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Abstract: Unmanned aerial systems (UAS) carrying commercially sold multispectral sensors equipped
with a sunshine sensor, such as Parrot Sequoia, enable mapping of vegetation at high spatial resolu-
tion with a large degree of flexibility in planning data collection. It is, however, a challenge to perform
radiometric correction of the images to create reflectance maps (orthomosaics with surface reflectance)
and to compute vegetation indices with sufficient accuracy to enable comparisons between data
collected at different times and locations. Studies have compared different radiometric correction
methods applied to the Sequoia camera, but there is no consensus about a standard method that
provides consistent results for all spectral bands and for different flight conditions. In this study, we
perform experiments to assess the accuracy of the Parrot Sequoia camera and sunshine sensor to
get an indication if the quality of the data collected is sufficient to create accurate reflectance maps.
In addition, we study if there is an influence of the atmosphere on the images and suggest a workflow
to collect and process images to create a reflectance map. The main findings are that the sensitivity
of the camera is influenced by camera temperature and that the atmosphere influences the images.
Hence, we suggest letting the camera warm up before image collection and capturing images of
reflectance calibration panels at an elevation close to the maximum flying height to compensate for
influence from the atmosphere. The results also show that there is a strong influence of the orientation
of the sunshine sensor. This introduces noise and limits the use of the raw sunshine sensor data to
compensate for differences in light conditions. To handle this noise, we fit smoothing functions to
the sunshine sensor data before we perform irradiance normalization of the images. The developed
workflow is evaluated against data from a handheld spectroradiometer, giving the highest correlation
(R2 = 0.99) for the normalized difference vegetation index (NDVI). For the individual wavelength
bands, R2 was 0.80–0.97 for the red-edge, near-infrared, and red bands.

Keywords: unmanned aerial systems; multispectral camera; radiometric correction

1. Introduction

Unmanned aerial systems (UASs) are used extensively for environmental monitor-
ing, and there has been a sharp increase in the number of studies since 2010 (e.g., [1,2]),
with the largest number of publications in the field of agriculture [1]. Zarco-Tejada [3]
initially demonstrated the potential to derive biophysical parameters from data collected
with sensors carried by UASs, and UAS data have been used extensively for precision
agriculture (e.g., [4,5]). UASs are also commonly used in forestry [1,6] and for more general
environmental monitoring [2]. Major advantages of using UASs for data collection are the
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possibility to frequently obtain data with high spatial resolution at relatively low cost, and
the flexibility to collect data with short notice and with optimal timing for the phenomena
also studied under cloudy conditions (e.g., [7,8]).

The use of UASs for deriving vegetation variables related to plant health and produc-
tivity has been stimulated by commercially sold, lightweight multispectral cameras, and
software such as Agisoft Metashape (Agisoft LLC, St. Petersburg, Russia) and Pix4Dmapper
(Pix4D SA, Lucerne, Switzerland) simplifies the creation of three-dimensional (3D) models
and orthomosaics from image data with structure-from-motion techniques [9]. The prod-
ucts created for vegetation monitoring are typically orthomosaics with surface reflectance
or vegetation indices, such as the normalized difference vegetation index (NDVI). To enable
comparisons between reflectance and vegetation indices derived from image data collected at
different times, e.g., for crop growth estimates in precision agriculture or phenological studies
or for comparisons between data collected with different sensors, it is crucial that the data are
radiometrically consistent and that obtained surface reflectance estimates are reliable.

Surface reflectance is not directly measured by the UAS cameras. When an image is
captured, the image sensor in the camera records the radiant energy (light) received by
each pixel as a digital number (DN). To convert the DN to surface reflectance, a radiometric
correction must be performed by (1) applying sensor related corrections to obtain the
radiance received by the camera from the DN, and (2) converting the radiance received by
the camera to surface reflectance [7,10,11]. Sensor-related corrections include correction for
vignetting effects, which result in less light reaching the edges of the sensor [12]. They also
include calibrating for different exposure settings (exposure time, aperture size), which
decide the amount of light entering into the camera, and for the sensitivity of the image
sensor, which influences the relationship between the radiant energy received by the sensor
and the recorded DN [10]. Conversion of sensor corrected DNs to surface reflectance is
applied to compensate for external factors, such as the intensity of the solar irradiance and
atmospheric conditions. If images are captured in sunny conditions, there is also a need to
apply corrections for varying illumination and viewing angles, as well as the anisotropic
reflectance properties of the ground cover (e.g., [7,10,11]). Sensor-related corrections are
sensor-specific, as described further in Section 2. Conversion of sensor corrected DNs
to surface reflectance to compensate for influence of the atmosphere on the images, e.g.,
with atmospheric modeling or the empirical line method, and corrections for varying light
conditions and viewing angles are more general methods.

A common method to convert DNs to surface reflectance in remotely sensed data
is the empirical line method [13]. The method assumes that there is a linear relationship
between the DNs of all pixels in an image and surface reflectance, and usually one or more
reflectance calibration panels with known reflectance are used to estimate this relation-
ship. The method has been used extensively for UAS data collected with hyperspectral
cameras (e.g., [14–16]), red/green/blue (RGB) cameras modified to color infrared (CIR)
cameras (e.g., [17–19]), and multispectral cameras (e.g., [20–25]). The empirical line method
compensates for atmospheric effects, but UAS data usually consist of a large number of
images collected during a flight in a time interval of typically 10–30 min with potentially
varying light conditions. Hence, it is also important to adjust for differences in illumination
conditions between images.

In order to overcome the problem with illumination variations, Honkavara et al. [26]
developed a method to model relative differences in reflectance between images on the basis
of a relative radiometric block adjustment following Chandelier and Martinoty [27]. The
radiometric block adjustment method is based on radiometric tie points that are identified
in overlapping images, and they are used to model and adjust for the relativedifferences
between overlapping images to create a more homogeneous orthomosaic. The method
further enables absolute radiometric correction with the empirical line method to obtain
surface reflectance.

Another option to compensate for varying light conditions is to measure solar irradi-
ance during the flight and normalize the individual images to a common level of irradiance
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before processing them to create an orthomosaic. Hakala et al. [28] and Honkavara et al. [29]
measured incoming solar radiation with irradiance sensors placed both onboard a UAS and
on the ground. The studies showed that the radiometric block adjustment method resulted
in the largest homogeneity in the created orthomosaics, but the orthomosaic created with
the normalized individual images resulted in higher absolute radiometric quality, indicat-
ing that there was a drift in the block-adjusted orthomosaic, and that there is a tradeoff
between achieving homogeneity and absolute reflectance accuracy. Hence, the radiometric
block adjustment was further developed to also include irradiance normalization [30].
The method has been applied over forests with the aim of detecting bark beetle-infested
trees [31] and classifying individual trees [32]. However, even though the method created
more uniform orthomosaics, the results were not consistent due to, e.g., inaccuracy in the
irradiance sensor data, cloud shadows, and the large height differences in forests.

Irradiance normalization can also be applied to commercially sold multispectral cameras
that are equipped with a sunshine sensor, e.g., Parrot Sequoia (Parrot Drone SAS, Paris,
France). In addition, Parrot provides instructions of how to perform sensor specific correction
for vignetting [33] and how to calibrate for differences in exposure settings to convert the DN
of the images to radiance using a unit (homogeneous to W·s−1·m−2) common for all Parrot
Sequoia cameras [34]. In several studies, radiometric correction of data collected with the
Parrot Sequoia camera and sunshine sensor has been applied, e.g., to study post-fire recover
of forests [35], for precision agriculture applications [36], and for siltation monitoring [37],
albeit without explicitly studying the radiometric quality of the data.

The performance of radiometric correction methods applied to Parrot Sequoia data
has been assessed in several studies. Franzini et al. [38] used sunshine sensor data to
compensate for differences in light conditions and a single reflectance calibration panel to
convert the adjusted DN to reflectance. Despite this, the results showed an obvious spatial
pattern with large reflectance differences near the edges of overlapping orthomosaics.
Poncet et al. [39] applied the empirical line method to individual images before processing,
as well as to the final orthomosaic, both with and without using sunshine sensor data. None
of the methods resulted in the highest accuracy for all bands, but the results were generally
more accurate when the empirical line method was applied to the orthomosaic rather than
to individual images. Tu et al. [25] applied the empirical line method to orthomosaics that
were processed in different ways: (1) without compensation for illumination differences, (2)
with a radiometric block adjustment method, and (3) with individual images normalized
for differences in irradiance. In addition, a correction method where the individual images
were directly converted to reflectance by applying exposure calibration, irradiance normal-
ization, and a conversion factor was tested. However, none of the radiometric corrections
methods performed consistently better, and a strong directional effect on the sunshine
sensor data limited the use of the data for irradiance normalization. Stow et al. [11] used
field spectral data to evaluate surface reflectance in a radiometrically corrected orthomosaic
processed in Pix4D (Ag Multispectral template) and a single reflectance calibration panel.
The results showed that reflectance in the red wavelength band was most accurate and re-
flectance in the green band was overestimated, while the red-edge and near-infrared bands
were underestimated. For some flights, the authors also found a weak increasing trend
in reflectance with increasing flying height, and images captured during ascent generally
resulted in higher reflectance values compared to images captured during descent.

These inconsistent radiometric correction results could have many reasons. The em-
pirical line method is based on the assumption of a linear relationship between sensor
corrected DN and surface reflectance, which might not always be valid (e.g., [10,11,25]). In
addition, uncertainties in reflectance of the calibration panels used to derive the equation
of the empirical line method will influence the accuracy of the method. Most studies were
conducted in sunny conditions, which normally induce a strong influence of solar and
viewing angles on the obtained images that are difficult to model with high accuracy. Other
factors that influence the result of a radiometric correction are the quality and the sensitivity
of the equipment used to collect the data. To assess the usefulness for quantitative remote
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sensing studies, it is, thus, important to further investigate the degree to which the data
from the Parrot Sequoia camera and sunshine sensor enable accurate radiometric correction
of the generated images.

In this study, we add insights to address previous inconsistent results by conducting
experiments to assess the accuracy of the multispectral camera Parrot Sequoia and its
sunshine sensor. We investigate the performance of the sunshine sensor, and we study
how the camera sensitivity is influenced by sensor temperature and how the atmosphere
influences the individual images. Furthermore, we describe a workflow including both
how to collect data and how to process the images and irradiance data from the sunshine
sensor to create an orthomosaic where the pixel values are converted to surface reflectance,
herein called a reflectance map. Lastly, to verify the methodology, the reflectance map
and NDVI computed from it are evaluated against spectral data collected with a handheld
spectroradiometer.

2. Materials and Methods

The first part of this section describes the Parrot Sequoia camera and the sunshine
sensor. Then, we describe the experiments performed, followed by a description of the
workflow applied to perform the radiometric correction and how the images are processed
to create a reflectance map. Lastly, we present a case study where we apply the method to
UAS data and evaluate reflectance and NDVI against field spectral measurements.

2.1. Parrot Sequoia Camera

The Parrot Sequoia camera has four separate multispectral sensors with global shutters,
capturing images in the green, red, red-edge, and near-infrared wavelength bands (Table 1).

Table 1. Parrot Sequoia wavelength bands.

Band Green Red Red Edge Near Infrared

Wavelengths (nm) 480–520 640–680 730–740 770–810

The horizontal field of view is 61.9◦ and the vertical field of view is 48.5◦. The image
size is 1280 × 960 pixels, and the images are saved in RAW format as tiff-files. The camera
includes a separate sunshine sensor with a hemispherical field of view that measures solar
irradiance in the same spectral bands as the four image sensors. The sunshine sensor
includes a global positioning system (GPS) receiver and IMU (inertial measurement unit)
to measure the position and orientation of the sensor when capturing images. The camera
also has an RGB sensor; however, in this study, the RGB images are not included.

The camera has a fixed aperture, while exposure time and ISO value (controls how
sensitive the sensor is to light) can be set either manually by the user or automatically by
the camera. In this study, the camera was set to automatic exposure since it is difficult to
find a suitable exposure setting common for all images captured during a flight.

2.2. Experiments and Data Collection

To get a better understanding of the performance of the Sequoia camera and sunshine
sensor, we performed four experiments: (1, 2) to study the performance of the sunshine
sensor. In both experiments the camera and sunshine sensor were mounted on a tripod
and only the sunshine sensor data was analyzed; (3) to study the influence of camera
temperature on the sensor corrected DN. In the experiment, the camera and sunshine
sensor were mounted on a tripod and both image and sunshine sensor data were used; (4)
to study the influence of atmosphere on the images. In the experiment, the camera and
sunshine sensor were carried by a UAS. Three flights were conducted for the experiment,
and both image and sunshine sensor data were used.
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All experiments with the camera and sunshine sensor mounted on a tripod were
performed on a rooftop platform with no taller buildings in the vicinity to minimize the
disturbance of buildings and vegetation on the hemispherical view of the sunshine sensor.

All flights were performed at the Lönnstorp research station (55.668516◦ north (N),
13.110039◦ east (E)) in south Sweden [40]. The flights were performed over an experimental
area managed by the SITES Agroecological Field Experiment (SAFE) project. The area is
divided into four different cropping systems: reference system (conventional crop rotation
including autumn-sown oilseed rape, wheat, sugar beet, and spring barley); organic system
(organically certified crop rotation including spring barley–lupine intercrop, winter rye
sown with grass–legume ley, beetroot, phacelia, faba bean–spring wheat intercrop, winter
oilseed rape, and winter wheat sown with grass–legume ley); agroecological intensification
system (includes, in addition to the organic system, e.g., phacelia and oil radish and lines of
perennial shrubs and apple trees); perennial system (wheat grass grown with and without
legume). In the perennial system, a permanent spectral tower with two spectral sensors
collects NDVI data continuously and a sensor on a mobile tower collects NDVI data over
one of the plots in the reference system.

2.2.1. Studying the Performance of the Sunshine Sensor

Two experiments were conducted to study the accuracy of the sunshine sensor. In the first
experiment, the sunshine sensor data were compared to a factory-calibrated hemispherical
upward-looking sensor (Skye instruments ltd., SK-1860, Powys, U.K) with two wavelength
bands that overlap with those of the Sequoia camera: 647–667 nm (640–680 nm for Sequoia
red band), and 733–743 nm (730–740 nm for Sequoia red-edge band). Both sensors were fixed
in horizontal positions with the Sequoia sunshine sensor triggering with an interval of 1.5 s
and the Skye sensor with an interval of 2 s. Data from the sensors were resampled to 1 s
interval and synced in time to enable comparison. The experiment lasted 95 min and was
performed in variable light conditions. A regression was performed to find how well the
sunshine sensor data correlated with the Skye sensor data.

In the second experiment, we studied if cosine correction of the Sequoia sunshine
sensor data results in accurate irradiance data. The experiment was conducted since the
sunshine sensor is not stabilized in a horizontal position during a flight and, hence, needs
to be cosine-corrected. During the experiment, the sunshine sensor was compared to a
photosynthetic active radiation (PAR) sensor (Vegetal ecology laboratory Model JYP 1000,
Orsay, France). The PAR sensor was fixed in a horizontal position (looking up) during the
entire experiment, while the Sequoia sunshine sensor was mounted on a stand where it
could be rotated around one axis and with a protractor to measure the angle of rotation
(Figure 1a). A bubble level was used to initially mount the sunshine sensor horizontally,
and the stand was placed so that the sunshine sensor was tilted in a north–south direction.
The camera was set to trigger with an interval of 2 s, and the orientation of the sunshine
sensor was changed by 5◦ with 5 min intervals until a maximum tilt of 30◦ was reached.
The rotation was first toward the south (decreasing incidence angle toward the sun), and
then the sunshine sensor was returned to a horizontal orientation and rotated in 5◦ intervals
toward the north (increasing incidence angle away from the sun). The sunshine sensor
data were cosine-corrected and compared to the PAR sensor data. The experiment was
performed around both the roll and the pitch axes and in sunny conditions.

2.2.2. Studying the Influence of Camera Temperature on Sensor Corrected DN

To study the influence of camera temperature, the camera and the sunshine sensor
were mounted on a bar fixed to a tripod with the camera facing a 5% Spectralon reflectance
calibration panel (Labsphere, North Sutton, USA; Figure 1b). The 5% reflectance calibration
panel was chosen to avoid saturation, and the camera was mounted without casting any
shadow on the panel and with the reflectance calibration panel covering the entire image.
Images were captured with 2 s intervals for 45 min in stable sunny conditions, and a PAR
sensor was used to measure irradiance. Exposure calibration and vignetting correction



Remote Sens. 2021, 13, 577 6 of 26

(Section 2.3.2) were applied to the images, and mean pixel values for all images were
calculated and plotted against irradiance from the PAR sensor to analyze if the relationship
was linear for all camera temperatures. The camera temperature was derived from the
image metadata.
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Figure 1. Set-up for the experiments with the Sequoia camera and sunshine sensor mounted on a
tripod. In (a), the sunshine sensor was mounted on a stand where the orientation was changed in 5◦

intervals around one axis and compared to a fixed photosynthetic active radiation (PAR) sensor. In
(b), the camera was facing down over a 5% reflectance calibration panel to study the influence of
sensor temperature on the sensitivity of the camera.

2.2.3. Studying the Influence of Atmosphere on the Images

Three flights (Table 2) were performed in 2019 with the Sequoia camera mounted on a
3DR Solo multi-rotor UAS (3DR Robotics, California, USA). The flights were routine flights
within Swedish Infrastructure for Ecosystem Science (SITES) Spectral with three Spectralon
reflectance calibration panels (nominal reflectance: 5%, 20%, 50%) with a size of 25 × 25 cm
used to derive the equation of the empirical line method.

Table 2. List of flights used to study the influence of atmosphere.

Date Time (CEST *) Flying Height Location Weather Conditions

20 May 2019 10:40 a.m. 60 m Lönnstorp research station Cloudy
20 June 2019 10:20 a.m. 60 m Lönnstorp research station Sunny/thin clouds

13 August 2019 10:00 a.m. 60 m Lönnstorp research station Cloudy

* Central European Summer Time.

The influence of the atmosphere was studied by capturing images of the reflectance
calibration panels at different flying heights (Figure 2). The images were captured when
ascending and descending vertically over the reflectance calibration panels to reduce the
influence of viewing angles. Exposure calibration, vignetting correction, and irradiance
normalization (Step 1 in Figure 3 and Section 2.3.2) were applied to the images. Mean pixel
values of the reflectance calibration panels were derived with ENVI (Harris Geospatial So-
lutions Inc., Boulder, USA) by drawing polygons (regions of interest; ROIs) and computing
statistics for the ROIs. Only pixels entirely inside the reflectance calibration panels were
included since pixels at the edges of the panels are influenced by the surroundings.

2.3. Image Processing
2.3.1. Overview of the Radiometric Correction Method

The workflow to perform radiometric correction is illustrated in Figure 3. First, the indi-
vidual images were corrected with sensor specific corrections: exposure calibration (adjusting
for different exposure settings) and vignetting correction as described in Section 2.3.2. Then
irradiance normalization was applied to normalize the images for variability in irradiance
(Section 2.3.3). The corrected images were then processed with structure from motion tech-
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niques to create an orthomosaic with all saturated pixels masked out. Lastly, the empirical
line method was applied to the orthomosaic to create a reflectance map, i.e., an orthomosaic
where the pixel values are converted to surface reflectance (Section 2.3.4). The equation for the
empirical line method was derived from reflectance calibration panels in corrected individual
images. For the experiments in Section 2.2, we only applied the individual image corrections.
For the evaluation (Section 2.4), the entire workflow was applied to create a reflectance map.
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corrected individual images.
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2.3.2. Sensor-Related Correction of Individual Images

Exposure calibration and vignetting correction were performed on the individual
images according to the methods described by Parrot [33,34] and with information derived
from the image metadata (EXIF/XMP). All corrections were performed with in-house
developed Python scripts.

Exposure calibration was performed to adjust for different exposure settings (exposure
time and ISO value) in the individual images according to Equation (1) provided by
Parrot [34].

L = f 2 DN − B
Aεγ + C

, (1)

where L is the at-sensor radiance in an arbitrary unit (homogeneous to W·s−1·m−2) common
to all Sequoia cameras, f is the aperture f-number (f = 2.2 for Sequoia), DN is the digital
number of a pixel, ε is the exposure time, γ is the ISO value, and A, B, C are calibration
coefficients provided in the image metadata.

Vignetting is the radial decrease in pixel values which results in darker areas near the
edges of images [12]. In this study, the vignetting correction was performed by dividing
the exposure-calibrated images with the vignetting polynomial, where the polynomial was
derived from the EXIF/XMP metadata of the Sequoia images. The vignetting polynomial
is estimated with the flat field method [33]; a large number of images are captured over a
surface with Lambertian reflectance properties to find the correction factor for each pixel,
and a polynomial is fit to the pixel-wise correction factors (e.g., [19,41]).

2.3.3. Irradiance Normalization of Individual Images

Irradiance normalization was performed on the individual images after exposure
calibration and vignetting correction. However, the raw irradiance data from the sunshine
sensor were noisy and sensitive to sensor orientation (yaw, pitch, roll) since they did not
have a cosine corrector. Hence, polynomials or splines were fitted to smooth the raw
sunshine sensor data, and the value of the polynomial or spline, from here on called
smoothed irradiance, was used to normalize the images instead of the raw data. Figure 4
shows raw sunshine sensor data and fitted splines in cloudy conditions, i.e., with mainly
diffuse light (a, c), and raw sunshine sensor data and a fitted polynomial in mainly sunny
conditions with thin clouds, i.e., with mainly direct light (b), where the variability correlates
with flight direction. The polynomial and splines were manually fitted to the data, and
the best fit was selected on the basis of a visual inspection. The image-specific irradiance
normalization factor (Cin,i; Equation (2)) was then calculated for each image.

Cin,i(λ) =
I(λ)
Ii(λ)

, (2)

where Cin,i is the irradiance normalization factor for image i, I(λ) is the mean smoothed
irradiance for wavelength band λ for all images in a flight, and Ii(λ) is smoothed irradiance
from the sunshine sensor for image i. The irradiance normalization was then performed
by dividing all pixels in an image with the image specific normalization factor (Cin,i). To
minimize the normalization factor and avoid large modification of images, all images were
normalized against the mean smoothed irradiance for the entire flight.

2.3.4. Creating Reflectance Maps with the Empirical Line Method

A reflectance map was created from the images collected during a flight on 22 Septem-
ber 2020 (Section 2.4) to evaluate the workflow in Figure 3. The individual images were
corrected as described in Sections 2.3.2 and 2.3.3, and then processed in Agisoft Metashape
ver. 1.6.5 to create an orthomosaic.
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A common problem of the Sequoia camera is the occurrence of saturated pixels [25,39].
In this study, saturated pixels were found across several images, especially in the green
and red wavelength bands. Usually, the saturated pixels were over bright areas, such as
gravel or rocks, which are not interesting for vegetation monitoring. To avoid the influence
of saturated pixels on the orthomosaics, a mask was created for each image to mask out
the saturated pixels when creating the orthomosaic. The masks were created with the in-
house Python script that performed the radiometric correction of the individual images,
in a format that enabled direct import into Agisoft Metashape. No radiometric correction
was performed in Agisoft Metashape except for the blending mode being applied when
creating the orthomosaic. The blending mode separates the data into frequency domains;
along the seamlines, all frequencies are blended, while only lower frequencies are blended
with increasing distance from seamlines [42]. The orthomosaic was exported from Agisoft
Metashape with a spatial resolution of 5.5 cm, and the empirical line method [11] was applied
to convert the DN of the orthomosaic to surface reflectance according to Equation (3).

R = a × DNcorr − b, (3)

where R is the reflectance, DNcorr is the radiometrically corrected DN value after applying
exposure calibration, vignetting correction, and irradiance normalization, a is the slope of
the regression line, and b is the intercept (Figure 5).

The equation for the empirical line method was derived from individual, radiometri-
cally corrected images. Since the results indicate that there is an influence of the atmosphere
on the images (Section 3.3), mean pixel values over reflectance calibration panels were
derived from an image recorded as close to the maximum flying height as possible. It is,
however, important that the pixels used to estimate the mean values are entirely inside the
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reflectance calibration panels and do not include mixed pixels near the edges of the panels
that are influenced by the surroundings. Hence, it is a tradeoff between obtaining a more
robust mean from a larger number of pixels and deriving the mean values from images
near the flying height (see Figure 2 for a comparison between the Spectralon reflectance
calibration panels at flying heights of 1 m and 55 m during the flight on 20 May 2019). For
the flight on 22 September 2020, images captured at 28 m flying height were used to derive
mean pixel values. For higher heights, saturated and mixed pixels limited the number of
available pixels to derive mean values.
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In all flights, the pixels of the 50% reflectance calibration panels were saturated in the
green and red wavelength bands. Hence, the equation for the empirical line was derived
from two panels only for these bands. For the red-edge and near-infrared bands, there
was no saturation, and all three reflectance calibration panels could be used to derive the
equations. Since reflectance for vegetation is around 5–10% in the green and red wavelength
bands, the range is well covered by the 5% and the 20% reflectance panels, and the equation
for the empirical line can be estimated without the 50% reflectance panel.

2.4. Evaluation with Field Spectral Data

To evaluate the accuracy of the reflectance map, a comparison was done between
reflectance and NDVI obtained with the suggested radiometric correction method and
reflectance and NDVI from spectral field measurements. The evaluation was performed
with data from an experimental flight on 22 September 2020 at 2:30 p.m. The flight was
conducted in thin cloud cover at a flying height of 60 m, and two sets of Spectralon
reflectance panels were used. The spectral field reflectance measurements were performed
with a handheld Apogee PS-100 spectroradiometer (Apogee Instruments, Inc., Logan,
Utah, United States) calibrated against an Apogee AS-004 97% white reflectance panel
(Apogee Instruments, Inc., Logan, UT, United States). Field reflectance was measured
over nine spectral field plots (1 × 1 m) with short green grass (Figure 6a), green sugar
beets (Figure 6b), and dry wheatgrass (Kernza; Figure 6c), to cover a range of NDVI values
(Table 3). The spectral field plots were marked with plastic ribbons to identify them in
the UAS images. A series of spectral measurements were conducted over the field plots
(2–7 per plot) during the period 10:45 a.m.–1:45 p.m. For each measurement, three spectral
measurements were collected per plot, where each measurement was averaged over five
spectral samples. The reflectance was measured at a resolution of 1 nm in the spectral
range of 339–1177 nm, and an integration time of 20–25 ms depending on light conditions.
The spectroradiometer was held approximately 0.5 m above each plot when collecting the
measurements. Calibration against the white reflectance standard was made every sixth
reading. Measurements obtained outside the range of 400–1000 nm were removed due to a
low signal-to-noise ratio.
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Table 3. Overview of the spectral field plots.

Vegetation Cover Number of Plots

Green grass (Figure 6a) 2
Green sugar beets (Figure 6b) 5

Dry wheatgrass (Figure 6c) 2

2.4.1. Parrot Sequoia Data

Mean reflectance for the four wavelength bands of the Sequoia camera was derived
for the nine spectral field plots with ENVI. In addition, NDVI was calculated from the
reflectance map according to Equation (4).

NDVI =
RNIR − Rred
RNIR + Rred

, (4)

where Rred and RNIR are the reflectance for the Sequoia red and near-infrared wavelength
bands, respectively. Lastly, mean NDVI values for the nine spectral field plots were obtained.

2.4.2. Spectral Field Data

Since the spectral response functions for the wavelength bands of the Sequoia camera
are not known, reflectance for the four bands was calculated from the field spectral data
as the mean reflectance for the spectral ranges of the Sequoia wavelength bands (Table 1),
i.e., assuming a uniform response within the wavelength bands. In addition, NDVI was
calculated from the field spectral data according to Equation (4). Lastly, regression analyses
were performed to find the correlations and biases between the Sequoia-derived data and
the field spectral data, where the field spectral data were considered more accurate and,
hence, used as evaluation data.

3. Results
3.1. Performance of the Sunshine Sensor

The Sequoia sunshine sensor data from the first experiment (Section 2.2.1) showed
a similar response to variability in irradiance as the factory-calibrated Skye sensor in
both the red (Figure 7) and the red-edge wavelength bands. The actual values could not
be directly compared since the Sequoia sunshine sensor data were in an arbitrary unit
common to all Sequoia cameras, but the linear correlation between the two sensors was
strong with R2 = 0.998 for both the red (Figure 7b) and the red-edge wavelength bands.
The strong linear correlations indicate that data from the Sequoia sunshine sensor are
sufficiently accurate to perform irradiance normalization, and, since a ratio is used to
perform irradiance normalization, the unit is not important.
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The results from the experiment when the sunshine sensor was tilted around one axis
show that the cosine-corrected sunshine sensor data agreed well with irradiance from the
horizontally mounted PAR sensor for lower tilt angles. Figure 8 shows the cosine-corrected
irradiance from the sunshine sensor in the green wavelength band (brown line) and PAR from
the upward-looking PAR sensor (beige line) when the sunshine sensor was tilted around the
roll axis in 5 min intervals. Since irradiance from the sunshine sensor was in an arbitrary
unit, the PAR sensor data were scaled to irradiance from the sunshine sensor when it was
horizontally oriented at the initial stage of the experiment. When the sunshine sensor was
tilted toward the south (decreasing incidence angle; black line), the cosine-corrected irradiance
from the sunshine sensor stayed close to PAR until the roll (gray line) was 20◦ (Figure 8a).
When the sunshine sensor was rotated toward the north (increasing incidence angle; black
line), the cosine-corrected irradiance from the sunshine sensor stayed close to PAR until the
roll (gray line) reached 25◦ (Figure 8b). It should be noted that, for larger tilt angles, the
hemispherical view of the tilted sunshine sensor would include sections of the roof on which
it was placed during the experiment and surrounding buildings, which would influence
the measurements. Hence, the data are not be comparable to the PAR sensor which was
horizontally mounted during the experiment. Furthermore, during the flight, the roll and
pitch angles of the sunshine sensor stayed well below 20◦.

However, even though the experiments indicated that the sunshine sensor is accurate,
it was noted that the IMU in the sensor does not give accurate orientation (roll, pitch, and
yaw) during flights. Figure 9 shows the roll, pitch, and yaw angles for the four flight tracks
during the flight on 22 September 2020. The log file from the 3DR Solo showed that the roll,
pitch, and yaw for the UAS were stable within 2–3◦ along a flight track (see Supplementary
Materials), while the sunshine sensor IMU recorded differences of 5–10◦ for roll and pitch
and 30–40◦ for yaw. The noisy orientation data make it difficult in practice to perform an
accurate cosine correction of the sunshine sensor data.

3.2. Influence of Camera Temperature on Sensor Corrected DN

There was a strong linear relationship between irradiance (PAR) and sensor corrected
DN values of the reflectance calibration panel for all bands once the camera warmed
up. However, for lower camera temperatures, the relationship was strongly nonlinear
(Figure 10). The results show that the sensitivity of the camera is influenced by temperature
and that it is important to let the camera warm up before starting to collect data, especially
if an image of a reflectance calibration panel is captured early during the flight and used to
derive the equation for the empirical line method.
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Figure 10. Relationship between exposure-calibrated and vignetting-corrected digital number (DN) values and irradiance
(PAR). For lower camera temperatures, the relationship was strongly nonlinear; however, once the camera warmed up, the
relationship became linear.

The analysis did not reveal any consistent number of images required for the camera
to warm up before the relationship became linear. When the camera was mounted on a
tripod, the temperature became stable for all wavelength bands after around 200 images
(100 s) when the camera reached a temperature of just less than 50 ◦C (see Figure 11 for
the green and red bands; the other bands behaved in a similar fashion but are omitted in
the figure for the sake of legibility). The linear relationship between PAR and reflectance
calibration panel mean values (Figure 10) was reached at around 47 ◦C for the near-infrared
and red-edge bands after just over 200 images (Table 4). For the green band, the relationship
became linear at just 33 ◦C and 17 images (Table 4), but there was a shift in the relationship
at a temperature around 47.5 ◦C after around 390 images for the green band (Figure 10)
that was not present in the other wavelength bands.
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Figure 11. The camera temperature stabilized at just less than 50 ◦C after around 200 images for the
green and red wavelength bands when it was mounted on a tripod (Figure 1b). The red-edge and
near-infrared bands behaved in a similar fashion but are omitted in the figure for the sake of legibility.
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Table 4. Sequoia camera temperature when the relationship between PAR and reflectance calibra-
tion panel mean values became linear (Figure 10) and the number of images captured when the
temperature was reached.

Band Green Red Red Edge Near Infrared

Temperature (◦C) 33 * 44 47 47
Number of images 17 * 142 210 212

* For the green band, there was a shift in the linear relationship (Figure 10) after around 390 images and a
temperature of 47.5 ◦C.

However, during a flight, the camera temperature does not always stabilize due to, e.g.,
cooling effects from the wind. Figure 12 shows the Sequoia sensor temperature for the green
band during the three flights at Lönnstorp in 2019 (Table 2). The temperature increased
rapidly when the camera started capturing images; however, for the flight on 20 June, in
sunny conditions with only thin clouds, the temperature stabilized faster than for the two
flights in cloudy conditions, which might have had an influence on the images captured.
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Figure 12. Sequoia sensor temperature for the green band during the flights in 2019 (Table 2).

3.3. Influence of Atmosphere

The results from the three flights in Lönnstorp in 2019 indicate that the atmosphere
has an influence on the images. Figures 13–15 show mean DN values over the reflectance
calibration panels at different flying heights for the green, red, and near-infrared wave-
length bands during the flight on 20 May 2019 in cloudy conditions. In the figures, images
captured when descending over the reflectance calibration panels were used, since camera
temperature was stable in the later part of the flight (panel b in the figures). Irradiance was
also stable during the descent (see panel c in the figures for smoothed sunshine sensor data),
and images with the reflectance calibration panels in the central parts of the images were
selected to reduce the influence of factors other than flying height. For the red and green
wavelength bands, the pixels over the 50% reflectance calibration panel were saturated
in all images. For the green and red wavelength bands, some images were also saturated
over the 20% reflectance panels, and, for some flights, all images over the 20% reflectance
calibration panel were saturated in the green wavelength band during descent. There were
generally more saturated pixels during descent when the camera was warmer.

The radiometrically corrected pixel values for the 5% reflectance calibration panel
increased slightly with flying height for the green wavelength band. For the near-infrared
band, the pixel values were higher for higher flying heights with a shift to higher values at
around 15 m height. The red band appeared to be stable over the different flying heights
for the 5% panel. For the 20% and the 50% reflectance calibration panels, on the other hand,
the pixel values decreased with flying height for all wavelength bands. The results were
similar for the other two flights in 2019 (see Supplementary Materials).
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Figure 13. Mean pixel values for the green band over the 5% (a1) and the 20% (a2) reflectance
calibration panels during the flight on 20 May 2019. The low number of observations for the 20%
panel was due to saturation in some images. Images were captured while descending over the panels
with stable camera temperature (b) and irradiance (c).
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Figure 14. Mean pixel values for the red band over the 5% (a1) and the 20% (a2) reflectance calibration
panels during the flight on 20 May 2019. The low number of observations for the 20% panel was due
to saturation in some images. Images were captured while descending over the panels with stable
camera temperature (b) and irradiance (c).
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Figure 15. Mean pixel values for the near infrared band over the 5% (a1), the 20% (a2), and the 50% (a3) reflectance
calibration panels during the flight on 20 May 2019. Images were captured while descending over the panels with stable
camera temperature (b) and irradiance (c).

The numbers of pixels used to derive mean pixel values and standard deviation in the
near-infrared band for the flight on 20 May 2019 are presented in Table 5. The magnitude of
the standard deviation was largest for the 5% reflectance calibration panel, indicating that
there was more noise in the panels with lower reflectance. The other wavelength bands
showed the same pattern. Since there is a direct relationship between flying height and
pixel size, the number of pixels used to derive the statistics decrease with increasing flying
height. However, since the pixels used to derive the mean values must be entirely inside
the reflectance calibration panels, the number of pixels was not the same for all panels at
the same flying height.

Table 5. Mean pixel values and standard deviation for the reflectance calibration panels at different
Figure 15. “Nbr pixels” denotes the number of pixels used to derive mean and standard deviation for
the different flying heights.

Near Infrared Wavelength Band

Flying 5% Reflectance 20% Reflectance 50% Reflectance

Height Mean SD Nbr Mean SD Nbr Mean SD Nbr
(m) (DN) (DN) pixels (DN) (DN) pixels (DN) (DN) pixels

55 6041 571 11 12,680 609 9 24,880 1314 12
33 6320 821 27 13,149 490 28 26,351 802 28
24 6659 266 28 13,793 487 46 27,845 636 46
15 6269 530 67 14,052 466 74 28,353 596 101
8 4403 314 233 14,145 524 273 29,049 683 257
3 4204 307 1501 13,938 496 1660 28,976 655 1551
1 3717 245 15,023 14,037 410 13,288 Saturated

3.4. Evaluation against Field Spectral Data

The Parrot Sequoia images from the experimental flight in 2020 were radiometrically
corrected, and a reflectance map was created according to the workflow in Section 2.3
(Figure 3). Figure 16 shows the central part of the reflectance map as a color infrared (CIR)
map with enlargements over spectral field sample areas for green sugarbeet (a), green grass
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(b), and dry wheatgrass (c). The spectral field plots are marked with black squares, with
only two of the five plots covered in the sugarbeet field included in the enlargement.
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Figure 16. Color infrared reflectance map over the central part of the flight over Lönnstorp research
station in south Sweden on 22 September 2020. The spectral field plots are marked with black squares
with enlargements over two spectral field plots for green sugarbeet (a), green grass (b), and dry
wheatgrass (c).

The temperature of the Sequoia camera was stable during the flight, ranging from
53–55◦C for the images included in the reflectance map (Figure 17). Reflectance panel mean
values were obtained from image #131 at a temperature of 53 ◦C.
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Figure 17. Temperature of the Sequoia camera during the flight on 22 September 2020. Images
captured before takeoff are not included. The camera reached a temperature of 54 ◦C before the first
image included in the reflectance map was captured.

The four spectral bands in the reflectance map were evaluated against field spectral
data collected over the nine spectral field plots. Figure 18 and Table 6 show the correlation
between reflectance from the Sequoia camera and the field spectral data. Reflectance from
the Sequoia camera was slightly lower than reflectance from the field spectral measurement
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for all four wavelength bands. Correlation was highest for the red wavelength band (R2

= 0.97) followed by the near-infrared (R2 = 0.84) and the red-edge (R2 = 0.80) bands. The
green band had the lowest correlation (R2 = 0.39), but the range of reflectance values for
the field sampling areas was narrow for the green band (7.7–11.4% from field spectral
data) compared to the other wavelength bands, highlighting that the uncertainty of the
measurements has a stronger impact on the results.
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Table 6. Equation and R2 for the regression between reflectance from the Sequoia camera and the
field spectral measurements, where y is the field spectral data and x is Sequoia reflectance. NDVI,
normalized difference vegetation index.

Band Regression Equation R2

Green y = 0.755x + 3.401 0.39
Red y = 1.330x − 0.386 0.97

Red edge y = 1.274x + 1.064 0.80
Near infrared y = 1.085x + 3.852 0.84

NDVI y = 1.085x − 0.075 0.992

The high correlation for the red and near-infrared bands, with both bands slightly
underestimating reflectance compared to the field spectral data, resulted in accurate NDVI
values. For the red wavelength band, with a negative intercept and a slope of 1.33 (Table 6,
Figure 18), the Sequoia-derived reflectance agreed best with the field spectral data for lower
reflectance values. This implies that the accuracy is highest for healthy vegetation. For the
near-infrared wavelength band, with an intercept of 3.85 and a slope of 1.09, there was a
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more stable bias with lower reflectance values for the Sequoia data for the entire range of
reflectance values. This resulted in the highest accuracy of NDVI for healthy vegetation,
i.e., with high NDVI values. This is shown in Figure 19, where the correlation between
NDVI from the Sequoia camera and the field spectral measurement gave R2 = 0.99, with a
slightly overestimated NDVI from the Sequoia camera for lower NDVI values.
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4. Discussion

This study presented a workflow to perform radiometric correction of images collected
with the Parrot Sequoia camera (Figure 3). The workflow is similar to that suggested by
Parrot [33,34,43], and to earlier studies where different radiometric calibration methods for
the Sequoia camera were compared [11,24,38,39]. However, in this study, we performed
experiments that gave valuable information about the performance of the Sequoia camera
and sunshine sensor that might explain the inconsistencies in earlier studies. The main
findings related to image collection were that the sensitivity of the camera is influenced
by camera temperature and that there is an influence of the atmosphere on the images.
The main difference related to image processing compared to earlier studies is the way we
handled noise in the raw sunshine sensor data.

The temperature dependency implies that it is important to let the camera warm
up before starting to capture images that will be used for processing. This is especially
important if reflectance calibration images are captured before the flight. It is, however,
difficult to state how long the camera needs to warm up, and there will be a tradeoff
between flying time and warming up the camera if the Sequoia is connected to the UAS
battery. We suggest letting the camera warm up for at least 1 min before starting the UAS
and taking off; however, the precise time will depend on ambient temperature and wind.

The results indicated that there was an influence of the atmosphere and that corrected
DN values decrease with flying height for the 20% and 50% reflectance calibration panels.
This could be due to the increasing water absorption with increasing atmospheric depth,
but the variability in the results makes it hard to draw any conclusions. For the 5%
reflectance calibration panel, the results showed the opposite trend with increasing pixel
values with increasing flying height, especially for the near-infrared band, where the largest
increase in pixels values occurred at lower flying heights. For the green and red wavelength
bands, the influence of flying height seemed to be low for the 5% reflectance calibration
panel. The different trends for darker and brighter reflectance calibration panels are hard
to explain. It should, however, be noted that it is not only the depth of the atmosphere
that is influenced by flying height. The spatial resolution of the pixels increases with flying
height, and larger areas of the ground around the reflectance panels will be included in
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the images. The spectral properties, e.g., darker versus brighter ground cover, of the areas
surrounding the reflectance panels might also influence the pixel values over the panels.
Stow et al. [11] also studied the influence of flying height with a Parrot Sequoia camera and
found a weak increasing trend with increasing flying height for some flights, but the results
varied between flights, and not all flights showed this effect. The studied reflectance values
were in the range 4–8%, which agrees with the results of our study for the 5% reflectance
calibration panel. The authors also found a larger impact in the red-edge and near-infrared
bands compared to green and red. Guo et al. [23] studied the atmospheric effect on
images captured by the Mini MCA 6 multispectral camera by estimating the empirical
line equation for individual images captured at different flying heights and comparing
the intercept of the x-axis. The authors found an increasing trend with height but the
influence on reflectance was low (1.5% at 100 m). There are also studies where atmospheric
modeling was applied to estimate and correct for the influence of the atmosphere on images
collected with UASs [44,45]. However, during the relatively short flying time of a UAS, the
atmosphere is rather stable; hence, if images of reflectance calibration panels are captured
at elevations close to flying height, the empirical line method can be applied to correct for
the atmospheric influence.

To ensure that the influence of the atmosphere is similar on the images used to derive
the equation for the empirical line method and the images used to create the orthomo-
saic, we suggest ascending and descending over the reflectance calibration panels at the
beginning and just after the mission. This will enable capturing images of the reflectance
calibration panels close to the flying height of the actual mission. It will also produce a large
number of images of reflectance panels, which increase the chance of avoiding saturated
pixels, as well as balance the tradeoff between having images of reflectance calibration
panels captured at higher flying heights and the number of pure pixels over the panels.
Another option to increase the number of pure pixels when estimating the equation for the
empirical line method at higher flying heights is to use larger reflectance calibration panels.
In this study, we used 25 × 25 cm panels, which make it difficult to get enough pure pixels
at flying heights over 60 m with the Sequoia camera. Larger reflectance calibration panels,
such as the 1 × 1 m panels used by [31,32], would substantially increase the number of
pure pixels and enable estimates of mean reflectance at higher flying heights.

We also suggest using a larger number of reflectance calibration panels with reflectance
lower than 20% to have more reflectance values to derive the equation for the empirical
line method. In this study, we used reflectance calibration panels with 5%, 20%, and 50%
nominal reflectance; however, for the green and red wavelength bands, there were in some
cases saturated pixels in both the 20% and the 50% reflectance panels. Even though there
were images with at least both 5% and 20% available, there were many images at higher
flying heights with saturation in the 20% reflectance panel. With more panels with lower
reflectance, there would be a higher chance of getting images with at least two reflectance
calibration panels without saturation at higher flying height. In addition, a larger number
of reflectance calibration panels would give an indication if the relationship between the
corrected DN values of the images and surface reflectance is linear. However, larger and
more reflectance calibration panels would mean additional equipment to bring to the field,
and high-quality reflectance calibration panels, such as Spectralon used in this study, come
with a high cost. Furthermore, it is crucial to handle reflectance calibration panels with care
and maintain them to avoid damage and surface degradation. Assman et al. [10] found
reductions in reflectance of 4–10% in reflectance calibration panels during a 3 month period
in a harsh environment (Arctic tundra).

The problem with saturated pixels indicates that the camera cannot adequately handle
large contrast in the scenes captured in an image. Usually, the saturated pixels are over
bright areas, such as reflectance calibration panels with high reflectance, gravel, or rocks,
which cover only a small fraction of an image where the ground cover is generally dark.
For vegetation monitoring, rock and gravel are less interesting, and we consider the pixels
without saturation reliable in images with saturation. Even though the 20% reflectance
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calibration panel was saturated in the green and red wavelength bands in several images,
vegetation generally had a reflectance of 5–10%, which is well below 20% and should,
hence, not be influenced by the saturation.

The results show that the sunshine sensor is accurate; however, since the sensor does
not have a cosine corrector, the data are influenced by sensor orientation, which introduces
noise into the data. Hence, the raw sunshine sensor data need to be smoothed before
irradiance normalization is performed. In this study, noise in the sunshine sensor data
was handled by fitting functions to the raw data. A disadvantage with the method is that
there is no objective method to find the best fit of the function, and some trial and error is
needed to find a satisfactory result. Another option would be to measure irradiance with a
ground-based sensor during the flight [28,29]. This would give more accurate irradiance
data than if the sunshine sensor is mounted on the UAS, but with the disadvantage that
more equipment would be required to bring to the field, and the set-up for a flight would
be more complicated.

Mosaic blending mode was used in this study when creating the orthomosaic in
Agisoft Metashape. Berra et al. [19] suggested using disabled blending mode when creating
orthomosaics to avoid any modification of pixel values. With blending mode disabled, a
pixel in the orthomosaic gets the value of the original image that is closest to the surface
normal of the pixel in the orthomosaic [42]. However, for the experimental flight in 2020,
there were images with saturated pixels in the near-infrared band over the sugarbeet parcel.
When the saturated pixels are masked out, the pixel values in the orthomosaic are derived
from UAS images further from the surface normal of the orthomosaic, which can result
in larger differences in pixels values between neighboring pixels if blending is disabled.
Hence, mosaic blending mode was used to reduce the influence of the gaps caused by
saturated pixels that were masked out. The reason for the saturation in some images was
that the parcel with green sugarbeet had much higher reflectance in the near-infrared band
compared to the surroundings with no or little vegetation; hence, the camera could not
fully handle the large contrasts. In areas with more homogeneous vegetation, it might
be an option to disable blending mode since saturation does notusually appear in the
near-infrared band.

In sunny conditions, there is a strong influence of viewing and illumination angles
on the individual images (e.g., [7,11,25]) with the main influence in the hotspot region
where illumination and viewing angles coincide [46]. No corrections for these bidirectional
reflectance distribution function (BRDF) effects were performed in this study. Studies
that modeled the BRDF with high accuracy were conducted over more homogeneous
agricultural fields with single crops (e.g., [32,47–49]). Over such homogeneous fields with
similar spectral properties, it is comparatively easy to find a large number of observations
with different viewing and illumination angles in the images without considering the
ground cover. In more complex landscapes, with higher variability in spectral properties
between different land-cover types, it is harder to model the BRDF. Tu et al. [25] performed
a BRDF correction of Sequoia images over avocado and banana plantations; however, for
the complex shapes of the tree canopies, the BRDF model did not perform well, which
was also found by Näsi et al. [31] in hyperspectral data over forests. The experimental
fields in Lönnstorp, where data were collected for this study, are relatively small (generally
25 × 50 m parcels) and with different crop types in various growth stages mixed with non-
vegetated areas. This heterogeneity makes it very difficult to model the BRDF. Furthermore,
the main focus was to fly in cloudy conditions to avoid strong BRDF effects. However, it is
important to be aware of the BRDF effects when flying in sunny conditions.

Earlier studies showed that it is difficult to find a single method that gives the best
result when performing radiometric correction of Parrot Sequoia images. Poncet et al. [39]
compared different methods to perform radiometric correction of Parrot Sequoia images
and found that no method resulted in the lowest accuracy for all bands; however, they
suggested performing the empirical line method on the processed orthomosaic rather than
on the raw images. Tu et al. [25] conducted a similar study over avocado and banana
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plantations and found that none of the radiometric correction methods tested performed
consistently better in all flights performed. Stow et al. [11] found generally higher re-
flectance values in images captured during ascent compared to images captured during
descent; this difference might be due to differences in sensor sensitivity since the camera
is usually warmer in the later part of a flight. This study provided some approaches to
compensate for some of the uncertainties by considering the influence of camera tem-
perature and atmosphere on the individual images, as well as reducing the influence of
noise in the sunshine sensor data. Our results also showed that the accuracy of NDVI
is higher than the accuracy of reflectance of the individual bands. This is expected since
one advantage with NDVI and other normalized vegetation indices is that they are more
robust against illumination differences [50]. Franzini et al. [38] and Stow et al. [11] also
found that deviations were larger for Sequoia-derived reflectance than NDVI, and that
NDVI seemed to behave better than other tested vegetation indices [38]. Hence, we suggest
using normalized vegetation indices rather than reflectance when performing quantitative
analyses using imagery collected from UASs with consumer-type multispectral cameras.

5. Conclusions

In this study, we conducted experiments that give valuable information about the
performance of the Parrot Sequoia camera and associated sunshine sensor. The results
showed that the camera must become sufficiently warm before the sensitivity of the sensor
becomes stable. Hence, it is important to let the camera warm up before capturing images
of reflectance calibration panels and starting to collect data.

The results also indicated that the atmosphere influences the images captured from
a UAS. Hence, we suggest ascending and descending over reflectance calibration panels
at the beginning and just after the mission to capture images over the panels near the
maximum flying height. This will give images of the reflectance calibration panels with
the same atmospheric depth as the images captured during the actual mission. It will also
give a large number of images with reflectance calibration panels, which will decrease
the risk of having saturation over panels when estimating the equation for the empirical
line correction. In this study, we used 25 × 25 cm reflectance calibration panels with 5%,
20%, and 50% nominal reflectance. We suggest using larger panels to get more pure pixels
over the panels at higher flying heights. We also suggest using more panels with different
reflectance lower than 20% to avoid the risk of saturation and to get a more robust estimate
of the equation for the empirical line method.

The results showed that the sunshine sensor performs well. However, since the
sunshine sensor does not have a cosine corrector, it is sensitive to orientation and the
motions of the UAS, which results in noisy data. To handle the noise in the sunshine sensor
data, we fit smoothing functions to the raw data and used the smoothed data to perform
irradiance normalization.

With the workflow suggested in this study, we achieved an R2 of 0.99 when evaluating
the Sequoia-derived NDVI with NDVI from field spectral measurements. For the individual
wavelength bands, R2 was 0.80–0.97 for the red-edge, near-infrared, and red bands but low
(0.39) for the green band. Hence, the study showed that NDVI can be derived with high
accuracy with the Parrot Sequoia camera, and we suggest using normalized vegetation
indices rather than reflectance when performing quantitative analyses using imagery
collected from UASs with consumer-type multispectral cameras.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/4/577/s1, Figure S1: Mean pixel values for the green band over the 5% (a) reflectance
calibration panels during the flight on June 20, 2019. Images were captured while descending over
the panels with stable camera temperature (b) and irradiance (c).
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