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Abstract

1. Presence-absence sampling is an important method for monitoring state and change of both
individual plant species and communities. With this method only the presence or absence of the
target species is recorded on plots and thus the method is straightforward to apply and less prone
to surveyor judgement compared to other vegetation monitoring methods. However, in the basic
setting all plots must be equally large or otherwise it is unclear how data should be analyzed. In
this study we propose and evaluate five different methods for estimating plant density based on
presence-absence registrations from surveys with variable plot sizes.

2. Using artificial plant population data as well as empirical data from the Swedish National Forest
Inventory we evaluated the performance of the proposed methods. The main analysis was
conducted through sampling simulation in the artificial populations, whereby bias and variance
of density estimators for the different methods were quantified and compared.

3. Both for state and change estimation of plant density, we found that the best method to handle
variable plot size was to perform generalized least squares regression, using plot size as an
independent variable. Methods where plots smaller than a certain threshold were excluded or
their registrations recalculated were, however, almost as good. Using all registrations as if they
were obtained from plots with the nominal plot size resulted in substantial bias.

4. Our findings are important for plant population studies in a wide range of environmental
monitoring programmes. In these programmes plots are typically randomly laid out and may be
located across boundaries between different land use or land cover classes, resulting in subplots
of variable size. Such splitting of plots is common when large plots are used, e.g. with the 100 m?
plots used in the Swedish National Forest Inventory. Our methods overcome problems to estimate
plant density from presence-absence data observed in plots that vary in size.

Keywords: vegetation survey, divided plots, quadrats, plant monitoring, Poisson model, point pattern,
plant density, intensity



Introduction

Vegetation surveys are becoming increasingly important due to society’s increasing interest in ecosystem
services linked to different vegetation types (Lindenmayer and Likens 2010; Yapp et al. 2010). For
example, several large-scale forest and landscape inventories have included detailed vegetation
assessment components in their protocols (e.g. Corona et al. 2011, Stahl et al. 2011). However, contrary
to monitoring trees and forests, monitoring non-tree vegetation offers substantial methodological
challenges (Elzinga et al. 1998; Godinez-Alvarez et al. 2009). One common method is based on assessing
the cover of individual species or species groups on plots through ocular inspection. In several studies,
this method has been shown to be susceptible to substantial surveyor-induced bias (e.g. Kercher et al.
2003; Morrison 2016). Line- and grid point intercept methods (Godinez-Alvarez et al. 2009) involve
detailed species recordings at randomly selected points. Such methods are less prone to surveyor
judgement, but typically require large sample sizes and are thus costly to conduct.

Presence-absence sampling is another routinely employed method for surveying individual plants or
vegetation communities (e.g. Bonham 2013). Compared to the other methods, it is straightforward to
apply since it requires only registrations of presences or absences of species on plots. This method is often
less prone to surveyor judgement compared to cover assessment (e.g. Kercher et al. 2003; Ringvall et al.
2005), although with large plots the variability between surveyors may still be substantial (Milberg et al.
2008). A drawback is that state and change of plant occurrence frequencies are difficult to interpret due
to their dependence on plot size and species occurrence patterns. Thus, several studies suggest that
frequency should be recalculated to plant density (Royle and Nichols 2003; He and Reed 2006; Hwang and
He 2011; Stahl et al. 2017). Such recalculation depends on model assumptions about the species
occurrence patterns. A straightforward and commonly adopted assumption is the Poisson model (e.g.,
Bonham 2013), which stipulates entirely random locations of individuals. However, many species tend to
occur in clustered patterns and thus other spatial processes have been explored as well (e.g. Hwang and
He 2011).

To use presence-absence sampling effectively, the plot size need to be fixed or otherwise the probabilities
of plant occurrence will vary between plots and the results will depend on the size distribution of the
plots, unless variability in plot size is considered in the computations. However, to our knowledge, no
theory seems to exist for handling variable plot sizes in connection with presence-absence sampling. A
common ad-hoc approach is to set a size threshold below which all plots are excluded from the analysis
(e.g. Odell and Stahl 1998).

Due to its simplicity, the presence-absence survey method is applied in several monitoring programmes
(e.g. Tomppo et al. 2010). However, in many monitoring programmes (e.g. Fridman et al. 2014) the
random distribution of plots implies that the plot sizes may vary. The reason is that plots are sometimes
divided into subplots by land use or land cover boundaries (Fig. 1), or that parts of plots cannot be
occupied by plants, e.g. due to disturbances, rocks or boulders.



Figure 1. An illustration of how land use and land cover boundaries may incur variable plot sizes in
presence-absence sampling when plots are allocated randomly across a study landscape (in this case in a
randomly located square cluster system). The plots with yellow parts are divided between different land
use or land cover categories, and each part must be surveyed separately when results by land cover type
or land use category are required.

The objective of this study was to propose and evaluate five different methods for analyzing sample plot
data with variable plot sizes from surveys based on presence-absence sampling, when the goal is to
estimate state and change in plant density. The methods are (i) using data without modifications (our
baseline method), (ii) removing all plots smaller than a certain threshold size from the analysis, (iii) re-
computing presence-absence registrations on plots smaller than the nominal size by adding a modelled
presence probability; i.e. an “absence plot” may become a “presence plot”, (iv) allocating each plot to a
specific size class followed by separate computations for each size class and then merging the results, and
(v) using regression analysis to predict the probability of species occurrence on a plot, including plot size
as a predictor variable and plant density as a parameter to be estimated.

Throughout the article we use the term density for the average number of plants per area unit rather than
the synonym intensity, which is commonly used in spatial statistics.

Materials and Methods
Plant population data

Two different datasets were utilized in the study. The first set was obtained through simulation of
occurrences of a hypothetical plant species in artificial landscapes, assuming different plant densities and
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spatial patterns. In these landscapes, sample surveys were simulated and the performance of the different
methods for handling variable plot size evaluated. The second dataset consisted of empirical observations
from the Swedish National Forest Inventory (NFI).

Artificial plant population data
Three cases of artificial plant population data were simulated, each with subcases:

- Case I: Plant occurrences within the study landscape followed a homogeneous Poisson process,
i.e. the plants were located entirely at random in the landscape. Three subcases were distin-
guished by different plant densities: (a) 0.005, (b) 0.01, and (c) 0.02 plants m™. According to Stahl
et al. (2017), the optimum plot size to use for assessing plant density at a true plant density of
0.016 plants m?2 is 100 m?2 Thus, we chose plant densities in this order of magnitude for the
analyses. Case | is our baseline case where the plant densities are the same across the entire
artificial landscapes.

- Case lI: Plant occurrences within the landscape followed the Poisson model, but with different
densities in different strata. Four different strata were assumed to be present in the landscape,
each with the same area proportion, i.e. 25%. The stratum-level plant densities were 0.005, 0.008,
0.011, and 0.014 plants m2. Two subcases were distinguished: (a) stratum identifiers were
available and the differences between strata could be accounted for, and (b) stratum identifiers
were not available. Thus, Case IIb resembles Case Illa with regard to average plant density, but in
IIb the density varies across the landscape in a way that cannot be utilized in the analysis. Case Il
was introduced to mimic more realistic plant populations, compared to the baseline.

- Case lll: This case is similar to Case Il (incl. the subcases), but plant densities close to boundaries
were different compared to the interior densities. The plant densities were doubled within a 10
m wide zone on both sides along all stand boundaries. This implies that the average plant densities
were higher in Case /Il compared to Case /I. Case lll was introduced for assessing the sensitivity of
the proposed methods to more complicated situations, with dependencies between plot size and
plant density. Other similar cases could have been analyzed as well, but our ambition was not to
analyze all possible cases. Our focus was to generically address more complicated population
structures, compared to Case / and Case /l.

Each simulated artificial landscape consisted of 500 square forest stands. For Case Il and Case Il each
stand was assigned to a specific stratum.

We used landscapes with three different stand sizes to study how the different methods’ ability to handle
variable plot size would be affected by the proportion of divided plots, and thus the degree of size
variability among the plots. The intuition is that small stands imply that a large proportion of the landscape
area will be located close to boundaries and thus a large proportion of the plots will be divided, since all
plots extending across stand boundaries were divided and only the larger subplots were retained in the
analysis. The stand areas studied were (i) 0.15 ha resulting in about 50% of the plots being divided



(denoted small stands), (ii) 0.7 ha resulting in about 25% of the plots being divided (denoted intermediate
stands), and (iii) 4.8 ha resulting in about 10% divided plots (denoted /arge stands). Thus, the total area of
the study landscape varied depending on stand size, but this does not affect the results of the analysis.
For Case lll, the 10 m boundary zones with higher plant densities corresponded to about 77%, 42% and
17%, respectively, of the total landscape area for the three stand size types.

As an illustration, Fig. 2 shows a part of a simulated landscape (Case lll with large stands) with plant
locations marked as circles.

Figure 2. An example of a part of an artificial landscape with different plant densities in different stands
(depending on what stratum a stand belongs to). The example shows Case Il with large stands. Individual
plants are displayed as circles.

Thus, a large number of artificial landscapes with different stand sizes and plant occurrence patterns
(according to the three cases) were constructed as a basis for subsequent sampling simulations to assess
the performance of the different methods for handling variable plot size. The details of the sampling
simulations are described separately, further down.



Empirical plant population data

The Swedish NFI uses 0.25 m? and 100 m? circular plots for presence-absence registrations of forest floor
vegetation (Fridman et al. 2014). In this study, the 100 m? plots were used, since they are often divided
between land-use categories or forest types, and for practical reasons presence-absence registrations are
only conducted on one part of divided plots (the larger subplot). Moreover, due to disturbances or
occurrence of substrates on which the target species cannot grow, such as rocks and boulders, the
potential growing space of a species on a plot may be smaller than the nominal plot size; the extent of
such areas is recorded on the plots. Forest floor vegetation is assessed every 10 years on permanent plots
in the NFI (Fridman et al. 2014). The NFI data were used mainly for illustrating differences in estimates
when the five methods for handling variable plot sizes were applied on real data. In this case, we could
not compare the results with a true value, as in the case of artificial data.

Data from the NFI were retrieved for the years 2011 to 2015 from two large regions within Sweden
(regions 2 and 4 according to the NFI; Fig. 3) for the forest age class 20-60 years. Data for two species
were included: Trientalis europaea (L.) and Melampyrum pratense (L.). A summary of the NFI data is
provided in Table 1, displaying the number of plots in different size categories. It can be noted that 12%
and 21% of the plots were divided in region 2 and 4, respectively, i.e. for these plots the plot size was
smaller than the nominal 100 m?,

Swedish
NFI Regions

82

Figure 3. A map of Sweden and the locations of the National Forest Inventory regions 2 and 4, which were

selected for the study.



Table 1. Number of sample plots in different size classes in the two study regions

Size class (m2) Region 2 Region 4
0-19 13 10
20-39 16 37
40-59 23 90
60-79 69 134
80-99 78 201
100 1409 1762
Total 1608 2234

Evaluating methods for handling variable plot size

In standard application of presence-absence sampling the plot size needs to be fixed or otherwise the
results will depend on the specific mix of plot sizes, which complicates the interpretation of results (cf.
the modifiable areal unit problem, e.g. Jelinski and Wu (1996), in geography). In making use of frequency
data, the state and change of frequencies are typically reported (for a given nominal plot size) or the
frequencies are recomputed to plant density. To compute density from frequency, assuming that the plant
locations follow a Poisson model, we note that the probability, p, that at least one plant will occur on a
plot with size a is (e.g. Stahl et al. 2017)

p=1—e"% (1)

where A is the plant density. For a sample survey using n plots, p can be estimated asp = n™! Y,
where [; is an indicator variable that takes the value 1 if the species is present on plot i and 0 otherwise.
Rearranging (1), we can estimate plant density from the proportion of plots with plant occurrences as (e.g.
Stahl et al. 2017)

In(1-p)
a

&0

= (2)
From (2) it is clear that the plot size must be fixed or otherwise it is unclear how the estimation of plant
density should be conducted.

In this study we propose and evaluate five different methods for handling variable plot size in surveys with
presence-absence registrations. The methods are:

(i) Use the presence-absence data without correction and apply the nominal plot size in all
computations, even if the actual average plot area is smaller due to, e.g., some of the plot
being divided. This is our baseline approach in which no attempt is made to adjust for the
effect of variable plot size. This method is denoted BASELINE.



(ii) A size threshold is implemented and all plots with a smaller size are discarded from the
analysis, i.e. some plots (smaller than the nominal size) are removed from the dataset when
this method is applied. Two different size thresholds were implemented in the study: (a) 90%
and (b) 60% of the nominal plot size. This method is denoted THRESHOLD; the notation
THRESHOLDOO is used for the size threshold 90% and the notation THRESHOLD60 for the
threshold 60%.

(iii) Plots with presences are included without correction regardless of plot size while a
recalculation is made for plots with absences, if they are smaller than the nominal size, so
that a plot may shift to being registered as a plot with presences. The intuition is that a plant
of the target species might have occurred on the plot, if the plot would have had the full
nominal size. The recalculation is based on the probability that at least one plant would occur
on the missing plot area (i.e. the nominal area minus the actual area) under a Poisson model
assumption, estimated using plots with the nominal size only. A random number is selected
for determining whether or not the registration for a plot should change from absence to
presence. This method is denoted RECALCULATION.

(iv) The plots are allocated to different size classes, for which separate analyses are made. Thus a
plant density estimate is obtained from each size category of plots and these estimates are
then combined through assigning to each estimate a weight inversely proportional to the vari-
ance of the corresponding estimator. Our plot size categories had 25% intervals, i.e. the plot
size categories were 100%, 75-99%, 50-74%, and 25-49% of the nominal plot size; no plots
were smaller than 25% of the nominal plot size. This method is denoted CLASSWISE.

(v) Regression analysis was applied, using a model specification where plot size is included as a
predictor variable and plant density is a parameter that is estimated. This method is denoted
REGRESSION.

In the following more details about the different methods are provided. While the methods BASELINE and
THRESHOLD should be straightforward to understand from the previous short description, the other
methods require further explanation.

The idea behind RECALCULATION is to change some plots from being registered as “absence” to being
registered as “presence”, with regard to the target species, if they are smaller than the nominal plot size.
The reason is that a larger plot has greater probability for the species to be present. The probability that
at least one plant of the target species occurs if a plot (with a size smaller than the nominal) is enlarged is

4z with the same notation as previously and with z being the missing area. In this case

p =1—e"
the density, A, was estimated from the subset of plots which had the nominal plot size. Following this, a
uniformly distributed random number between 0 and 1 was drawn and a plot registered as an “absence

plot” was changed to a “presence plot” if the random number was smaller than p . The intuition is that



a small “missing” area implies a low probability of change from absence to presence whereas a large
“missing” area implies a greater probability of change.

With the CLASSWISE method the sample plots were allocated to separate size classes and separate
calculation of plant density according to Eq. 2 was made for each class, assuming that the plot area
corresponded to the size of plots at the midpoint of the class. In case fewer than 5 observations were
assigned to a specific class that class was discarded from the analysis. Using categories with at least 5
observations a weighted average plant density was computed, where the weights were chosen inversely
proportional to the estimated approximate variance of the density estimator. The approximate variance
obtained through Taylor linearization is (Stahl et al. 2017)

1— e—al

naze—al

v(d) = az(l - 3)

and a variance estimator is obtained by inserting an estimated A or p in Eq. 3, based on empirical data.

In the REGRESSION method, estimation of plant density, A, is regarded as a generalized linear model
(GLM) problem, where the response variable
Y; = 1 —I; and thus equals 0 if the species is present on plot i and 1 otherwise, and the predictor variable
a; is the size of the ith plot. A GLM is constructed around a linear predictorn; = By + f1a;, and a link
function g that describes the relationship between the mean, y;, of the response variable and the linear
predictor is selected,

n = gw);

see, e.g., Myers et al. (2002, Section 5.2). The expected response may now be written as u; = g~*(n;) =
g 1 (Bo + Bra;), where g~1is the inverse of the link function g. In the case of a homogeneous Poisson
point process, the mean of Y; is y; = e %, If g is the natural logarithm function, 8, = 0, and B; = —A,
then g~1(B, + B1a;) = e *%. Thus, handling of different plot sizes can be treated as a GLM with a
logarithmic link function, where plot size is included as a predictor variable and plant density is the model
parameter to be estimated. By, e.g., Myers et al. (2002, Section 5.3), the estimator of the model parameter
is found by solving the likelihood score equation, which in our setting can be expressed as

(Y; — e %) q;
Z — =0, 4)
i=
Let Y be the sample mean of Y;, ..., Y;,. If all plot sizes are equal to a, then the solution of the above
equation can be written as A=—-alln Y, i.e., it coincides with the estimator (2). If the plot sizes are not
equally large, then there is no explicit solution to equation (4), but it can be solved numerically using
standard software for GLMs. From a general expression for the asymptotic variance-covariance matrix of
a GLM estimator in Myers et al. (2002, p. 166), it follows that the asymptotic variance of the GLM

estimator A can be written as
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n -1

2 p—Aq;
V(i)=<‘ %) . (5)

i=1
If all plot sizes equal a, then (5) coincides with (3).

We also address change estimation between two arbitrary time points, t; and t;; the indices 2 and 1 are
introduced to distinguish between the two time points. As in Stahl et al. (2017) we assume the following:
At time point 1, the locations of plants follow a homogeneous Poisson point process A1 with density A;. In
the time interval between t; and t;, each existing plant from time point t1 has probability  of surviving,
independently of other plants, implying that the plants retained constitute a homogeneous Poisson
process A] with density A] = mA, (see, e.g., Cressie 1991). At t, it is assumed that the locations of plants
follow the superposition of two independent processes, A7 and A3, where the latter is a homogeneous
Poisson point process of newly regenerated plants with density A5. This implies that the locations of plants
at time point t, follow a homogeneous Poisson point process A, with density 1, = A7 + 45 (see, e.g.,
Cressie 1991). Let A3 = (1 — m)A;. Stahl et al. (2017) derived the following probabilities for an individual
permanent plot of size q;,

Too; = P(absence of plants at both time points) = e~%(42+4s),

m11; = P(presence of plants at both time points) = 1 — e~%*1 — g~%ik2 4 g=@i(l2+4s)
To1; = P(absence at time point 1 and presence at time point 2) = e~%41 — g=®%(A2+43),

T10; = P(presence at time point 1 and absence at time point 2) = e~ %%z — g~ailA2+43),

Assume that we have presence-absence data from n permanent field plots of sizesa;, i = 1, ...,n, i.e.,
each of the n sample plots from time point 1 are revisited at time point 2. Define I,.;, wherer,s =0, 1,
andi =1,...,n, such that for plot i: Iy; equals 1 if the species is absent at both time points and 0
otherwise; I;1; equals 1 if the species is present at both time points and 0 otherwise; I1; equals 1 if the
species is absent at t; and present at t; and I;o; = 1 — Iyg; — I11; — lo1;- We estimate 4 = (14,15, 13)’
using maximum likelihood (see, e.g., Rao 1973), i.e., the maximum likelihood estimator is any 4 =
(A4, 4,,43)" that maximizes the likelihood function

n

_ | | Tooirr. . T1aim . Totimr - I1oi
L(A) = | | mooi 011 WMimoq; OMiMTyg; 108
i=1

For BASELINE, THRESHOLD, and RECALCULATION, the plot sizes were set to the nominal size for all plots
not discarded in the analysis. Due to the rather poor performance of method CLASSWISE we did not
consider it for change estimation. For the REGRESSION method, a; was always the actual size of the plot.

Sampling simulation

Sampling simulation was applied to evaluate the performance of the different methods for handling
variable plot sizes in the artificial landscapes previously described. Circular sample plots with the nominal
size 100 m? (corresponding to the large plot size in the Swedish NFI; Fridman et al. 2014) were allocated
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entirely at random across the study landscape. The sample size was always 500 plots, i.e. our intention
was to mimic a survey with a fairly large sample size. On each of the sample plots a presence-absence
assessment was conducted. If a plot was located at a stand boundary (cf. Fig 1) it was divided, and only
the largest sub-plot was retained and used in the calculations.

The sampling simulations were conducted with 10,000 replications for each of the five methods and each
of the cases (Cases I-Ill, with subcases) and in each replication plant density, A, was estimated. For each
subcase and method, we used the 10,000 estimates of A for estimating bias, standard deviation (S.d.), and
root mean square error (RMSE) of the plant density estimator.

It should be noted that the true value of the plant density may vary slightly from one artificial landscape
to the next. Therefore, all values of bias, standard deviation, and RMSE are given as percentages of the
true density. That is

_ Bias(1) - Sd.() _ RMSE(1)
Bias = 100——, Sd.=100——, and RMSE=100——0-—

where 1 denotes estimated plant density (for a specific subcase and method). All computations were
made using the software R (R Core Team 2018)

Calculations based on the National Forest Inventory data

Using the National Forest Inventory data we computed state and change densities for each of the five
methods by region and species. In this case no true densities were available and this part of the study only
focused on assessing differences in numerical values between the different methods. The computations
were made, following the previously described estimators for the five different methods, using the
software R (R Core Team 2018). The dataset reference is Stahl et al. (2019).

Results
Sampling simulations

In Figure 4, the bias of the estimators corresponding to the different methods are presented for the
populations with small stands (50% divided plots). In Figures 5 and 6 the corresponding results for
intermediate and large stands, respectively, are presented (25% and 10% divided plots).

12



Case Ia Case Ib Case Ic

paseme 127 N -13.4 1 -15.2 [
T THRESHOLDSO 0.6l 0.6l -05]
9 tumesHoLDso 7o -2 [ -o.1 [
%D RECALCULATION | 0.2 | 0.2 | 04
= cLasswise  -11.0 [ N 20} -07]
REGRESSION | 01 | 0.2 | 0.2
Case IIa Case IIb
paseLne  -13.1 NG 7.
T THRESHOLDSO | 0.2 ey |
& THRESHOLD&0 -7 -2
@ RECALCULATION l10 sal
= CLASSWISE 43R 7: R
REGRESSION | 07 =2
Case IIIa Case IIIb
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T THRESHOLD9O -10.4IEGEGEGE -19.2 G
& THresvooso 120 [ -z0.2 NG
@ RECALCULATION 5.0l SRR |
= CLASSWISE 2.2 442
REGRESSION 25 -11.6 NG

Figure 4. Bias (%) of the density estimators in the case of small stands (50% divided plots). In Case | the
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case Il and
Case lll the densities vary between different strata (in subcase a stratum identifiers were known and could
be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the densities were
the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone along
all stand boundaries.
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Case la Caselb Caselc
BASELINE =sHl 551N -7:
T THRESHOLDSO 01| 03| 0.0
& THRESHOLDSD 71 -0l -3
@ RECALCULATION | 0.2 | 0.1 los
= CLASSWISE vyl | 120 -0.4|
REGRESSION |02 | 0.1 |03
Case lla Casellb
BASELINE .0l -11.5 [ G-
T THRESHOLDSO los -6.0 I
©  THRESHOLD60 3410 -o.; [ G
@ RECALCULATION Boo =5l
= CLASSWISE 29l 72N
REGRESSION los =41
Case llla Case lllb
saseLne 142 [N 7.0 I
T THrestoLnso -12.7 -19.2 [
©  THRESHOLDSD 10 5 [ <7
W RECALCULATION 74 142
= cLasswise -11.o D -16.0 [ NG
REGRESSION 58 -1zo [

Figure 5. Bias (%) of the density estimators in the case of intermediate stands (25% divided plots). In Case
| the plant populations follow a homogeneous Poisson process across the entire landscape, and in Case Il
and Case lll the densities vary between different strata (in subcase a stratum identifiers were known and
could be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the densities
were the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone
along all stand boundaries.
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Case la Caselb Caselc

BASELINE 2410 251 22l
T THRESHOLDSO 0.2 0.1 | 0.1
9 rmesHoLDso 1.6l 16l 16l
%} RECALCULATION 0.0 | 0.1 loa
= CLASSWISE =E] | 071 -05]
REGRESSION 0.0 0.0 |03
Case lla Casellb
BASELINE 1.9l
T THRESHOLDSO o7
2 tiresHoLDso 0.l
@ RECALCULATION fos
= CLASSWISE 4.2
REGRESSION lov
Case llla Case lllb
BASELINE =7
Q THRESHOLDSD 72
& THRESHOLDSU iy
@ RECALCULATION k] |
= casswise  -z.o [N
REGRESSION 3.6l

Figure 6. Bias (%) of the density estimators in the case of large stands (10% divided plots). In Case | the
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case Il and
Case Il the densities vary between different strata (in subcase a stratum identifiers were known and could
be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the densities were
the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone along
all stand boundaries.

The BASELINE method often resulted in fairly large bias. THRESHOLD90 in most cases lead to an
improvement whereas THRESHOLD60 typically resulted in larger bias than THRESHOLD90. The
RECALCULATION method consistently was among the methods leading to the smallest absolute bias
whereas the CLASSWISE method led to large bias in most cases.

Overall, the REGRESSION method performed best (in terms of small absolute bias). The second best
method was RECALCULATION and the third best THRESHOLD90.

Studying the different methods across different artificial landscapes, the most difficult cases (i.e. the ones
where large bias occurred) were the landscapes where the population densities varied between different
strata, and no information was available to handle stratum membership in the estimation (Cases Ilb and
IlIb). The cases with higher densities along stand boundaries (Cases llla and lllb) also led to severely biased
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estimators. In case stratum membership indicators were available and the densities were even within the
stands (Case lla), varying densities between strata did not, however, incur severe bias.

Full results for bias, standard deviation, and root mean square error (RMSE) are given in Appendix A. No
major differences in standard deviations were obtained for the different methods, exept for CLASSWISE
which typically resulted in larger standard deviations of the estimators compared to the other methods.

Turning to change estimation, below we present results for a case where the population densities at
time point two were 40% larger than at time point one. Similar results were obtained when the change
was 15%; results for the latter case are presented in Appendix B.

In Figures 7, 8 and 9 change estimation results are shown for small, intermediate, and large stands,
respectively.

Casela Caselb Caselc
pasene  -12.0 [ e e
S THREsHOLDS0 03] 0.1 RE
ﬁ THRESHOLDS0 s Y | 02 R
< RECALCULATION | 0.3 | os I =0
REGRESSION 0.0 | 0.5 |14
Case lla Casellb
S THRESHOLDSO j s 4140 IR
= THRESHOLDSO 2.1 05|
% RECALCULATION | [EE 22|
REGRESSION [P 21 R
Case llla Case llib
BaseLne  -15 5 [N Iy 000
S THRESHOLDSO Y] | 15[
ﬁ THRESHOLDG0 41171 B 1.z
< RECALCULATION H:: -
REGRESSION 2.0f] 233

Figure 7. Bias (%) of the estimators of change in the case of small stands and A, = 1.41,, i.e. the density
at time point two was 40% higher than the density at time point 1. In Case | the plant populations follow
a homogeneous Poisson process across the entire landscape, and in Case Il and Case Il the densities vary
between different strata (in subcase a stratum identifiers were known and could be utilized in estimators,
whereas identifiers were not available in subcase b). In Case Il the densities were the same in all parts of a
stratum whereas in Case lll the densities were doubled in a 10 m wide zone along all stand boundaries.
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Figure 8. Bias (%) of the estimators of change in the case of intermediate stands and A, = 1.4, i.e. the
density at time point two was 40% higher than the density at time point 1. In Case | the plant populations
follow a homogeneous Poisson process across the entire landscape, and in Case Il and Case Il the
densities vary between different strata (in subcase a stratum identifiers were known and could be
utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the densities were
the same in all parts of a stratum whereas in Case Il the densities were doubled in a 10 m wide zone
along all stand boundaries.
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Figure 9. Bias (%) of the estimators of change in the case of large stands and A, = 1.41,, i.e. the density
at time point two was 40% higher than the density at time point 1. In Case | the plant populations follow
a homogeneous Poisson process across the entire landscape, and in Case Il and Case Il the densities vary
between different strata (in subcase a stratum identifiers were known and could be utilized in estimators,
whereas identifiers were not available in subcase b). In Case Il the densities were the same in all parts of a
stratum whereas in Case lll the densities were doubled in a 10 m wide zone along all stand boundaries.

The change estimation results turned out to be similar to the state estimation results. The regression
method performed best, mostly followed by RECALCULATION and THRESHOLD90. When densities varied
between strata and stratum membership was not known, large biases were obtained.

The numerical results based on NFI data are presented in Tables 2 and 3, for Trientalis europaea (L.) and
Melampyrum pretense (L.), for two different NFI regions (cf. Fig 3).
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Table 2. Density estimates (plants per 100 m?) for Trientalis europaea (L.) based on NFI data

Method Region 2 Region 4
BASELINE 0.802 0.578
THRESHOLD.90 0.811 0.584
THRESHOLD.60 0.809 0.582
RECALCULATION 0.837 0.618
CLASSWISE 0.827 0.614
REGRESSION 0.836 0.618

Table 3. Density estimates (plants per 100 m?) for Melampyrum pratense (L.) based on NFI data

Method Region 2 Region 4
BASELINE 0.934 0.500
THRESHOLD.90 0.940 0.505
THRESHOLD.60 0.948 0.506
RECALCULATION 0.956 0.525
CLASSWISE 0.962 0.519
REGRESSION 0.974 0.532

The differences in results between the methods appear to be in the same order of magnitude as those
obtained from the simulation studies in artificial populations. The regression method consistently
resulted in the highest density estimates.

Discussion

In statistically sound sample surveys of forests or landscapes the sampling units should be selected
randomly in order to ensure unbiased estimators of the studied population parameters (e.g. Gregoire and
Valentine 2008). Important examples of such surveys are the national forest inventories that are being
conducted in a large number of countries worldwide (Tomppo et al. 2010). When sample plots are
randomly allocated in the landscape some will fall across boundaries between different land use or land
cover categories. In such cases plots are often divided, since results are normally required to be presented
separately by different land use or land cover categories. Intuitive approaches, such as purposively moving
plots away from boundaries in order to avoid plot divisions typically lead to biased estimates since
conditions at edges differ from interior conditions (Harper et al., 2005; Esseen et al. 2016). Several
methods have been developed for coping with boundary plots in monitoring programmes. For some types
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of variables bias incurred by plot boundary issues can be avoided by applying special field protocols for
such plots (e.g. Ducey et al. 2001), where features, such as trees, on plots are double counted on parts of
a plot located close to a boundary. Alternatively, estimators that take subplot size into account can be
applied (e.g. Fridman et al. 2014). However, none of these opportunities are available for presence-
absence registrations and thus there is currently a gap in the methodological tool-kit available for
analyzing data from forest and landscape surveys. The current study offers methods to fill this gap.

In this study we assume that plots at boundaries are divided and presence-absence registrations are only
conducted on the larger subplot. Other reasons for variable plot size exist as well, such as accounting for
disturbances on plots (e.g. large rocks) during the calculations or when merging data from several surveys
into a single analysis (e.g. Grafstrom et al., 2019).

Studying the simulation results for state estimation it is clear that the BASELINE method, i.e. treating the
plots as if they all had the nominal size, leads to considerable negative bias, especially in the case of a high
proportion divided plots. For example, with 25% of the plots being divided the density was
underestimated by about 5 to 18%. However, with a small proportion of divided plots (<10%) the bias of
the BASELINE method was mostly moderate. The baseline method also consistently resulted in the lowest
density estimates based on the empirical NFI data.

The THRESHOLD method can be seen as a straightforward modification of the BASELINE method, in which
all plots smaller than a certain proportion of the nominal size are discarded. When a 90% size threshold
was used (i.e. all plots smaller than 90% of the nominal size were discarded), substantial improvements
in terms of reduced bias were obtained in most simulated populations, although at the expense of a
slightly increased standard deviation due to a smaller number of plots available for the density estimation.
With a 60% size threshold (i.e. all plots smaller than 60% of the nominal size were discarded) the bias was
larger, which indicates that the size threshold should probably not deviate too far from 100% when this
method is applied. However, the results from empirical data were somewhat inconclusive as
THRESHOLD90 sometimes resulted in lower density estimates than THRESHOLD60. Overall, the
THRESHOLD method can be recommended in case a simple and straightforward approach to handling the
problem of variable plot sizes is required. It is also a straightforward adjustment method for cases when
frequencies are not transformed to plant density estimates. However, it should be noted that the
THRESHOLD method is prone to substantial bias in case plant densities close to patch boundaries differ
from interior densities. This was manifested by large negative biases when the THRESHOLD method was
used in our simulated Case lll populations. The reason is that plots at patch boundaries would often be
discarded due to being divided and such plots (in the Case lll populations) normally had higher plant
densities. Thus, this method should be used with caution in case it can be expected that interior and
boundary conditions differ with regard to plant density.

The RECALCULATION method in most cases led to good results in the simulation, mostly somewhat better
than the THRESHOLD method in terms of absolute bias. Based on empirical data it typically resulted in
slightly larger values than the THRESHOLD method. Thus, the RECALCULATION method can also be
recommended in applications, although it is slightly more complicated to apply compared to the
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THRESHOLD method. It would also be a good alternative to the THRESHOLD method in cases when
frequencies are not transformed to densities.

The CLASSWISE method performed somewhat worse than the THRESHOLD and RECALCULATION methods.
The reason is probably the weighting procedure involved, which requires variance estimates to be
computed for the density estimates from the different classes. It is known from other studies (Grafstrom
et al. 2019) that estimators and their corresponding variance estimators are correlated, a phenomenon
that might have added to the bias in this study. To avoid this type of additional bias, the sample size in
each class must be large, which is a restriction in applications and the method cannot be recommended
in the case of surveys with small sample sizes. Moreover, the standard deviation of estimates based on
the CLASSWISE method was high compared to the other methods.

Although theoretically more complicated than the other methods, the REGRESSION method typically led
to the best results in the simulations in terms of avoiding bias in the density estimators. Standard
deviations of the REGRESSION method normally were comparable to the best of the other methods. It
also consistently lead to the largest density estimates based on empirical data. An advantage of this
method is that it has a strict theoretical foundation (e.g. Myers et al. 2002). Further, the application of
REGRESSION is simplified by straightforward access to statistical software, where the proposed GLM
regression technique (Nelder and Baker 1972) is implemented.

Thus, the REGRESSION method is our preferred choice for density estimation using data with variable plot
sizes, at least in case the analyst is willing to invest some additional time in the analysis. Our second best
choice is the RECALCULATION method, which requires little additional complication during the analyses.
Our third best method, THRESHOLD, can be applied at very minimal additional burden during the analysis.

The study revealed the importance of having access to stratum information when plant population
densities vary among strata, which is typically the case (e.g., Roberts and Gilliam 1995). Comparisons in
this regard involved the Case /la population vs the Case /Ib population, and the Case /lla vs the Case Ilib
populations. In the a-cases, stratum identifiers were assumed to be available and could be utilized in the
estimators, i.e. stratum level estimates were first computed and then aggregated to estimates for the
entire study area. In the b-cases stratum identifiers were not available. For those cases, all methods
performed rather poorly, in terms of negative bias. The reason for the negative bias is the non-linear
estimator (Eqg. 2). In contrast, many of the methods worked well when stratum identifiers were available.
We suggest that using stratified approaches to density estimation based on presence-absence data is an
interesting area for further study. Stratification may be based on land use or land cover categories, or
more advanced schemes employing several sources of information available wall-to-wall for the study
area (e.g. Saarela et al. 2015). Further, an interesting development of the REGRESSION method would be
to include such information as additional predictor variables.

The results from the change estimation study followed the general patterns obtained from the state
estimation study. Substantial bias of the change estimators were obtained for several methods, especially
if stratum membership was not known. Varying the level of change (from 40% to 15%) did not lead to any
major changes in the result patterns.
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The motivation for including the Case lll artificial populations was to generically study complicated cases
with dependencies between plant density and plot size. As expected, it was difficult to find an efficient
method to handle variable plot size in this case. While we could have evaluated alternative cases with
decreased densities along stand boundaries as well, our intention was, however, to generically address
this type of problem rather than numerically evaluating a large number of different alternatives.

It should be noted that our methods and results are based on the assumption that plants are located
according to a Poisson process (e.g. Greig-Smith 1983; Bonham 2013). While this may only occasionally
be the case in real life, this model assumption still is often used in studies of this kind (ibid.) due to the
lack of straightforward alternatives. The Poisson process is an important reference model for modelling
plant occurrences (e.g. Bonham 2013), but is not useful for modelling, e.g., clustered patterns of plant
occurrences (e.g. Hwang & He 2011). In a parallel study (Ekstrom et al. 2019), we develop new theory
for linking presence-absence data with plant density under spatial cluster models of Neyman-Scott type.

Special caution is needed when applying the methods proposed in this study to common species
inventoried in large plots or uncommon species inventoried in small plots. As described in Stahl et al.
(2017) different real plant densities imply different optimal plot sizes, and when the plot sizes deviate
largely from the optimal plot size the density estimates are very uncertain. This was the reason for our
choice of plant densities in the simulation study.
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APPENDIX A: Detailed state estimation results

In Tables A1, A2 and A3 detailed results from the state estimation simulations are provided in terms of
bias, standard deviation and root mean square error. (Since the tables are large they are presented on
separate pages.)
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Table Al. Bias (%), standard deviation (S.d. %), and RMSE (%) of the density estimators in the case of small stands
(50% divided plots). In Case | the plant populations follow a homogeneous Poisson process across the entire
landscape, and in Case Il and Case Il the densities vary between different strata (in subcase a stratum identifiers
were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the

densities were the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone
along all stand boundaries.

Method

Case Subcase =
z & & :
«w & 3 3 48 g
< I I Q > v
o 2 2 3 Q &
< I T 2 3 2
Q ~ ~ o O o
(a) Blas -12.68 062 -787 018 -11.01 0.14
sd 665 9.03 724 819 31.09  7.63
RMSE 1432 9.05 1069 819 3298  7.63
(b) Bas -13.40 060 -819 022 -199  0.20
sd 524 730 579 661 1359  6.08
RMSE 1439 733 1003 6.61 1374  6.08
(c) Blas -1516 -047 -9.06 036 -068  0.17
Sd 473 720 540 648 612 568
RMSE 1588 722 1055 649  6.16  5.68
I (a) Bas -13.11 019 -7.78  1.02 -433  0.70
Sd 568 802 635 733 917  6.64
RMSE 1429 803 1004 7.40 1014  6.67
(b) Blas -17.83 -6.47 -1321 -527 -7.75 -5.16
sd 502 695 556 633 1456  5.82
RMSE 1853 950 1434 824 1650  7.78
i (a) Blas  -16.13 -1040 -11.96 -4.95° -8.24 -2.48
sd 517 714 579 664" 686  6.20
RMSE 16.93 1261 1329 828" 1072  6.68
(b) Blas  -23.49 -19.19 -20.24 -13.90 -14.23 -11.63
Sd 417 559 460 519 562 492
RMSE 23.85 19.99 20.76 14.84 1530 12.63

* Value computed without one replicate that gave 1 = .
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Table A2. Bias (%), standard deviation (S.d. %), and RMSE (%) of the density estimators in the case of intermediate
stands (25% divided plots). In Case | the plant populations follow a homogeneous Poisson process across the entire
landscape, and in Case Il and Case Il the densities vary between different strata (in subcase a stratum identifiers
were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the
densities were the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone
along all stand boundaries.

Method

Case Subcase >
- :
«w & 3 3 g g
s 5 & ° 3 &
<3 ~ ~ o o o
(a) Bias -5.85 -0.08 -3.67 024 -444 024
Sd 697 798 724 7.65 2042 @ 7.42
RMSE 910 798 812 766 2089  7.43
(b) Bias 649 -027 -405 010 -1.82  0.07
Sd 561 642 58 621 13.05 6.01
RMSE 858 643 7.10 621 1317  6.01
(c) Bias 734 005 -431 036 -043 028
sd 520 628 554 604 621 570
RMSE 900 628 702 605 622 571
I (a) Bias 591 061 -339 091 -2.89  0.79
sd 599 704 630 675 721  6.46
RMSE 842 707 715 681 776  6.50
(b) Blas  -11.50 -597 -934 545 -7.23  -5.42
Sd 525 610 549 585 1241 563
RMSE 12.64 854 1084 799 1436  7.81
i (a) Blas  -11.30 -12.74 -1055 -7.42 -11.87 -5.76
sd 544 591 562 587 596  5.87
RMSE 1254 1405 1196 9.46 1328 822
(b) Blas  -17.91 -19.22 -17.29 -1421 -16.92 -12.88
sd 451 495 467 489 636  4.84

RMSE 18.47 1985 1791 15.03 18.08 13.76
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Table A3. Bias (%), standard deviation (S.d. %), and RMSE (%) of the density estimators in the case of large stands
(10% divided plots). In Case | the plant populations follow a homogeneous Poisson process across the entire
landscape, and in Case Il and Case Il the densities vary between different strata (in subcase a stratum identifiers
were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the

densities were the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone
along all stand boundaries.

Method

Case Subcase >
- :
«w & a3 S g g
= I I [w] = “
= 2 2 = ] &
2 £ F B 3§ 8
43 ~ ~ o o o
(a) Bias 240 -021 -1.58 -003 -1.75 -0.05
sd 699 736 7.09 726 1035  7.16
RMSE 739 736 726 726 1050  7.16
(b) Bias 250 -006 -1.58 006 -0.66  0.05
sd 571 606 580 595 6.02  5.87
RMSE 623 606 602 595 605 587
(c) Bias 277 013 -160 027 -047 0.6
Sd 552 592 564 58 571 571
RMSE 617 592 58 58 573 572
I (a) Bias -1.88 066 092 079 -424 074
sd 620 657 630 649 938  6.38
RMSE 648 660 636 653 1030  6.42
(b) Bias 797 58 -715 560 -630 -5.61
sd 537 567 545 562 569 552
RMSE 961 812 899 793 848  7.87
i (a) Bias -5.65 -7.16 -562 -429 -7.99 -3.62
Sd 587 602 593 604 631 605
RMSE 815 935 817 741 1018  7.05
(b) Blas  -12.02 -13.39 -12.00 -10.68 -12.63 -10.15
Sd 502 515 506 517 521 5.6

RMSE 13.03 1434 13.02 11.87 13.66 11.38
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Appendix B. Detailed change estimation results

In Figures B1, B2, and B3 change estimation results are presented for the case where the population

change in density between period 1 and period 2 was 15%.

In Tables B1-B6, detailed results from the change estimation simulations are presented.

Case la Case lb Case lc
BASELINE 134 R 154 IR 493 N
S THREZHOLDSO 0.0 0.9 | 0.2
S THRESHOLDED <ol o2 -10.7/
< RECALCULATION 0.4 | 0.2 | 09
REGRESSION | 0.4 | 0.1 | 0.4
Case lla Casellb
BaseLne 1.z N 242
S THRESHOLDSO | 06 124N
ﬁ THRESHOLDS0 33 SRl
= RECALCULATION | BE: 113 R
REGRESSION |2 400 R
Caselllla Case lllb
pasene 15,0 [N
B THRESHOLDSO -10.7 [ N
% trestolose  -12.0 |
< RECALCULATION
REGRESSION

Figure B1. Bias (%) of the estimators of change in the case of small stands and A, = 1.151,. In Case | the
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case Il and
Case Ill the densities vary between different strata (in subcase a stratum identifiers were known and could
be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the densities were
the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone along
all stand boundaries.
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Figure B2. Bias (%) of the estimators of change in the case of intermediate stands and A, = 1.154;. In

Case | the plant populations follow a homogeneous Poisson process across the entire landscape, and in
Case Il and Case lll the densities vary between different strata (in subcase a stratum identifiers were known
and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the
densities were the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m

wide zone along all stand boundaries.
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Case la Case lb Caselc

BASELINE 27 24 23l

S THRESHOLDSO 09| loa B
< THRESHOLD&O BT | 1.2 09]
% RECALCULATION 02| o7 Bis
REGRESSION 02| o7 B
Case lla Casellb
BASELINE -15 I -1 4.3_
B THRESHOLDSO | Bk 2o GG
£+  THRESHOLDGO 02| BEE] |
% RECALCULATION B <1.:

REGRESSION I 17 -11.7 _

Case llla Case lllb

BASELINE 73[R k] 00 |
THRESHOLD9D .5 214
THRESHOLDGD 73R <oz G

RECALCULATION .5l <95 [ G
REGRESSION 0y | -z [

Method

Figure B3. Bias (%) of the estimators of change in the case of large stands and 1, = 1.154,. In Case | the
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case Il and
Case Ill the densities vary between different strata (in subcase a stratum identifiers were known and could
be utilized in estimators, whereas identifiers were not available in subcase b). In Case Il the densities were
the same in all parts of a stratum whereas in Case lll the densities were doubled in a 10 m wide zone along
all stand boundaries.
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Table B1. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of small stands (50%
divided plots). Here, A, = 1.15A,. In Case | the plant populations follow a homogeneous Poisson process across the
entire landscape, and in Case Il and Case lll the densities vary between different strata (in subcase a stratum
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In
Case Il the densities were the same in all parts of a stratum whereas in Case Ill the densities were doubled in a 10 m
wide zone along all stand boundaries.

Method

Case Subcase Estimator =2
g g 2 .
" s 3 S S
2 T 3 3 a
0 il il I 3
2 £ £ § ¢
§ ~ ~ o x
[ (a) 1 Blas -12.77 084 803 0.09 0.02
S.d. 672 917 738 832 7172
RMSE 14.43 921 1091 832 7.72
A, Blas -1285 -0.73 -802 0.3  0.07
S.d. 639 874 706 7.87 737

RMSE 1435 877 1069 7.87  7.37
l,—A, Bas -1338 -001 -7.96 040 037
Sd.  50.87 70.02 5637 6482 5896
RMSE 52.60 70.01 56.93 64.82 58095

(b) A Blas -13.39 -067 -824 022 0.20
S.d. 540 7.59 596 6.83  6.28

RMSE 14.44 762 1017 6.83  6.29

A, Blas -1365 -069 -836 022 0.9

S.d. 519 733 578 659  6.08

RMSE 14.61 737 1016 6.60  6.08
l,—A, Bas -1538 -087 919 022  0.09
Sd. 4256 6199 4809 56.16 50.36
RMSE 45.25 62.00 4896 56.16 50.36

(c) A Blas -15.04 -049 -894 047 0.30
S.d. 486 720 551 660 581

RMSE 15.80 7.22 1050 6.61 581

A, Bias -1559 -040 917 053 031

S.d. 486 736 554 674 586

RMSE  16.33 7.37 10.71 6.76 5.87
A, —A;  Bias -19.26 0.21 -10.69 0.92 0.36
S.d. 4146 6541 48.64 61.12 51.34
RMSE 45.71 65.41 49.79 61.13 51.34

I (a) A Bias -13.02 0.48 -7.63 1.19  0.82
S.d. 570 813 634 734  6.65

RMSE 1421 814 992 7.44  6.70

A, Blas -13.25 050 -7.73 129  0.86

S.d. 546 796 615 7.16 6.43
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Method

Case Subcase Estimator =2
g g8 2
« 3 3 3 38
s & F 3 &
2 £ &£ § &
o [ [ o o
RMSE 1433 797 987 7.28  6.48
l,—1, Bras -1481 061 -834 194 1.18
S.d. 45.48 67.09 51.72 6270 54.21
RMSE 47.83 67.09 5239 6273 54.22
(b) A Bas -17.78 -630 -13.12 -5.14 -5.08
S.d. 508 7.06 561 645 589
RMSE 1849 946 1427 825 7.78
A, Blas -1861 -7.22 -13.93 594 584
S.d. 478 671 531 604 556
RMSE 19.22 9.86 1491 847  8.06
A,—A, Bias -2420 -13.37 -19.34 -11.28 -10.90
S.d. 39.35 5555 4399 52.62 46.27
RMSE 46.19 57.13 48.05 53.82 47.54
1l (a) A Bias -15.98 -10.14 -11.76 -464 -2.48
S.d. 525 7.94 596 7.93  6.28
RMSE 16.82 12.88 1319 919 6.76
A, Bias -16.37 -10.22 -12.04 -463 -2.57
S.d. 537 9.62 6.10 11.26  6.51
RMSE 17.23 14.03 1350 1218  7.00
A,—A, Bias -1894 -10.74 -13.90 -456 -3.18
S.d. 4575 82.40 5273 9474 55.24
RMSE 49.51 83.10 54.52 94.84 55.33
(b) A Blas -23.39 -19.02 -20.09 -13.73 -11.64
S.d. 420 563 468 524 493
RMSE 23.76 19.83 20.63 1470 12.64
A, Blas -24.69 -20.42 -21.46 -1522 -12.97
S.d. 414 553 456 518 486
RMSE 25.04 2115 2194 16.08 13.85
A,—A, Bias -3339 -29.74 -30.64 -25.17 -21.86
S.d. 34.44 4592 3831 4437 40.42
RMSE 47.97 5470 49.06 51.01 45.95
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Table B2. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of intermediate stands
(25% divided plots). Here, A, = 1.15A,. In Case | the plant populations follow a homogeneous Poisson process
across the entire landscape, and in Case Il and Case Ill the densities vary between different strata (in subcase a
stratum identifiers were known and could be utilized in estimators, whereas identifiers were not available in
subcase b). In Case Il the densities were the same in all parts of a stratum whereas in Case lll the densities were
doubled in a 10 m wide zone along all stand boundaries.

Method

Case Subcase Estimator =2
g 8 & .
. 5 § 3 8
2 T T 3 3
0 il il I 3
-
§ ~ ~ o x
[ (a) 1 Bias 598 -025 -3.81 011  0.09
S.d. 703 804 731 770 750
RMSE 923 805 824 7.70 7.50
A, Bias 598 -020 -3.78 015 017
S.d. 675 768 7.00 739 7.9

RMSE 9.01 768 796 739  7.20
l,—A Bas  -596 012 -358 044 065
Sd. 5353 6144 5570 59.95 57.28
RMSE 53.86 61.44 5581 59.95 57.28

(b) 1 Bias -6.47 -0.29 -404 014  0.07
S.d. 559 648 584 628  6.00

RMSE 855 649 711 628  6.00

A, Bias -6.54 -021 -406 019  0.15

S.d. 545 630 570 6.09  5.85

RMSE 851 631 7.00 6.09 585
l,—A Bas -701 035 -417 050  0.69
Sd. 4547 53.63 47.89 5242 49.24
RMSE 46.01 53.63 48.07 5242 49.24

(c) A Bias -7.37 -0.06 -437 033 0.25
S.d. 521 632 556 607 570

RMSE 9.03 632 707 6.08 571

A, Bias 770  -0.03 -450 036 028

S.d. 539 654 575 635 592

RMSE 940 654 730 636 5093
l,—A, Bas -988 017 -533 059 0.8
Sd. 4654 5808 5038 56.83 51.81
RMSE 47.58 5808 50.66 56.83 51.81

I (a) A Bias -591 061 -339 092 0.79
S.d. 598 698 625 673  6.43

RMSE 841 700 711 679  6.47

A, Bias 596 078 -333 111 091

S.d. 587 693 618 668 6.32
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Method

Case Subcase Estimator =2
g g8 2
« 3 3 3 38
s & F 3 &
2 £ &£ § &
o [ = < 53
RMSE 836 697 702 677 6.39
1, -1, Bias 630 198 -294 237 175
S.d. 48.76 5821 51.55 57.12 53.01
RMSE 49.16 58.24 51.63 57.17 53.04
(b) A Blas -11.47 -594 932 543 -539
S.d. 523 6.05 545 582 560
RMSE 12,61 848 1079 796 7.77
A, Baas -12.27 -6.69 -10.07 -6.15 -6.12
S.d. 504 585 529 564 540
RMSE 1326 888 11.37 834 8.16
A,—A, Buas -17.55 -11.68 -15.06 -10.96 -10.99
S.d. 4150 48.42 43.49 47.47 44.79
RMSE 45.05 49.81 46.02 4872 46.11
1l (a) A Blas -11.28 -12.68 -10.51 -7.41 -5.95
S.d. 547 597 567 589 588
RMSE 12.54 14.02 11.95 946 8.36
A, Baas -11.77 -13.18 -11.01 -8.01 -6.45
S.d. 548 595 567 591 590
RMSE 1298 1446 1238 996 8.74
A,—A, Bias -1500 -16.49 -1431 -12.04 -9.81
S.d. 4596 49.87 47.45 49.58 48.88
RMSE 4835 5252 49.55 51.02 49.85
(b) A Blas -17.90 -19.20 -17.27 -14.21 -13.02
S.d. 460 504 476 498  4.92
RMSE 1848 19.85 1791 15.06 13.92
A, Blas -19.18 -20.48 -18.58 -15.64 -14.38
S.d. 445 487 460 480 477
RMSE 19.69 21.05 19.14 16.36 15.15
A,—A, Buas -27.70 -29.05 -27.30 -25.16 -23.43
S.d. 37.04 40.14 3815 40.47 39.27
RMSE 46.25 4955 4691 47.65 45.73
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Table B3. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of large stands (10%
divided plots). Here, A, = 1.15A,. In Case | the plant populations follow a homogeneous Poisson process across the
entire landscape, and in Case Il and Case lll the densities vary between different strata (in subcase a stratum
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In
Case Il the densities were the same in all parts of a stratum whereas in Case Il the densities were doubled in a 10 m
wide zone along all stand boundaries.

Method

Case Subcase Estimator 2
s 8 g .
. 1§ 5 B
=2 T T 3 a
3 %) %) = w
W L W <I o
2 £ £ § @
§ ~ ~ [2'S o
| (a) YR Bias 215 0.06 -132 020 0.0
S.d. 7.07 745  7.17 734  7.24
RMSE 739 745 729 735 7.4
A, Bias 222 003 -138 016 0.15
S.d. 679 7.17 688 7.07 6.96
RMSE 715 717 7.01 7.07 6.96
l,—1, Bias 271 019 -1.77 -0.15 -0.15

S.d. 54.09 57.48 5496 56.86 55.54
RMSE 54.15 5748 5499 56.86 55.53

(b) 1 Bias 240 001 -146 018 0.16
S.d. 577 611 585 6.02 592

RMSE 624 611 6.03 602 592

A, Bias 239 007 -143 025 023

S.d. 563 599 574 590 5.79

RMSE 612 599 591 591 579

l,—1, Bias 235 041 -124 073 070

S.d. 46.94 50.04 4793 49.64 4841
RMSE 46.99 50.04 4794 49.65 48.41

(c) 1 Bias 281 013 -161 027 0.24
S.d. 552 594 565 586 572

RMSE 619 594 58 587 572

A, Bias -2.80 033 -1.52 044 041

S.d. 565 609 578 602 587

RMSE 631 610 598 604 588

l,—1, Bias 276 168 -0.8 157 161

S.d. 50.02 5450 51.37 54.07 5222
RMSE 50.09 54.52 5137 54.09 5224

I (a) A Bias -1.97 056 -1.02 069 0.64
S.d. 613 650 623 643  6.30

RMSE 644 652 631 646  6.33

A, Bias -1.92 071 -091 0.8 0.77

S.d. 601 641 611 631 6.19
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Method

Case Subcase Estimator

BASELINE
THRESHOLD90
THRESHOLD60
RECALCULATION
REGRESSION

RMSE 631 645 618 636  6.23
l,—A Bas  -153 169 -0.18 200 1.68
Sd. 5053 5423 5155 53.81 5223
RMSE 50.55 5425 51.55 53.84 52.25

(b) A Bias -803 -58 -721 566 -5.67
S.d. 532 561 540 554  5.46

RMSE 963 813 9.01 793 7.87

A, Bias 884 -6.69 -801 -6.46 -6.45

S.d. 511 540 518 532 524

RMSE 10.21 8.60 9.54 8.37 8.32
A, — 4 Bias -14.26 -12.00 -13.30 -11.79 -11.70
S.d. 42.51 4505 43.18 4474 43.76
RMSE 44.83 46.62 45.18 46.27 45.30

1l (a) A Bias -5.74  -7.24 571 -439 -3.82
S.d. 582 597 588 595 597

RMSE 818 938 820 739  7.09

A, Bias 594 -7.41 591 -466 -4.04

S.d. 578 589 58 591 5093

RMSE 829 947 830 753 7.8
i,-1, Bms -729 -860 -7.29 -650 -5.54
Sd. 4841 49.43 4879 49.49 4935
RMSE 4895 50.17 49.33 4991 49.65

(b) A Blas  -12.09 -13.44 -12.06 -10.73 -10.29
S.d. 496 510 502 510 5.08

RMSE 13.07 14.38 13.06 11.88 11.47

A, Bias -13.16 -14.48 -13.14 -11.88 -11.40

S.d. 482 492 486 495 494

RMSE 14.02 15.30 14.01 12.87 12.42
Ay — 4  Bias -20.32  -21.40 -20.34 -19.54 -18.82
S.d. 39.88 40.78 40.23 41.00 40.65
RMSE 44.76 46.05 45.08 4542 44.79
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Table B4. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of small stands (50%
divided plots). Here, A, = 1.4A,. In Case | the plant populations follow a homogeneous Poisson process across the
entire landscape, and in Case Il and Case lll the densities vary between different strata (in subcase a stratum
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In
Case Il the densities were the same in all parts of a stratum whereas in Case Il the densities were doubled in a 10 m
wide zone along all stand boundaries.

Method

Case Subcase Estimator 2
s 8 & .
. 5§ § 3 8
=2 T T 3 a
3 %) %) = w
W W W <I o
2 £ £ § ¢
§ ~ ~ [2'S <
[ (a) N Blas -12.70 -060 -791  0.13  0.10
S.d. 677 919 7.41 834  7.78
RMSE 1439 921 1084 834 7.78
A, Bas -13.04 -0.65 -809 0.17  0.08
S.d. 599 824 662 745 6.90

RMSE 1435 827 1045 7.45  6.90
i,—1, Bmas -1388 -076 -853 026 0.01
Sd. 2154 2990 23.83 27.70 24.99
RMSE 2562 29.91 2531 27.70 24.99

(b) 1 Blas -13.44 -055 -827 027 015
S.d. 541 7.61 598 6583  6.29

RMSE 1449 7.63 1020 6.83  6.30

A, Blas -1402 -0.43 844 044 026

S.d. 500 713 561 648  5.88

RMSE 14.89 7.14 1013 650  5.89
i,—1, Bas -1547 -012 -887 084 055

S.d. 18.32 26.69 20.66 24.55 21.80

RMSE 23.98 26.69 22.48 2457 21.81

(c) 1 Blas -1517 -0.58 904 038 0.15
S.d. 487 724 555 662 584

RMSE 1594 7.27 1061 6.63 584

A, Baas -16.41 -001 -9.40 086  0.50

S.d. 504 820 592 7.44  6.25

RMSE 17.17 820 1111  7.49  6.27
i,—1, Bmas -1951 142 -1030 205  1.39
Sd. 1869 31.10 22.44 2861 23.57
RMSE 27.01 31.13 2469 2868 2361

I (a) A Bias -13.04 021 -7.73 1.16 077
S.d. 576 814 642 741  6.75

RMSE 1425 814 1005 7.50  6.79

A, Blas -13.64 0.66 -7.84 144  0.95

S.d. 538 803 612 727 6.40
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Method

Case Subcase Estimator =2
g g8 2
« 3 3 3 38
s & F 3 &
2 £ &£ § &
o [ [ o o
RMSE 1466 806 995 7.41  6.47
l,—1, Bras -1514 179 -812 216 1.41
S.d. 19.62 29.62 2245 27.35 23.56
RMSE 2478 29.67 23.87 27.43 23.60
(b) A Bas -17.77 -6.47 -13.16 -522 -5.09
S.d. 512 7.08 568 641 595
RMSE 1849 959 1433 827 7.83
A, Blas -19.98 -862 -1526 -7.23  -7.09
S.d. 452 645 505 586 5.0
RMSE 2049 1077 16.08 930  8.86
A,—A, Bias -2551 -13.99 -20.52 -12.24 -12.10
S.d. 16.59 23.58 1851 22.04 19.58
RMSE 3043 27.41 27.63 2521 23.02
1l (a) A Bias -16.03 -10.20 -11.88 -471 -2.50
S.d. 528 764 592 810 6.33
RMSE 16.88 12.75 1327 937  6.80
A, Blas -16.81 -837 -11.84 -2.28 -2.35
S.d. 6.22 2277 11.12 2469  9.01
RMSE 17.92 2426 1624 24.80 9.32
A,—1, Buaas -1876 -3.77 -11.74 380 -1.99
S.d. 2291 79.72 39.52 86.02 32.46
RMSE 29.61 79.80 41.22 86.10 32.52
(b) A Blas -23.41 -19.07 -20.18 -13.78 -11.67
S.d. 425 570 469 531  4.99
RMSE 2379 19.90 20.71 1477 12.69
A, Blas -26.69 -22.65 -23.51 -17.42 -15.00
S.d. 399 547 447 504 477
RMSE 26.99 2330 2393 1814 15.74
A,—A, Bias -3489 -31.61 -31.83 -26.54 -23.32
S.d. 1489 1991 16.58 19.14 17.64
RMSE 37.94 37.35 3589 3272 29.24
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Table B5. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of intermediate stands
(25% divided plots). Here, A, = 1.4A,. In Case | the plant populations follow a homogeneous Poisson process across
the entire landscape, and in Case Il and Case Il the densities vary between different strata (in subcase a stratum
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In
Case Il the densities were the same in all parts of a stratum whereas in Case Il the densities were doubled in a 10 m
wide zone along all stand boundaries.

Method

Case Subcase Estimator 2
s 8 S
. 1§ § %
=2 T T 3 a
3 %) %) = w
W W W <I o
2 £ £ § ¢
§ ~ ~ [2'S <
| (a) N Bias 594 -0.24 -3.78 017 0.14
S.d. 695 794 720 765 7.41
RMSE 9.15 794 813 7.65 7.41
A, Bias -6.18 028 -391 013 0.08
S.d. 620 7.10 644 685  6.61
RMSE 875 710 753 6.85 661
l,—1, Bias 678 037 -426 002 -0.08

S.d. 22.39 25.82 23.29 25.16 24.00
RMSE 2340 2582 23.67 2515 23.99

(b) 1 Bias 641 -020 -395 019 0.14
S.d. 560 649 586 625 6.01

RMSE 851 650 7.07 625 6.01

A, Bias -6.87 029 -423 008 0.7

S.d. 532 623 559 601 574

RMSE 869 624 7.01 601 574

l,—1, Bias -8.04 051 -493 -017 -0.12

S.d. 19.67 23.23 2078 22,65 21.36

RMSE 21.25 2323 2136 2265 2136

(c) 1 Bias 737 -006 -436 033  0.25
S.d. 522 631 557 6.06 5.70

RMSE 9.03 631 7.08 607 571

A, Bias 813 031 -458 069 052

S.d. 561 7.09 606 681  6.25

RMSE 988 7.0 759 684  6.27
1,-A, Bmas -1006 122 512 160 1.18
Sd. 2119 2719 2312 2619 23.86
RMSE 23.46 27.21 23.68 2623 23.89

I (a) A Bias -599 049 -348 082 0.67
S.d. 599 7.00 627 675 6.44

RMSE 847 702 717 680 6.8

A, Bias 637 064 -361 097 0.75

S.d. 579 693 612 667 6.28
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Method

Case Subcase Estimator =2
g g8 2
« 3 3 3 38
s & F 3 &
2 £ &£ § &
o [ = < 53
RMSE 861 696 7.10 6.74 6.33
1, -1, Bias 732 1.02 -394 135 094
S.d. 21.50 25.96 22.83 2522 23.48
RMSE 2272 2598 23.17 2525 23.50
(b) A Bias -11.53 602 -938 -550 -5.47
S.d. 526 611 549 585 564
RMSE 12.67 858 10.87 803 7.86
A, Blas -13.86 -832 -1166 -7.72 -7.67
S.d. 480 562 504 540 5.18
RMSE 14.67 10.04 12.70 9.42 9.5
A,—1, Blas -19.68 -14.05 -17.35 -13.25 -13.15
S.d. 17.86 20.89 18.78 20.44 19.33
RMSE 26.58 2518 2556 2436 23.37
1l (a) A Bas -11.17 -12.62 -10.42 -7.28 -5.81
S.d. 544 593 562 588 586
RMSE 1243 1394 11.84 936 825
A, Bias -12.30 -13.76 -11.59 -8.78 -6.96
S.d. 553 6.09 575 6.02 6.02
RMSE 13.48 15.04 1294 10.64 9.20
A,—1, Buas -1511 -16.60 -14.52 -12.53 -9.83
S.d. 2069 22.69 21.47 2256 22.20
RMSE 25.62 2812 2592 2580 24.28
(b) A Baas -17.82 -19.15 -17.20 -14.14 -12.94
S.d. 454 499 468 489 486
RMSE 1839 19.79 17.83 1497 13.82
A, Blas -21.13 -22.44 -2059 -17.84 -16.46
S.d. 419 458 432 451 449
RMSE 21.55 22.90 21.04 18.40 17.06
A,—A, Bias -29.43 -30.66 -29.07 -27.09 -25.25
S.d. 15.75 17.13 16.24 17.00 16.73
RMSE 33.38 3512 3330 31.99 30.29
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Table B6. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of large stands (10%
divided plots). Here, A, = 1.4A,. In Case | the plant populations follow a homogeneous Poisson process across the
entire landscape, and in Case Il and Case lll the densities vary between different strata (in subcase a stratum
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In
Case Il the densities were the same in all parts of a stratum whereas in Case Ill the densities were doubled in a 10 m
wide zone along all stand boundaries.

Method

Case Subcase Estimator =2
g 8 & .
" s 3 S S
2 T T 3 a
0 il il I 3
-
§ ~ ~ o x
[ (a) 1 Bias -2.28 -0.09 -1.47 007 0.07
S.d. 717 753 726 743 734
RMSE 7.52 7.53 7.41 7.43  7.34
A, Bias 230 -0.04 -1.44 012 013
S.d. 634 666 643 658  6.49

RMSE 674 666 659 658  6.49
l,—A Bas -234 009 -139 023 028
Sd. 2301 2440 2339 2415 23.63
RMSE 23.13 2440 23.43 2415 23.63

(b) A Bias 241 001 -148 012 0.4
S.d. 573 6.05 582 600 588

RMSE 622 605 600 6.00 5.88

A, Bias 258 004 -157 014 0.14

S.d. 548 581 557 576 5.64

RMSE 606 581 579 576 5.4
l,—-A Bas -301 012 -1.77 020 0.16
Sd. 2021 2152 2060 2141 20.86
RMSE 2043 2152 2068 21.41 20.86

(c) A Bias 283 0.09 -165 022 021
S.d. 551 592 563 583 570

RMSE 619 592 58 583 570

A, Bias 298 046 -154 061 0.54

S.d. 606 667 628 658  6.35

RMSE 675 6.68 646 6.61  6.37
l,—A Bas -337 140 -128 159 137
Sd. 2293 2516 2377 2493 24.09
RMSE 23.18 2520 23.81 2498 24.12

I (a) A Bias -1.94 064 -098 076 0.68
S.d. 6.17 657 627 646  6.35

RMSE 647 660 635 651  6.38

A, Bias -1.85 098 -0.75 1.09 0.99

S.d. 594 636 607 630 6.14
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Method

Case Subcase Estimator

BASELINE
THRESHOLD90
THRESHOLD60
RECALCULATION
REGRESSION

RMSE 622 644 612 639 621
l,—-A Bas -162 183 016 190 176
Sd. 2224 2395 2275 2372 23.04
RMSE 22.30 2401 2275 2379 23.10

(b) A Bias -804 -58 -724 -568 -5.68
S.d. 536 568 545 559 550

RMSE 967 816 9.06 797 791

A, Bias -10.20 -7.98 934 -7.78 -7.77

S.d. 488 517 496 510  5.02

RMSE 1131 9.51 10.57 9.30 9.25
A, — 4 Bias -15.59 -13.28 -14.60 -13.03 -12.98
S.d. 18.19 19.31 1848 19.23 18.75
RMSE 23.96 23.43 2355 23.23 2280

m - (a) i Blas  -5.68 -7.19 -5.65 -432 -3.75
S.d. 576 589 580 589 590

RMSE 809 929 810 730  6.99

1 Blas  -618 -757 -6.14 501 -4.29

S.d. 586 598 591 600 6.02

RMSE 852 965 853 7.82  7.40
i,-1, Bmas -742 -854 -736 -6.73 -5.63
Sd. 2170 2215 2191 2221 2217
RMSE 22.93 2374 2311 2321 2287

(b) A Bias -12.06 -13.42 -12.04 -10.72 -10.26
S.d. 493 506 497 506  5.05

RMSE 13.03 14.35 13.02 11.86 11.44

A, Bias -14.85 -16.09 -14.83 -13.68 -13.15

S.d. 460 470 464 471 471

RMSE 1555 16.76 15.53 14.47 13.97
Ay — 4  Bias -21.85 -22.74 -21.80 -21.09 -20.37
S.d. 17.03 17.38 17.17 1746 17.36
RMSE 27.70 28.62 27.75 27.38 26.77
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