable, as its expected value or variance. Practically, an ensemble of 
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chains is generally developed, starting from a set of points arbitrarily chosen and sufficiently distant 

from each other. Those are then used to estimate the posterior distribution of the parameters of interest 

within the model.  

For herring in SDs 30-31, we performed an MCMC run using the Random Walk Metropolis method 

with 1100000 iterations, with no burn-in period and thinning each 1000 iterations. The results showed 

that the MCMC is almost identical to the MLE estimated, which is an indication of the robustness of 

the model (Figure 18).  

 

Figure 18. Herring SDs 30-31. Results of the MCMC analysis in terms of SSB, R and F compared to the MLE model. 

 

First, we used also NUTS algorithm in MCMC (Monnahan et al., 2019) to regularize the model, i.e. 

to check that all parameters are identifiable. MCMC with 10000 iterations, 9 chains, run with NUTS 

algorithm, with 25000 iterations as burn in and thinning every 100 confirmed that all parameters of 

the model are identifiable.  

Successively, we analysed the plot of the five slowest mixing parameters in the MCMC run with 

NUTS algorithm, 100000 iterations, 9 chains, with 25000 iterations as burn in and thinning every 

100. Almost all estimates are within the 95% confidence interval and the central tendency of the five 

slowest mixing parameters shows that they are centred around the median (Figure 19), which indicate 

that the model is not ill-configured. Stationarity of the posterior distribution for model parameters 

was re-assessed via a suite of standard single-chain and multi-chain diagnostic tests. Diagnostic of 

the MCMC does not reveal any issue with the key parameters (i.e. SSB in 2018, F in 2018, R in 2018 

and R0) (Figure 20). The objective function, as well as all estimated parameters and derived quantities, 

showed good mixing during the chain, no evidence for lack of convergence, and low autocorrelation 

(Figure 20). Finally, analysis with Shinystan library (Monnahan et al., 2019) showed divergence only 

in less than 1% of the iterations, which confirms that the model is not ill-configured. 

 

WKCLuB 71



 

Figure 19. Herring SDs 30-31. Comparison between MLE (red points) against posteriors of the reference model obtained 

by an MCMC with 10000 iterations, 9 chains, run with NUTS algorithm, with 25000 iterations as burn in and thinning 

every 100 for the 5 slowest mixing parameters. Red ellipse is 95% confidence interval, points are posteriors draw and 

lines shows chain traces.   
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Figure 20. Herring SDs 30-31. Summary of MCMC diagnostics (MCMC with 10000 iterations, 9 chains, run with NUTS 

algorithm, with 25000 iterations as burn in and thinning every 100) for SSB in 2018, F in 2018, R in 2017 and R0 in the 

reference model. The first sub-panels show the autocorrelation present in the chain at different lag times (i.e., distance 

between samples in the chain), the second sub-panels show the trace of the sampled values across iterations (absolute 

values, top left; cumulative running mean with 5th and 95th percentiles, top right), and the third sub-panel shows the 

distribution of the values in the chain (i.e., the marginal density from a smoothed histogram of values in the trace plot). 
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ASPM 

In some integrated stock assessments, the index of abundance provides almost no information on 

population scale. Consequently, the estimates of the model outputs rely almost completely on the 

size- and age-composition data and model structure. Maunder and Piner (2015) proposed a diagnostic 

tool that can be used to evaluate the information content of data about absolute abundance and assess 

whether the model is correctly specified. This diagnostic consists of comparing the results of an age-

structured production model (ASPM) to those from a model estimating all of the model parameters 

and fitting to all the data (e.g., an integrated analysis). It is inferred that a production function is 

apparent in the data when the catch data explain indices with good contrast (e.g., declining and 

increasing trends), therefore providing evidence that the index is a reasonable proxy of stock trend. 

If the ASPM cannot mimic the index, then either the stock is recruitment-driven, catch levels have 

not been high enough to have a detectable impact on the population, the model is incorrect, or the 

index of relative abundance is uncertain or not proportional to abundance. Thus, ASPM is able to 

evaluate if variations in predicted population dynamics are mainly informed by the relative abundance 

indices and catches, and governed by the underlying surplus production function and process error or 

instead is driven by changes in recruitment or other biological characteristics of the stock. 

To perform the ASPM diagnostic test, we had to change the original model parameterization. SS can 

behave like an ASPM (Methot and Wetzel, 2013) when the parameters of the selectivity curve are 

fixed at those estimated from the fully integrated model, the annual recruitment deviates are not 

estimated (fixed at zero so that recruitment follows the stock-recruitment relationship), and the age- 

and size-composition data are not used for parameter estimation. The results from the ASPM should 

be similar to those from the fully integrated model if the size- and age-composition data are not 

informing absolute abundance or the trend in abundance and there is no strong pattern in recruitment. 

The ASPM test (Maunder and Piner, 2015) appears to have promise in detecting systems dynamic 

misspecification (h and M), where the runs test showed lower power, and ASPM showed good power. 

For herring in SDs 30-31, a production relationship is not evident in the assessment model, with 

ASPM results leading to very dissimilar estimates of SSB and SSB2018 compared to the correspondent 

fully integrated model (Figure 21). In this case, a clear pattern in recruitment deviations as estimated 

by the model is evident (Figure 22), which might be related to changes in salinity, ice cover and other 

key parts of the ecosystem in the area (Pekcan-Hekim et al., 2016). Thus, the stock seems to be mainly 

environmentally driven in the last two decades, with the appearance of larger than expected year 

classes, which has determined an increase of the SSB despite increasing fishing mortality. In other 

words, the stock is recruitment-driven (sensu Carvalho et al., 2017). 
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Figure 21. Herring SDs 30-31. Results of the ASMP analysis in terms of SSB compared to the MLE model. 
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Figure 22. Herring SDs 30-31. Results of the ASMP analysis in terms of recruitment deviations compared to the MLE 
model. 

 

Analysis of surplus production trend 

Estimates of Surplus Production (Walters, et al., 2008) can provide a check of whether predictions of 

changes in biomass can be made reliably based on catch and current biomass (clockwise or linear 

behaviour) or whether there has been non-stationarity in production processes, i.e. are dynamics 

driven by climate and oceanic conditions (counter clockwise). This is important for example for the 

development of MPs in the MSE process. In the case of herring in SDs 30-31, the figure shows a 

mixed pattern of surplus production against total biomass predicted by age-structured models with a 

clockwise or linear behaviour in the beginning of the time series followed by a counter clockwise in 

the more recent years. This is likely related to the increased recruitment in the latest decades 

associated with a warming environment (Figure 23). 
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Figure 23. Herring SDs 30-31. Surplus production against biomass plot. The round circle represents the first year of the 
time series (1963). 

 

When all diagnostic tests are considered together, the power to detect model misspecification 

improves without a substantial increase in the probability of incorrectly rejecting a correctly specified 

model (Carvalho et al., 2017) and therefore these diagnostics should be all applied routinely. When 

the criteria for rejecting a model as correctly specified is a failure of at least one of the diagnostic 

tests, nearly 90% of most mis-specified are detected with no real increase in the probability of a false 

detection (Carvalho et al., 2017). Residual analyses were easily the best detector of misspecification 

of the observation model, while the ASPM is the only good diagnostic for misspecification of system 

dynamics model (Carvalho et al., 2017). The retrospective analysis and R0 likelihood component 

profile had low rates of detection of mis-specified models (Carvalho et al., 2017), although 

retrospective analysis is effective in detecting un-modeled temporal variation (Hurtado-Ferro et al., 

2014). Finally, opposed to the widely used maximum-likelihood estimator, MCMC gives clear 

warning signs when a non-identifiable model is used for fitting (Siekmann et al., 2012). In this 

context, we created a table that summarize all diagnostics for the three main candidate models (Table 
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7). The table is an attempt to sum up a multidimensional space and thus it needs to be seen as a 

guidance more than as a definitive result. However, it is evident from Table 7 that the reference model 

is the “best” model according to all scoring criteria. Also, it passes or it perform best in two of the 

key tests (MCMC and jitter test) and in the retrospective. Thus, the reference model was proposed as 

the final model to be used for advice. 

Table 7.  Herring SDs 30-31. Summary table of the diagnostics of the three main candidate models. Reference= Age 0 
excluded; Age0= Age 0 individuals from BIAS survey included; TVSEL = Time varying selectivity of the fleet. “Passed 
tests” score refers to the average test passes in % when multiple tests have been conducted. “Best model” score is the sum 
of the number of times each model is the best model in each of the tests and “weighted ranking” is as the “Best model 
score” but weighted for the importance of each test to detect model misspecification as described (but not quantified) by 
Carvalho et al., 2017. 

 

Trends in SSB, F and R of the reference model  

The stock status and the trends in SSB, R and F are based on the MLE model. The spawning stock 

biomass (SSB) has been declining from the beginning of the time series up to the 1970s, then it 

increased during the 1980s reaching levels comparable to the 1960s. At the end of the 1990s the SSB 

decreased slightly and has remained stable at that level since then. Fishing mortality (F) has increased 

markedly since 1990s, with a peak in 2016. Recruitment (R) has been fluctuating throughout the time 

series. In 2002 a very strong year class appeared (Figure 24 and Table 8).  
 

   

Diagnostic Indicator Component Reference Age0 TVSEL
Convergence Model 5.33E-06 2.80E-05 1.13E-05

N. of parameters Model 71 76 170
Hessian Model Yes Yes Yes

AIC Model 404 437 545
Jittering (10%) % of runs above reference LL Local minima 100% 100% 100%

N of runs not different from reference run Model 100% 99% 93%
Retrospective (5 years) Mohn´s rho SSB -0.06 0.09 -0.13

F 0.11 0.17 0.34
Hindcasting MASE Survey 100% 100% 0%

MCMC Confidence of intervals of SSB2018 Model Yes Yes Yes
ASPM Confidence of intervals of SSB2018 Model No No No

Run´s test Survey 100% 100% 100%
Recruitment deviations 100% 100% 100%

Age compositions 100% 100% 66%
JABBA survey 100% 100% 100%

JABBA Age compositions 100% 100% 100%

Passed tests 100.0% 99.9% 82.4%
Best model 15 8 7

Weighted ranking 13 5.5 4

Model
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Figure 24. Herring SDs 30-31. Summary of the stock assessment. SSB, F and R with 95% confidence intervals. Catches 

by fleet and SSB are in tonnes R is in thousands of individuals.  

 

Table 8. Herring SDs 30-31. Summary of the stock assessment. Catches and SSB are in tonnes R is in thousands of 

individuals.  

  

 

Year SSB F3-7 Recruitment Catch
1963 1024620 0.03 15595600 29739
1964 1022950 0.03 14115300 25204
1965 996471 0.03 12777300 27541
1966 903440 0.03 11550700 22164
1967 814425 0.04 10753600 27772
1968 724404 0.04 9486100 28966
1969 632085 0.06 9048650 35996
1970 569045 0.06 13826600 32790
1971 429691 0.09 10109000 36347
1972 446072 0.08 13321000 34092
1973 466322 0.06 17503400 26507
1974 394351 0.07 13771800 26776
1975 411303 0.06 29493500 21811
1976 410046 0.08 10848900 30520
1977 433001 0.08 7002900 33634
1978 482474 0.08 6890340 34873
1979 433988 0.07 17871700 26109
1980 375610 0.08 9982980 29809
1981 378733 0.06 15059900 21526
1982 392367 0.07 24550600 26499
1983 425281 0.06 32042400 26208
1984 468843 0.07 26768000 34545
1985 517475 0.07 11409500 35432
1986 584781 0.07 22438800 35579
1987 645940 0.06 11020600 32628
1988 622741 0.06 50005700 36418
1989 715301 0.05 46083900 33086
1990 830688 0.05 26394600 39180
1991 957853 0.04 30729100 33419
1992 942510 0.06 33576900 46610
1993 911558 0.06 21813600 49314
1994 1026980 0.07 29401100 61986
1995 903463 0.08 24332100 65547
1996 912020 0.08 21558400 61303
1997 764747 0.10 39238500 69808
1998 730476 0.09 22851800 62474
1999 729923 0.10 35017000 66502
2000 706038 0.10 29116400 58852
2001 710749 0.10 44430400 57806
2002 734572 0.09 87681400 53969
2003 769418 0.08 19814600 53644
2004 826281 0.08 20416600 61423
2005 859549 0.08 28173300 62911
2006 772245 0.10 40070100 71318
2007 752860 0.12 29000000 78678
2008 715670 0.11 39495300 67914
2009 714931 0.11 33187200 71248
2010 868905 0.11 22333300 72590
2011 776183 0.13 32193800 81850
2012 790391 0.17 24736500 106007
2013 804053 0.19 28421200 114396
2014 752971 0.20 48992400 115366
2015 726187 0.22 28082600 114942
2016 691646 0.25 43928600 130029
2017 699175 0.21 24893100 104358
2018 774039 0.19 19477000 97366
2019 698669
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Model uncertainty  

The reference assessment model run using maximum likelihood estimates (MLE) integrates over the 

substantial uncertainty associated with several important model parameters including: the magnitude 

of the stock (via the R0 parameter for equilibrium recruitment), growth, annual selectivity for key 

ages and recruitment deviations. The uncertainty portrayed by the posterior distribution when the 

model is run using MCMC is a better representation of the uncertainty when compared to asymptotic 

approximations about the MLE because it allows for asymmetry (Figure A1). Note that we use the 

term MLE even though the priors are involved in the likelihood calculation and so the more accurate 

term would be the mode of the posterior density. Figure A1 shows the posterior distribution of the 

key parameters. It can be noted that the distribution of all parameters is generally very similar between 

the MLE and the MCMC model. Also, MLE and Bayesian (from MCMC) estimates of the trend in 

spawning biomass, F and recruitment are very similar, overlapping for the entire time series (see 

Figure 18).  

Uncertainty measures in the reference model run underestimate the total uncertainty in the current 

stock status because they do not account for alternative structural models for herring population 

dynamics and fishery processes (e.g., natural mortality, steepness, selectivity, the effects of 

alternative data-weighting choices, and many others). To address structural uncertainties, we 

investigated a range of alternative models, and we present the key sensitivity analyses along with a 

suite of other informative sensitivity analyses. However, a model grid has not been used in short-term 

projections, which are based on the reference model run with MCMC.  

For completeness, the results in terms of stock status using the grid of 6 alternative model 

configurations as described above is shown in Figures 25-27. There are a number of options to 

generate the joint posterior distributions of plausible outcomes of SSBy/SSBMSY and F/FMSY as a basis 

for estimating the probabilities of the stock falling into the respective quadrant of the Kobe phase plot 

(i.e. stock status). Commonly used approaches to do so include: (i) bootstrap or Markov Chain Monte-

Carlo (MCMC) methods to estimate the within model (i.e. reference model) uncertainty (e.g. Walter 

et al., 2019), (ii) developing a large grid of models to derive the Kobe posterior distribution from a 

sufficiently large number of point estimates (e.g. n > 500) of SSB/SSBMSY and F/FMSY and (iii) a 

hybrid approach of joining MCMC or bootstrap derived posteriors from alternative model runs to 

capture both across- and within-model uncertainty (Walter and Winker, 2019). However, in integrated 

age-structured stock assessment models, such as Stock Synthesis (Methot and Wetzel, 2013), these 

methods are computationally intense and time consuming as they require to first invert Hessian matrix 

and then refitting the model (bootstrap) or running sufficiently long MCMC chains (Maunder et al., 
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2006; Magnusson et al., 2013). This renders them as challenging tasks to complete during typically 

time-constrained stock assessment meetings. Therefore, the delta-Multivariate log-Normal’ (delta-

MVLN) estimator (Walter and Winker, 2019; Winker et al., 2019) was used here. It infers within-

model uncertainty from maximum likelihood estimates (MLEs), standard errors (SEs) and the 

correlation of the untransformed quantities F/FMSY and SSB/SSBMSY and it has demonstrated to be 

able to mimic the MCMC fairly closely. These quantities are derived with Stock Synthesis using the 

delta-method to calculate the asymptotic variance estimates from the inverted Hessian. To generate 

Kobe posteriors from a delta-MVLN distribution requires the means and the variance-covariance 

matrix (VCM) of log(SSB/SSBMSY) and log(F/FMSY). Figure 25 shows that there is about 99% 

probability that the stock is in the green quadrant of the kobe plot in 2018, i.e. SSB is above SSBMSY 

and F is below FMSY (FMSY used here was the one estimate by ICES in 2018; FMSY = 0.21; ICES 2018). 

Also, all different model configurations median estimate for 2018 are in the green quadrant of the 

kobe plot (Figure 26). Finally, the median trend with the 95% confidence intervals of SSB/SSBMSY 

and F/FMSY for the aggregated 10000 estimates of 2018 stock status of the 11 model options is shown 

in Figure 27. 
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Figure 25. Herring SDs 30-31. Aggregated assessment Kobe plot. The blue points represent the aggregated 10000 

estimates of 2018 stock status from the multinomial approximation from the mean and variance-covariance of the 6 model 

options. The legend indicates the estimated probability of the stock status being in each of the Kobe quadrant.   

 

 

Figure 26. Herring SDs 30-31. Aggregated assessment Kobe plot. The coloured points represent stock status estimates 
from the 6 model options. The white points represent the aggregated 10000 estimates of 2018 stock status from the 
multinomial approximation from the mean and variance-covariance of the 11 model options. The legend indicates the 
estimated probability of the stock status being in each of the Kobe quadrant. 
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Figure 27. Herring SDs 30-31. The median trend with the 95% confidence intervals of SSB/SSBMSY and F/FMSY /for the 

aggregated 10000 estimates of 2018 stock status from the multinomial approximation from the mean and variance-

covariance of the different 6 model options.  

 

Short-term projection 

The short-term projections are made with Stock Synthesis using the Reference model using MCMC. 

Recruitment in the forecast period was set to the average of the last 10 years for which recruitment 

deviations are estimated in the Stock Synthesis model. Probabilistic forecasts were used. In this 

approach, catch and SSB levels corresponding to different catch options are calculated as in typical 

deterministic short term forecast but using MCMC to make it possible to also include the most correct 

associated probability of the SSB to be below biomass reference points, for each year of forecast. 

Therefore, an MCMC with 1100000 iterations, 100000 burn-in and 1000 thinning was run for the 

different levels of assumed F in 2020 and 2021, assuming F in 2019 (i.e. intermediate year) equal to 

F in 2018. Figure 28 shows the kobe plot of the stochastic forecast for 2021 conducted applying 

different fishing F levels (F at 80, 90, 100, 110, 115 (i.e. FMSY) and 120% of the F in 2018) in 2020. 

The results show that the stock will remain in the green quadrant of the kobe plot up to F = 0.208. 

The probability of the SSB to be above Btrigger and F below FMSY in the forecast period is 100 (Tables 

9 and 10). Btrigger used here was the same as reported by ICES in 2018 (ICES 2018).  
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Figure 1. Herring SDs 30-31. Kobe plot of the stochastic forecast for 2021 conducted applying different F options in 2020 

(i.e. F at 80, 90, 100, 110, 115 (i.e. FMSY) and 120% of the F in 2018), shown in y-axis. The x-axis shows the corresponding 

spawning stock biomass (SSB) relative to BMSY, while the y-axis shows corresponding F relative to FMSY.  

 

 

Figure 29. Herring SDs 30-31. Deterministic trend (median) of SSB and F of the stochastic forecast for 2021 conducted 
applying different F options in 2020 (i.e. F at 80, 90, 100, 110, 115 (i.e. FMSY) and 120% of the F in 2018).  
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Table9. Herring SDs 30-31. Probability of F to fall below FMSY between 2020 and 2022 at different level of catch options 
in 2020 and 2021. 
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Table 10. Herring SDs 30-31. Probability of SSB to be above BMSY between 2020 and 2022 at different level of catches 
in 2020 and 2021. 
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Table 11. Herring SDs 30-31. Short term forecast table. F level is the F expressed as % of the F estimated in 2018. 

 

Medium-term projections 
Not relevant. 

Long-term projections 
Not relevant. 

Appropriate Reference Points (MSY) 
For the time being, we have used FMSY (0.21), Blim (202272 t) and Btrigger (283180) as derived by ICES 
in 2018 (ICES 2018) and BMSY (341148 t) as derived by the Stock Synthesis reference model.  

Additional runs at the benchmark 
 

Additional runs were requested by the reviewers during the benchmark. One run was conducted 

excluding age 1 from the acoustic survey since the poor internal consistency between age 1 and 2 in 

this survey;, a run with the acoustic index in units of biomass instead of abundance (BIO); a run with 

all fleet selectivities modelled as logistic (LOGSEL); one run with a lower survey CV (i.e. 0.05) to 

attempt improving the fit of the survey indices; a run with a higher SigmaR and higher steepness 

F levels Year SSB Catch F
80 2020 658728 72993 0.145
80 2021 663288 72613 0.145
80 2022 685240 74017 0.145
90 2020 658728 81485 0.164
90 2021 654937 79949 0.164
90 2022 671049 80747 0.164

100 2020 658728 89835 0.182
100 2021 646744 87070 0.182
100 2022 658137 87032 0.182
110 2020 658728 98084 0.200
110 2021 639064 93823 0.200
110 2022 644838 92807 0.200
115 2020 658728 101817 0.208
115 2021 635731 96823 0.208
115 2022 638890 95359 0.208
120 2020 658728 106208 0.218
120 2021 631814 100270 0.218
120 2022 631922 98250 0.218

WKCLuB 91



(SigStep), and four runs with different natural mortality assumptions, fixed 0.15, Lorenzen scaled to 

0.15, 0.20 and 0.23 (M015, M015Lor, M020Lor, M023Lor). The nine alternative models generally 

did not improve the likelihood or convergence of the model, or the fits to different data sources, 

compared to the reference run (Table 12).  

 

Table 12. Herring SDs 30-31. Likelihood component, parameter values and derived model quantities for the alternative 
model configurations. The values in the likelihood component of each model indicate changes in likelihood units 
compared to the reference model. Values +/- 2 likelihood units are considered significantly different.  

 

     

 

   

The BIO run performed in a similar way compared to the reference run. Therefore, more runs were 

requested by the reviewers to inspect more thoroughly the differences between the use of a biomass 

or abundance acoustic survey index. One run with the unweighted reference run (UW), one with the 

unweighted biomass run (BIOUW), one with the reweighted biomass run (BIO), and one with the 

reference run with time-varying selectivity for the last 6 years in order to try to take into account the 

drop in the mean age in the catches in the last four years (TVSEL). The new BIO run slightly 

improved the likelihood of the model, and the fits to different data sources, compared to the reference 

run (Table 13).  

 

Table 13. Herring SDs 30-31. Likelihood component, parameter values and derived model quantities for the alternative 
model configurations. The values in the likelihood component of each model indicate changes in likelihood units 
compared to the reference model. Values +/- 2 likelihood units are considered significantly different.  

 

Type Reference Age1 BIO LOGSEL M015 M015Lor M020Lor SigStep SurveyCV M023Lor
TOTAL_likelihood 128 181 131 196 188 168 153 153 189 140

AIC 398 503 404 522 517 478 449 446 521 423
deltaAIC 0 105 7 125 120 80 51 49 123 25

Survey_likelihood
ALL -2.9 5.7 5.3 3.3 1.7 -0.4 -0.9 19.1 -0.2

Acoustics 12.3 21.0 17.5 12.2 13.2 14.0 14.9 21.1 14.4
Trapnet 11.5 11.4 14.6 17.8 15.2 12.4 10.9 24.7 12.2

Age_likelihood
ALL 55.8 -0.9 69.8 -5.7 -9.1 9.0 -0.6 39.8 3.7
Fleet 0.5 -1.5 66.3 -5.8 -9.0 8.7 -0.6 25.5 3.7

Acoustics 55.3 0.5 -0.2 -1.2 0.1 0.5 0.5 10.6 0.1
Trapnet 0.1 0.1 3.7 1.2 -0.2 -0.2 -0.5 3.7 -0.1

Derived quantities
SB0 517425 533810 498102 727115 50059 48718 409031 844800 476115 439308

SSB_2018 407361 451487 335248 548795 210809 206293 266457 426617 417086 299132
F_2018 0.18 0.16 0.23 0.12 0.29 0.34 0.27 0.18 0.18 0.24

SSB_MSY 151283.5 157126.5 146291.5 200696 258048.5 104768 101553 211511 139480 116090

WKCLuB 92



 

 

The results of the different runs in terms of SSB and F are shown in Figure 30. The runs using an 
acoustic biomass index show a slightly lower SSB and higher F compared to the runs with the acoustic 
abundance index.   

 

 
Figure 30. Herring SDs 30-31. Summary of the alternative stock assessment runs. SSB and F with 95% confidence 

intervals. SSB is in tonnes.  

 

The runs with the acoustic abundance index were preferred compared to the ones with the biomass 
index since the retrospective analysis failed for the biomass index runs. Thus, the working group in 
the end decided to accept as final run the reference model (i.e. original model configuration with the 
acoustic survey index expressed in terms of abundance).  

Type Reference BIO BIOUW UW TVSEL
TOTAL_likelihood 124 119 144 143 122

AIC 389 379 429 437 458
deltaAIC 0 -10 40 48 68

Survey_likelihood
ALL 2.2 3.2 1.0 -0.4

Acoustics 2.5 2.8 0.5 -0.3
Trapnet -0.3 0.4 0.5 -0.1

Age_likelihood
ALL -6.0 16.1 17.4 -3.1
Fleet -6.0 16.1 17.4 -3.1

Acoustics -0.1 0.3 0.0 0.0
Trapnet 0.1 -3.4 -3.5 0.0

Derived quantities
SB0 512310 501425 503470 513560 514885

SSB_2018 387020 345018 347128 388678 389512
F_2018 0.19 0.21 0.21 0.19 0.18

SSB_MSY 151627.5 148853 148527 151071 153265
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Appendices  

Appendix I 
 

 
Figure A1. Herring SDs 30-31. Parameter distribution of the reference model. Prior (black lines) and posterior (grey 

histograms) distributions for key parameters in the reference model obtained by the MCMC run. The MLE and 
associated symmetric uncertainty intervals are also shown (blue lines). 

Appendix II.  
 

GLOSSARY OF TERMS AND ACRONYMS USED IN THIS DOCUMENT 

B0: The unfished equilibrium female spawning biomass. 

BMSY: The estimated female spawning biomass which theoretically would produce the maximum 
sustainable yield (MSY) under equilibrium fishing conditions (constant fishing and average 
recruitment in every year). 

Blim: Spawning biomass below which recruitment is considered to be impaired.   

WKCLuB 97



Catchability (q): The parameter defining the proportionality between a relative index of stock 
abundance (often a fishery-independent survey) and the estimated stock abundance available to 
that survey (as modified by selectivity) in the assessment model. 

Catch-per-unit-effort (CPUE): A raw or (frequently) standardized and model-based metric of fishing 
success based on the catch and relative effort expended to generate that catch from commercial 
or survey estimates. Catch per-unit-effort is often used as an index of stock abundance. 

Cohort: A group of fish born in the same year. Also see recruitment and year-class. 

CV: Coefficient of variation. A measure of uncertainty defined as the standard deviation (SD) divided 
by the mean. 

Fishing mortality rate, or instantaneous rate of fishing mortality (F): A metric of fishing intensity that 
is usually reported in relation to the most highly selected ages(s) or length(s), or occasionally as 
an average over an age range that is vulnerable to the fishery.  

FMSY: The rate of fishing mortality estimated to produce the maximum sustainable yield (MSY) from 
the stock. 

Markov-Chain Monte-Carlo (MCMC): A numerical method used to sample from the posterior 
distribution (see below) of parameters and derived quantities in a Bayesian analysis. It is more 
computationally intensive than the maximum likelihood estimate (see below), but provides a more 
accurate depiction of parameter uncertainty.  

Maximum likelihood estimate (MLE): A method used to estimate a single value for each of the 
parameters and derived quantities. It is less computationally intensive than MCMC methods (see 
below), but parameter uncertainty is less well determined. 

Maximum sustainable yield (MSY): An estimate of the largest sustainable annual catch that can be 
continuously taken over a long period of time from a stock under equilibrium ecological and 
environmental conditions. 

NUTS: Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that 
avoids the random walk behaviour and sensitivity to correlated parameters that plague many 
MCMC methods by taking a series of steps informed by first-order gradient information. These 
features allow it to converge to high-dimensional target distributions much more quickly than 
simpler methods such as random walk Metropolis or Gibbs sampling. No-U-Turn Sampler 
(NUTS), an extension to HMC that eliminates the need to set a number of steps. NUTS uses a 
recursive algorithm to build a set of likely candidate points that spans a wide swath of the target 
distribution, stopping automatically when it starts to double back and retrace its steps.  

Posterior distribution: The probability distribution for parameters or derived quantities from a 
Bayesian model representing the result of the prior probability distributions being updated by the 
observed data via the likelihood equation. For stock assessments, posterior distributions are 
approximated via numerical methods; one frequently employed method is MCMC. 

Prior distribution: Probability distribution for a parameter in a Bayesian analysis that represents the 
information available before evaluating the observed data via the likelihood equation. For some 
parameters, non-informative priors can be constructed which allow the data to dominate the 
posterior distribution (see above). For other parameters, informative priors can be constructed 
based on auxiliary information and/or expert knowledge or opinions. 
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R0: Estimated annual recruitment at unfished equilibrium. 

Recruits/recruitment: the estimated number of new members in a fish population born in the same 
age. In this assessment, recruitment is reported at age 0. See also cohort and year class. 

Recruitment deviation: The offset of the recruitment in a given year relative to the stock-recruit 
function; values occur on a logarithmic scale and are relative to the expected recruitment at a 
given spawning biomass (see below). 

Random Walk Metropolis: In statistics and statistical physics, the Metropolis–Hastings algorithm is 
a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from 
a probability distribution from which direct sampling is difficult. This sequence can be used to 
approximate the distribution (e.g. to generate a histogram) or to compute an integral (e.g. an 
expected value). Metropolis–Hastings and other MCMC algorithms are generally used for 
sampling from multi-dimensional distributions, especially when the number of dimensions is 
high. 

SD: Standard deviation. A measure of variability within a sample. 

Steepness (h): A stock-recruit relationship parameter representing the proportion of R0 expected (on 
average) when the female spawning biomass is reduced to 20% of B0 (i.e., when 

Stock Synthesis (SS): The age-structured stock assessment model applied in this stock assessment. 

Year-class: A group of fish born in the same year. See also ‘cohort’ and ‘recruitment’. 
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Background  

The assessment for the Gulf of Bothnia herring (SD 3031) in 2019 was not accepted by the Advice 
Drafting Group and was downgraded from category 1 to 3. The run results from the stockassessment.org 
for the 2019 assessment can be found under “GoB_Herring_2019_clonedversfinal” and in Figure 1 and 2 
below. The assessment was not accepted based on the poor retrospective diagnostics where the Mohn’s 
rho values were above 20% for SSB (37%), F (27%) and recruitment (68%) (Figure 2).  
 

 

Figure 1. The stock assessment run in SAM in 2019 (GoB_Herring_2019_clonedversfinal), which was 
not accepted. SSB (left), F (middle) and recruitment (right).  

 

Figure 2. The retrospectives for the stock assessment run in SAM in 2019 
(GoB_Herring_2019_clonedversfinal), which was not accepted. SSB, F and recruitment. 

Due to the downgrading of the stock a benchmark was setup in order to investigate the reasons behind the 
bad retrospective diagnostics. In addition, a stock synthesis model was setup in parallel that showed good 
performance. Therefore, it was concluded that the benchmark would also investigate the potential use of a 
new model (SS3) for the SD 3031 assessment.   

Data issues detected 

Before the data meeting (19th November) a mistake in the input data in the 2019 assessment was detected. 
The acoustic survey indices were calculated wrongly from years 2013 to 2015. Years 2013, 2014 and 
2015 in the acoustic survey was calculated higher than it actually was. The difference between the correct 
data and the wrong data used in the 2019 assessment can be found in Figure 3.  
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Figure 3. Abundance of herring (Millions) in SD 30 from the Acoustic Survey by age for years 2013-
2018. The 2019 assessment survey input (left) and the corrected survey indices (right).  

This section of the report contains a run with SAM with corrected acoustic indices compared to the 2019 
assessment run. In addition, a SAM run with new data, which is used in the SS3 model was run in order 
to compare the outputs from the two different models.  

SAM run with corrected acoustic index compared to the 2019 assessment run 

The SAM run “GoBHer2020” includes the corrected data for the acoustic survey index for years 2013-
2018 while keeping all other input data the same without changing the configuration from 2019 
assessment run. Comparison of the survey input data used in the 2019 assessment and the corrected 
survey indices used in the GoBHer2020 can be found in Figure 3.  

The SSB, F and recruitment from the SAM run with corrected survey index compared to the assessment 
in 2019 are shown in Figure 4. There is a decline in SSB in the corrected run starting 2010 instead of an 
increase and a decline later on in year later in 2015, which showed on the 2019 assessment with the 
incorrect data. The retrospectives for the run GoBHer2020 improved from the 2019 assessment run 
substantially for SSB (Mohn’s rho 37% to 19%), and for recruitment (Mohn’s rho 68% to 5%). However, 
the retrospectives for F worsened (Mohn’s rho 27% to 34%) (Figure 5).  

  

Figure 4. The stock assessment run in SAM “GoBHer2020” comparing the Spawning stock biomass 
(left), F (middle) and recruitment (right) for data with corrected acoustic index values (current, blue) to 
base run (assessment run in 2019, grey).  
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Figure 5. The retrospectives for the stock assessment run in SAM “GoBHer2020” for SSB (left), F 
(middle) and recruitment (right). The Mohn’s rho values for SSB, F and recruitment are -22%, 43% and 
10%, respectively.   

SAM run with new data (same data as in the SS3)  

The SAM run including the same input data as in the SS3 reference run (with ages expanded to 15+, with 
age varying yearly constant natural mortality and updated survey indices) can be seen for SSB, F and 
recruitment in figure 6. The retrospectives in Figure 7 show Mohn’s rho values of 17%, 34% and 8% for 
SSB, F and recruitment, respectively. These values have improved for SSB however worsened for F and 
recruitment when comparing to the run with corrected survey index (GoBHer2020). Note that the 
configuration is kept the same as in the assessment run in 2019. 

 

Figure 6. The stock assessment run in SAM “GoB_Herring_2020_SS_3” with the new data for Spawning 
stock biomass (left), F (middle) and recruitment (right). 
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Figure 7. The retrospectives for the stock assessment run in SAM “GoB_Herring_2020_SS_3” for SSB 
(left), F (middle) and recruitment (right). The Mohn’s rho values for SSB, F and recruitment are -17%, 
34% and 8%, respectively.  

 

 

 

Figure 8. Residuals for the stock assessment run in SAM “GoB_Herring_2020_SS_3” for catch (top), 
trapnet CPUE (middle) and acoustic survey (bottom).  
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Figure 9. Comparison for SSB, F and Recruitment age 1 for the SS and SAM models with same input 
data.  
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WD4. Additional reviewers’ comments related to WD2 and WD3. 
February 2020. 
 
Introduction 

A Benchmark Workshop on herring (Clupea harengus) in the Gulf of Bothnia (WKCluB) met in Copenhagen, 
Denmark, in 4–6 February 2020 for a 3 day Benchmark meeting: 

a) Evaluate the appropriateness of data and methods to determine stock status and investigate 
methods for short-term outlook taking agreed or proposed management plans into account for the 
stocks listed in the text table below. The evaluation shall include consideration of: 
1. Examine SS3 as an alternative assessment model to SAM; 
2. Explore impact of all tuning fleets on assessment estimates; 

b) Agree and document the preferred method for evaluating stock status and (where applicable) 
short-term forecast and update the stock annex as appropriate. Knowledge about environmental 
drivers, including multispecies interactions, and ecosystem impacts should be integrated in the 
methodology. If no analytical assessment method can be agreed, then an alternative method (the 
former method, or following the ICES data-limited stock approach) should be put forward; 
1. Update the stock annex as appropriate; 
2. Re-examine and update MSY and PA reference points according to ICES guidelines (see 

Technical document on reference points); 
3. Prioritize recommendations for future improvements of the assessment methodology and data 

collection; 
4. Produce working documents to be reviewed during the Benchmark meeting at least 7 days 

prior to the meeting. 

This assessment follows on from a 2018 benchmark that was rejected for advice given retrospective 
patterns. As such, data were revisited and alternative models were evaluated. 

The reviewers supported and critically reviewed the work performed in the data meeting in January and 
also, in the final presentation meeting in February in Copenhagen. 

Data 

Biological data from each gear type were presented and reviewed. In the course of the workshop, some 
edits were noted in the data files created (e.g. an “outlier” weight-at-age was nearly five times greater than 
the mean, and this caused a model prediction being abnormally high in one year). Additionally, the recent 
main information indexing the stock (the acoustic time-series) was “corrected” for the assessment and this 
was one of the key differences (apparently) from the 2018 benchmark. The source and process of the 
correction was not presented during the review period other than a verbal explanation having to do with 
the proportion of herring in the catches. 

Key assumptions and inputs were discussed and reviewed, including the extent of variability in some time-
varying age-specific schedules. It was also noted that there was a fair amount of variability over time in the 
body mass-at-age specified for use in the assessment. It was unclear the extent that this variability was due 
to sampling or actual variability. A similar degree of variability was noted for the time-varying maturity-
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at-age data. Since there is some indication of density-dependent growth, approaches to smooth or 
regularize the data might be considered in future assessments. 

For example, the figure below shows that given a constant equilibrium age structure (N) and computing 
the time-series as the sum of annual maturity-at-age (or weight-at-age) times N-at-age (and normalizing to 
have mean 1.0 over time) shows that these biological age-specific schedules introduce variability on their 
own. This variability, in conjunction with fishery selectivity estimates, will affect reference point 
calculations. This also illustrates that the stock weight is lower in the recent period; assuming the recent 
period for future projections and reference points should acknowledge that some variability is being 
ignored. This also implies that the input spawning biomass-per-recruit for different fixed fishing mortality 
rates (and selectivity) will vary given these biological schedules alone. 

 

Figure 1. Historical “biomass” or “Mature population” (normalized to have mean 1) given a fixed equilibrium numbers-at-age. “Both” 
means application of maturity and stock weight combined. 

Age-determination precision and accuracy is considered quite high for this stock. However, data are 
available that could provide some insight on errors (particularly for older ages) and possible biases and 
this could be explored in future benchmark assessments. 

The analysis presented the history and sampling patterns for the data used in the assessment. It was noted 
that for the 2018 data, the catch by quarter and area were sampled in an irregular way (i.e. some lower 
catch strata had lots of samples and in some strata with high catches, sample sizes were relatively small). 
Without further understanding, such sampling discrepancies should be cross-checked so that the relative 
efficiency/precision can be appropriately accounted for within the assessment. 
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A novel approach to specifying age-specific natural mortality was proposed and during the benchmark, 
some alternatives were considered. The alternatives, based on the reference model configurations failed to 
show improved data fits so the fixed values were considered acceptable (noting that they differ 
substantially from the previous constant value-at-age of 0.15). 

Presentation alternatives of catch-at-age and survey abundance-at-age were used to help clarify how data 
are affecting model results (examples shown in Figure 2 below). Such depictions help with understanding 
how recent years fishery, and to a lesser degree survey, data indicate a younger population. 

 

Figure 2. Alternative presentations of recent fishery catch-at-age (left) and acoustic estimates of numbers-at-age (right) for Gulf of 
Bothnian herring. 

Models 

This benchmark was primarily focussed on understanding what caused the poor retrospective patterns 
observed from the 2018 review. Within the SAM model framework, this task was more difficult to diagnose. 
Consequently, the same data were evaluated within the stock synthesis (SS) framework for comparison 
and to provide an alternative set of diagnostics. These are summarized below. 

Stock Synthesis framework 

While fundamentally the data were the same between SAM and SS, the SS configuration decomposed the 
data components into index and composition data (whereas SAM used indices-at-age). The indices were 
the trapnet cpue trends (TNT) and acoustic survey abundance trends (ACT). The age composition data 
were from trapnet (TNAD), acoustic survey (ACAD) and catch age distribution (CAD). The SS fit to the 
age distributions was generally good, whereas the fit to the trend data was considered acceptable. 

A number of model runs (six prior to meeting, and an additional 16 during the benchmark) were conducted 
for evaluation at this benchmark. The analysts presented extensive diagnostic tests including the standard 
ICES criterion related to retrospective patterns. This was considered an enhancement over using one 
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method for accepting or rejecting an assessment. It was noted that the final retrospective pattern had low 
and acceptable values of Mohn’s rho. Nonetheless, alternative natural mortality schedules, selectivity 
patterns, and calibration indices were explored during the benchmark to see if further improvements in 
the retrospective pattern could be obtained. It was clear that aspects of introducing the ACAD and CAD 
data were the main cause of this pattern. 

SAM 

The SAM assessment model approach was refined during the benchmark and in the end, provided similar 
results to the stock synthesis model runs. In particular, the poor retrospective pattern was largely resolved 
although remains outside the thumb rule (+-20%) and furthermore, the pattern was consistent with the 
pattern seen from the stock synthesis model runs. This was encouraging and should be developed further 
for considerations at the next benchmark (provided more diagnostic evaluations of process errors and 
partial Fs-at-age (e.g. for comparing selectivities). 

Alternative model 

During the review, and to aid in understanding the data and assessment approaches, a simple model with 
many of the same features as stock synthesis was constructed by one of the external reviewers (Jim). This 
model confirmed many of the results with respect to patterns in spawning biomass and retrospective runs. 
One investigation was the option to include a fully time-varying selectivity (with some modest constraint). 
Results shows some differences in the partial Fs that might be worth considering in future benchmarks, as 
these are qualitatively different than both SAM and SS configurations (Figures 3 and 4). 
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Figure 3. Alternative model runs with constant fishery selectivity (left) and variable (right). 
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Figure 4. Alternative model fits to fishery age composition data with constant fishery selectivity (left) and variable selectivity (right). 

Reference points and forecasts settings 

Reference points were estimated for the accepted SS run. The process accomplished ICES guides using 
EqSim software. Biological parameters (maturity-at-age and weight-at-age) were set as the mean of the last 
three years. Natural mortality and selection at-age are constant in time in the model, and the same for the 
reference points. Stock–recruitment data were cut before 1980 because of a lack of age–length distribution 
before; that makes the S–R data less accurate. Stock–recruitment relationship for 1980–2018 combines 
Beverton–Holt, Ricker and segmented regression following the EqSim software. 

Setting Blim=Bloss was considered a reasonably defensible approach given the contrast and variability evident 
in the stock–recruit relationship. The value of Bpa was calculated with sigma derived from the estimated 
assessment error (estimated CV of SSB in 2019). 

The EqSim software was run first without Btrigger and then with Btrigger resulting in FMSY capped by Fp05 = 0.189. 
The reviewers agreed with the process and these decisions. 

The WK also discussed the settings for short-term projections for catch advice (time ranges for biological 
and selection parameters, recruitment ranges for the mean in projected years and F for intermediate year). 
There were no conflicting issues to highlight, and we agree with the decisions taken. 
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