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A B S T R A C T   

Bull fertility is an important trait in breeding as the semen of one bull can, potentially, be used to perform 
thousands of inseminations. The high number of inseminations needed to obtain reliable measures from Non- 
Return Rates to oestrus creates difficulties in assessing fertility accurately. Improving molecular knowledge of 
seminal properties may provide ways to facilitate selection of bulls with good semen quality. In this study, liquid 
chromatography mass spectrometry (LC-MS/MS) was used to analyze the protein content from the seminal 
plasma of 20 bulls with Non-Return Rates between 35 and 60%, sampled across three seasons. Overall, 1343 
proteins were identified and proteins with consistent correlation to fertility across multiple seasons found. From 
these, nine protein groups had a significant Pearson correlation (p < 0.1) with fertility in all three seasons and 34 
protein groups had a similar correlation in at least two seasons. Among notable proteins showing a high and 
consistent correlation across seasons were Osteopontin, a lipase (LIPA) and N-acetylglucosamine-1phospho-
transferase subunit gamma. Three proteins were combined in a multiple linear regression to predict fertility (r =
0.81). These sets of proteins represent potential markers, which could be used by the breeding industry to 
phenotype bull fertility. 
Significance: The ability of bull spermatozoa to fertilize oocytes is crucial for breeding efficiency. However, the 
reliability of this trait from field measures is relatively low and the prediction of fertility given by conventional 
methods to evaluate sperm quality is currently not very accurate. In this work, we identify sets of proteins in bull 
seminal plasma from repeated samples collected at different times of the year that correlate to fertility in a 
consistent way. We combined these individual proteins to build a molecular signature predictive of fertility. This 
study provides an overview of proteins linked to fertility in seminal plasma, thereby increasing knowledge of the 
bull seminal plasma proteome. Protein signatures from the latter, potentially related to fertility, may be of use to 
predict fertility for individual bulls.   

1. Introduction 

Bull fertility is a crucial trait for breeding companies, with a 
considerable impact on the dairy herd economy. In cattle, bull fertility is 
usually determined from the results of artificial inseminations (AI), 
estimated from Non-Return Rates to oestrus (i.e. the proportion of cows 
not coming back in heat after insemination and therefore deemed to be 
pregnant). Due to numerous confounding factors and biases related 

mostly to the type of female inseminated and the effects of the envi-
ronment, high numbers of AIs are necessary to obtain reliable estimates 
for bull fertility [1]. This was previously a source of limitation for the 
breeding companies as reliable fertility estimates were obtained from 
accumulating data over several years, by which time the bull was no 
longer in use for AI. Thus, it was difficult to define efficient sperm 
handling or genetic selection strategies. In the context of genomic se-
lection where cohorts of young bulls are used, the number of AIs per 
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individual are reduced compared to previously. However, since semen 
from some bulls with a superior genetic potential can still be used for 
thousands of AI, it is crucial to maintain high fertility standards even for 
younger bulls. However, for these young individuals, only limited data 
from AIs are available. This results in fertility estimates of poor pre-
dictive value. Identifying key markers of fertility in semen may allow for 
better reproducibility in handling bulls and bull spermatozoa, and in 
some cases, improved fertility. They could also be used as phenotypic 
markers for fertility in genomic selection schemes to avoid possible 
unfavorable evolution of sire fertility. In the past, differences in fertility 
between males were often attributed to variation in sperm quality [2]. 
However, today, the predictive value of conventional sperm quality 
traits is usually considered to be low [3]. 

Seminal plasma (SP) has been shown to have an assisting role for 
spermatozoa and fertility, improving sperm longevity and ability to 
move within the female tract [4]. In cases where the difference in 
fertility could not be linked to sperm quality, differences in SP have been 
observed with effects on the spermatozoa and the genital tract of the 
female [5,6]. Other effects that have been shown to be associated with 
seminal plasma proteins include sperm motility, resilience to freezing 
and survival in the genital tract in the sheep [7,8]. Following the pio-
neering work of Kilian [9], some specific candidates such as Osteopontin 
have been associated with fertility [10]. Nowadays, there is an increased 
interest in seminal plasma proteomics based on global approaches of 
protein patterns. For instance, in two recent studies, comprehensive 
profiling of the bull seminal plasma proteomics were established 
[11,12]. However, analyses were limited to a single time point mea-
surement, and thus did not assess the stability of the markers over time. 
In another study, proteomic patterns were used to identify the role of 
seminal plasma proteins added to spermatozoa by comparing epidid-
ymal spermatozoa to ejaculated spermatozoa but they were not specif-
ically linked to fertility [13]. 

Here, we describe proteomic patterns in seminal plasma from bulls of 
different fertility, using label-free LC-MS/MS measurements carried out 
on semen samples collected in different seasons. We provide a general 
proteomic overview, increasing the molecular knowledge of the bull SP 
proteome. Identifying proteins that are stable in repeated samples ob-
tained in different seasons and correlated to fertility could allow their 
use as biomarkers of fertility. 

2. Methods 

2.1. Sample collection and processing 

Semen ejaculates (total n = 109) were obtained from 20 Holstein 
bulls at an AI center (Animal Breeders’ Association of Estonia, Rapla-
maa, Estonia, 58◦56′11.4′′N 24◦53′14.5′′E). Ejaculates were collected at 
three time points: Winter (2016 / 2017), Spring (2017), and Summer 
(2017). Temperature humidity indices (THI) calculated for the summer 
indicated no risk for heat stress (temperatures and humidity indices for 
the collection dates are available in Supplementary Materials S1). 
Seventeen of these bulls were sampled in all three seasons. At each time 
point, two ejaculates were collected two weeks apart to allow the study 
of the stability of proteomic patterns within and through seasons to be 
assessed. Three samples were lost in the sample handling, leading to a 
single ejaculate for a certain bull and season. The distribution of samples 
across season, ejaculates, repeated injections and birth dates are 
described in the table Supplementary Materials S2 and summarized in 
Fig. 1. The fertility performance of these bulls (as estimated by non- 
return rates at 90 days post-AI, based on the outcome from the first 
insemination) ranged from 35% to 60% based on a total number of in-
seminations per bull between 42 and 9384 (median 643.5). These values 
are presented in the table Supplementary Materials S3. Samples from a 
separate set of Holstein bulls from the same AI center (n = 17) were 
collected in 2018 as a separate cohort for comparison. Estimated non- 
return rates for these bulls ranged between 34% and 51% based on 
316 to 9244 inseminations per bull (median 989). 

Bulls were prepared for semen collection by allowing them to follow 
each other around a circular race one by one for 30–40 min before 
collection, and making false mounts, to increase libido. Approximately 
70% of bulls false mounted once, and 30% twice. The first ejaculates 
were collected for the experiment. Following collection, ejaculates were 
centrifuged at 1800g for 10 min to pellet the spermatozoa [2] and ali-
quots of the resulting SP samples (5 μl) were then deep-frozen (− 196 ◦C) 
and later transferred on dry ice to the laboratory for proteomic analyses. 
Protein extraction was performed by mixing 1 μl of SP with 20 μl of SDS- 
PAGE sample buffer with DDT (58 mM Tris, pH 6.8, 5% glycerol, 1.7% 
SDS, 10 mM DDT) followed by a 10 min incubation at 95 ◦C. Subse-
quently, iodoacetamide was added to a final concentration of 55 mM 
and the samples were incubated for 30 min in the dark. The samples 
were then analyzed on SDS-PAGE until the front had migrated approx-
imately 5 mm into the gel. The pieces were excised, washed and the 
protein was digested with trypsin in-gel. The tryptic peptides were 
cleaned with C18 columns (UltraMicro spin columns, Nest Group Inc., 

Fig. 1. Study overview. 
Samples were taken at three different time points 
from the same set of bulls. For each round, two 
ejaculates were taken. For the first season, double 
injections were performed on the mass spectrometer. 
Next, proteins were selected for having a consistent 
Pearson correlation across two or three of the seasons 
(p < 0.1). Finally, an optimal subset of these was used 
to produce a predictor.   
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Southborough, MA, USA) and resuspended in a solution of 5% formic 
acid in water. 

2.2. Mass spectrometry data acquisition 

LC-MS/MS data for the seasonal protein digests were analyzed on an 
Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Germany) 
interfaced with Easy-nLC liquid chromatography system (both Thermo 
Fisher Scientific, Waltham, MA, USA). Peptides were analyzed using 
NanoViper Pepmap pre-column (100 μm × 2 cm, particle size 5 μm, 
Thermo Fischer Scientific) and an in-house packed analytical column 
(75 μm × 30 cm, particle size 3 μm, Reprosil-Pur C18, Dr. Maisch) using 
a linear gradient from 5% to 35% B over 100 min followed by an in-
crease to 100% B for 5 min, and 100% B for 15 min at a flow of 300 nl/ 
min. Solvent A was 0.2% formic acid in water and solvent B was 0.2% 
formic acid in 80% acetonitrile. 

Precursor ion mass spectra were acquired at 120 K resolution and 
MS/MS analysis was performed in a data-dependent mode where the 5 
most intense precursor ions were selected for fragmentation using CID at 
a collision energy of 35. Charge states 2 to 4 were selected for frag-
mentation, and dynamic exclusion was set to 60 s. 

For the set of samples corresponding to the first season, replicate 
injections per sample was performed to assess the degree of technical 
variation from the mass spectrometer. Four samples from the first sea-
sonal sampling were rerun together with the samples from the second 
season to assess how much technical variation came from the down-
stream processing of the samples. 

Peptide digests from the follow-up bulls (n = 17) were analyzed by 
LC-MS/MS using an Easy-nano LC system (Thermo Fisher Scientific, 
Germany) coupled with a QExactive HF-X mass spectrometer (Thermo 
Fisher Scientific, Germany) operating in positive ion mode for data 
dependent acquisition (DDA). The analytical column was 15 cm long 
fused silica capillary (75 μm 16 cm Pico Tip Emitter, New Objective), 
packed in house with C18 material ReproSil-Pur 1.9 μm (Dr. Maisch 
GmbH, Germany). Peptides were separated by an 80 min gradient from 
5% to 90% solvent B (80% ACN, 0.1% FA) at a constant flow rate of 250 
nl/min. The Orbitrap acquired the full MS scan with automatic gain 
control (AGC) target value of 3 × 106 ions and a maximum fill time of 50 
ms. The 20 most abundant peptide ions were selected from the MS for 
higher energy collision-induced dissociation (HCD) fragmentation 
(collision energy: 40 V). Fragmentation was performed at 15,000 FWHM 
resolution for a target of 1 × 105 and a maximum injection time of 20 ms 
using an isolation window of 1.2 m/z. The software Xcalibur v3.0 
(Thermo Fisher Scientific, Germany) was used both to control the nLC 
system and the MS. Here, it was used to acquire and visualize the raw 
data. 

2.3. Data processing and analysis 

Raw MS data were converted to mzML, an open format for mass 
spectrum, using Proteowizard version 3.0.9220 (3.0.11841 for the 
follow-up data; [14] with MS-Numpress compression [15], and MS1 
peptide features were extracted using Dinosaur [16] version 1.1.4.. Data 
processing to a peptide abundance matrix was performed in the Proteios 
software environment ( [17], 2.20.0-dev build 4643). X!Tandem ( [18], 
version 2017.2.1.4) and MS-GF+ ( [19], v2016.06.29) were used for 
peptide spectrum matching. Precursor mass error tolerance was set to 7 
ppm and for X!Tandem fragment monoisotopic mass error was set to 0.4 
Da (0.02 Da for the QExactive data), while for MS-GF+ the instrument 
setting was used to set the fragment tolerance. Fix carbamidomethyla-
tion of cysteine, and variable oxidation of methionine was set as modi-
fications, and protein N-terminal acetylation was set as additional 
potential modification in MS-GF+. As a search database, proteins an-
notated as Bos taurus were retrieved from UniProt (2017-05-19) and 
concatenated with the cRAP database containing common contaminant 
proteins (version 1.0, 116 entries). Reverse entries were added to the 

database as decoy sequences, giving a total of 92,984 protein entries. 
The search results were subsequently combined in Proteios. The built-in 
algorithm in Proteios was used for matching MS1 peptide features to 
MS2 identifications (plugin version 0.5.1, peptide spectrum match FDR 
cutoff 0.001, secondary hit FDR cutoff 0.01, m/z tolerance 0.005, RT 
tolerance 0.1) and alignment and propagation of feature identifications 
between samples using default settings. The resulting peptide matrix 
was used for subsequent analysis. The datasets from different seasons 
were processed jointly to facilitate the analysis of the same bull in-
dividuals across all time points. Raw peptide abundances were log2- 
transformed and normalized using cyclic Loess normalization in Nor-
malyzerDE ( [20], version 1.5.4), which is a normalization technique 
adjusting for systematic differences in abundance between samples at 
different abundance levels [21]. For a given season, the two measure-
ments from the same bull were combined to provide the median value 
for each peptide, giving one value per bull and season. This dataset was 
used for season-specific studies. It was further reduced across batches, to 
give one value per bull, which was then used to calculate a combined 
per-bull view. The peptides were summarized into protein groups using 
an R implementation (https://github.com/ComputationalProteomics/ 
ProteinRollup, version 1.0.0) of the DanteR ( [22], v1.1.6970) R 
rollup, retaining proteins supported by at least two peptides. Protein 
level FDR was estimated by calculating the number of decoy entries 
passing through the protein rollup and was found to be <0.01 FDR (8 
decoys and 1343 targets passing in the seasonal dataset, with 13 decoys 
and 1640 targets in the follow-up dataset). The mass spectrometry 
proteomics data and the protein abundance tables have been deposited 
to the ProteomeXchange Consortium via the PRIDE [23] partner re-
pository with the dataset identifiers PXD021241 and PXD021245. 

The dataset was further explored using OmicLoupe ( [24], v0.9.0) for 
a comprehensive exploration of outliers and general trends. One bull 
was identified as a consistent outlier and was excluded from all the 
analyses. Further, a single sample had a distorted profile, as identified by 
density plots, and was also excluded (Supplementary Fig. 1 in Supple-
mentary Materials S4 where Supplementary Figs. 1–5 are presented). 
The most abundant proteins were estimated within each sampling by 
retrieving the three peptides with the highest average intensity and 
calculating the average of these, as proposed by Silva [25]. The 10 most 
abundant proteins were collected within each seasonal sampling. A gene 
ontology summary was generated using a Bioconductor based database 
for Bovine (10.18129/B9.bioc.org.Bt.eg.db, 3.10.0) and enriched using 
the ClusterProfiler ( [26], 3.14.3) R package using FDR < 0.1 (Benja-
mini-Hochberg corrected; [27]) to determine significantly enriched 
groups. UpSet plots were generated to show overlapping correlated 
proteins between seasons in using the UpSetR package [28]. 

Pearson correlations between protein abundance and fertility esti-
mates were calculated in R (version 3.6.3) for proteins within each of the 
seasonal batches as well as the validation dataset using the cor.test 
function in the stats R package. Protein groups having a p-value <0.1 
across all three samples and detected in both datasets were selected. 
Correlations were also weighted for the number of inseminations from 
which fertility rates were obtained, but results from non-weighted cor-
relations are presented here, as the r2 values resulting from the two 
approaches were almost identical. In addition, an extended list of pro-
tein groups with Pearson correlation p < 0.1 in two of the three seasons 
with a similar correlation pattern in the third was retrieved. A list of 
proteins with Pearson correlation p < 0.05 in at least one of the seasons 
was included to facilitate further explorations. Pearson correlations 
between protein abundances and age were calculated to see if age might 
have a confounding effect for certain proteins. To determine if the 
protein differences seen might be related to freezability differences in 
the spermatozoa, information obtained from a recent study investigating 
this phenomenon in a comprehensive proteomics dataset [12] was 
summarized for the top-listed proteins. 

For the study including repeated times / seasonal effects, repeated- 
measures ANOVA was carried out using the aov function in the stats R 
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package, with batch as a fixed effect and bull as a random effect, thus 
accounting for the individual variation in the model. The resulting p- 
values were adjusted to FDR values using the Benjamini-Hochberg 
procedure [27]. These values were filtered using FDR < 0.05 and a 
minimum log2 fold change between any two of the three groups. 

Ways to build signatures combining multiple proteins or peptides 
were explored. Multiple linear regression models were computed using 
the regsubsets command from the leaps R package (version 3.1, https:// 
cran.r-project.org/web/packages/leaps/index.html). The calculations 
were based on the proteins with Pearson correlation p < 0.1 across all 
seasons, selecting the protein variant with the lowest median p-value in 
cases where multiple had the same annotation, resulting in a reduced list 
of 6 protein groups consistently correlated across seasons, as illustrated 
in Table 1. This reduced list was produced by filtering redundant pro-
teins matching to the same annotation, selecting the protein with the 
lowest median p-value. Individual protein abundances (previously 
Loess-normalized and log2 transformed on sample-basis) were normal-
ized further to mean 0 and standard deviation 1. Subsequently, all 
combinations of predictors were tested systematically. The model with 
the highest adjusted r2 value was selected. Further, the same procedure 
was carried out in the extended list of protein candidates (as illustrated 
in Table 2), limiting the maximum number of independent proteins to 
three to avoid overfitting. Finally, we explored with the same proced-
ures a combination of proteins from the extended list showing a similar 
correlation pattern in the additional set of bulls, resulting in a final list of 
11 proteins. The full R analysis, including code for generating most of 
the figures present in this article, is available as R notebook documents 
and HTML-files in the Supplementary Materials S5-S8. 

3. Results 

3.1. Seminal plasma proteome overview 

An overview of the seminal plasma proteome was obtained from the 
analysis of proteomics data from the three seasons. Globally, 23,990 
different peptides were found, representing 1343 protein groups that 
were each identified by two or more peptides (Fig. 1) at FDR < 0.01. At a 
quantitative level, the technical replicates run in the first of the three 
seasons showed high technical reproducibility in the mass spectrometry 
(Supplementary Fig. 2). Furthermore, in Principal Component Analysis 
(PCA), samples from the rerun of the first season with the second season 
grouped primarily with the first season, indicating that the major part of 
the variation between seasonal datasets is not due to the preparation 
process or measurement, but due to variation between biological sam-
ples (Supplementary Fig. 3). PCA from the full dataset revealed that 
season has the strongest main effect. A separation related to fertility 
measurement can be seen from further principal components (PC) with 
axis explaining less variation as PC7 and PC8 (Fig. 2). This indicates a 
systematic relationship between the fertility and the overall expression 

seen in the proteomic data but also shows that this effect is over-
shadowed by other effects such as season of sampling and other sources 
of variation related to sample biological heterogeneity. 

Gene ontology distributions of identified proteins were generally 
similar to the gene ontology distribution of the predicted Bos taurus 
proteome, with certain differences which were further highlighted by a 
gene ontology enrichment analysis. The highest enriched cellular 
component term was as expected “extracellular region part”. Further, 
the highest enriched biological process was “carbohydrate metabolic 
processes” and “hydrolase activity acting on ester bonds”. The overall 
distribution of gene ontology terms compared to the predicted proteome 
and enrichments comparing proteins observed in the seminal plasma 
proteome to the general background are displayed in Fig. 3. 

Proteins estimated among the top 10 most abundant in at least one 
sampling (14 in total) are illustrated in Supplementary Fig. 4 with the 
top abundant proteins being Seminal plasma protein BSP-30 K, 
Spermadhesin-1 and Seminal plasma protein PDC-109, as shown in the 
table Supplementary Materials S9. 

3.2. Proteins variable over seasons 

To detect the proteins that were most variable between seasons, a 
comparison of seasonal variation using repeated measures ANOVA was 
performed. The analysis yielded 403 proteins when features with FDR 
below 0.05 and a log2 fold difference of 1 between the two groups with 
the greatest difference were selected. These protein groups are presented 
in the table Supplementary Materials S10, and the 30 top hits are 
illustrated in Supplementary Fig. 5. 

3.3. Correlation to fertility reveals protein markers stable over seasons 
and biological repeated samples 

Nine protein groups showed consistent correlation trends (p < 0.1) 
across the three seasons (Fig. 4), out of which 3 had a significant 
negative correlation with fertility estimates with p < 0.05, namely 
Placenta-expressed transcript 1 protein (PLET1), Lipase (LIPA) and N- 
acetylglucosamine-1-phosphotransferase subunit gamma (GNPTG). All 
of these had similar correlation trends across all three seasons. The 
extension of this list, made by including proteins with correlation p <
0.1 in at least two seasons, resulted in 34 protein groups. Out of these, all 
but two protein groups displayed the same correlation direction across 
all three seasons. These proteins were not among the most abundant 
ones, and the ten most abundant proteins within each season showed 
either a low or no correlation with fertility in subsequent tests. Principal 
component plots using proteins with p-value <0.1 in at least one of the 
three seasonal samples show clustering in all three batches, as well as in 
the combined dataset. These trends are generally clear, except for bull 
16. Correlation overlaps and PCAs are illustrated in Fig. 5. The over-
lapping correlations are illustrated as an UpSet plot (panel A) which 

Table 1 
Consistently correlated protein groups.  

Description S1 corr S2 corr S3 corr S1 P-val S2 P-val S3 P-val AgeSig Freeze 

Osteopontin 0.387 0.443 0.415 0.092 0.066 0.087 0 NonSig 
Osteopontin (*) 0.518 0.419 0.423 0.019* 0.084 0.08 0 NonSig 
Osteopontin 0.379 0.551 0.441 0.1 0.018* 0.067 0 NonSig 
Osteopontin 0.381 0.421 0.532 0.097 0.082 0.023* 0 NonSig 
Placenta-expressed transcript 1 protein − 0.491 − 0.584 − 0.537 0.028* 0.011* 0.021* 2 NonSig 
Lipase − 0.605 − 0.582 − 0.548 0.005* 0.011* 0.019* 0 Missing 
EGF like repeats and discoidin domains 3 − 0.523 − 0.444 − 0.409 0.018* 0.065 0.092 0 Missing 
Cartilage acidic protein 1 0.394 0.433 0.504 0.086 0.073 0.033* 0 Missing 
N-acetylglucosamine-1-phosphotransferase subunit gamma − 0.781 − 0.746 − 0.641 0* 0* 0.004* 0 NonSig 

List of protein groups identified as correlated with fertility (Pearson’s correlation p < 0.1) across all three seasons. Proteins with p < 0.05 are indicated with *. For cases 
with multiple proteins matching the same annotation, the one used for building multiple linear regressions is indicated with (*). The AgeSig column indicates for how 
many seasons the protein was found correlated with age (Pearson, p < 0.1). The Freeze column indicates whether the protein was found to be linked to different 
freezability of sperm in a recent study by Gomes et al. [12] (NonSig = non significant, Missing = not detected) . 
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Table 2 
Protein groups with correlation across two seasons.  

Description S1 corr S2 corr S3 corr S1 P-Val S2 P-Val S3 P-val AgeSig Freeze 

Osteopontin 0.412 0.453 0.227 0.071 0.059 0.365 0 NonSig 
Osteopontin 0.387 0.443 0.415 0.092 0.066 0.087 0 NonSig 
Osteopontin 0.31 0.483 0.414 0.184 0.042* 0.088 0 NonSig 
Osteopontin (*) 0.518 0.419 0.423 0.019* 0.084 0.08 0 NonSig 
Osteopontin 0.379 0.551 0.441 0.1 0.018* 0.067 0 NonSig 
Osteopontin 0.381 0.421 0.532 0.097 0.082 0.023* 0 NonSig 
Placenta-expressed transcript 1 protein − 0.491 − 0.584 − 0.537 0.028* 0.011* 0.021* 2 NonSig 
C-C motif chemokine 0.018 0.544 − 0.586 0.94 0.02* 0.011* 1 NegRel 
Lipase − 0.605 − 0.582 − 0.548 0.005* 0.011* 0.019* 0 Missing 
C11H9ORF9 protein (Sperm acrosome associated 9) − 0.017 − 0.443 − 0.535 0.945 0.066 0.027* 0 Missing 
LOC504248 protein 0.423 0.741 0.009 0.071 0.002* 0.973 2 NegRel 
Heat shock 70 kDa protein 1A − 0.475 − 0.389 − 0.584 0.034* 0.111 0.011* 1 NonSig 
Cullin-associated NEDD8-dissociated protein 1 0.248 0.432 0.477 0.291 0.074 0.045* 0 NegRel 
Protein arginine N-methyltransferase 5 0.497 − 0.117 0.478 0.026* 0.643 0.045* 0 NegRel 
Prostaglandin D2 synthase 21 kDa − 0.329 − 0.601 − 0.432 0.157 0.008* 0.074 0 NonSig 
Alpha-galactosidase − 0.436 − 0.512 − 0.277 0.054 0.03* 0.266 0 Missing 
Olfactomedin like 2A − 0.48 − 0.391 − 0.421 0.032* 0.109 0.082 0 Missing 
Uncharacterized protein − 0.313 − 0.585 − 0.437 0.179 0.011* 0.07 1 Missing 
Alpha-(1,3)-fucosyltransferase − 0.537 − 0.369 − 0.506 0.015* 0.132 0.032* 1 Missing 
EGF like repeats and discoidin domains 3 − 0.523 − 0.444 − 0.409 0.018* 0.065 0.092 0 Missing 
Vesicle-associated membrane protein 2 0.516 0.537 − 0.348 0.071 0.059 0.244 0 NonSig 
Cartilage acidic protein 1 0.394 0.433 0.504 0.086 0.073 0.033* 0 Missing 
Phospholipase B-like − 0.493 − 0.535 − 0.071 0.027* 0.022* 0.781 0 NonSig 
Protein OS-9 − 0.497 − 0.402 − 0.265 0.026* 0.098 0.288 0 NonSig 
Lactadherin (*) − 0.356 − 0.664 − 0.463 0.123 0.003* 0.053 1 NegRel 
Lactadherin − 0.288 − 0.467 − 0.5 0.219 0.051 0.035* 1 NegRel 
Apolipoprotein M − 0.398 − 0.461 NA 0.082 0.054 NA 0 Missing 
Succinate-CoA ligase − 0.474 − 0.049 − 0.599 0.035* 0.848 0.014* 0 NonSig 
N-acetylglucosamine-1-phosphotransferase subunit gamma − 0.781 − 0.746 − 0.641 0* 0* 0.004* 0 NonSig 
Brain ribonuclease (BRB) − 0.417 − 0.416 − 0.317 0.068 0.086 0.2 2 NonSig 
Bifunctional purine biosynthesis protein PURH 0.41 0.312 0.46 0.072 0.208 0.055 0 NonSig 
L-lactate dehydrogenase A-like 6B − 0.41 0.059 − 0.484 0.073 0.823 0.057 0 NegRel 
Proteasome subunit alpha type-4 0.416 − 0.446 0.061 0.068 0.064 0.809 1 NonSig 
Inactive ribonuclease-like protein 10 (Protein Train A) − 0.384 − 0.446 − 0.258 0.094 0.063 0.302 1 NonSig 

List of protein groups identified as correlated with fertility (Pearson’s correlation p < 0.1) across at least two out of three seasons. Proteins with p < 0.05 are indicated 
with *. For cases with multiple proteins matching the same annotation, the one used for building multiple linear regressions is indicated with (*). The AgeSig column 
indicates for how many seasons the protein was found correlated with age (Pearson, p < 0.1). The Freeze column indicates whether the protein was found to be linked 
to different freezability of sperm in a recent study by Gomes et al. [12] (NegRel = negative relation, NonSig = non significant, Missing = not detected). 

Fig. 2. Principal component on season and fertility. 
Principal component illustration of samples from all 
three seasons. A) illustrates the first two principal 
components and is colored by the season they were 
sampled. B) is colored on fertility and illustrates 
principal components 7 and 8, which were selected 
based on a strong correlation to fertility. C) illustrates 
the amount of variation explained by the principal 
components and is colored on their respective cor-
relation to fertility.   
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displays the overlaps among features, divided into groups with no 
overlap, overlapping in at least two conditions and the same correlation 
direction, and overlapping in at least two conditions with different 
correlation direction. It appears that many proteins are identified as 
correlated with fertility in only one season, which could be due to 
random associations related to sample variability. However, in cases 
where a protein group is found to be correlated with fertility in two or 
more seasons, we observe that their correlation with fertility tend to be 
similar. At the peptide level, 28 peptides were found with a consistent 

correlation (p < 0.1) across all three seasons (batches of analysis), 
matching to 19 different protein groups. Protein groups with consistent 
correlation to fertility in at least two seasons are illustrated in Table 1, 
Table 2 and Supplementary Materials S11. The proteins in these tables 
were also checked for potential correlation with age and annotated for 
potential relation to freezability, as found in the recent study by Gomes 
et al. [12]. Among the top-listed proteins, one was found related to age 
differences in the shortlisted proteins and 11 in the extended list. 
Furthermore, seven proteins in the extended list have been shown to be 

Fig. 3. Gene ontology and enrichment. 
Gene Ontology (GO) overview based on second-highest level GO terms, categorized into biological process (BP), cellular compartment (CC), and molecular function 
(MF). Panel A illustrates the distribution of functions of proteins observed in the dataset compared to the distribution seen in the full predicted proteome. B–D 
displays top enriched terms in the different ontology categories when comparing observed proteins with the full annotation. A strongly enriched term indicates 
comparably more proteins related to this function is present in the observed data. The gene ratio indicates the fraction of proteins annotated with that GO term in the 
annotation that is also identified in the proteomics data. 
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Fig. 4. Consistently correlated protein profiles. 
Protein groups found to be correlated to fertility across all three seasons (Pearson’s correlation p < 0.1 in all cases). The multiple combinations of IDs mapping to the 
annotation Osteopontin could be due to protein isoforms. 
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Fig. 5. Correlation pattern overlaps. 
Study of features found to be correlated to fertility in at least one season (p < 0.1). The A) UpSet plots illustrate how these features are distributed between seasons 
and further between positive and negative correlation to fertility. The top bars show the number found in each overlap, and the linked dots illustrate which season/ 
direction of correlation is involved. As can be seen, all except two proteins (94% of overlapping proteins) found to be correlated across multiple conditions had the 
same correlation direction. 
The B) panel shows the principal component analysis for the same set of protein groups (p < 0.1 correlation with fertility in at least one season), both for individual 
seasons and after combining all data for each bull. 

Fig. 6. Predictor results. 
The best performing models’ predictions illustrated both on the combined dataset, and its performance on individual seasons. The model demonstrates a consistent 
predictive ability across all seasons, while not fully capturing individual variation (most notably seen in bull 16). The correlation is calculated as Pearson’s r. 
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linked to differences in freezability. Peptides with consistent correlation 
to fertility across all seasons are shown in the table Supplementary 
Materials S12. 105 protein groups had p < 0.05 in at least one season. 
These are presented in the table Supplementary Materials S13. 

3.4. Single- and multiple- regression models for predicting fertility 

A predictor for fertility was built based on both the list of six protein 
groups consistently correlated to fertility (p < 0.1 across seasons) and 
the extended list of 28 protein groups (p < 0.1 across at least two sea-
sons), identifying the combination of proteins producing the predictor 
with the highest adjusted r2 value with a maximum of three predictive 
variables. The adjusted r2 penalizes the inclusion of many features in the 
model by only increasing when the added proteins improve the model 
more than by chance. Values are reported as unadjusted r2. The best 
performing combination of predictors based on six protein groups 
reached an r2 value of 0.65 (r = 0.81) and was built from three proteins – 
lipase (LIPA), a cartilage acidic protein 1 (CRTAC1), and an N-acetyl-
glucosamine-1-phosphotransferase subunit gamma (GNPTG). Fertility 
predictions obtained from this model for the combined seasonal bull 
values are illustrated in Fig. 6. The best performing combination of 
predictors based on the extended list reached an r2 value of 0.85 (r =
0.92), but had worse predictive performance when applied to individual 
seasons, and was thus deemed as less robust. 

A follow-up set of seminal plasma samples from an independent 
cohort of bulls with mainly mid-range non-return rates (34–51%) was 
further analyzed, resulting in 23,423 peptides, and 1640 protein groups 
identified (FDR < 0.01). The linear regression model generated for the 
seasonal samples was applied to these samples but showed low predic-
tive ability in this fertility range. However, the lipase (LIPA) used in the 
predictor showed a similar trend in both datasets, both on the protein 

group level and for all shared four underlying peptides identified in both 
datasets. Trends of all eight (four shared) peptides identified for LIPA are 
illustrated in Fig. 7. 

4. Discussion 

In the current study, the bull seminal plasma proteome was explored 
using a label-free single-shot LC-MS/MS approach. The overall profiling 
of gene ontology terms revealed a rich proteomic landscape covering a 
wide range of functions. Gene ontology enrichment against the general 
background revealed enrichment of extracellular proteins, which is to be 
expected when studying an extracellular substrate. Furthermore, as ex-
pected, there was an enrichment of proteins involved in biological 
processes related to fertilization and spermatozoa. As for molecular 
function, peptidase action was enriched, which has been discussed as 
potentially involved in seminal plasma physiology [29]. The label-free 
approach allowed the comparison of many samples, and the proteome 
depth of 1343 proteins reached is similar to a recent study where 1445 
proteins were detected [12], and slightly higher than previously re-
ported [11,13], where 685 and 1159 proteins, respectively, were 
detected. This increased depth provides opportunities for exploration of 
proteins beyond the most highly abundant and readily measured. This is 
a key point that stands in contrast to prior studies with less powerful 
methods, for instance, those carried out using 2D gel electrophoresis 
coupled to MS, which provides a valuable view of protein patterns, but 
due to technical limitations, addresses a limited number of proteins 
[30,31]. Inspection of the most highly abundant proteins shows simi-
larity with previous literature. Soleilhavoup carried out a proteomic 
study of seminal plasma identifying over 700 proteins, where BSPs 
belonging to the Spermadhesin family were described as the predomi-
nant proteins in bovine SP, with LEG1/C6orf58 also being prominent 

Fig. 7. LIPA peptides. 
Illustration of individual peptide correlations to fertility in the lipase protein. Peptide abundances from the second set of bulls are illustrated in orange. All underlying 
peptides show a negative correlation to fertility in both the three seasonal datasets and in the validation dataset. 
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[31,32]. Another recent study found BSP-1 and Spermadhesin-1 to have 
the highest abundances [12]. In our study, the seminal plasma protein 
BSP-30 K, Spermadhesin-1 and Seminal plasma protein PDC-109 were 
found to be the most abundant. 

Our results confirm that the technical variation associated with 
repeated analyses by mass spectrometry is relatively small. This is in line 
with other proteomic studies, where protein extraction and digestion 
were identified as the major sources of variability [33]. 

In the present work, the NRR was calculated without adjusting for 
environmental factors that may influence fertility. The fertility rates 
from bulls with low numbers of AI are the most susceptible to the above 
limitation. However, when attempts were made to weight the correla-
tions by the number of inseminations performed for each bull, there was 
only a very minor impact on the observed protein signatures correlated 
to fertility. Furthermore, attempts to account for age were performed by 
calculating the correlation of the top proteins to age. One of the short-
listed proteins (A5D7U1, Placenta-expressed transcript 1 protein) had a 
strong correlation with age, which should be considered when inter-
preting the data. Any possible inaccuracies in fertility estimates due to 
other factors would be likely to contribute by increasing the background 
noise, reducing the sensitivity of the study and leading to missed pro-
teins rather than misleading findings. 

To our knowledge, this is the first time that relationships between SP 
proteomic patterns and fertility were approached from multiple mea-
surements performed from several ejaculates from the same bulls 
collected at different times of the year. Our results show that using only 
one time point may lead to misinterpretation as some of the candidates 
display opposite relationships with fertility estimates at different time 
points. Season has been reported to impact sperm quality [34], and 
freezability [35] and our observations suggest that some of the above 
differences may be related to variations in protein content of ejaculates/ 
seminal plasma between seasons. Although our study was not initially 
designed to focus on the effect of season, we could identify a series of 
proteins for which abundance had a relationship to this factor. These 
results show the importance of analyzing different ejaculates at different 
time points when aiming at identifying protein markers for fertility. 

4.1. Proteins showing consistent relationships with fertility across samples 

This study allowed the identification of several proteins or protein 
groups, where respective abundance was significantly correlated with 
fertility consistently across all samples. Some of the proteins have been 
reported previously to have a role in reproductive function and/or 
fertility. Osteopontin (https://www.uniprot.org/uniprot/P31096), is a 
glycophosphoprotein which was shown to be involved in many different 
functions [36]. This protein takes part in a mineralized matrix by 
binding hydroxyapatite and is important for cell-matrix interactions. 
Another function of this protein which could be of importance for the 
interactions between spermatozoa and the female genital tract, is its 
immune function through acting as a cytokine enhancing the production 
of interferons, correlating with TNF α and being an attractant for mac-
rophages and T cells [36]. In addition, Osteopontin has been reported to 
play a positive role in sperm-egg binding and embryo development as 
reported in several studies [37–40]. High concentrations of Osteopontin 
in SP were also positively related to the freezability of bull semen [41] 
and Osteopontin gene polymorphism was associated with semen pro-
duction traits in the buffalo [42]. Our results showing a positive corre-
lation between several peptides of this protein and fertility may be 
related to the above-mentioned functions. These results are consistent 
with results previously obtained in bulls [10,43], horses [44] and camels 
[45]. 

In humans, EDIL3 is involved in the adhesion of endothelial cells 
through interaction with a receptor (https://www.uniprot.org/uniprot 
/O43854). This protein may also have an inhibitory role while regu-
lating the formation of vascular-like structures. However, in cattle, no 
annotation has been reported so far (https://www.uniprot.org/uniprot 

/E1BPX2), and there is some uncertainty in the annotation due to 
missing conserved residues compared to other similar proteins. 

Leahy et al. [46] mention that this membrane protein limits leuko-
cyte recruitment during inflammation, and speculate that the addition of 
this protein to the ram sperm membrane at ejaculation [13] may help to 
modulate the female immune system and aid sperm survival in the ewe 
reproductive tract. So far, no relationship between EDIL3 abundance 
and fertility has been reported. Its negative correlation with fertility, 
found consistently across seasons in our study, and the above regulatory 
role on the immune response of the female genital tract deserves further 
investigation. 

A lipase (LIPA, long name: Lysosomal acid lipase (LAL)/cholesteryl 
ester hydrolase) consistently showed a negative correlation to fertility in 
both our seasonal dataset and in the follow-up dataset. This protein is 
annotated in the human species (https://www.uniprot.org/uniprot 
/P38571) and is known to be involved in intracellular hydrolysis of 
cholesteryl esters and triglycerides internalized via endocytosis of li-
poprotein particles. It is also reported to be important in mediating the 
effect of LDL (low-density lipoprotein) uptake on suppression of 
‘hydromethylglutaryl-CoA’ and on the activation of endogenous cellular 
cholesteryl ester formation. In both cases, it is involved in pathways 
related to the control of cholesterol levels. In the human, LAL is encoded 
by the LIPA gene, and low activity of this enzyme causes lipid accu-
mulation and reduction of free fatty acids and cholesterol in the cytosol. 
This reduction influences numerous downstream genes via transcription 
factors, resulting in higher expression of the low-density lipoprotein 
receptor, acetyl-coenzyme A acetyltransferase. This effect results in 
amplified lysosomal lipid accumulation, increased levels of serum very 
low-density lipoproteins, and decreased serum high-density lipopro-
teins, also influencing free cholesterol. 

This phenomenon may be of importance for fertility as the male 
reproductive function is influenced by cholesterol homeostasis [47]. 
Loss of sperm membrane cholesterol is involved in the process of 
capacitation [48]. Membrane cholesterol content has been related 
positively to sperm freezability [49,50]. Low cholesterol in the sperm 
tail has been associated with poor motility parameters as observed in 
samples collected during the summer when compared to samples 
collected during the winter [51], and cholesterol has been presented as a 
predictive tool for semen quality evaluation [52]. However, despite LAL 
having been shown to have an essential role in lipid metabolism [53], 
very little information exists on the relationship between LIPA and male 
fertility. Other lipases such as the Hormone Sensitive Lipase (HSL/LIPE) 
has been favorably associated to sperm traits [54]. To explain the 
negative relationships observed here with LIPA in light of the above 
information would need further investigation. It would be interesting to 
document further the precise impact of high LIPA on the distribution of 
cholesterol in different sperm compartments, especially in the mem-
brane, to explain the negative relationship to fertility found here. 

4.2. Proteins with trends for relationships 

Among proteins found correlated to fertility in two seasons, attention 
could be given to Prostaglandin D synthase. This protein is an extra-
cellular transport protein with a high binding affinity for specific cell 
receptors and small hydrophobic ligands [55]. Its isoform lipocalin-type 
prostaglandin D synthase was previously thought to be related to 
fertility [56]. Prostaglandin D synthase was reported to be associated 
with poor semen parameters such as decreased sperm count, motility, 
and normal morphology [57,58]. It has been used as a biomarker for 
‘obstructive azoospermia’ in men, a condition where spermatozoa are 
absent from the ejaculate despite normal spermatogenesis, and an assay 
diagnostic purposes has been developed [59]. The results of our study, 
showing a strong and consistent trend across seasons for a negative 
correlation of this protein with fertility, fit well with the above- 
mentioned studies and also with previous results obtained in camels 
[45]. Still, Prostaglandin D synthase has also been reported to have a 
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positive trend with fertility (as discussed by Saito et al. [60]), showing 
the complexity of the system. Further studies would be needed to explain 
the mechanisms behind these trends in different biological systems. 

Two other proteins identified in the extended list correlated with 
fertility in two out of three seasons are GNPTG and CRTAC1. The 
negative correlation between GNPTG and fertility is consistent with the 
work of Liu et al. [61], showing a higher abundance of this protein in 
semen from poorly performing bulls. Furthermore, we found here that 
CRTAC1 had a positive correlation with fertility but more investigations 
about its role may be needed as different trends were previously found 
when studying its relationship with freezing resilience and liquid pres-
ervation [8,31]. 

Numerous studies have described the relationships between the most 
abundant proteins in SP and fertility, such as BSPs and Spermadhesins. 
The BSPs (1, 3,5) have been either negatively or positively correlated 
with fertility [4] or freezability [12], whereas for Spermadhesins 
(SPADH1 and SPADH2) which may have a protective role against 
oxidative stress, positive correlations have been reported with freez-
ability [62] and fertility of frozen semen [63,64]. 

Beyond the proteins directly included in the shortlist, other proteins 
of interest showing trends for a correlation with fertility were ZAG, 
showing a negative correlation with fertility, as in previous studies [31], 
and Spermadhesin Z13, which in our study, showed a trend for a positive 
relationship with fertility, similar to previous observations [65]. 

4.3. Prediction of fertility from a combination of protein markers 

Due to its importance for the breeding industry, the ability to predict 
bull fertility has long been sought using both conventional and molec-
ular methods. One early attempt using proteomics was carried out by 
Killian [9], where it was found that bovine seminal plasma contained 
proteins associated with bull fertility. A regression model with a positive 
correlation with fertility was developed (r = 0.89), but its robustness 
when confronted to multiple samplings was not tested. In a recent study 
also using liquid chromatography-mass spectrometry, more than 1000 
proteins were identified, yielding a predictor for fertility (Spearman’s 
rho of 0.94 / Pearson’s correlation of 0.83) [11]. However, predictors 
based on proteomics in linear regression models could be subject to 
overfitting [66] as the number of proteins used in the models by Viana 
et al. was high (six proteins) when compared to the number of in-
dividuals from which the models were developed (10 bulls). Here, to 
limit overfitting to the dataset at hand, the protein candidates included 
in predictive models were chosen by selecting a limited number (in this 
case, a maximum of three) of those showing a consistent correlation to 
fertility across repeated samples collected in different seasons, and using 
adjusted r2 as selective criteria. This lowers the r2 value of the prediction 
brought by our model when compared to other studies. This effect was 
observed in the data presented here where the inclusion of more proteins 
led to a model with improved performance in the combined data, but 
with reduced performance when applied to individual seasons. The 
development of a predictive signature is difficult due to the many 
sources of variation influencing molecular data, stemming from both 
biological factors (season) and technical factors (sample preparation, 
sample storage, mass spectrometry processing). 

To increase the robustness of the signature, we explored further their 
pertinence by using an independent set of bulls. A limiting factor in this 
approach was that the fertility range of this second set of bulls was 
considerably narrower than the first. This contributed to reducing the 
significance of relationships previously established for most of the pro-
teins, which showed a consistent correlation with fertility in the first 
study. Despite this reduction, our correlations with fertility, for instance, 
the negative correlation found between fertility and the amount of lipase 
(LIPA), and a trend for a positive correlation with one of the Osteopontin 
protein groups, were confirmed by this additional set of bulls. Moreover, 
in the extended list of bulls, 11 out of 34 showed similar trends in the 
independent dataset, albeit not significant, and would need further 

verification. We also attempted to explore the behavior of our predictor 
proteins when applied to the proteins in the study by Viana et al. Here, 
two of the proteins were identified (Osteopontin and N-acetylglucos-
amine-1-phosphotransferase) but showed no significant trends in the 
dataset by Viana et al, and lack of quantitative data did not permit 
further explorations. Many factors may influence the results, such as 
various software and normalization strategies used in the different 
studies. Future work would ideally involve testing the signature in a 
larger set of bulls with a wide range of fertility. This is complicated by 
the low availability of bulls of low fertility. Due to the progression of 
genomic selection, only sufficient semen is collected from each for a 
small number of inseminations. Still, this type of validation would be 
essential to confirm the reliability of the identified markers. 

5. Conclusions 

We identified sets of proteins robustly correlated with fertility and 
established a model providing consistent results for this group of bulls 
across repeated samples collected at different seasons. It was explored in 
an independent set of bulls and a reduced number of candidates were 
found to show consistent results for the two sets of bulls. However, 
considering the relatively low number of bulls, this model and its 
associated protein candidates would need further validation, ideally 
from a set of bulls with a wider range of fertility. Still, we find consistent 
relationships between the abundance of most of the protein candidates 
and fertility, as well as other features of male reproductive function. 
Moreover, there were consistent correlations across samplings. Thus, 
these results pave the way for functional studies to further decipher the 
mechanisms underlying male fertility. 
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