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Abstract: Changes in pollution pressure exerted on the Rocha River in Bolivia from diffuse sources
were assessed using potential non-point pollution indexes (PNPI) for 1997 and 2017. PNPI is a
simple, low-effort, time- and resource-saving method suitable for data-scarce regions, as it works at
catchment level with commonly available geographical data. Land use type (obtained by Landsat
imagery classification), runoff (determined by runoff coefficient characterisation) and distance to river
network (calculated at perpendicular distance) were each transformed into corresponding indicators
to determine their relative importance in generating pollution. Weighted sum, a multi-criteria analysis
tool in the GIS environment, was used to combine indicators with weighting values. Different
weighting values were assigned to each of the indicators resulting in a set of six equations. The results
showed that higher PNPI values corresponded to human settlements with high population density,
higher runoff values and shorter distance to river network, while lower PNPI values corresponded
to semi-natural land use type, lower runoff coefficient and longer distances to river. PNPI values
were positively correlated with measured nitrate and phosphate concentrations at six sub-catchment
outlets. The correlation was statistical significant for phosphate in 2017. Maps were produced
to identify priority source areas that are more likely to generate pollution, which is important
information for future management.

Keywords: potential non-point pollution index; Rocha River; water quality degradation; urbanisation;
land use indicator; runoff indicator; distance indicator

1. Introduction

Water quality degradation is generally caused by non-point sources (storm-water
runoff from human settlements and agricultural areas) and point sources (including domes-
tic, industrial and commercial) of wastewater discharge [1,2]. Non-point source pollution
(NPSP) is a serious problem world-wide, especially in developing countries [3,4]. It in-
volves addition of impurities to a surface water body or an aquifer, usually through an
indirect route and from spatially diffuse sources [5]. Increasing NPSP from expansion of
agriculture and urbanisation [6,7] is raising concerns among the scientific community and
regulatory agencies [8].

Prevention of NPSP requires an understanding of how particular land uses and other
landscape features, such as slope, topography and soil type, influence water quality within
a catchment [9,10]. The severity of NPSP is influenced by surface runoff, soil erosion,
distance travelled by a pollutant and pollutant transportation, especially immediately
after a rainstorm [11]. Surface runoff is a major driving force for NPSP and is primarily
responsible for the relationship between land use/land cover and water quality [12,13].
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Land use can contribute to polluting a stream by leaching, but it can also act as a filter and
keep pollutants from entering the stream by biological trapping [14].

Studies to date on contamination of water bodies have mainly focused on identifica-
tion of priority source areas (PSAs), i.e., hotspot areas that produce significant pollution,
in order to improve NPSP management [15]. Identification of PSAs involves determining
the purpose of the evaluation, the scale of the area and data availability, and applying
a suitable model [16]. Index-based models may be suitable for this purpose, as they are
simple, low-effort and effective. They are especially useful for large-scale analysis where
there is a lack of data, as they can easily be produced with limited inputs and variations in
local conditions. Such models can also provide a reasonable framework for NPSP assess-
ment at catchment scale, with acceptable accuracy [17]. With accurate PSA identification,
water monitoring and restoration programmes for prevention and mitigation of NPSP can
be developed.

Potential non-point pollution index (PNPI) is a tool developed by Munafò et al. [18]
to assess the overall pressure exerted on rivers and other surface water bodies by land use
across any given catchment. It applies a multi-criteria technique, based on expert assess-
ment, to pollutant dynamics. It bypasses the difficulties in representation of the accurate
physical reality by assessing pollution potential as a function of indicators, e.g., land use,
runoff and distance to the river network. PNPI is based on geographic information sys-
tem (GIS) at river catchment scale and is designed to inform the scientific community,
decision makers and the public about the potential environmental impacts of different land
management scenarios [19].

The PNPI tool has been successfully applied in previous studies, e.g., in Italy by
Munafò et al. [18] to describe non-point pollution of the Tiber River, by Ciambella et al. [20]
to describe the potential contribution of different land uses to non-point pollution of Lake
Trasimeno (volcanic ecosystem) and by Cecchi et al. [19] to assess pollution from diffuse
sources in Viterbo province, in order to explain the complex interactions between fluvial
ecosystems, land use management and environmental health.

The present study was carried out in a 488 km2 catchment in Bolivia prone to soil
erosion and undergoing fast and uncontrolled urbanisation. In previous studies [21–23],
scattered point water samples were taken in the catchment at different time intervals,
making it very difficult to track the underlying reasons and location of potential sources
of pollution. The objective of this study was to assess the overall pressure of NPSP on the
main river, with emphasis on land use changes between 1997 and 2017, using the PNPI
approach. Three indicators were considered, related to land use type, runoff potential
and distance to river network and their relative importance for NPSP was evaluated.
In addition, different weighted factors were tested to identify the best fitting for this
particular catchment. The years 1997 and 2017 were chosen because of significant changes
in land use and because data on water quality were available for these two years.

2. Materials and Methods
2.1. Study Area

The Rocha River study catchment lies in Cochabamba department in the Highland
Valley region in Bolivia, with its outlet at the city of Cochabamba (17◦15′36′ ′ S–17◦31′36′ ′ S;
66◦14′02′ ′ W–65◦49′29′ ′ W) [24] (Figure 1). It consists of the rolling hills, valleys and basins
that are part of the Central Cordillera. The geological structure is described in detail by
UN-GEOBOL [25], and generally follows a northwest-southeast orientation. The study
catchment appears to be the result of deflection of the mountainous chain in the Pliocene
and formation of strike slip faults in the Ordovician age [26]. Hydrogeological conditions
show unconsolidated porous deposits (alluvial cones, river terraces and fluvio-lacustrine
deposits) in the valley plains surrounding the main river and local aquifers (San Benito
formation, Catavi and Santa Rosa formation, moraine deposits and Sacaba formation)
in the highlands and mountains [27].
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Figure 1. (Left) Study area location in Bolivia and (Right) main cities and catchment bound-
aries shown on a Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor)
image (6, 4 and 2 combination in RBG) from June 19, 2017.

The main channel of the Rocha River, which is an important tributary of the Caine
River, runs east to west for approximately 80 km. The climate is semi-arid (low precipitation
and high potential evaporation) according to data recorded at Aeropuerto-Cochabamba
meteorological station (17◦24′58′ ′ S, 66◦10′28′ ′ W, altitude 2548 m) by the Bolivian Service
of Meteorology and Hydrology. Median annual temperature in the period 1988–2018
was 17.8 ◦C and median annual rainfall was 421.2 mm. Rainfall is concentrated in sum-
mer (on average 78% of yearly precipitation), during the months December to March,
and mostly occurs in short-duration, high-intensity events producing large amounts of
runoff. The dry and transition season (May to July) receive 3% and 19% of total annual
precipitation, respectively.

In the catchment, mountains, hills, piedmonts and valleys make up the landscape.
The altitude ranges between 2500 and 4500 m. In general, soil water permeability is moder-
ately high, organic matter content is low and there is varying abundance of rock fragments
in the soil. Soil erosion occurs as rill, pipe and gully erosion. In the piedmont area, the soil
types are loam and silt loam [28]. Depositional glacial areas have sandy clay loam soil tex-
ture and include locally poorly drained areas. The valley area is characterised by badlands
and flatlands of alluvio-lacustrine origin. Fine-textured lacustrine sediments (silty and
loamy materials) include isolated gravel channels, lenses and sheets [29]. The valley be-
longs to the subtropical lower montane thorn steppe ecosystem [30]. Natural vegetation
is mostly xeromorphic [31]. Agricultural rain-fed crops include maize, wheat and alfalfa.
There are an estimated 500–900 hectares of irrigated cropland in the catchment, mainly
potatoes and various vegetables, which are irrigated with river water [32].

Sacaba city population was projected to be 196,540 in 2017 and Cochabamba city
population 691,970 [33]. These cities have experienced rapid urbanisation and population
growth, of 4% and 2%, respectively, between 1997 and 2017, making the catchment the
most densely populated in Bolivia. As a consequence of increasing water demand, proper
sanitation services, sewerage and water treatment infrastructure have become unresolved
issues. Despite the presence of several potential water sources (e.g., Rocha and Tamborada
Rivers, mountain lakes, spring zones, confined aquifers and alluvial fans), water is scarce
and currently polluted. In the past 30 years, surface water pollution, contamination and
their environmental consequences have been assessed in local reports, but these focus on
point pollution, rather than on NPSP.

Non-point pollution sources are an increasing concern in the Rocha River catchment
due to a growing range of human activities. Discharges of untreated or poorly treated
wastewater and storm-water runoff from hard surfaces, which have no specific point of
discharge, are eventually deposited into the river network. In the catchment’s human
settlements, surface runoff is not adequately connected to the municipal sewerage system.
Thus pollutants such as metals, pesticides, hydrocarbons and solvents deposited on im-
pervious surfaces (e.g., roads or pavements) are discharged into drains, where they can be
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mixed with sewage and then washed into the river. Between 1992 and 2012, the coverage
of sanitary sewage systems increased from 11% to 59% in Sacaba and from 51% to 62% in
Cochabamba [34]. These increases were concentrated in the main centre of each city. Illegal
discharge events are reported to be quite common and affect water quality in the main river
and also its many tributaries (59 in Cochabamba and 137 in Sacaba) [35]. The illegal dis-
charges are related to commercial activities (hotels, restaurants, car washing and markets),
industrial spills (textiles, tanneries, slaughterhouses, construction, food and beverages)
and domestic sewage and farm wastewater (pigs, chicken and bovine livestock).

2.2. River Network and Catchment Delineation

The Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global Digital Ele-
vation Model (DEM) with 30 m grid spatial resolution was downloaded from https:
//earthexplorer.usgs.gov/ and re-sized to the study catchment at 1:50,000 scale (Figure 2a).
An existing map of the Rocha River stream network, which includes some artificial
excavated channels, was downloaded from http://geo.siarh.gob.bo, imported and su-
perimposed onto the DEM to sub-divide the catchment into sub-catchments and micro-
catchments (Figure 2b), which were utilised in the PNPI calculations.
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The DEM data were processed by the hydro-processing method proposed by Maathuis
and Wang [36] in ArcMap (ArcGIS desktop software, version 10.4; ESRI, Redlands, CA,
USA), with the following general steps: (1) filling depressions, (2) calculation of flows (direc-
tions, accumulation and length), (3) catchment boundary delineation and (4) sub-catchment
and micro-catchment definition. Six delineated sub-catchments (Figure 2b) and their cor-
responding outlets (1–6 in Figure 2a) were used. These were defined in a previous study
by Gossweiler et al. [24] as relevant with regard to topography and land use types in
the upstream contributing area. Water flow contribution to each outlet is accumulated
from the corresponding upstream sub-catchments. Thus, water flow is accumulated from
sub-catchments (Figure 2b) to outlets (Figure 2a) as follows: from sub-catchments 1–6 to
outlet 6, from sub-catchments 1–5 to outlet 5, from sub-catchments 1–4 to outlet 4, from sub-
catchment 3 to outlet 3, from sub-catchments 1 and 2 to outlet 2, and from sub-catchment 1
to outlet 1.

2.3. Potential Non-Point Pollution Index

The PNPI tool proposed by Munafò et al. [18] assesses pollutant dynamics and water
quality (Figure 3). Expert knowledge is incorporated into the PNPI model to allocate values
to each indicator, which are used in weighting. Diffuse contamination pressure exerted
on water bodies deriving from different land units is expressed in the index as a function
of three indicators: land cover (LCI), runoff (RoI) and distance to river network (DI).
In this way, potential pollution contribution from different areas and pollutant mobility are
determined by the ability of areas to retain and transport water [37].

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://geo.siarh.gob.bo
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Figure 3. Workflow in calculation of potential non-point pollution index (PNPI).

The PNPI approach has the following advantages: (a) low need for input data and
simplicity of use; (b) a GIS environment implementation through ArcMap, generating maps
(Geo-Information) that can easily be interpreted to provide decision support (scientists,
politicians and public); and (c) a multi-criteria analysis based on expert judgment to
evaluate the relative importance of indicators (concerning potential for NPSP generation).

2.3.1. Land Cover Indicator

The land cover indicator (LCI) (Figure 3) represents the potential non-point pollution due
to the land uses in a catchment unit [18]. The value of LCI depends on the potential pollution
load from a single pixel due to management practices and will vary because of environmental
impacts [19]. Determination of LCI requires a geographical location and identification of land
use types in the entire catchment. In a previous study, Gossweiler et al. [24] produced a series
of land use maps for the Rocha River catchment, from which maps and information for 1997
and 2017 were used in the present study. The land use maps were derived from satellite image
interpretation and classification in ArcMap of Landsat 5 Thematic Mapper (TM) of images
from 1997 and Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS)
of images from 2017. The classification process was validated only for 2017 classification,
since no field data were available for the 1997 classification. Overall accuracy was 78.8% and
Kappa statistic was 0.74.

Eight land use types were considered (Figure 4): (i) Human settlements, made up
of civil structures or constructed facilities such as buildings and houses, roads and other
artificial areas, including vegetated areas (sparse or dense) and bare soil. (ii) Cropland,
represented by rain-fed crops (maize, wheat, potato and other native tubers) and irri-
gated crops (potato, beans, orchard vegetables, alfalfa, oat and barley). Rainfed cropland
dominates (74.3% of cropland area) in the catchment, while irrigated cropland (25.7% of
cropland area) [38] depends on freshwater irrigation from wells and streams and, to a lesser
extent, on wastewater (2.7%) [32]. In general, low rates of chemical fertilisers are used.
The main source of plant nutrient is cow manure, followed by poultry manure. An addi-
tional source of nutrients is irrigation with untreated wastewater, which can be a source
of contaminants (bacteriological, viral and chemical) or a sink. (iii) Forests, composed
of several native species (e.g., kewiña, puya, molle, alnus, acacia and quiswara) and exotic
species (mostly pine and eucalyptus). (iv) Shrubland, dominated by bushy sclerophyllous
vegetation (vegetation with small, hard, thick leaves) and including scattered small trees.
(v) Grassland, semi-natural pastures with grazing by several species (e.g., sheep, goats,
some cows and llamas in higher parts of the catchment). (vi) Sparsely vegetated areas,
dominated by bare soil or very sparse vegetation, which could be susceptible to erosion
due to the lack of cover and intense runoff. (vii) Lakes, known as ‘tropical high-altitude
mountain lakes’ (exposed to extreme daily temperature variations, intense solar radiation
and strong winds), which are located above 3500 m and used for domestic water supply
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and agriculture. They receive water from rain and runoff from nearby areas and water
quality is generally good, with low levels of nitrates and phosphorus (P) [39]. (viii) Transi-
tional woodland/shrubland, consisting of herbaceous vegetation with scattered trees on
alluvial fans where water infiltrates through permeable layers of coarse material (boulders,
gravel, sand) close to the mountain to finer, permeable sediments in the base of the fans [26].
These fans represent the most important areas for groundwater exploitation and water
supply for human settlements.
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Figure 4. Land use types in the Rocha River catchment in (a) 1997 and (b) 2017 (adapted from Gossweiler et al. [24]).

In high altitudes of the catchment in the north and east partsgrassland and shrubland
are dominant land use types. In these areas some forest, lakes and cropland (rain fed
crops) are also found. S In lower altitudes, the dominated land uses are human settlements,
together with cropland (irrigated and rain-fed crops), transitional woodland/shrubland
and sparsely vegetated areas. The distribution of land use types in the Rocha River
catchment in 1997 and 2017 is shown in Figure 4.

The land use types (Figure 4) and their corresponding area of cover (Figure 5) were clas-
sified in order to obtain LCI. The results showed that human settlements increased in
area from 47.7 km2 in 1997 to 76.3 km2 in 2017 (+2.5% in terms of compound annual
growth rate, CAGR), reflecting population growth and urban sprawl. At the same time,
semi-natural cover (grassland, shrubland, sparsely vegetated areas, transitional wood-
land/shrubland and lakes decreased (−14.2% CAGR), whereas forest (+6.5% CAGR)
and cropland (+0.6% CAGR) increased. There was a clear increase in human settlements
in all sub-catchments, but particularly in sub-catchments 6 and 4 (Figure 5; see Figure 2b
for sub-catchment numbers). Increases in forest affected sub-catchments 1, 2 and 6 and
increases in cropland affected sub-catchments 1 and 5. Decreases in semi-natural land use
types mainly affected grassland in sub-catchments 1, 4, 5 and 6, shrubland in sub-catchment
1, transitional woodland/shrubland in sub-catchments 4, 5 and 6, and sparsely vegetated
areas in sub-catchments 3 and 4. The decrease in shrubland affected most sub-catchments.
Lake cover remained the same between 1997 and 2017, with very low percentage changes.

The well-known relationship described by numerous authors between land use and
nitrogen (N) dynamics [40] was used in calculation of LCI in areas affected by humans
(human settlements and cropland). The literature on phosphorus (P) emissions from
different land uses was also reviewed. The LCI values for human settlements and cropland
were related to the N and P loads, while the approach used for other land use types was
adapted from the literature as described below.

Human settlements were considered as main contributors to NPSP because they are
widespread in the catchment and have very low levels of wastewater treatment. They were
considered to produce average emissions of 4.3 kg N and 0.53 kg P per person and year,
based on previous studies by Smith et al. [41], Santos et al. [42] and Van Drecht et al. [43]
in areas where wastewater is untreated or poorly treated. However, most of the sewage
water from Cochabamba city centre (sub-catchment 6 in Figure 2b) is diverted outside the



Water 2021, 13, 410 7 of 24

catchment to the municipal water treatment plant, whereas sewage water from Sacaba
city is discharged directly into the Rocha River, since no treatment plant is operational or
working properly. The N and P emissions given above were multiplied by population data
for 1992, 2001 and 2012 [33], and then arranged into population density classes (Table 1).
Cropland in the catchment receives manure and some chemical fertilisers providing a total
of 29.1 kg N ha−1 year−1 and 13.4 kg P ha−1 year−1.
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Table 1. Land cover indicator (LCI) values estimated for different land use types units in the Rocha
River catchment.

Land Use Type LCI Values

Lakes 0.05
Forest, Shrubland 0.10

Grassland, Transitional woodland/shrubland 0.20
Cropland 0.30

Sparsely vegetated areas 0.35
Human settlements (persons per ha)

<20 0.40
21–70 0.50
71–100 0.60

101–120 0.70
121–150 0.80

>150 0.90

The LCI values for natural and semi-natural areas (Table 1) were partly adapted from
Cecchi et al. [19] and Puccinelli et al. [44], who present data on potential generation of
pollution for different land use types as evaluated by specialists. The lowest LCI value
(Table 1) was given for lakes, since they can trap transported nutrients and retain potential
pollution. Forest, shrubland and grassland were given relatively low LCI values, since they
have a cover of native and/or exotic plant species with the capacity to capture/retain
pollution. Transitional woodland/shrubland areas were also given a low LCI value, due to
their permeable layers of coarse materials. Low to medium LCI values were assigned to
cropland and sparsely vegetated areas, with sparsely vegetated areas given a higher value
than cropland because of the increased risk of soil erosion. The highest LCI values were
assigned to human settlement.

2.3.2. Runoff Indicator

Runoff indicator (RoI) takes into account the potential of water to move as surface
runoff. Runoff coefficient (Ci) is a dimensionless factor that is used to convert rainfall
amounts into surface runoff [45]. In the present study, RoI was equal to Ci for each pixel
along the hydraulic path from pixel to pixel to the six sub-catchment outlets. RoI values
were obtained as a function of the interaction between land use (cover) condition, soil tex-
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ture and slope classes. Maps of land use type, soil texture and slope range were generated
and then overlain using the “Intersect” Tool in ArcMap. A geometric intersection of the
three maps was generated and the Ci values in Table 2 were set.

Table 2. Values of runoff coefficient (Ci) based on land use type, soil texture and slope of landscape units in the Rocha
River catchment.

Land Use Type
FAO Slope

Soil Texture 0–5% 5–10% 10–30% >30%

Forest, Shrubland a >45% sand 0.10 0.25 0.30 0.45
clay and silt 0.30 0.35 0.50 0.55
>55% clay 0.40 0.50 0.60 0.70

Grassland a >45% sand 0.10 0.16 0.22 0.28
clay and silt 0.30 0.36 0.42 0.48
>55% clay 0.40 0.55 0.60 0.75

Cropland a >45% sand 0.30 0.40 0.52 0.62
clay and silt 0.50 0.60 0.72 0.82
>55% clay 0.60 0.70 0.82 0.92

Transitional woodland/shrubland b >45% sand 0.10 0.15 0.20 0.25
clay and silt 0.20 0.25 0.30 0.35
>55% clay 0.30 0.35 0.40 0.45

Sparsely vegetated areas—Smooth b >45% sand 0.30 0.40 0.50 0.60
clay and silt 0.45 0.55 0.65 0.75
>55% clay 0.60 0.75 0.80 0.90

Sparsely vegetated areas—Rough b >45% sand 0.20 0.30 0.40 0.50
clay and silt 0.35 0.45 0.55 0.65
>55% clay 0.50 0.65 0.70 0.80

% of impervious area
Human settlements b <30% 0.30 0.40 0.50 0.60

30–50% 0.40 0.50 0.60 0.70
50–70% 0.55 0.65 0.75 0.85
>70% 0.65 0.80 0.85 0.95

Adapted from: a The Clean Water Team [46] and b Schwab et al. ([47], cit. Hudson [48]).

Many attempts to define widely accepted Ci values have been made in different
studies, but uncertainty still remains. The Ci value used in the present study for cropland
was constructed based on tables presented by The Clean Water Team [46], while that for
human settlements was based on Schwab et al. [47] as cited by Hudson [48] (Table 2).
Runoff coefficient values for slopes exceeding 30% and for human settlements with slopes
up to 10% were not included in the original tables. Therefore Ci values proportional to
their susceptibility to generate surface runoff were allocated to these areas, based on linear
regression between slope ranges and Ci values already defined.

Soil texture information was obtained from a soil dataset constructed with data from
the IAO [31], which is based on topsoil (<20 cm) samples analysed by the gravimetric
(pipette) method. Soil texture classes (set according to particle fraction distribution of sand,
silt and clay) were rearranged into three coarse texture classes (Table 2). The catchment
is dominated by sandy loam texture in areas with mountains and hills, whereas in the
river valley and nearby areas, loam, silty loam and sandy clay loam are also present
(Figure 6a). The texture classes in Schwab et al. [47] were related to landscape units,
so that valley and glacial deposits were assigned “>45% sand” (“Open Sandy Loam”)
and mountains, hills and piedmont were assigned “clay and silt” (“Clay and Silt Loam”).
No part of the landscape was assigned “>55% clay” (“Tight clay”). Thus, a soil texture
map for the texture classes shown in Table 2 was produced based on the soil textures
and landscape units in Figure 6a. It was spatialised by the geopedological approach [49].
In this context, geomorphological units (mountains, hills, piedmont, glacial deposits and
valley) from Metternich [50] provided the contours of the map units (“the container”),
while pedology provided the soil textures of the map units (“the content”).
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Figure 6. Distribution of (a) soil texture types and (b) slope classes in the landscape units in Rocha
River catchment.

The slope values for each pixel were derived from the DEM. In order to obtain the
same slope classes as in Table 2 (i.e., <5%, 5–10%, 10–30% and >30%), the values obtained
were classified with the tool “Reclassify” in ArcMap. The dominant slope class was 10–30%
(36% of the area), followed by slope > 30% (33% of the area), slope < 5% (17%), and slope
5–10% (14%).

2.3.3. Distance Indicator

Distance indicator (DI) is a coefficient reflecting the mobility of a pollutant [18]. It indi-
cates that the potential impact of pollution decreases with increasing distance from a given
pixel to the stream outlet or the river network, due to possible retention on the way to the
river network. In the present study, the distances considered to obtain DI were the distance
travelled between any given pixel (smallest unit of area) and the closest river network
segment. DI was determined as geodesic straight perpendicular (Euclidean) distance
(“Near” Tool in ArcMap), in an attempt to simplify the analysis and to avoid additional
sources of error.

The calculated distances were rescaled (using the “Reclassify” Tool” in ArcMap)
to obtain DI as follows: (a) the distance values calculated (min: 0 m and max: 3680.7 m)
were sorted in ascending order; (b) distances were fitted into 10 classes by the Jenks
method [51], where class breaks were determined statistically by finding adjacent feature
pairs between which there was a relatively large difference in data value; and (c) each of
the 10 classes was assigned a DI value between 0.1 and 1 (see Table 3). A longer distance to
the river network gave a lower DI value (towards 0.1) and a shorter distance gave a higher
DI value (towards 1). Thus, distances were inversely proportional to DI values, to reflect
the decreased effect of pollutants with distance to river (possibly combined with increased
travel time) and thereby decreased accumulated pollution percolation (sinks) along the
flow path.

Table 3. Distance to river classes (m) and corresponding distance indicator (DI) values.

Distance Class (m) 0–159 160–332 333–520 521–736 737–996 997–1314 1315–1703 1704–2165 2166–2714 2715–3681

DI value 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

The “Reclassify” operation was used to normalise maximum and minimum distance
values ranging between 0.1 and 1, so that DI could be combined with the other indicators
to obtain PNPI. For that reason, distance intervals calculated are only applicable for the
particular study area, so each new study should calculate its own distance intervals. In the
present study, DI was the same for both years studied, 1997 and 2017, assuming no changes
in stream network.
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2.4. PNPI Implementation

Implementation of PNPI was conducted in ArcMap by the weighted sum tool, to create
a PNPI map showing PSAs for each pixel of the DEM (smallest unit of surface). Weighted
sum is a multi-criteria analysis tool that provides the ability to weight (by relative im-
portance) and combine multiple inputs (representing multiple indicators) to create an
integrated analysis [52]:

PNPI = ∑k
i=1 wi ∗ xi (1)

where k is the total number of indicators, wi is a coefficient of weights for each indicator
and xi is the corresponding indicator (LCI, RoI and DI), with values between 0 and 1.

Six set-ups of weighting values were applied for the three indicators, using Equations (2)–(7),
to test their effects on generation of diffuse pollution in the study area. LCI was considered the
most important indicator, since land cover change is known to be the main cause of NPSP in the
catchment. RoI and DI are also closely related to non-point pollution, due to pollutant mobility
(dumping) by source of surface runoff and transport distance:

PNPI = LCI*4 + RoI*4 + DI*2 (2)

PNPI = LCI*5 + RoI*2 + DI*3 (3)

PNPI = LCI*5 + RoI*3 + DI*2 (4)

PNPI = LCI*6 + RoI*1 + DI*3 (5)

PNPI = LCI*6 + RoI*3 + DI*1 (6)

PNPI = LCI*8 + RoI*1 + DI*1 (7)

Predefined weighting values based on the rank sum method [53] presented by Munafò
et al. [18] were used in Equation (3). The other five Equations (2), (4)–(7) were tested in
an attempt to optimise weighting value with regard to local conditions in the catchment.
Thus, while LCI weighing values remained highest, due to the local importance of this
indicator in the catchment, RoI and DI weighing values varied at lower values.

The micro-catchments (see Figure 2b) were used to summarise PNPI values, in order
to provide an applicable understanding of PNPI results in planning management scenarios.
The accumulated average PNPI value for each sub-catchment was calculated through
zonal statistics in ArcMap (GIS environment) regarding accumulated flows from each
micro-catchment. The different PNPI values were aggregated into five classes, the colour
code and pollution potential of which are listed in Table 4.

Table 4. Categorisation of potential non-point pollution index (PNPI) classes from value ranges.

PNPI Classes PNPI Value Representation Pollution Potential

0–2 0–2.0 Dark green Low
2–4 2.1–4.0 Light green Low-medium
4–6 4.1–6.0 Yellow Medium
6–8 6.1–8.0 Orange Medium-high
8–10 8.1–10.0 Red High

2.5. PNPI Performance Evaluation

Validation of PNPI consisted of comparing values for the water quality parameters
nitrate and phosphate, as measured at monitoring stations in the six outlets in 1997 and
2017 (reported in Gossweiler et al. [24]), against PNPI values for each sub-catchment.
The nitrate and phosphate concentrations were derived from samples taken only in the dry
season, which were analysed at the Water and Environmental Sanitation Center (CASA)
laboratory, at San Simon University (Cochabamba, Bolivia) in the two years.

Correlation analyses were performed with the following null hypotheses: (1) Measured
nitrate values in the catchment are not related to PNPI values; and (2) measured phosphate
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values in the catchment are not related to PNPI values. For this purpose, the relationships
between nitrate and accumulated average PNPI values, and between phosphate and accu-
mulated average PNPI values, were analysed for correlations using the R statistical software
(R Development Core Team 2011) version 3.6.1 (The R foundation, Vienna, Austria).

3. Results
3.1. Land Cover Indicator (LCI)

The geographical distribution of LCI in 1997 and 2017 is presented in Figure 7. In gen-
eral, areas with higher LCI values (LCI 0.6–0.8; 0.8–1, see Table 1) were found to be located
mainly in the middle part of the catchment, corresponding to high-density (>100 people
per ha) human settlements (see Figure 4). Areas with lower LCI values at higher elevations
included grassland, shrubland, transitional woodland/shrubland and forest (LCI 0–0.2),
and cropland and sparsely vegetated areas surrounding human settlements (LCI 0.2–0.4).
Areas with higher LCI values in 1997 (Figure 7a) covered 6% of the total catchment area,
while areas with lower LCI values covered 90%. In 2017, areas with higher LCI values
(Figure 7b) increased to occupy 15% of the catchment area, while areas with lower LCI
values decreased to 85%. The study catchment was dominated by the LCI class 0.2–0.4 in
both 1997 (60% in Figure 7a) and 2017 (52% in Figure 7b).
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Figure 7. Land cover indicator (LCI) values for sub-catchments 1–6 in (a) 1997 and (b) 2017.

Areas with higher LCI values in 1997 (Figure 8a) were present in the greatest pro-
portion in sub-catchment 6 (30%), 5 (9%) and 4 (7%), while areas with lowest LCI values
dominated in sub-catchment 3 (54%). In 2017 (Figure 8b), areas with higher LCI values
increased in sub-catchments 6, 5 and 4 to occupy 47%, 16% and 32%, respectively, while ar-
eas with the lowest LCI values still dominated in sub-catchment 3 (54%). Compared with
1997, in 2017 all six sub-catchments showed increases in areas with higher LCI values,
and corresponding decreases mainly in the dominant LCI class 0.2–0.4.Water 2021, 13, x FOR PEER REVIEW 13 of 27 
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Figure 8. Percentage of area in sub-catchments 1–6 falling within the different land cover indicator
(LCI) classes in (a) 1997 and (b) 2017.
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3.2. Runoff Indicator (RoI)

The distribution of RoI in 1997 and 2017 is presented in Figure 9. Higher RoI values
(0.6–0.8; 0.8–1, see Table 2) corresponded to the interactions of impervious or hard surfaces,
mostly related to human settlements with higher percentage area with impervious surface,
with slope >10% and with clay and silt soil texture (low water permeability). At the other
end of the scale, low RoI values (RoI 0–0.2; 0.2–0.4) were related mostly to forest/shrubland,
grassland (semi-natural vegetation cover) and cropland, interacting with >45% sand soil
texture (high water permeability rates) and slope <5%. Medium RoI values (RoI 0.4–0.6)
were related to the interaction between cropland, clay and silt soil texture and 5–10% slope.
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Figure 9. Geographical distribution of the different runoff indicator (RoI) classes in the Rocha River
catchment in (a) 1997 and (b) 2017.

In 1997, areas with higher RoI values (Figure 9a) covered approximately 11% of
the total catchment area, while lower RoI values covered approximately 55%. In 2017,
areas with higher RoI values (Figure 9b) increased to cover approximately 17% of the
catchment area, while lower RoI values covered approximately 46%. The study catchment
was dominated by RoI classes 0.2–0.4 and 0.4–0.6 in 1997 (49% and 34%, respectively)
and in 2017 (31% and 37%, respectively).

In 1997, areas with higher RoI values were present in the greatest proportions in
sub-catchment 6 (32%), while areas with lower RoI values were present in the greatest
proportions in sub-catchments 5 (70%), 1 (66%) and 2 (60%) (Figure 10a). In 2017, areas with
higher RoI values increased in sub-catchments 6, 4 and 5, to 46%, 21% and 16%, respectively,
while areas with lower RoI values decreased in sub-catchments 1, 5 and 2, to 64%, 60% and
51%, respectively (Figure 10b). The study sub-catchments were dominated by RoI classes
0.2–0.4 and 0.4–0.6 in both 1997 and 2017. In general, in 2017 compared with 1997, sub-
catchments showed increases in higher RoI values, but also decreases in lower RoI values
and in the dominant LCI 0.2–0.4 class.
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3.3. Distance Indicator (DI)

The distribution of DI classes in the catchment is shown in Figure 11, where red
indicates short distances and green longer distances. The highest DI values (DI 0.8–1)
corresponded to areas with numerous river network tributaries (i.e., close proximity to
the river network; see also Figure 2a) located on steep slopes, while the lowest DI values
(DI 0–0.2) were related to few river tributaries on gentle slopes.
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Figure 11. Geographical distribution of distance indicator (DI) classes in the Rocha River catchment
(both 1997 and 2017).

Areas with the highest DI values (Figure 11) dominated the study catchment, with dis-
tances below 520 m (Table 5). Similar results were found in all sub-catchments, but all DI
classes (distances longer than 2166 m) were only found in sub-catchment 1.

Table 5. Percentage (%) of total area of the catchment and of sub-catchments 1–6 falling within
different distance indicator (DI) classes.

DI Class Catchment
Sub-Catchment

1 2 3 4 5 6

0.8–1 44.5 37.7 43.6 46.1 52.9 48.2 50.2
0.6–0.8 35.3 31.7 38.0 33.8 37.8 38.1 36.2
0.4–0.6 14.6 16.5 16.1 17.5 7.4 11.9 12.6
0.4–0.2 4.1 9.0 2.3 2.6 1.9 1.8 0.9
0–0.2 1.5 5.1 0 0 0 0 0

3.4. Potential Non-Point Pollution

The distribution of PNPI classes, resulting from Equations (2)–(7), are presented in
Figure 12 for 1997 and in Figure 13 for 2017.

Areas with higher PNPI values (6–8; 8–10, see Table 4) were mainly concentrated
along the middle section in the valley lowlands, around the Rocha River main channel
(Figures 12 and 13). These areas have higher potential for generation of non-point pollution
due to human settlements (Figure 4) with higher population densities (>120 persons per
ha) and higher LCI values (Figure 7), higher pollutant mobility due to higher RoI values
(Figure 9) and higher DI values (shorter distances to river network; <520 m) (Figure 11).
Human settlements in Sacaba and Cochabamba cities, which have increased from 1997
to 2017, were located in these areas. Areas with lower pollution potential (PNPI classes
0–2, 2–4) surrounded the central part towards the edges of the catchment (but not the
western part). They corresponded to lower potential generation of non-point pollution due
to semi-natural related land use types (forest, shrubland, grassland and mountain lakes)
and thus lower LCI values, and low pollutant mobility due to lower RoI and DI (distances
to river network >1704 m).
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Figure 13. Spatial distribution of potential non-point pollution index (PNPI) classes in the Rocha
River catchment in 2017, calculated from Equations (2)–(7).
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The area occupied by the different PNPI classes shown in Figures 12 and 13 is pre-
sented in Table 6. In general, increases between 1997 and 2017 in areas covered by higher
PNPI classes occurred in increasing order from sub-catchments 1 to 6, while decreases
in lower PNPI classes were found for all sub-catchments (Equations (2)–(7)). The area
resulting from Equation (6) increased (19%; PNPI 4–6) and decreased (27%; PNPI 2–4)
most between 1997 and 2017, while the PNPI class 4–6 (yellow in Figures 12 and 13) varied
the most for all six sub-catchments (Equations (2)–(7)). Area with the lowest PNPI class
(0–2) remained the same in both time periods, with no significant changes (maximum 1%).

Table 6. Catchment area covered (percentage) by the different non-point pollution index (PNPI) classes calculated
from six equations; LCI*4+RoI*4+DI*2 (Equation (2)), LCI*5+RoI*2+DI*3 (Equation (3)), LCI*5+RoI*3+DI*2 (Equation (4)),
LCI*6+RoI*1+DI*3 (Equation (5)), LCI*6+RoI*3+DI*1 (Equation (6)) and LCI*8+RoI*1+DI*1 (Equation (7)).

PNPI Class
Equation (2) Equation (3) Equation (4) Equation (5) Equation (6) Equation (7)

1997 2017 1997 2017 1997 2017 1997 2017 1997 2017 1997 2017

0–2 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 12% 13%

2–4 59% 54% 36% 34% 66% 61% 46% 44% 72% 44% 72% 66%

4–6 33% 32% 56% 51% 27% 25% 46% 41% 22% 41% 11% 8%

6–8 5% 9% 5% 9% 4% 9% 5% 8% 3% 8% 3% 8%

8–10 2% 4% 2% 5% 2% 4% 2% 6% 2% 6% 2% 5%

The higher relative importance of LCI was reflected in Equations (5)–(7), where higher
weighting values were assigned to LCI. High relative importance of RoI in comparison with DI
was reflected in Equations (2), (4) and (6). The effect of DI, as a result of Equations (3) and (5)
where DI was weighted with higher values than RoI, was visible as closest distances to river net-
work, i.e., yellow representing the stream network. In both 1997 and 2017, Equations (3) and (5)
gave a higher proportion of PNPI class 4–6 (yellow) land, while Equation (7) gave a higher
proportion of PNPI class 0–4 land (greenish). Equations (2), (4) and (6) were relatively similar
to each other, and intermediate between the two extremes of Equations (3) and (7).

On analysing sub-catchments, mean PNPI values showed clear increases in 2017
compared with 1997 (Table 7). The highest increases were for Equation (6) (lowest rela-
tive importance for DI and higher importance for LCI) and the lowest increases were
for Equation (3) (DI slightly more important than RoI, LCI having lower relative im-
portance than for Equation (6). Mean PNPI values showed a general trend to increase
from sub-catchment 1 to 6, with the exception of a decrease in sub-catchment 5. For in-
stance, Equation (6) in 1997 gave mean PNPI values of 3.0, 3.3, 3.4, 3.8, 3.4 and 4.5 for
sub-catchments 1, 2, 3, 4, 5 and 6, respectively, while the corresponding mean PNPI values
in 2017 were 3.8, 4.4, 4.4, 5.6, 4.8 and 5.8, respectively. Finally, sub-catchments 4, 5 and 6
showed a greater increase in mean PNPI compared with sub-catchments 1, 2 and 3 for all
equations in both years.

The accumulated mean PNPI values due to water flow from upstream sub-catchments
to the respective downstream sub-catchments are presented in Table 8. They showed in-
creases in 2017 compared with 1997 and a general trend for an increase from sub-catchment
1 to 6, with the exception of a decrease in sub-catchments 4 and 5. Sub-catchments 4, 5 and
6 showed higher PNPI values than sub-catchments 1, 2 and 3 for all equations in both years.

Measured mean nitrate (NO3) and phosphate (PO4) concentrations at the outlets of
the sub-catchments in 1997 and 2017 [21] are presented in Table 9. Both NO3 and PO4
concentrations increased from 1997 to 2017, except for a decrease in NO3 in sub-catchment
6 in 2017. A clear increase in PO4 concentration was observed in sub-catchments 3, 5 and 6
in 2017.
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Table 7. Statistics on non-point pollution index (PNPI) values obtained for sub-catchments 1–6 within 1997 and 2017 on
using Equations (2)–(7).

Sub-Catchment PNPI Value Statistics

Equation 1 2 3 4 5 6 1 2 3 4 5 6
1997 2017

2 LCI*4+RoI*4+DI*2 Min 1.4 2.0 1.4 1.4 1.8 2.0 1.4 2.0 1.4 1.4 1.8 2.0
Mean 3.7 4.1 4.2 4.5 4.1 5.1 3.7 4.3 4.3 5.4 4.4 5.6
Max 6.5 9.2 9.2 9.2 9.6 9.6 9.2 9.2 9.2 9.6 9.6 9.6

3 LCI*5+RoI*2+DI*3 Min 1.5 2.2 1.6 1.6 2.2 2.5 1.3 2.2 1.6 1.6 2.2 2.5
Mean 4.0 4.4 4.5 4.9 4.5 5.4 4.0 4.5 4.6 5.7 4.9 5.9
Max 7.0 9.4 9.4 9.4 9.6 9.6 9.4 9.4 9.4 9.6 9.6 9.6

4 LCI*5+RoI*3+DI*2 Min 1.5 2.0 1.4 1.4 1.8 2.0 1.3 1.9 1.4 1.4 1.8 2.0
Mean 3.6 3.9 4.0 4.4 4.0 5.0 3.6 4.1 4.2 5.3 4.4 5.5
Max 6.5 9.3 9.3 9.3 9.6 9.6 9.3 9.3 9.3 9.6 9.6 9.6

5 LCI*6+RoI*1+DI*3 Min 1.6 2.3 1.6 1.6 2.2 2.5 1.1 2.1 1.6 1.6 2.2 2.5
Mean 3.8 4.2 4.3 4.7 4.5 5.3 3.8 4.4 4.4 5.6 4.8 5.8
Max 7.1 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6

6 LCI*6+RoI*3+DI*1 Min 1.5 1.5 1.2 1.2 1.4 1.5 1.1 2.1 1.6 1.6 2.2 2.5
Mean 3.0 3.3 3.4 3.8 3.4 4.5 3.8 4.4 4.4 5.6 4.8 5.8
Max 6.1 9.3 9.3 9.3 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6

7 LCI*8+RoI*1+DI*1 Min 1.5 1.4 1.2 1.2 1.5 0.9 1.2 1.2 1.2 1.4 1.5 1.5
Mean 4.3 3.2 3.6 3.1 3.0 2.7 2.7 3.2 3.2 4.7 3.7 4.9
Max 9.6 9.6 9.5 9.5 9.5 6.3 9.5 9.5 9.5 9.6 9.6 9.6

Table 8. Accumulated mean non-point pollution index (PNPI), calculated with Equations (2)–(7), for sub-catchments 1–6 in
1997 and 2017.

Equation
Sub-Catchment Accumulated PNPI Average

Year 1 2 3 4 5 6

2 LCI*4+RoI*4+DI*2
1997 3.7 3.9 4.2 4.0 4.0 4.1
2017 3.7 3.9 4.3 4.2 4.3 4.4

3 LCI*5+RoI*2+DI*3
1997 4.0 4.1 4.5 4.3 4.4 4.4
2017 4.0 4.2 4.6 4.5 4.6 4.7

4 LCI*5+RoI*3+DI*2
1997 3.6 3.7 4.0 3.9 3.9 4.0
2017 3.6 3.8 4.2 4.1 4.1 4.3

5 LCI*6+RoI*1+DI*3
1997 3.8 4.0 4.3 4.2 4.2 4.3
2017 3.8 4.1 4.4 4.4 4.4 4.6

6 LCI*6+RoI*3+DI*1
1997 3.0 3.1 3.4 3.3 3.3 3.4
2017 3.0 3.2 3.6 3.5 3.6 3.7

7 LCI*8+RoI*1+DI*1
1997 2.7 2.8 3.1 3.0 3.0 3.1
2017 2.7 2.9 3.2 3.2 3.3 3.5

Table 9. Nitrate (NO3) and phosphate (PO4) concentrations (n = number of samples) at the outlet of sub-catchments 1–6 in
1997 and 2017.

Year n
Outlet of Sub-Catchment

1 2 3 4 5 6

NO3 (mg L−1) 1997 3 0.07 0.47 0.16 0.78 8.54 8.4
2017 2 1.21 7.75 12.54 9.36 19.41 4.26

PO4 (mg L−1) 1997 3 0.09 0.25 0.23 0.31 12.75 0.03
2017 2 0.17 2.98 33.36 12.8 36.86 27.87

Correlation analysis revealed significant relationships between PO4 and PNPI values
obtained with all equations in 2017, indicating that PO4 increased with increasing PNPI
(Table 10). No other relationships were significant, but all correlation coefficients were
positive, showing a trend for increasing NO3/PO4 values with increasing PNPI.
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Table 10. Pearson coefficient of correlation (r) between non-point pollution index (PNPI) calculated using Equations (2)–(7)
and measured mean nitrate (NO3) and phosphate (PO4) concentrations in outlets of the six sub-catchments in 1997 and 2017.

PNPI Equation

1997 2017

NO3 PO4 NO3 PO4

r p-Value r p-Value r p-Value r p-Value

2 LCI*4 + RoI*4 + DI*2 0.39 0.450 0.11 0.841 0.51 0.300 0.85 0.031 *
3 LCI*5 + RoI*2 + DI*3 0.48 0.341 0.85 0.751 0.51 0.341 0.85 0.032 *
4 LCI*5 + RoI*3 + DI*2 0.44 0.385 0.12 0.820 0.50 0.317 0.85 0.034 *
5 LCI*6 + RoI*1 + DI*3 0.52 0.290 0.18 0.735 0.51 0.306 0.85 0.034 *
6 LCI*6 + RoI*3 + DI*1 0.46 0.357 0.12 0.828 0.48 0.330 0.84 0.038 *
7 LCI*8 + RoI*1 + DI*1 0.58 0.230 0.17 0.742 0.47 0.348 0.83 0.043 *

* Significant at p-value 0.05.

The PNPI results for the catchment (Figures 12 and 13) were aggregated into micro-
catchments (Figures 14 and 15) to identify priority source areas (PSAs), as decision support
for recommendations on appropriate management measures to reduce pollution potential
in different parts of the catchment.
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Figure 14. Spatial distribution of the different non-point pollution index (PNPI) classes at micro-
catchment levels in 1997.

In 1997, PSAs with the highest and lowest pollution potential (PNPI classes 8–10
and 0–2, respectively; see Table 4) were not present at all in the catchment. Medium-high
potential pollution (PNPI class 6–8) was rarely present (Figure 14), representing less than
3% of the total catchment area (between 0.3% with Equation (6) and 2% with Equation (5)).
As a consequence, areas of low-medium potential pollution (PNPI class 2–4) (which covered
80% with Equation (7)) and medium potential pollution (PNPI 4–6) (which covered 75%
with Equation (3)), dominated the catchment in different proportions depending on the
equation used.

Areas of medium-high PNPI were present in the greatest proportions in the catchment
with Equations (2), (3) and (5). With Equation (5), they covered 15% of sub-catchment 6,
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3% of sub-catchment 4 and 0.2% of sub-catchments 3 and 2, while they were not present in
sub-catchments 1 and 5. Equation (5) results for the other sub-catchments confirmed the
dominance of areas with medium PNPI (95% in sub-catchment 4) and low-medium PNPI
(68% in sub-catchment 1).
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Figure 15. Spatial distribution of the different potential non-point pollution index (PNPI) classes at
micro-catchment level in 2017.

In 2017, PSAs showing the highest pollution potential (PNPI class 8–10; see Table 4)
appeared only in the case of Equation (5), covering 0.3% of the total catchment (Figure 15).
In relation to 1997 (Figure 14), areas corresponding to medium-high pollution potential
(PNPI 6–8) clearly increased for all equations, to up to 15% with Equation (3). Conversely,
areas of medium pollution potential (PNPI class 4–6) decreased from 1997 to 2017 for all
equations (e.g., from 75% in 1997 to 62% in 2017 with Equation (3)), as did areas with
low-medium pollution potential (PNPI class 2–4) (e.g., from 80% in 1997 to 73% in 2017
with Equation (3)). However, these two classes still dominated the entire catchment for all
equations. As in 1997, area with the lowest pollution potential (PNPI class 0–2) was not
present in the catchment in 2017.

At sub-catchment level, Equation (5) gave the highest PNPI in 2.1% of the area in
sub-catchment 4, while areas of medium-high PNPI represented 58%, 41% and 24% of
sub-catchments 6, 5 and 4, respectively. Equation (5) confirmed the dominance of medium
PNPI (55%) in sub-catchment 4 and low-medium PNPI (64%) in sub-catchment 1.

4. Discussion
4.1. Relative Importance of Indicators

Rapid and inappropriate urbanisation in the study area was reflected in a PNPI
increase in 2017 compared with 1997. Migration from the countryside and economic
activities have increased the pollution pressure, through development without proper
waste management, a deficient water supply and inadequate sanitation services.
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In the present study, eight general land use types were identified and used in the
analysis, which is fewer than in previous studies [18–20]. These eight were selected from
the CORINE (Coordination of Information on the Environment) land cover classification
system [54], which includes 44 types. Similar numbers of land use types as in the present
study (between four and six) have been used in some previous studies [11,37,55]. In those
studies, land use classification integrated contextual information related to pollution
potential (e.g., fertiliser inputs, pollutant or nutrient load and export) for each land use
type and its management, in addition to the land use classification.

Land use type weighting to obtain LCI (see Table 1), as used in the present study,
combines widely available data and is relatively simple to calculate and work with on a
GIS interface. It also gives direct reference to the driving forces of pollution, by taking
N and P (applied as manure or chemical fertiliser) as the main indicators. These are the
most widely studied indicators directly related to NPSP [15,56]. However, difficulties
arise in (1) defining a proper land use label regarding the purpose of the study (number
and properties); (2) related land use with pollution loads as pollutant source; (3) sewage
characterisation, since it is deficient or absent in data-scarce areas; and (4) possible effects of
runoff retention or increased runoff rate in each particular land use type. Thus, an optimum
LCI definition should be addressed by an adequate weighting of land use types in terms of
the most representative pollutant in runoff and how they are associated.

In the PNPI assessment, the most important indicator was confirmed to be LCI, because
of potential pollution generation and high relative importance weighted in Equations (1)–(6).
The main reason for this were that the city of Sacaba lacks an efficient sewerage system
and water treatment plants, and the city of Cochabamba treats only a small proportion
of the sewage generated [34]. More detailed studies are needed on pollution related to
cropland and its management, and on the effects of grassland in pollution control, in the study
catchment [57]. An association between urban areas (human settlements) and higher LCI values
has been found in previous land use/land cover evaluations [18–20], using similar indices to
PNPI, such as agricultural nonpoint pollution potential index (APPI) [15,58] and multicriteria
analysis [11,13,55]. On a medium working scale (covering the study catchment) of 1:50.000
spatial resolution to match Landsat imagery pixels and SRTM-DEM resolution (30 m × 30 m),
the land use and LCI results (and later PNPI) showed agreement. Upscaling of the land use
information did not substantially affect the results, as previously reported for NPSP modelling
and water runoff and sediment yield assessment [15,59,60].

Land use types showed changes (increases/decreases) between 1997 and 2017 (e.g., human
settlements increased), which influenced the RoI results obtained (Figures 9 and 10). The im-
pervious or hard surfaces that dominate human settlements are known to have a significant
influence in runoff generation, even during the small rainstorm events that are frequent in the
rainy season in Bolivia [61,62].

Runoff coefficient (Ci) was determined through GIS and remote sensing, an approach
that is widely accepted in hydrology and water resources management when dealing
with data-scarce regions [61,63,64] or in large-scale rapid analyses [65]. The movement of
nutrients or pollutants from land surface to Rocha River stream network is controlled by
surface runoff due to topography, soil characteristics and rainfall pattern. High runoff rates
most likely increase the mobility of sediments and associated pollutants.

A more precise approach to calculating runoff and other hydrological parameters
would require field data (rain and flow) for calibration and validation of predicted results.
Learning from similar gauged catchment areas in the region may lead to adequate results,
but information later than 2014 was not available for the present study.

In the study catchment, the main source of recharge for river flow is precipitation,
but illegal domestic sewage water and small industrial spills to the river act as additional
sources and can be considered the only inputs during dry periods. Higher amounts of
precipitation in the rainy season can contribute to increased surface runoff and pollutant
wash-off from adjacent areas to the main river. According to the literature, river water
quality in regions with a similar climate to the study area is low in the dry season, as a
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consequence of low river flow, while in the rainy season higher water flow dilutes the
pollutant concentrations [5,14]. Nitrate and phosphate concentrations in the dry season
were used to validate the PNPI results, but more extensive research is needed to determine
the effect of precipitation variation (yearly, seasonally, monthly) on the approach used here.

Modelling of DI reflected the fact that about 70% of the study catchment consisted of
mountainous region and 30% of fluvial plains. A previous study in a region with fewer
mountainous areas (33%) and more fluvial plains (67%) also found high DI values for
a dense stream network along major river tributaries [11]. Thus high DI values mainly
depend on the density of the river stream network (large number of tributaries) and high
runoff in mountainous topography. The approach of assigning higher DI values for shorter
distances to the river network, and lower DI values for longer distances, has been used
previously [18–20,66].

Possible changes in the Rocha River stream network due to new human settlements
and to drainage channels and ditches to prevent flooding in the rainy season were not
considered in the present analysis, since no accurate available information was found.
Local landscape patterns and rainstorm-driven events in part of the year can be considered
to reduce non-point pollution by capturing runoff in some areas [66]. Wetland areas can
act as sinks and/or sources of sediments and pollutants in surface runoff, allowing these to
settle and become trapped and later remobilised [9,31,67].

4.2. Potential Non-Point Pollution Index (PNPI)

In this study, the results of indicator weightings for PNPI were integrated using the
weighted sum tool in ArcGIS 10.7. Previous studies with PNPI have used simple map
algebra integration of the three independent indicators (land cover, runoff and distance to
river) in ArcView GIS ver. 3.2 [18–20,44]. Our approach can be considered an improvement
and process optimisation in computational analysis, since it uses technological advances
in PNSP analysis. Weights differed in Equation (2) to Equation (7) based on relative
importance of indicators in generation of potential pollution, but LCI was identified as
the most important indicator in all equations. In a previous study using this approach,
the LCI and RoI weighting values were changed to make these the most important factors
(DI was not considered due to short distances in the study area) [37]. A widely accepted
multi-attribute decision-making approach for weighting, technique for order preference
by similarity to ideal solution (TOPSIS) [68], has been found to be helpful because it can
reduce subjectivity errors by assuming a monotonic increase or decrease in attributes in a
decision matrix [11,55]. A disadvantage of the rank sum method used in the present study
is the lack of theoretical foundation and the difficulty in justifying the assigned weights,
and therefore sensitivity analysis becomes particularly difficult.

The GIS modelling results for PNPI showed that the lacking or ineffective sewage sys-
tems in human settlements in the study catchment can be considered the main contributing
factor to potential pollution generation. Solid waste generation and inadequate disposal,
soil erosion and surface runoff in sensitive areas (waste disposal sites, septic system failures
and construction sites) were also shown to be important contributing factors. An associ-
ation between high PNPI values and urbanisation has been reported previously [18–20],
with higher PNPI values for intensely populated (human settlements) or cultivated areas in
all major cities, steep slopes and short distance to the river network. In contrast, a study in
Sweden by Wesström and Joel [37] found that urban areas were associated with lower PNPI
values, since all water discharges are properly treated in Sweden, and that higher PNPI
values were related to intense cropping systems such as potatoes and close to mink farms.

In the literature, high PNPI values are generally related to heavy fertilisation in agri-
culture, but fertilisation rates in Bolivian agriculture are usually low and the main fertiliser
used is manure. Due to the cost, additional chemical fertiliser is seldom used except for
crops of economic importance, like some vegetables and greens (onions, tomatoes, carrots,
lettuce, radish among others), potatoes and maize. Thus APPI may be an inadequate
index for use in the study catchment, since most of the pollution potential is from human
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settlements. APPI has been used to identify a relationship between densely populated
areas, high anthropogenic activities and high pollution potential [11,55].

The nitrate and phosphate concentrations (used for validation) within sub-catchments
in the study area increased during the study period (Table 9). This was possibly due to:
(1) sewage water discharge from human settlements which include houses, industries
and other economic activities; (2) runoff from fertilised land, which increased in the
period (see Figures 9 and 10); and (3) soil erosion runoff. Sampling-related events can
also have affected the nitrate and phosphate concentrations, since sample numbers were
limited and the weather can be variable in the dry season, when sampling was carried out.
Validation results revealed a significant relationship (Pearson correlation) between PNPI
and phosphate only in 2017 and only a trend for an increase between PNPI and nitrate
(Table 10). Better stability and higher concentrations of phosphate compared with nitrate in
water samples can explain this correlation, since nitrate can easily be transformed into other
nitrogenous compounds under the influence of temperature (water and environment),
solar radiation and other chemicals present. A similar clear positive relationship was
found in a previous study, where low water quality status was compared against nitrogen
loss potential from NPSP [11]. The validation results could be improved by collecting
samples in different periods of the year, to better represent the effects of hydrological
regime. Munafò et al. [18] proposed validation of PNPI results by comparison against
output from a physical based model. However, the use of physical models can increase the
data requirement (collection, quality evaluation, time and technical skills), hampering use
of PNPI for identification of PSAs using multi-criteria analysis and GIS implementation
and representation in data-scarce regions.

The advantage of identifying PSAs by PNPI lies in the indicators providing a proper
representation of landscape features (land use, runoff and distant to stream network)
at multiple levels (catchment, sub-catchment, micro-catchment). PNPI can be calculated
for data-scarce regions and is a simple, effective and less time- and resource-demanding
approach. Limitations with PNPI are lack of available information on indicators and
uncertainty in observed nitrate and phosphate concentrations used for validation, in this
study. Future studies should examine how landscape features and detailed hydrological,
chemical and geographical processes interact in PSA prediction with scarce data.

The results presented here for the sub-catchment scale provide an overview of the
NSPS situation in the catchment. For management purposes, the results obtained at
micro-catchment scale can be useful for identifying priority intervention areas.

5. Conclusions

A multi-criteria approach including analyses at various scales and GIS-based PNPI
modelling, which combined weighted sum of indicators, was used to identify and rank
priority source areas (hotspot areas) that are more likely to produce pollution within
micro-catchments and sub-catchments in the Rocha River catchment, Bolivia.

Increased area of human settlements in 2017 compared with 1997 (22% and 14%,
respectively) and decreased area of semi-natural land use types resulted in higher PNPI
values in many areas, identifying them as PSAs where recommended management practices
should be improved.

The PNPI results indicated that PSAs in the study catchment are mainly associated
with densely populated human settlements and that agricultural areas play a minor role in
NPSP generation, since crop fertilisation is based predominantly on manure.

The PNPI model can thus be a useful tool for environmental management, policy
decision-making and to inform public opinion. The methodological approach described
may be applicable to other watersheds in Bolivia and elsewhere with similar landscape
characteristics and hydrological features. It may be particularly useful in data-poor regions
in developing countries where NPSP knowledge needs to be improved.
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