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Summary 
 

Drought and heat events, such as the 2018 European drought, interact with the exchange of 

energy between the land surface and the atmosphere, potentially affecting albedo, sensible and 

latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate 

the drought, heat, their side effects on productivity, water scarcity, and global warming. We 

utilized measurements of 56 eddy covariance sites across Europe to examine the response of 

fluxes to extreme drought prevailing most of the year 2018 and how the response differed across 

various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the 

surface radiation and energy balance observed in 2018 was compared to available data per site 

during a reference period 2004-2017. Based on anomalies in precipitation and reference 

evapotranspiration, we classified 46 sites as drought-affected. These received on average 9% 
more solar radiation and released 32% more sensible heat to the atmosphere compared to the 

mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did 

not significantly change net evapotranspiration. The response of these fluxes differed 

characteristically between ecosystems; in particular the general increase in evaporative index 

was strongest in peatlands and weakest in croplands. 
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Introduction 

Exceptionally dry and warm periods can serve as a testbed for the future response of the land 

surface to climate change, as they represent air temperature, net radiation (Rn), and regionally 

also precipitation (P) and incident solar radiation (Rsi) levels that may occur more frequently in 

the future. Depending on their severity and duration, heat wave and soil water shortage episodes 

have been observed to dramatically reduce plant productivity, ecosystems’ carbon balance and 

food, fiber and wood production in Europe, with an increasing frequency during the three last 

decades [1-3]. In contrast to distinct summer heat waves, in 2018 unusually warm conditions 

throughout most of Europe and dry conditions in its northern half started in spring and persisted 

throughout the remainder of the year [4], representing the largest annual soil moisture anomaly 

in the period 1979-2019 [5]. 

Higher Rn enforces an increase in the sum of the turbulent sensible heat flux (H), latent 
heat flux (λET), heat stored in the ground, vegetation and water bodies (Sl) and energy 

converted chemically (Ec), particularly into biomass by photosynthetic CO2 uptake or vice versa 

by respiration: 

 

𝐻 + 𝜆𝐸𝑇 + 𝑆l + 𝐸c = 𝑅n = (1 − 𝛼)𝑅si − 𝑅lo + 𝑅li                                                             (1.1) 

 

Land surface albedo (α), outgoing longwave radiation from the land surface (Rlo) and 

incoming longwave radiation from the atmosphere (Rli) co-determine the relation between 
Rsi and Rn. 

A small increment in Rn can increase any, and likely all, terms on the left-hand side of Equation 

1. If sunny and dry conditions prevail, however, changes will be more diverse. The increase in 

Ec may diminish as photosynthesis becomes limited by stomatal closure or biochemical 

limitations [6].  The same may happen to evapotranspiration (ET) as near-surface water for 

evaporation becomes depleted or stomatal closure limits transpiration. As stomatal closure or 

soil water shortage continue, plants may develop less green leaf area than usual or initiate 

senescence, eventually leading to a decrease in transpiration and Ec, as well as to a change in α 
and thus Rn.  At the same time, soil water shortage can reduce soil respiration in spite of higher 

temperature, moderating the decrease in Ec, as shown for the 2003 drought and heat wave [1, 

2]. If a warm anomaly is characterized by advection rather than by local production of 

atmospheric heat, H might decrease according to the temperature difference between land 

surface and atmosphere. Hence, responses on the left-hand side of Equation 1 might differ in 

magnitude and sign between fluxes. 

The objective of this study was to analyse the response of land surface-atmosphere energy 

fluxes to the exceptionally dry and warm conditions during the year 2018 at ecosystem 

monitoring sites across Europe. Based on the response mechanisms described above, we 

hypothesize that Sl and H are likely to consistently increase across different ecosystems. ET and 

Ec, in contrast, may increase in response to increasing Rn and Rsi, respectively, or decrease in 

response to soil water depletion. ET and Ec are linked to each other by the drought response of 

the vegetation, but can partly decouple due to the role of soil respiration and evaporation. Each 

flux has a different effect on the atmosphere, e.g. direct heating through H, local cooling and 

nonlocal heating through ET, and long-term global cooling through the greenhouse effect of Ec 

on Rli. Examining the ecosystem-dependent variability of ET and Ec responses, and their side 

effect on H, may help to understand how land use modulates local and global heating in 

response to droughts and heat waves [7]. In this study, we compared fluxes from equation (1.1) 

directly measured at 56 eddy-covariance [8] stations across Europe in 2018 to those in a 

reference period 2004-2017, discriminating between the ecosystem types forest, grassland, 

cropland and peatland. 
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Methods  

Meteorological data and fluxes [9] were originally provided as half-hourly averages, mostly in the 

framework of the ICOS (www.icos-ri.eu) and TERENO (www.tereno.net) networks [10, 11]. A site was 

selected for this study when sufficient data of the turbulent fluxes of sensible heat, water vapour, and 

CO2 were available for 2018 and at least for one year from the reference period 2004 to 2017. All 14 

reference years were available at seven sites, and only one reference year at four sites. The majority of 

sites were forest sites, ten were crop sites, nine grassland sites and six peatland sites (cf. supplementary 

material a, table S1 for details). Reference years with incomparable land use to 2018 (e.g. different crops 

in a crop rotation, or years before wood harvesting) were omitted and are already excluded from the 

above numbers. 

While all radiation terms of equation (1.1) were measured directly and the turbulent fluxes were 

computed from high-frequency raw data [11-13], Sl and Ec were estimated according to: 
 

𝐸c ≈ −0.469
𝐽

µ𝑚𝑜𝑙
𝑁𝐸𝐸                                                                                                                         (2.1) 

 

and 
 

𝑆l ≈ 𝑆𝐻𝐹𝑑 + 𝑑(𝜌�̅�𝑐�̅� + 𝜃𝑤
̅̅̅̅ 𝜌𝑤 𝑐𝑤)

∆𝑇�̅�

∆𝑡
+

𝑚𝑐

𝐴
𝑐�̅�

∆𝑇𝑐̅̅ ̅

∆𝑡
+ ℎ𝑚 (𝜌𝑎̅̅ ̅𝑐𝑝

∆𝑇𝑎̅̅ ̅

∆𝑡
+ 𝜆

∆𝜌𝑣̅̅̅̅

∆𝑡
).                                        (2.2) 

 

Note that in equation (2.1), past studies on energy balance closure (EBC) used different CO2 flux 

components such as net ecosystem exchange (NEE), gross primary production (GPP) or overstorey CO2 

flux to estimate Ec, which typically contributes << 5% to the budget [14-18]. The measurement or 

modelling technique for the different components of Sl (equation 2.2) determines whether heat released 

by respiration needs to be excluded, included or partly included in equation (2.1). In most cases 

including this study, the unknown fraction of (soil) respiration below level d (equation (2.2)) would need 

to be excluded. By estimating Ec from NEE, we avoid overestimating energy balance closure and 

inducing further uncertainties from source partitioning. This also implies relative changes in Ec reported 

in this study are equivalent to relative changes in net carbon uptake (ecosystem productivity) NEP = - 

NEE. 

The soil heat flux at depth d (SHFd) is measured by heat flux plates (first term on the right-hand side of 

equation (2.2)) and corrected for estimated storage changes over time (Δ/Δt) between plate and soil 

surface (second term), in biomass (third term) and air below the flux measurement level (last term). 

They depend on  temperature (T), density (ρ) and specific heat capacity (c) of the respective medium 

soil (s), soil water (w, θw being the volumetric soil water content), plant canopy (c, mc A-1 being wet 

biomass per unit area), air (a) and water vapour (v, cp being atmospheric heat capacity at constant 

pressure and λ the water vaporisation enthalpy). In each term, the height integral was approximated by 

multiplying average available measurement values (indicated by overbars, see supplementary material 

(a) for details) with the respective layer thickness d and hm (height of flux level). 

The combined inter-annual and spatial variability of the change of a variable in 2018 vs. the reference 

period was used to estimate its 95% confidence interval (more details in supplementary material a). We 

report only changes that were significant against this variability, unless explicitly stated otherwise. 

For the water budget and drought intensity, the potential evapotranspiration (ET in absence of water 

stress) is an important characteristic, which can be estimated by the Penman-Monteith equation. To 

disentangle atmospheric conditions from site-specific responses and to rely on variables available with 

a high temporal coverage and quality at all sites, we used the grass reference evapotranspiration ET0 

[19]. A meteorological, atmospheric or potential drought is defined by either the anomaly in 

precipitation (ΔP), or in the climatological water balance (P – ET0) [20-22]. Obviously, the latter 

definition captures more of the processes that can eventually lead to actual drought stress or soil drought. 

However, not all of ET0 leads to actual water loss by ET at each site, and ET0 also correlates with factors 

positively affecting plant growth in energy-, temperature- or light-limited regions, such as Rsi or growing 

degree days. Therefore, Figures 1 and 2 depict all sites in a two-dimensional coordinate system of both 

ΔP and ΔET0. 
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Results and Discussion 

(a) Meteorological drought conditions 

 

In 2018, most sites (46 of 56) were characterized by a joint negative (“dry”) ΔP, positive (“dry”) 

ΔET0, and Δ(P - ET0) below -75 mm (lower right quadrant of figure 1a). 

 

 

Figure 1: 2018 anomalies in precipitation (P) and grass reference evapotranspiration (ET0); (a) by ecosystem type, 

diagonal broken lines correspond to P-ET0 anomalies in steps of 100 mm; (b) by location, colours refer to bins of 

P-ET0 anomalies. 
 

This group of sites, which suffered atmospheric drought conditions according to any of these 

three definitions on an annual basis, will be referred to as affected sites. It includes 26 forest, 

seven crop, seven grassland and six peatland sites. While ΔP in this group spanned a large range 

of more than 500 mm, ΔET0 was confined to a narrow band around +100 mm. On average, P 

was reduced by 180 mm and ET0 increased by 105 mm. Mean annual temperature across these 

sites was 0.82°C higher than in the reference period, with little variability among ecosystem 

types except for peatlands, which showed only 0.66 °C average increase and a comparatively 

large variability among sites (see supplementary material, table S2). The remaining smaller 

group of ten sites, referred to as other, included few sites with a moderate Δ(P - ET0) deficit of 

less than 100 mm, and potential drought stress eminent only in ΔP or ΔET0, but not both. The 

majority of this group, which may or may not have suffered drought conditions during 

subperiods of 2018, exhibited positive (“wet”) annual P anomalies jointly with negative (“wet”) 

ET0 anomalies. ΔET0 was thus (negatively) correlated to ΔP (r = -0.60), and by its role in the 

Penman-Monteith equation positively to Rsi (r = 0.87), but also to the sum of growing degree 

days above 10°C (r = 0.78), which is potentially beneficial for plant growth. Flux site data thus 

confirm that over a large region of Europe, 2018 was not a singular rain-deficient, warm, or 

sunny year, but showed a combination of these anomalies. Affected sites were located in central 

Europe north of the Alps, Scandinavia and Eastern Europe (figure 1b), in general agreement 

with other ground-based and remote sensing observations as well as models [21, 23]. In 

particular, affected sites are well distributed across the region suffering the strongest annual 

reduction in the standardised precipitation-evapotranspiration index SPEI [24]. 
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(b) Changes in radiation balance and energy balance closure 

 

Incoming shortwave (global solar) radiation (Rsi) across affected sites increased by +360 MJ m-

2 yr-1 (+9%), as opposed to -147 MJ m-2 yr-1 across the other sites. Radiation budget components 

other than Rsi were not available with sufficient coverage at all sites, such that the following 

results represent sub-datasets (see supplement table S2, minimum 35 affected and six other 

sites). 

Outgoing shortwave radiation (Rso) was mostly following incoming radiation Rsi, increasing 

slightly more (+11.5%), most likely due to a small net albedo change, which was however not 

significant, differing in sign between ecosystems and sites.  

Incoming longwave radiation at affected sites changed insignificantly (+24 MJ m-2 yr-1,+0.2%, 

but +1.6%  at other sites), indicating cancelling effects of increased atmosphere temperature 

(positive) and reduced cloudiness (negative). Outgoing longwave radiation, in contrast, 

reflected the higher land surface temperature at affected sites (148 MJ m-2 yr-1, +1.3%) in 

comparison to no significant change at other sites. 

Net radiation (Rn) changed by +123 MJ m-2 yr-1 (+6.3%) across affected while not significantly 

across other sites, reflecting the dominant role of Rsi and the moderating role of higher outgoing 

longwave radiation from the warmer land surface. However, a large variability (95% confidence 

interval ±60 MJ m-2 yr-1) might indicate instrumental issues at some sites. 

Eddy covariance measurements are known for a gap in the energy balance closure (EBC), i.e. 

the sum of H and λET is frequently 15 to 30% smaller than Rn- Sl-Ec [25, 26]. Mean EBC across 

sites in this study changed by  3% between the reference period and 2018 (see supplementary 

material b for details), indicating that relative changes in the fluxes reported remain independent 

of the EBC problem. Due to the ongoing debate about its reasons and implications for any 

hypothetical flux correction, absolute fluxes are reported without any correction [27] for the 

EBC gap, which was on average 20% in our study. 

 

(c) Sensible heat and evapotranspiration 

 

Among the non-radiative surface energy fluxes (left-hand side of equation 1.1), the sensible 

heat flux (H) showed the strongest and most consistent change across affected sites, with 

+169 MJ m-2 yr-1 (+32.3%, and no significant change across other sites, figure 2a). 

Latent heat flux at affected sites did not change significantly on average (-0.3 MJ m-2 yr-1). We 

attribute this to the opposing roles of increased ET0 on the one hand and soil water depletion, 

stomatal closure and plant development on the other hand. ET increased where and when 

sufficient water was available from recent precipitation or from long-term storage, and later 

decreased only at sites where stored soil water was depleted (cf. supplementary material c). 

Consequently, among affected sites annual 𝜆𝐸𝑇 typically decreased at those sites with a severe 

precipitation deficit, while it frequently increased at sites with the same ET0 surplus but only 

moderate precipitation deficit (figure 2b). Figure 2c shows a clearer drought signal in the 

evaporative fraction (fraction of H+λET used for ET): even where ET increased, it typically 

increased less than proportionally to the larger energy available. 

Averages across ecosystems further confirm this hypothesis of ET response depending on stored 

water. Affected peatland sites were the only ecosystem type with a significant increase in λET 

(+205 MJ m-2  yr-1) and no significant increase in H. Crop sites showed a significant decrease 

in λET (-122 MJ m- yr-1), which could have a number of reasons: i) Crop sites are under-

represented among high elevation and high latitude sites, thus water limitation at a given 

precipitation deficit is more likely compared to some forest and grassland sites at higher 

elevations or latitudes; ii) crop sites typically feature periods of bare soil, during which ET is 
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dominated by evaporation. Transpiration can be sustained longer than evaporation due to the 

access of plants roots to water in deeper soil layers; iii) these periods may start earlier in a 

drought year due to accelerated maturity and harvest (cf. supplementary material c).  

 

 
Figure 2: Annual 2018 anomalies of sensible heat flux (H) (a), latent heat flux (λET) (b), and evaporative fraction 

(λET (H+λET)-1) (c) as a function of precipitation P and grass-reference ET0 deficits. Diagonal isolines indicate P-

ET0 anomalies of 0, ±100, and ±300 mm (cf. figure 1). 

 

In 2018, anomalies in ET of grassland, forest and other sites reacted to ET0 and P as predicted 

by the Budyko framework ([28], figure 3). 

 

 
Figure 3: Budyko plot of the evaporative index (ET P-1) vs. the aridity index (ET0 P

-1). Arrows show the mean 

shift of annual ratios between the reference period and 2018 (arrow head), averaged per affected ecosystem type 

and over all other sites. Circles indicate the ratios for each single site (coloured: in 2018, small grey: reference 

period, axes clipped due to maxima of ET0 P
-1 and ET P-1 of 4.3 and 1.8, respectively). Dotted straight lines: 

Theoretical energy (1:1 line) and water (horizontal) limits; Grey line: Expected ensemble behaviour after [30]; 

broken line: Fit from [29] to FLUXNET data not corrected for energy balance closure. 
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A small offset may reflect a systematic underestimation of ET due to the EBC, and vanishes 

when comparing to the curve fit by Williams et al. [29]. At crop sites, however, the fraction of 

P used for ET increased less, as could be expected according to the above reasons. All six 

peatland sites showed an increase in ET, which was linearly related to the increase in ET0. One 

of them (DE-SfS) is an ombrogenic bog fed only by precipitation, and showed the smallest ET 

increase and largest H increase among peatland sites. The remaining fen peatlands can receive 

additional inflows from the surrounding landscape and increase ET in response to higher ET0 

and lower P for a longer period than other ecosystems. Bogs show a vertical pore space structure 

and self-regulatory mechanisms [30] that could lead to an earlier decrease in ET. A few peatland 

and forest sites lost more water by ET than they received by P (points above the water limit line 

in figure 3). At one peatland site (DE-ZRK), available measurements of the change in water 

table depth between the start and the end of 2018 (-0.65 m) would reconcile ET P2018
-1 (1.8, not 

shown in figure 3 for scaling reasons) with the theoretical water limit. A detailed analysis of 

the effect of extractable soil water in forests for selected sites is presented in [6]. 

On an annual basis, affected forest sites showed a larger average increase in H (+235 MJ m-2 yr-

1) than grassland sites (+79 MJ m-2 yr-1), while the contrast in the insignificant ET changes 

between both ecosystems was opposite. For the case of 2003, it was demonstrated [7] that due 

to differences in stomatal control and rooting depth, forests show less ET and more H than 

grasslands during the early stage of a heatwave. Ultimately,  however, the resulting more rapid 

depletion of available soil water under grass led to more atmospheric heating than over forests 

at the peak of the heatwave 2003 [7]. Evolutionary reasons for such a more conservative 

strategy of forests are suggested in [31]. According to our study, the former effect (more heating 

over forests) dominated over the latter (more heating over grasslands once soil water is 

depleted) on an annual basis in 2018. This may be partly due to the lower albedo and resulting 

higher total available energy of forests, partly due to the grassland ensemble including more 

humid sites (see figure 3), and partly to the different timescales of the studies. A brief sub-

annual comparison between grasslands and forests largely supporting [7] is presented in 

supplementary material c. Also for 2003, an analysis of four example catchments showed a net 

increase of ET [32] to amplify the soil drought, which could not be found at the majority of our 

sites on an annual basis in 2018. However, as a consequence of more available energy 

transferred as H, apart from direct heating of the atmosphere, precipitation can also be reduced 

due to a higher and cooler cloud base [33]. 

 

 

(d) Minor energy fluxes, water-use efficiency of CO2 uptake, and soil water content 

 

The increase in heat storage in the soil and the canopy was small (+9 MJ m-2 yr-1 across affected 

sites), demonstrating that most of the additional energy during a warm and dry anomaly is 

transferred back to the atmosphere. Relative change was large (~300%) due to the fact that net 

energy storage was approximately balanced in the reference period. 

The change in energy storage in photosynthesis products was even smaller, and highly variable 

between sites (-1.6 MJ m-2 yr-1 across affected, insignificant across other sites). However, the 

change across affected sites corresponds to 17.8% of reference period CO2 uptake, or 38 g C  

m-2 yr-1. The radiative forcing of this amount not removed from the atmosphere in 2018, 

estimated according to the methodology of [34] and [35], corresponds to 1.9 MJ m-2 yr-1 during 

each year of its atmospheric lifetime, such that the total heating effect due to unused 

photosynthetic energy and the greenhouse effect cumulates to, e.g., 3.5 MJ m-2 yr-1 in 2019. 

Our observation of a reduced net CO2 uptake across affected sites is in general agreement with 

observed changes in atmospheric CO2 concentrations over Europe [36, 37]. 
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CO2 uptake is typically closely related to ET loss through the concept of water-use efficiency 

[40, 41]. Inherent water use efficiency (IWUE*) estimated from annual GPP, vapour pressure 

deficit and ET according to Beer et al. [40] increased across affected sites by 3.1  g C hPa kg-

1 H2O (31.4%, no significant change across other sites). For assessing the climatological 

response of the land surface to drought, it is worthwhile to also consider the net ecosystem 

water use efficiency –NEE ET-1 (WUEeco) or, dimensionless, Ec λET-1. While CO2 uptake adds 

to the potential of an ecosystem to mitigate drought and heat waves in any respect (see above), 

ET has ambiguous effects, providing a local cooling and moistening of the atmosphere on the 

one hand, while on the other hand transferring latent heat to the atmosphere, adding H2O to its 

greenhouse gas concentration at least on a short term, and depleting soil water needed for future 

productivity. Ec λET-1 decreased across affected sites by -11 · 10-4 (-13.8%, no significant 

change across other sites). On average, the affected land surface thus reinforced water scarcity 

and global warming during the drought and heat wave. Soil water content measured within the 

top 0.3 m of the soil decreased on average by -0.05 cm3 cm-3 (-16.2%), while increasing by 0.03 

cm3 cm-3 across other sites. Differences between forest and grassland sites in both IWUE* and 

WUEeco (table S2) are in qualitative agreement with a forest – grassland comparison among 

Swiss sites, where forest significantly increased water use efficiency [31]. However, figure 4 

demonstrates that the relation between smaller CO2 uptake and increased ET water loss [2], was 

not universal. 

 

 
Figure 4: 2018 annual anomalies in energy used for CO2 uptake (Ec), vs. energy used for evapotranspiration (λET) 

(r = 0.49, reduced major axis slope = 0.023). 

 

Peatlands typically lost more water via ET than in the reference period without absorbing more 

CO2, possibly because of exposure of large amounts of organic carbon in otherwise inundated 

soils to aerobic conditions favouring respiration, or an increase in evaporation rather than 

transpiration. Some of the affected cropland and forest sites, in contrast, showed increased CO2 

uptake with no or little additional water loss. A more detailed future analysis of the site-specific 

conditions causing such responses might help to develop more drought- and warming-resilient 

land-use strategies. 

Conclusions 

Among the land surface responses to the 2018 European drought, a considerable relative 

increase in sensible heat flux (H) by 32.3% was the most important change in absolute terms, 

as well as the most consistent one across ecosystem types and drought intensities. Latent heat 

flux (λET) did not change significantly on average but showed a large variability, including 
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increases at sites with large water reservoirs (peatlands) or moderate drought intensity and 

stronger decreases at crop sites. However, the evaporative fraction (fraction of turbulent heat 

transfer used for λET) clearly decreased and the evaporative index (fraction of precipitation 

used for λET) clearly increased across ecosystems. Responses in energy used for net CO2 uptake 

(Ec) showed a correspondingly large variability and a moderate correlation to λET response, but 

a significant average decrease of -17.8%. Heat storage in the ground showed a strong relative 

but small absolute increase, and the response of albedo was variable, generally small and as a 

result not significant across the assessed sites. 

Albedo and Ec potentially cool the land surface – atmosphere system, the latter both through 

energy consumption during photosynthesis and greenhouse gas removal, while H has a heating 

effect. λET has a large variety of effects including local cooling and nonlocal heating of the 

atmosphere, atmospheric humidity and cloud formation, and depletion of water resources 

required for productivity and groundwater recharge. Thus an increase or decrease in ET does 

not generally mitigate or reinforce drought, but must be assessed considering local priorities 

and potential correlations with Ec and albedo. Since H increased consistently, CO2 uptake 

decreased on average, and albedo and ET showed no consistent change, the affected European 

land surface responded with a clear net heating effect to the drought in 2018. 
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Supplementary material 

Table S1: Overview of sites used in this study. Longitude (Lon), Latitude (Lat), long-term mean annual temperature (MAT) 

and precipitation (MAP) are according to the European Fluxes Database cluster (http://www.europe-fluxdata.eu) for sites 

in this database, and provided by site PIs accordingly otherwise. Ecosystem refers to the simplified Four-type classification 

used in this study. Reference years from within the period 2004-2017 were chosen based on data availability and, in case 

of crop rotation sites, the same crop being grown as in 2018. 

 

Site Lon Lat IGBP 
MAT 

(°C) 

MAP 

(mm) 

Elevation 

(m) 
Ecosystem Reference years Reference 

BE-Bra 4.5 51.3 MF 9.8 750 16 forest 2004-2017 [1] 

BE-Lon 4.7 50.6 CRO 10 800 167 crop 2006, 10, 14 [2] 

BE-Vie 6.0 50.3 MF 7.8 1062 493 forest 2004-2017 [3] 

CH-Aws 9.8 46.6 GRA 2.3 918 1978 grass 2011, 2016,2017 [4] 

CH-Cha 8.4 47.2 GRA 9.5 1136 400 grass 2006-2017 [5] 

CH-Dav 9.9 46.8 ENF 3.5 1046 1639 forest 2004-2017 [6] 

CH-Fru 8.5 47.1 GRA 7.2 1651 982 grass 2006-2017 [4] 

CH-Lae 8.4 47.5 MF 8.7 1211 689 forest 2005-2017 [6] 

CH-Oe2 7.7 47.3 CRO 9.8 1155 452 crop 2008, 2013 [7] 

CZ-BK1 18.5 49.5 ENF 6.7 1316 875 forest 2015-2017 [8] 

CZ-Lnz 16.9 48.7 MF 9.3 550 150 forest 2016-2017 [9] 

CZ-RAJ 16.7 49.4 ENF 7.1 681 625 forest 2013-2017 [10] 

CZ-Stn 18.0 49.0 DBF 8.7 685 550 forest 2015-2017 [11] 

CZ-wet 14.8 49.0 WET 7.7 604 425 peatland 2007-2017 [12] 

DE-BER 13.3 52.2 URB 9.4 525 61 grass 2016-2017 [13] 

DE-EC2 8.7 48.9 CRO 9.4 889 318 crop 2011, 13, 15, 17 [14] 

DE-EC4 9.8 48.5 CRO 7.5 1064 687 crop 2011, 14, 15 [15] 

DE-Fen 11.1 47.8 GRA 8.4 1081 595 grass 2012- 2017 [16] 

DE-Geb 10.9 51.1 CRO 8.5 470 162 crop 2007, 08, 10, 14, 16 [17] 

DE-Gri 13.5 51.0 GRA 7.8 901 385 grass 2005-2017 [18] 

DE-Hai 10.5 51.1 DBF 8.3 720 440 forest 2004-2017 [19] 

DE-HoH 11.2 52.1 DBF 9.1 563 193 forest 2015-2017 [20] 

DE-Hte 12.2 54.2 WET 9.2 645 0 peatland 2016-2017 [21] 

DE-Kli 13.5 50.9 CRO 7.6 842 478 crop 2007, 2012 [18] 

DE-Obe 13.7 50.8 ENF 5.5 996 734 forest 2009-2017 [18] 

DE-RbW 11.0 47.7 GRA 9.0 1160 769 grass 2012-2017 [16] 

DE-RuR 6.3 50.6 GRA 7.7 1033 515 grass 2012-2017 [22] 

DE-RuS 6.4 50.9 CRO 10.2 718 103 crop 2013, 2015 [23]. 

DE-RuW 6.3 50.5 ENF 7.5 1250 610 forest 2014-2017 [24] 

DE-SfS 11.3 47.8 WET 8.6 1127 590 peatland 2013-2017 [25] 

DE-Tha 13.6 51.0 ENF 8.2 843 380 forest 2004-2017 [18] 

DE-ZRK 12.9 53.9 WET 8.7 584 1 peatland 2016-2017 [26] 

DK-Sor 11.6 55.5 DBF 8.2 660 40 forest 2004-2017 [27] 

ES-Abr -6.8 38.7 SAV 16 400 280 forest 2016-2017 [28] 

ES-LM1 -5.8 39.9 SAV 16 700 265 forest 2016-2017 [29] 

ES-LM2 -5.8 39.9 SAV 16 700 270 forest 2016-2017 [29] 

FI-Hyy 24.3 61.8 ENF 3.8 709 180 forest 2004-2017 [30] 

FI-Let 24.0 60.6 ENF 4.6 627 0 forest 2017 [31] 

FI-Sii 24.2 61.8 WET 3.5 701 160 peatland 2016-2017 [32] 

FI-Var 29.6 67.8 ENF -0.5 601 395 forest 2017-2017 [33] 

FR-Bil -1.0 44.5 ENF 12.8 930 0 forest 2015-2017 [34] 

FR-EM2 3.0 49.9 CRO 10.8 680 84 crop 2015, 2018 [35] 

FR-Hes 7.1 48.7 DBF 9.2 820 300 forest 2014-2017 [36] 

IT-BCi 15.0 40.5 CRO 18 600 15 crop 2017 [37] 

IT-Cp2 12.4 41.7 EBF 15.2 805 6 forest 2013-2017 [38] 

IT-Lsn 12.8 45.7 OSH 13.1 1083 1 crop 2017-2017 [39] 

IT-SR2 10.3 43.7 ENF 14.2 920 4 forest 2014-2017 [40] 

IT-Tor 7.6 45.8 GRA 2.9 920 2160 grass 2009-2017 [41] 

NL-Loo 5.7 52.2 ENF 9.8 786 25 forest 2004-2017 [42] 

RU-Fy2 32.9 56.4 ENF 3.9 711 265 forest 2016-2017 [43] 

RU-Fyo 32.9 56.5 ENF 3.9 711 265 forest 2016-2017 [44] 

SE-Deg 19.6 64.2 WET 1.2 523 270 peatland 2015-2017 [45] 

SE-Htm 13.4 56.1 ENF 7.4 707 115 forest 2016-2017 [46] 

SE-Nor 17.5 60.1 ENF 5.5 527 46 forest 2014-2017 [47] 

SE-Ros 19.7 64.2 ENF 1.8 614 160 forest 2015-2017   [48] 

SE-Svb 19.8 64.3 ENF 1.8 614 270 forest 2015-2016   [49] 
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(a) Data processing methods 

 

An overview of sites is given in table S1. Raw data measured at 10 or 20 s-1 were processed towards 

half-hourly fluxes by each single site operator. Data gaps in fluxes and meteorological time series were 

filled, and GPP estimated, according to [50-55]. For sites where raw fluxes were directly provided 

within this study, these steps were performed by the authors, including a neighbour-based gap-filling 

of meteorological data between close sites [54]. For most sites, provided through the European Fluxes 

database cluster (http://www.europe-fluxdata.eu/), processing was performed by the Ecosystem 

Thematic Centre of ICOS RI and the intermediate result published [56]. Due to a slightly better 

performance on longer gaps than the marginal distribution sampling method implemented in [55], gaps 

in λET were filled by regression through the origin against ET0, using an adaptive window as described 

in [53]. Subsequently the remaining available energy according to ET0 was used in the same way to fill 

gaps in H. A site was used if after these steps turbulent fluxes of sensible and latent heat and CO2 as 

well as incoming solar radiation, air temperature, humidity and precipitation were available for at least 
80% of the period April to September and at least 60% of the full year, both for 2018 and at least one 

year in the period from 2004 to 2017. Data of the available years from this period were averaged to 

serve as a reference, with an additional constraint of omitting years with incomparable land use 

conditions (e.g. different crops in a crop rotation, or the years before wood harvesting). Remaining 

gaps in final variables required as an unbiased annual budget were filled by first applying reduced 

major axis [57] regression between the daily time series of 2018 and the reference year and finally, if 

required, linear regression. Statistics that do not require gapless annual budgets, but a list of jointly 

available variables, such as energy balance closure EBC [58], were computed without this step after 

list-wise deletion of input records with missing data. In equation (2.2), due to varying data availability 

between sites, we used site-specific values of d and hm, but a global estimate of 1.42 106 J m-3 K-1 for 

ρscs. Tc  was in most cases approximated by Ta; mc A
-1 was either known for a site or approximated 

from canopy height hc via regression on all sites with known hc and mc A-1. Grass reference 

evapotranspiration according to [59] was computed using the hourly version with solar incoming 

radiation (Rsi). The sum parameter of growing-degree days was computed by cumulatively adding all 

mean daily temperatures above 10°C per year. 

To estimate confidence intervals of changes in fluxes and state variables across groups of sites (i.e. 

affected ecosystems or the group of all affected vs. all other sites), we considered both, the inter-annual 

variability between multiple reference years at each sites, and the spatial variability between sites in 

the same group. Systematic measurement errors were not included given that they likely affect all years 

similarly, in line with [60], which is explicitly shown for the energy balance closure gap in the 

following section. Random errors in half-hourly measurements [61] strongly decrease in relative 

importance during propagation into annual sums [60]. For those sites and variables where estimates on 

annually aggregated random errors were available [56, 62], these were considerably smaller than the 

measured inter-annual variability, in which they are implicitly included. The mean change across a 

group of sites, for each of which a mean reference year was computed beforehand, is equivalent to a 

weighted average of differences between 2018 and each single reference year, where the weights are 

the inverse of the number of reference years available for the site. The corresponding confidence 

interval is given by 

 

CI = 𝑥 ± 𝑡
(1−

𝛼

2
;𝑁𝑒𝑓𝑓−1)

√
𝑠𝑖𝑎

2̅̅ ̅̅ ̅̅ +𝑠𝑠𝑝
2

𝑁𝑒𝑓𝑓−1
,     (S1) 

 

where CI is the two-sided confidence interval of the change x at error probability α (0.05 for the 95% 

confidence), t student’s t distribution, 𝑠𝑖𝑎
2 the biased (uncorrected) inter-annual variance among 

reference years at each site, 𝑠𝑠𝑝
2 the biased spatial variance of mean changes between the sites of the 

group, and the overbar denotes averaging. Note that the root term is the standard error and its product 
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with √𝑁𝑒𝑓𝑓  the unbiased standard deviation. 𝑁𝑒𝑓𝑓 is the effective sample size of a weighted variance 

[63], which is in our case exactly equivalent to 

 

𝑁𝑒𝑓𝑓 =
1

(
1

𝑁𝑖𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑁𝑠𝑝.      (S2) 

 

The first factor is the harmonic mean of the number of reference years available at the sites in the 

group, the second the number of sites. Confidence intervals not including zero indicate a significant 

change. Mean and relative changes, their confidence interval, and number of sites with available 

measurements of the respective variable are given in table S2. The same approach is used in figure S2 

to estimate confidence intervals from the combined variances between days in a rolling window, 

reference years and sites. In this case, the number of days in the rolling window contributing to Neff 

could lead to erroneously narrow confidence intervals due to correlation (dependence) between 

consecutive days. Following autocorrelation analyses of daily flux data, we thus reduced the number 

of days contributing to Neff by a factor of four days to arrive at conservative confidence interval 

estimates. 

 

Table S2: Overview of absolute and relative changes of discussed variables in 2018 vs. reference period. CI is the 95% 

confidence interval of the change (equations S1 and S2), both change and CI in units given to the left. Number of sites is 

Nsp entering equation S2.  

  
affected 

 

affected 

crop 

affected 

forest 

affected 

grass 

affected 

peat 

other 

 

P (mm) 

change -180 -125 -207 -169 -140 +100 

CI ±28 ±74 ±39 ±68 ±58 ±83 

relative -22.9% -15.8% -27.3% -16.9% -21.4% 13.6% 

sites 46 7 26 7 6 10 

ET0 (mm) 

change +105 +91 +109 +103 +107 -48 

CI ±8 ±26 ±12 ±15 ±20 ±42 

relative 16.0% 12.6% 17.1% 14.4% 17.8% -4.5% 

sites 46 7 26 7 6 10 

Tair (°C) 

change +0.82 +0.92 +0.80 +0.93 +0.66 +0.05 

CI ±0.13 ±0.43 ±0.17 ±0.17 ±0.55 ±0.32 

sites 46 7 26 7 6 10 

Rg (MJ m-2 yr-1) 

change +360 +307 +357 +353 +442 -147 

CI ±32 ±84 ±45 ±51 ±96 ±95 

relative 9.2% 7.4% 9.5% 8.3% 11.9% -2.7% 

sites 46 7 26 7 6 10 

SWout (MJ m-2 yr-1) 

change +69 +32 +49 +103 +148 -29 

CI ±21 ±62 ±15 ±63 ±123 ±67 

relative 11.5% 4.0% 11.8% 10.5% 25.3% -2.6% 

sites 35 5 20 5 5 7 

albedo 

change +0.004 -0.007 +0.002 +0.003 +0.020 +0.001 

CI ±0.005 ±0.014 ±0.004 ±0.015 ±0.026 ±0.014 

relative 2.3% -3.4% 2.0% 1.2% 12.1% 0.2% 

sites 35 5 20 5 5 7 

LWin (MJ m-2 yr-1) 

change +24 +87 +32 -29 -17 +155 

CI ±30 ±77 ±37 ±52 ±148 ±73 

relative 0.2% 0.9% 0.3% -0.3% -0.2% 1.6% 

sites 44 6 26 7 5 10 

LWout (MJ m-2 yr-1) 

change +148 +227 +153 +169 +33 -6 

CI ±29 ±85 ±25 ±48 ±204 ±106 

relative 1.3% 2.0% 1.4% 1.5% 0.3% 0.0% 

sites 35 5 20 5 5 6 

Rn (MJ m-2 yr-1) 

change +123 +141 +98 +140 +177 +16 

CI ±60 ±87 ±100 ±80 ±126 ±53 

relative 6.3% 7.8% 4.7% 7.9% 9.6% 0.6% 

sites 36 5 20 5 6 7 
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Table S2 continued 

  
affected 

 

affected 

crop 

affected 

forest 

affected 

grass 

affected 

peat 

other 

 

EBC (filled) 

change +0.02 -0.02 +0.04 +0.00 +0.04 +0.04 

CI ±0.02 ±0.05 ±0.03 ±0.03 ±0.07 ±0.13 

relative 3.0% -2.7% 4.9% -0.6% 5.2% 4.9% 

sites 45 7 25 7 6 9 

H (MJ m-2 yr-1) 

change +169 +135 +235 +79 +30 -34 

CI ±36 ±97 ±52 ±33 ±58 ±120 

relative 32.3% 43.5% 34.2% 28.9% 8.2% -3.2% 

sites 46 7 26 7 6 10 

λET (MJ m-2 yr-1) 

change 0 -122 -29 +54 +205 -9 

CI ±39 ±118 ±49 ±68 ±94 ±123 

relative 0.0% -10.2% -2.8% 4.4% 20.8% -0.7% 

sites 46 7 26 7 6 10 

λET (H+λET)-1 

change -0.07 -0.10 -0.09 -0.05 +0.03 +0.03 

CI ±0.02 ±0.08 ±0.03 ±0.04 ±0.05 ±0.04 

relative -10.5% -12.4% -14.5% -5.8% 3.3% 5.3% 

sites 44 7 26 6 5 10 

Sl (MJ m-2 yr-1) 

change +9.3 +33.4 +4.8 +17.0 -7.8 -6.8 

CI ±4.6 ±26.1 ±2.6 ±9.6 ±13.5 ±17.3 

relative 299.2% 1384.2% 256.8% 110.4% -156.9% -63.8% 

sites 46 7 26 7 6 10 

Ec (MJ m-2 yr-1) 

change -1.6 -2.1 -1.0 -2.9 -2.1 +0.4 

CI ±1.1 ±5.2 ±1.4 ±1.9 ±2.9 ±3.1 

relative -17.8% -32.4% -8.3% -44.0% -74.9% 7.5% 

sites 46 7 26 7 6 10 

IWUE* (gC hPa kg-1 H2O) 

change +3.1 +2.8 +3.8 +2.5 +1.0 +0.1 

CI ±0.5 ±1.0 ±0.7 ±0.9 ±0.7 ±1.5 

relative 31.4% 32.6% 35.3% 20.7% 21.2% 0.4% 

sites 45 6 26 7 6 10 

WUEeco 

change -0.0011 -0.0015 -0.0002 -0.0027 -0.0023 +0.0004 

CI ±0.0009 ±0.0043 ±0.0012 ±0.0013 ±0.0026 ±0.0021 

relative -13.8% -27.7% -2.3% -48.7% -88.5% 9.0% 

sites 46 7 26 7 6 10 

swc (cm3 cm-3) 

change -0.051 -0.057 -0.044 -0.073 -0.038 +0.032 

CI ±0.010 ±0.049 ±0.014 ±0.011 ±0.034 ±0.028 

relative -16.2% -19.8% -17.0% -18.6% -5.5% 15.5% 

sites 33 5 20 6 2 9 

 

 

(b) Energy balance closure 

 

Eddy-Covariance measurements are known for a gap in the energy balance closure (EBC): the sum of 

H and λET  is frequently about 15 to 30% smaller than Rn - Sl - Ec [58, 64]. Current theory suggests a 

number of different reasons including underestimation of the turbulent heat fluxes due to surface 

heterogeneity or incomplete correction of spectral losses, or unaccounted energy storage [64-68]. 

However, there is no consensus yet on the application of a correction, its distribution between H and 

λET and its implications for Ec [69, 70]. However, relative changes in turbulent fluxes between years 

remain unaffected as long as EBC does not change systematically between respective years. Figure S1 

demonstrates there was little average change in EBC, with a closure gap around 20% both in the 

reference period and in 2018. EBC slightly improved during the drought, although both increase and 

decrease were found for individual sites. 
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Figure S1: Energy balance closure (EBC), i.e., annual cumulative (H+λET)(Rn-Sl-Ec)
-1, compared between 2018 and the 

reference period for each site. Large symbols indicate sites where measurements of these variables were jointly available 

during both periods, small symbols indicate sites where Rn-Sl was estimated from gap-filled short-wave incoming radiation 

according to [59]. Mean EBC across sites changed from 0.77 (reference) to 0.81 (2018) for the high-quality and from 0.77 

to 0.80 for the filled records. 

 

 

(c) Intra-annual temporal dynamics of ET 

 

On average, grassland sites showed higher evapotranspiration losses compared to the reference period 

in the early stages of the drought, and lower ones later presumably caused by soil water depletion. As 

a result, sensible heat fluxes were particularly high compared to the reference period during late stages 

of the drought (figure S2). Forests showed less extreme relative changes, in accordance with [71]. 

However, it should also be noted that on average forests showed higher sensible heat fluxes than 

grasslands both during the reference period and 2018, partly because of having a lower albedo. Any 

mitigation strategy by land use change would need to carefully consider this drawback effect. Cropland 

sites showed an even stronger tendency of evapotranspiration to decline during later stages of the 

drought. Inspection of a single cropland site demonstrates that this effect is at least partly due to earlier 

maturity and harvest, and strongly reduced evaporation from the dry topsoil after harvest (figure S2). 
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Figure S2: Annual course of sensible (H, left column) and latent heat flux (λET, right column, W m-2) averaged across 

groups of ecosystems as a 30-day rolling average during 2018 (red) and the reference period (blue). Shaded areas indicate 

the 95% confidence interval estimated from variability within the 30-day rolling window, between reference years and 

between sites (see supplementary material a). Harvest of winter wheat at DE-RuS took place at Day of Year 197 in 2018, 

while in the two reference years it took place at Day 223 and 215, respectively.  
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