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Summary11

1. Inventories of plant populations are fundamental in ecological research and12

monitoring, but such surveys are often prone to �eld assessment errors. Pres-13

ence/absence (P/A) sampling may have advantages over plant cover assess-14

ments for reducing such errors. However, the linking between P/A data and15

plant density depends on model assumptions for plant spatial distributions.16

Previous studies have shown how that plant density can be estimated under17

e.g. Poisson model assumptions on the plant locations. In this study new18

methods are developed and evaluated for linking P/A data with plant density19

assuming that plants occur in clustered spatial patterns.20

2. New theory was derived for estimating plant density under Neyman-Scott type21

cluster models such as the Matérn and Thomas cluster processes. Suggested22

estimators, corresponding con�dence intervals, and a proposed goodness of �t23

test were evaluated in a Monte-Carlo simulation study assuming a Matérn24

cluster process. Further, the estimators were applied to plant data from envi-25

ronmental monitoring in Sweden to demonstrate their empirical application.26

3. The simulation study showed that our methods work well for large enough27

sample sizes. The judgment of what is �large enough� is often di�cult, but28

1Corresponding author. Email address: Magnus.Ekstrom@umu.se (M. Ekström)
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simulations indicate that a sample size is large enough when the sampling dis-29

tributions of the parameter estimators are symmetric or mildly skewed. Boot-30

strap may me used to check whether this is true. The empirical results suggests31

that the derived methodology may be useful for estimating density of plants32

such as Leucanthemum vulgare and Scorzonera humilis.33

4. By developing estimators of plant density from P/A data under realistic model34

assumptions about plants' spatial distributions, P/A sampling will become a35

more useful tool for inventories of plant populations. Our new theory is an36

important step in this direction.37

Key-words: independent cluster process, intensity, Matérn cluster process, plant38

monitoring, point pattern, sample plots, spatial models, Thomas cluster process,39

vegetation survey40

1 | INTRODUCTION41

Inventories of plant communities are known to pose several challenges (Bonham42

2013). Although broad-scale surveys of vegetation patterns may be based on remote43

sensing data (Groom, Mücher, Ihse, & Wrbka, 2006), more detailed information44

about species occurrences, vegetation cover, or plant densities rely on data from �eld-45

based inventories. A common approach is to assess vegetation cover by species or46

species groups on plots through visual inspection (Bråkenhielm & Liu, 1995; Bonham,47

2013). However, this method is prone to surveyor judgment and the variability48

among surveyors in assessing vegetation cover on a plot may be substantial (Gallegos-49

Torell & Glimskär, 2009; Morrison, 2016). Presence/absence (P/A) sampling is50

an alternative where only the presence or absence of a set of species on a plot is51

registered. This sampling method is less prone to surveyor judgment than cover52

assessments (Kercher, Frieswyk, & Zedler, 2003; Ringvall, Petersson, Ståhl, & Lämås,53

2005; Milberg et al., 2008).54

Normal outputs from inventories of plant communities include the abundance55
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of species in terms of plant density, cover, or biomass (Bonham, 2013). In P/A56

sampling, occurrence proportions are obtained, but such proportions are di�cult to57

interpret since they depend on the used plot sizes (Ståhl et al., 2017). To obtain58

more easily interpreted outputs from P/A inventories, results need to re-expressed59

in terms of e.g. plant density. Such outputs need to be based on model assumptions60

regarding the spatial distribution of plants.61

A commonly adopted assumption is that plant locations follow a homogeneous62

Poisson point process (HPPP) model (Bonham, 2013). This model possesses the63

property of complete spatial randomness, meaning that the events of a pattern are64

equally likely to occur anywhere and do not interact with each other. With such a65

model, recalculations from occurrence proportion to plant density is fairly straight-66

forward (Fisher, 1934; Bartlett, 1935; Ståhl et al., 2017). It should be noted that if67

the positions of plants follow a HPPP, they show neither positive spatial dependence68

(clustering) nor negative spatial dependence (regularity). The HPPP assumption is69

therefore seldom satis�ed because plants are typically aggregated into clusters of dif-70

ferent size and distribution across the landscape (Bonham, 2013; Ståhl et al., 2017).71

The closely related binomial point process arises from the HPPP by conditioning on72

the total number of plants in an area of interest. Arrhenius (1921) considers P/A73

data under such a model, and Royle & Nichols (2003) and He & Reed (2006) show74

how recalculations from occurrence proportion to plant density can be made.75

The HPPP implies that the species abundance in a plot follows a Poisson distribu-76

tion, while the binomial point process implies that it follows a binomial distribution.77

Another popular model for plot abundance is the negative binomial distribution,78

which is regarded useful in applications where a clustering alternative is preferred to79

the HPPP (He & Gaston, 2000, 2007; Hwang & He, 2011). However, only two known80

homogeneous point processes give the negative binomial distribution for plot abun-81

dances, and both are extreme cases (Daley & Vere-Jones, 2008). This highlights the82

need for more elaborate and realistic models for linking P/A data with plant density83

in clustered populations.84

Although we recognize the possibility of using inhomogeneous models, where the85
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expected number of plants per area unit is spatially varying, we restrict the discussion86

in this paper to homogeneous models. We refer to, e.g., Baddeley, Rubak, & Turner87

(2016) and the references therein for a discussion on inhomogeneous Poisson process88

models and Gelfand & Shirota (2018) for fusion of P/A data with presence-only data89

using inhomogeneous log-Gaussian Cox processes.90

Our objective was to represent a set of locations of plants in a landscape as91

a point pattern generated by general Neyman-Scott type cluster models, and to92

propose and evaluate a method for estimating the parameters in the assigned point93

process model, using data from P/A sampling. A particular objective was to derive94

an estimator of the intensity of the process (expected number of plants per area unit),95

and evaluate this estimator using both Monte Carlo simulations and empirical data96

from environmental monitoring. The intensity of a point process will henceforth be97

called the plant density, or simply density.98

2 | MATERIAL AND METHODS99

2.1 | Theoretical background100

A clustered pattern can be constructed from a mechanism where �o�spring� points101

are scattered around their respective �parent� points, e.g. young plants cluster102

around parent plants, where the o�springs arise from seeds or clonal growth103

(ramets) from the parent plant. To formalize the above, let X be a �nite point104

process on R2. Conditioned on X, let Yx be a �nite point process centered at105

x ∈ X. If the processes Yx, x ∈ X, are independent of one another given X, then106

Y =
⋃
x∈X Yx is known as an independent cluster process (e.g. Lawson & Denison,107

2002). The data consist of a realization of Z = Y ∩S, where S ⊂ R2 is a compact set.108

109

Assumption P: The (parent) process X is a HPPP with density τ and the number110

of (o�spring) points in Yx is Poisson distributed, with mean λ. The points in Yx111

are independently generated from f(t − x|γ), where f is the density function of a112
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continuous random variable in R2 parameterized by γ.113

114

Under Assumption P, the process Y =
⋃
x∈X Yx is of Neyman-Scott type (Lawson115

& Denison, 2002; Baddeley, Rubak, & Turner, 2016). Its density is τλ. By specifying116

the o�spring probability density f(t−x|γ) in Assumption P, some well-known point117

process models of clustering are obtained:118

• If f(t−x|γ) in Assumption P is a uniform density in a disc of radius γ centered119

around the parent x, then the point process is aMatérn cluster process (Matérn,120

1960, 1986). See Fig. 1.121

• If f(t−x|γ) in Assumption P is an isotropic bivariate normal density centered122

around the parent x, with variance γ in the �x� and �y� directions, then the123

point process is a (modi�ed) Thomas cluster process (Thomas, 1949; Diggle,124

1978).125

Baddeley, Rubak, & Turner (2016) provide additional examples of point processes126

that satisfy Assumption P, such as the Cauchy cluster process and the variance-127

gamma cluster process.128

The parameter vector θ = (τ, λ, γ) is unknown and needs to be estimated from129

observed data. In the current paper we will derive estimators of θ using P/A data130

from sample plots. Let N(B) denote the number of points that fall in B ⊆ S, i.e.,131

N(B) = {z : z ∈ Z ∩ B}. Note, {N(B) > 0} is the event that at least one point is132

present in B, and {N(B) = 0} denotes absence of points in B.133

Let134

H(B|θ) = exp

(
−τ
∫ (

1− exp

(
−λ
∫
B

f(t− x|γ)dt

))
dx

)
, B ⊆ S. (1)135

For deriving maximum likelihood estimators of θ under Assumption P and various136

sample plot designs, the following theorem is of fundamental importance. Among137

other things, the theorem establishes that H(B|θ) is the probability of absence138

of points in B ⊆ S, given that Assumption P holds true. More generally, given139

disjoints sets B1, ..., Bm, the theorem gives a formula for the probability of absence140
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of points in e.g. the �rst few of these sets and presence in the remaining ones. The141

theorem is essential for de�ning the likelihood function, which is used after data142

are available to describe plausibility of a parameter vector θ. Any parameter vector143

that maximizes the likelihood function (or, equivalently, its logarithm) is known as144

a maximum likelihood estimator, and intuitively it is the value of θ that make the145

observed data most probable.146

147

Theorem 1. Let Bi, i ∈ M = {1, ...,m}, be disjoints sets in S, Ms ⊆ M , and148

M c
s = M \Ms. If Assumption P is valid, then149

P{N(Bi) > 0, i ∈Ms, and N(Bi) = 0, i ∈M c
s}150

= H

 ⋃
i∈Mc

s

Bi|θ

−∑
i∈Ms

H

Bi ∪

 ⋃
j∈Mc

s

Bj

 |θ


151

+
∑

i1,i2∈Ms,i1<i2

H

Bi1 ∪Bi2 ∪

 ⋃
j∈Mc

s

Bj

 |θ
− ...+ (−1)msH

(⋃
i∈M

Bi|θ

)
,152

where ms is the number of elements in the set Ms.153

154

The proof of Theorem 1 is given in Appendix S1, Supporting Information. Usage of155

Theorem 1 is illustrated in the next two examples.156

157

Example 1. Consider a concentric plot design, in which the jth innermost circle Cj158

has a radius rj, j = 1, ..., k (Fig. 2). Let B1 = C1 and Bj = Cj \ Cj−1, j = 2, ..., k.159

We assume that the surveyer starts with the innermost circle and move outwards,160

until the �rst plant (point) is observed. Thus, if no plants are present in B1, ..., Bj−1,161

and at least one plant is present in Bj, where j ≤ k, or if no plants are present in162

Ck = ∪kj=1Bj, then the surveyer is done, and moves on to the next set of concentric163

circular plots. Thus, we observe whether the following events are true or false,164

A0 = {absence in Ck} = {N(Ck) = 0},165

A1 = {presence in C1} = {N(C1) > 0},166

Aj = {presence in Bj but not in Cj−1} = {N(Cj−1) = 0 and N(Bj) > 0}.167

6



The corresponding probabilities are obtained from Theorem 1,168

π0 = P{A0} = H(Ck|θ),169

π1 = P{A1} = 1−H(C1|θ),170

πj = P{Aj} = H(Cj−1|θ)−H(Cj|θ), j = 2, ..., k.171

Example 2. In this example we consider a sample plot design used for monitoring172

of biodiversity in Sweden. For a list of plant species, P/A is recorded in subplots173

grouped into sets of nine 0.25 m2 circular plots (Fig. 3). With such a subplot layout,174

Cj, j = 1, ..., 9, we de�ne B0 = C1 ∪ C2 ∪ C3, B1 = C4 ∪ C5, B2 = C6 ∪ C7, and175

B3 = C8∪C9. To reduce complexity we consider events de�ned using the Bi's rather176

than the Cj's. For notational convenience, let Bj:k = ∪ki=jBi. The events that we177

consider are178

A0 = {absence in B0:3},179

A1 = {presence in B0 but not in B1:3},180

A2 = {absence in B0 and presence in exactly one of B1, B2, and B3},181

A3 = {presence in B0 and presence in exactly one of B1, B2, and B3},182

A4 = {absence in B0 and presence in exactly two of B1, B2, and B3},183

A5 = {presence in B0 and presence in exactly two of B1, B2, and B3},184

A6 = {absence in B0 and presence in each of B1, B2, and B3},185

A7 = {presence in each of B0, B1, B2, and B3}.186

The corresponding probabilities, πj = P{Aj}, j = 0, ..., 7, are obtained using Theo-187
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rem 1 and the fact that the process is invariant under rotations and re�ections,188

π0 = P{N(B0:3) = 0} = H(B0:3|θ),189

π1 = P{N(B1:3) = 0 and N(B0) > 0} = H(B1:3|θ)−H(B0:3|θ),190

π2 = 3P{N(B0:2) = 0 and N(B3) > 0} = 3(H(B0:2|θ)−H(B0:3|θ)),191

π3 = 3P{N(B2:3) = 0, N(B0) > 0, and N(B1) > 0}192

= 3(H(B2:3|θ)−H(B0:2|θ)−H(B1:3|θ) +H(B0:3|θ)),193

π4 = 3P{N(B0:1) = 0, N(B2) > 0, and N(B3) > 0}194

= 3(H(B0:1|θ)− 2H(B0:2|θ) +H(B0:3|θ)),195

π5 = 3P{N(B3) = 0, N(B0) > 0, N(B1) > 0, and N(B2) > 0}196

= 3(H(B3|θ)− 2H(B2:3|θ)−H(B0:1|θ) +H(B1:3|θ) + 2H(B0:2|θ)−H(B0:3|θ)),197

π6 = P{N(B0) = 0, N(B1) > 0, N(B2) > 0, and N(B3) > 0}198

= H(B0|θ)− 3H(B1:2|θ) + 3H(B0:2|θ)−H(B0:3|θ),199

π7 = P{N(B0) > 0, N(B1) > 0, N(B2) > 0, and N(B3) > 0} = 1−
∑6

j=0 πj.200

2.2 | Estimation and hypothesis testing201

The basis for our study is to link P/A registrations with plant density through202

Neyman-Scott type cluster models of plant occurrence. More speci�cally, focus will203

be on data collected according to the sample plot designs described in Examples 1204

and 2, but our methodology can also be applied to many other sample plot designs.205

In Example 1, assume that there are n sets of concentric circular plots, Cij,206

i = 1, ..., n, j = 1, ..., k, or, in Example 2, assume that there are n sets of circular207

subplots, Cij, i = 1, ..., n, j = 1, ..., k, where k = 9. Suppose that the Ci• = ∪kj=1Cij,208

i = 1, ..., n, are so far apart that it is not unreasonable to assume that the point209

patterns Zi′ = Y ∩Ci′• and Zi′′ = Y ∩Ci′′• are independent for all i′ 6= i′′. Let Iij be210

the indicator of the event Aij, i = 1, ..., n, j = 0, ...,m, where m = k in Example 1211

and m = 7 in Example 2. Note that πj = πj(θ), j = 0, ...,m, may be regarded as the212

probabilities in the m+1 cells of a multinomial distribution, and that nj =
∑n

i=1 Iij,213

j = 0, ...,m, are the observed frequencies in these cells.214
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Denote the true value of θ by θ0. The objective is to estimate θ0 on the basis of215

the observed frequencies, nj, j = 0, ...,m. Under Assumption P, the log-likelihood216

function for this problem is proportional to217

l(θ) =
m∑
j=0

nj log πj(θ), (2)218

and the maximum likelihood estimator of θ0, denoted θ̂ = (τ̂ , λ̂, γ̂), is de�ned as a219

θ-value in Θ = {θ = (τ, λ, γ) : τ, λ, γ > 0} that maximizes l(θ). Su�cient conditions220

under which the maximum likelihood estimator θ̂ is consistent and asymptotically221

normally distributed are given in Rao (1973, Section 5e.2). It should be noted,222

however, that these conditions may be violated ifH(B|θ) in (1) is not smooth enough223

as a function of γ; see Rao (1973) for details. For example, for asymptotic normality,224

H(B|θ) is not smooth enough if it fails to have �rst-order partial derivatives which225

are continuous at θ0.226

The maximum likelihood estimator of the density of the process is τ̂ λ̂, and for227

constructing a con�dence interval for the density we argue as follows. Assuming that228

the information matrix I(θ) = (irs(θ)), given by229

irs(θ) =
m∑
j=0

1

πj(θ)

∂πj(θ)

∂θr

∂πj(θ)

∂θs
230

where θ1 = τ , θ2 = λ, and θ3 = γ, is non-singular at θ0 = (τ0, λ0, γ0), let i
rs(θ0), r, s =231

1, 2, 3, denote the elements of the inverse to the matrix I(θ0). By the asymptotic232

normality of θ̂, i.e., that233

√
n(θ̂ − θ0)

D−→ N(0, [I(θ0)]
−1),234

and the delta method (e.g. Lehmann, 1999), we have235

√
n
(

log τ̂ + log λ̂− log τ0 − log λ0

)
D−→ N

(
0,
i11(θ0)

τ 20
+
i22(θ0)

λ20
+

2i12(θ0)

τ0λ0

)
,236

and this result together with yet another application of the delta method yield237

√
n
(
τ̂ λ̂− τ0λ0

)
D−→ N

(
0, i11(θ0)λ

2
0 + i22(θ0)τ

2
0 + 2i12(θ0)τ0λ0

)
.238
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Thus, an approximate 95% con�dence interval for the density τ0λ0 of the cluster239

process is given by240

τ̂ λ̂± 1.96

√
i11(θ̂)λ̂2 + i22(θ̂)τ̂ 2 + 2i12(θ̂)τ̂ λ̂

n
. (3)241

Corresponding approximate 95% con�dence intervals for the individual parameters242

are given by243

θ̂r ± 1.96

√
irr(θ̂)

n
, r = 1, 2, 3, (4)244

where, again, θ1 = τ , θ2 = λ, and θ3 = γ.245

The above results assume that Assumption P is valid. For this reason it is of246

interest to assess whether or not our cluster model assumption holds true. For doing247

this, one may use the χ2 goodness of �t statistic for a multinomial distribution (e.g.248

Bishop, Fienberg, & Holland 2007). The statistic is de�ned as249

χ2 = n
m∑
j=0

(pj − π̂j)2

π̂j
(5)250

where pj = nj/n and π̂j = πj(θ̂). Under the null hypothesis that the cluster process251

model is valid, the statistic is asymptotically χ2-distributed with m − 3 degrees of252

freedom (Bishop, Fienberg, & Holland 2007). If the statistic is improbably large253

according to that χ2 distribution, then one rejects the null hypothesis.254

2.3 | Computational issues255

Analytic expressions for maximum likelihood estimators in complex models are usu-256

ally not easily available, and numerical methods are needed for maximizing log-257

likelihood functions. In addition, numerical methods are needed for computing258

the H(B|θ) function in (1), on which the probabilities πj(θ) and the likelihood259

functions are based. For the Thomas process, the inner integral in H(B|θ), i.e.260

Fγ,x(B) =
∫
B
f(t − x|γ)dt, may be computed using an e�cient numerical method261

described in DiDonato & Jarnagin (1961), which is implemented in, for example,262

the pmvnEll function in the package shotGroups (Wollschlaeger, 2017) written263
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for use in R (R Core Team, 2019). If the point process is a Matérn cluster process,264

Fγ,x(B) may be computed analytically (Appendix S2).265

For computing the outer integral in H(B|θ) we used the polyCub.SV function266

in the R package polyCub (Meyer & Held, 2014, Supplement B), which is based267

on the product Gauss cubature as proposed by Sommariva & Vianello (2007). In268

polyCub.SV, the number of cubature points may be modi�ed via the argument269

nGQ. It defaults to 20. Increasing the number of points increases the accuracy of270

the computation of the log-likelihood value but also increases the computation time.271

In R, there are several numerical procedures for maximizing log-likelihood func-272

tions. We used the general-purpose optimization routine constrOptim, which im-273

plements, among others, the Nelder-Mead and the BFGS algorithms, and with which274

one may maximize the log-likelihood subject to the constraints that τ, λ, γ > 0. The275

BFGS algorithm, which is a quasi-Newton method, uses both log-likelihood function276

values and gradients to build up a picture of the three-dimensional surface to be277

maximized, while the Nelder-Mead algorithm uses only values of the log-likelihood278

function. We have tried both algorithms and found that BFGS is somewhat faster279

and therefore preferred for computing estimates.280

2.4 | Case examples281

2.4.1 | A Monte Carlo study282

Since the inner integral of H(B|θ) in (1) may be computed analytically for283

the Matérn cluster process, we considered this particular process in our Monte284

Carlo study. Realisations of the Matérn cluster process were generated with the285

rMatClust algorithm in the spatstat package (Baddeley, Rubak, & Turner 2016)286

and maximum likelihood estimates of θ0 were obtained based on concentric plot de-287

sign data with rj = 0.1, j = 1, ..., k, and k = 10 (see Example 1).288

In total, we studied eight di�erent cases, where the cases refer to various parame-289

ter setups. For each case, we generated 1000 replications of the process, and for each290

such replication we computed the maximum likelihood estimate of θ0 (Appendix S3),291
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performed the χ2 goodness of �t test (5), and computed the con�dence intervals (3)292

and (4). Based on the replicate estimates of θ0, we estimated the median and the293

mean of the estimators of the individual parameters (τ , λ, and γ) and the density τλ294

of the Matérn cluster process, for each case considered. Based on the same replicate295

estimates, we computed actual con�dence levels (ACLs) and median lengths of the296

con�dence intervals, as well as actual signi�cance levels (ASLs) of the χ2 goodness297

of �t test. In this study, the nominal con�dence level and the nominal signi�cance298

level were taken to be 95% and 5%, respectively.299

2.4.2 | P/A data from environmental monitoring300

The National Inventory of Landscapes (NILS) is a nation-wide environmental moni-301

toring programme with 631 permanent sample units (5×5 km2) that form a random302

systematic grid across Sweden (Esseen, Glimskär, Ståhl, & Sundquist 2007). The303

programme started in 2003 and includes �eld inventory (and aerial photo interpre-304

tation) of permanent sample plots in all types of terrestrial environments. Field305

sampling is conducted every �fth year in circular plots of di�erent sizes depending306

on the measured parameters (Ståhl et al., 2011). NILS provides an infrastructure307

for other monitoring and research programmes that need basic landscape data. Data308

for this study were obtained from three monitoring projects associated with NILS.309

These projects use the same method of collecting P/A-data of plants in 9 subplots310

(Fig. 3), whereas the original NILS methodology only includes 3 subplots per plot.311

The �rst part of the data was obtained from a monitoring programme on semi-312

natural grassland, pastures and meadows, where data were collected in randomly313

selected grasslands within NILS sample units that earlier have been identi�ed in314

a national inventory (Jordbruksverket, 2005). The second part was obtained from315

monitoring of terrestrial habitats (MOTH) under the European Habitats Directive316

(Gardfjell, Hagner, Adler, & Forsman, unpubl.), and the third part from regional317

monitoring of grasslands and wetlands (Rygne, 2009). All data were collected dur-318

ing 2009-2013. From the combined data set only plots classi�ed as pastures and319

grasslands were included. To minimize variation in conditions further, the sample320
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was restricted to strata 1-5 (Fig. 4), where most grassland plants have their main321

distribution in Sweden. Only subplots with a tree cover less than 50% were used. Fi-322

nally, only plots with a complete set of P/A data for all nine subplots were included323

for analysis (n = 2109).324

As in Ståhl et al. (2017), the theory assumes that plant occurrences on a subplot325

are registered whenever a predetermined reference point of a plant is located on the326

subplot. However, registrations of presences were made if any part of a plant was327

located on a subplot, and therefore we made a correction by adding a presumed328

average plant radius to each subplot radius in the calculations. The presumed radius329

of a plant was set to 10 cm, except for Scorzonera humilis, where it was set to 12330

cm.331

3 | RESULTS332

3.1 | The Monte Carlo study333

Following the setup of the Monte Carlo study of the concentric plot design for the334

Matérn cluster process described in Section 2.4.1, we studied eight di�erent cases.335

In most cases (Cases 1 to 6), the estimators showed no or very little bias, except for336

the mean cluster size λ and the density τλ of the Matérn cluster process, where the337

estimators tended to have a small upward mean-bias (Table 1). Also, in all these338

cases, the ACLs and ASLs were close or quite close to their respective nominal levels339

(Tables 1 and 2), and, as illustrated in Fig. 5 for Case 6, the estimators tended to340

be approximately normally distributed. The standard errors of the estimates of τ ,341

λ, and γ and the median lengths of the corresponding con�dence intervals increased342

with increasing values of the respective corresponding true parameters (Table 1).343

In the last two cases (Cases 7 and 8), the density τ of the parent process and the344

cluster radius γ were relatively large, and the estimators of γ and τλ showed only a345

small upward mean-bias (Table 1). The estimators of τ and λ were, however, more346

heavily mean-biased (and median-biased). In addition, the ACLs for λ and γ were347
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notably lower than the nominal level. The was noticed also for the ASLs (Table 2).348

In both Cases 7 and 8, the estimators had notably skewed distributions, except for349

the estimator of the density τλ (the histograms in Fig. 6 illustrates this for Case 7).350

In comparison with Cases 1-6, the sample size n in Cases 7 and 8 needed to be larger351

before the asymptotic properties �kicked in.� For these latter two cases, results for352

n = 10, 000 are presented in Tables 3-4 and Fig. 7. The histograms for λ̂ and γ̂353

for Case 7 (Fig. 7) still show some skewness and some of the estimators in Table 3354

still have some small upward mean-biases, but in comparison with the corresponding355

results for n = 2000 (Tables 1-2 and Fig. 6) the results were much improved.356

3.2 | P/A data from environmental monitoring357

In Table 5, the empirical results based on monitoring data are presented for three358

di�erent plant species. The p-value for the goodness of �t test of the Matérn cluster359

process assumption is given for each species. It can be observed that two of the360

species, Leucanthemum vulgare and Scorzonera humilis, passed the goodness of �t361

test. For the chi-square approximation to be valid, a common rule of thumb is that362

(estimated) expected frequencies, nπ̂i, i = 0, ..., 7, should be at least 5. Therefore,363

when we performed the goodness of �t test for L. vulgare and S. humilis, category364

i = 4 was merged with i = 6 and category i = 5 with i = 7, and, for Pimpinella365

saxifraga, category i = 4 was merged with i = 6.366

The Monte Carlo study in the previous subsection suggests that the proposed367

estimation method works well when the sampling distributions of the parameter368

estimators are symmetric or mildly skewed. To check whether this holds true or not369

for the L. vulgare data, we applied the bootstrap (e.g. Davison & Hinkley, 1997).370

That is, bootstrap samples of size n, with replacement, were drawn from the original371

sample of n sets of subplots, and estimates of parameters were computed for each372

bootstrap sample. The resulting histograms are shown in Fig. 8. The �bootstrap373

distributions� for the density of the parent process, the mean cluster size, and the374

density of the Matérn cluster process had only mild skewness, suggesting that the375

estimators τ̂ , λ̂, and τ̂λ are nearly unbiased. The same conclusion was drawn for S.376
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humilis.377

4 | DISCUSSION378

Elzinga, Salzer, & Willoughby (1998) argue that the key advantages of P/A379

sampling are �that no special skills are required (anyone who can recognize the species380

can do the monitoring) and that the monitoring requires very little time.� On the381

other hand, a signi�cant drawback of the method is that it does not generally provide382

information on plant density, although some authors have studied this problem under383

simple point pattern models such as the HPPP model (e.g. Fisher, 1934; Ståhl et384

al., 2017). In this study, we develop new theory for linking P/A data with plant385

density, and extend previous work to Neyman-Scott type cluster models such as the386

Matérn and Thomas cluster processes. For practical purposes, this is of importance,387

since plants typically form clusters of varying scales of patterns across the landscape388

(Bonham, 2013), which can not be modeled using HPPP models.389

In addition to deriving a maximum likelihood estimator of plant density, we390

suggest a corresponding con�dence interval for the plant density. Both the estimator391

and the con�dence interval rely on model assumptions, and may fail when the model392

is incorrect. For this reason we propose a χ2 goodness of �t test for testing if393

the P/A data �ts the assigned cluster process model. A simulation study shows394

that the suggested estimator, con�dence interval, and test work well when using a395

suitable plot design together with a large enough sample size n for various clustered396

populations. Our simulations indicate that a sample size is large enough when the397

sampling distributions of the parameter estimators are symmetric or mildly skewed.398

To check whether this holds true or not in a practical application, bootstrap may be399

used to estimate the sampling distributions (e.g. Davison & Hinkley, 1997).400

Although the proposed approach for estimating plant density may be imple-401

mented for a large range of species, we recognize that this may imply signi�cant402

analytical work. Hence, we believe that a good starting point is to focus on a few403

focal species, such as invasive species or threatened species. For these, the popula-404
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tion size (density) is of particular interest to estimate and follow. We recommend405

using a Matérn cluster model initially, unless the nature of the data clearly suggests406

another choice. The main reason is that its implementation requires less numerical407

integration than for other Neyman-Scott type cluster models.408

The impact of deviations from the model assumptions is an important topic for409

further studies, as well as extensions to inhomogeneous cluster point processes that410

allow the density of the process to be location dependent. The latter may be obtained411

by allowing model parameters to depend on covariate information. Of particular412

interest here are the cleverly constructed inhomogeneous Neyman-Scott processes in413

Waagepetersen (2007), with special cases such as the inhomogeneous Matérn and414

Thomas cluster processes (Baddeley, Rubak, & Turner, 2016). Strati�ed approaches415

may also be used. Here the strata may be those de�ned in the sampling design, or416

post-strata based on land use or land cover categories, or more advanced schemes417

employing several sources of information available wall-to-wall for the study area418

(e.g. Saarela et al., 2015).419

Another important topic for further studies is to explore di�erent P/A sampling420

designs and to �nd designs and plot sizes that will yield estimators of plant density421

with as high precision as possible, given that the design is cost-e�cient, reliable, and422

good enough for practical purposes. For example, a plot design with relatively small423

plot sizes suitable for one species may not be appropriate for another species with424

di�erent density. Both theoretical and empirical studies in this direction are needed.425

A promising candidate for P/A sampling that enables modeling of cluster point426

processes is the concentric plot design discussed in this paper. Another appealing427

possibility is P/A sampling of equally sized quadratic �eld plots, grouped into sets428

of 2× 2 contiguous quadrats (cf. Morrison, Le Brocque, & Clarke, 1995).429
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Fig. 1: A Matérn cluster process with parent density τ = 6, mean cluster size λ = 5, and

cluster radius γ = 0.15. The left panel shows parents (crosses), cluster regions (with radius

γ), and o�springs (small open circles). The right panel shows the o�springs that constitute

the Matérn cluster process in a square �eld S.

r1

r2

r3

r4

Fig. 2: Plot design with concentric circular sample plots with radii r1, ..., r4.
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Fig. 3: Field subplot layout in Example 2. The distance from the centre (the red solid

circle) to the centre of Ci, i = 1, 2, 3, is 3 m. The corresponding distances to Ci, i = 4, 6, 8,

and to Ci, i = 5, 7, 9, are 5 and 7 m, respectively. The area of each Ci is 0.25 m2.

Fig. 4: Map of Sweden showing 10 strata used in NILS. Data from strata 1�5 were selected

for the study.
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Fig. 5: Histograms of estimates: Case 6 with n = 2000.
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Fig. 6: Histograms of estimates: Case 7 with n = 2000.
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Fig. 7: Histograms of estimates: Case 7 with n = 10, 000.
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Fig. 8: Histograms of 1000 bootstrap replicates of estimates for the Leucanthemum vulgare

data.
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Table 1: Medians, means and standard errors (SEs) of estimates, and actual con�dence levels

(ACLs) and median lengths (MedLs) of the associated con�dence intervals. The sample size is

n = 2000.

Parameter True value Median Mean SE ACL (%) MedL

τ 0.50 0.50 0.50 0.04 96.2 0.13

Case 1 λ 3.00 3.01 3.12 0.71 95.8 2.35

γ 0.30 0.30 0.31 0.08 96.2 0.26

τλ 1.50 1.50 1.56 0.32 94.8 0.98

τ 0.50 0.50 0.50 0.02 95.0 0.10

Case 2 λ 8.00 7.98 8.09 1.25 94.8 4.48

γ 0.30 0.30 0.30 0.03 96.8 0.13

τλ 4.00 3.98 4.06 0.63 94.1 2.24

τ 2.00 1.99 2.00 0.16 96.2 0.62

Case 3 λ 3.00 3.05 3.05 0.35 96.5 1.42

γ 0.30 0.30 0.30 0.05 95.5 0.18

τλ 6.00 6.03 6.08 0.58 94.9 2.14

τ 2.00 2.01 2.01 0.15 95.3 0.58

Case 4 λ 8.00 8.04 8.06 0.74 95.8 2.91

γ 0.30 0.30 0.30 0.03 95.3 0.11

τλ 16.00 16.03 16.17 1.43 95.5 5.22

τ 0.50 0.50 0.50 0.07 96.2 0.28

Case 5 λ 3.00 3.04 3.11 0.51 97.2 1.70

γ 0.80 0.80 0.82 0.17 95.2 0.56

τλ 1.50 1.50 1.51 0.10 94.2 0.39

τ 0.50 0.50 0.50 0.06 93.8 0.21

Case 6 λ 8.00 8.04 8.11 0.92 95.1 3.38

γ 0.80 0.80 0.81 0.09 94.4 0.32

τλ 4.00 4.00 4.01 0.23 95.5 0.88

τ 2.00 2.09 2.18 0.98 93.6 3.82

Case 71 λ 3.00 2.89 3.52 2.14 86.5 5.51

γ 0.80 0.78 0.85 0.36 88.5 1.18

τλ 6.00 6.02 6.05 0.29 96.1 1.10

τ 2.00 2.17 2.44 1.43 94.9 4.64

Case 8 λ 8.00 7.36 8.56 4.68 86.2 15.43

γ 0.80 0.76 0.84 0.83 88.3 1.09

τλ 16.00 16.07 16.13 0.67 97.1 2.76
1 The results shown are based on the 999 (out of 1000) replications that converged.
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Table 2: Actual signi�cance levels (ASLs) for the goodness of �t test of cases presented in Table

1. The sample size is n = 2000.

Case ASL (%)

1 5.0

2 5.6

3 5.5

4 6.4

5 5.7

6 5.3

71 3.9

8 2.8
1 The results shown

are based on the

999 (out of 1000)

replications that

converged.
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Table 3: Medians, means and standard errors (SEs) of estimates, and actual con�dence levels

(ACLs) and median lengths (MedLs) of the associated con�dence intervals. The sample size is

n = 10, 000.

Parameter True value Median Mean SE ACL (%) MedL

τ 2.00 2.01 2.02 0.47 93.6 1.78

Case 7 λ 3.00 3.00 3.15 0.80 92.3 2.62

γ 0.80 0.79 0.82 0.16 92.8 0.56

τλ 6.00 6.01 6.01 0.13 94.4 0.50

τ 2.00 2.07 2.10 0.52 94.4 2.08

Case 8 λ 8.00 7.77 8.10 2.03 91.6 7.75

γ 0.80 0.79 0.80 0.13 93.1 0.53

τλ 16.00 16.00 16.02 0.31 95.2 1.21

Table 4: Actual signi�cance levels (ASLs) for the goodness of �t test of cases presented in Table

3. The sample size is n = 10, 000.

Case ASL (%)

7 4.6

8 4.7

Table 5: Estimated parameters of the Matérn cluster process (the estimated density τ̂ of the parent

process (parent plants per m2), estimated mean cluster size λ̂, estimated cluster radius γ̂ (m), and

estimated density τ̂λ of the Matérn cluster process (plants per m2)) and the p-value of the goodness

of �t test.

Species τ̂ λ̂ γ̂ τ̂λ p-value

Leucanthemum vulgare (oxeye daisy) 0.000063 271.8 12.1 0.017 0.055

Pimpinella saxifraga (burnet-saxifrage) 0.000089 648.0 13.6 0.058 0.00013

Scorzonera humilis (viper's-grass) 0.0000054 1843.3 39.1 0.010 0.68
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