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Abstract 

1. Presence-absence sampling is an important method for monitoring state and change of both 
individual plant species and communities. With this method only the presence or absence of the 
target species is recorded on plots and thus the method is straightforward to apply and less prone 
to surveyor judgement compared to other vegetation monitoring methods. However, in the basic 
setting all plots must be equally large or otherwise it is unclear how data should be analyzed. In 
this study we propose and evaluate five different methods for estimating plant density based on 
presence-absence registrations from surveys with variable plot sizes. 
   

2. Using artificial plant population data as well as empirical data from the Swedish National Forest 
Inventory we evaluated the performance of the proposed methods. The main analysis was 
conducted through sampling simulation in the artificial populations, whereby bias and variance 
of density estimators for the different methods were quantified and compared.  
 

3. Both for state and change estimation of plant density, we found that the best method to handle 
variable plot size was to perform generalized least squares regression, using plot size as an 
independent variable. Methods where plots smaller than a certain threshold were excluded or 
their registrations recalculated were, however, almost as good. Using all registrations as if they 
were obtained from plots with the nominal plot size resulted in substantial bias. 
 

4. Our findings are important for plant population studies in a wide range of environmental 
monitoring programmes. In these programmes plots are typically randomly laid out and may be 
located across boundaries between different land use or land cover classes, resulting in subplots 
of variable size. Such splitting of plots is common when large plots are used, e.g. with the 100 m2 
plots used in the Swedish National Forest Inventory. Our methods overcome problems to estimate 
plant density from presence-absence data observed in plots that vary in size.  
     

Keywords: vegetation survey, divided plots, quadrats, plant monitoring, Poisson model, point pattern, 
plant density, intensity 
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Introduction 
Vegetation surveys are becoming increasingly important due to society’s increasing interest in ecosystem 
services linked to different vegetation types (Lindenmayer and Likens 2010; Yapp et al. 2010). For 
example, several large-scale forest and landscape inventories have included detailed vegetation 
assessment components in their protocols (e.g. Corona et al. 2011, Ståhl et al. 2011). However, contrary 
to monitoring trees and forests, monitoring non-tree vegetation offers substantial methodological 
challenges (Elzinga et al. 1998; Godínez-Alvarez et al. 2009). One common method is based on assessing 
the cover of individual species or species groups on plots through ocular inspection. In several studies, 
this method has been shown to be susceptible to substantial surveyor-induced bias (e.g. Kercher et al. 
2003; Morrison 2016).  Line- and grid point intercept methods (Godínez-Alvarez et al. 2009) involve 
detailed species recordings at randomly selected points. Such methods are less prone to surveyor 
judgement, but typically require large sample sizes and are thus costly to conduct.  
 
Presence-absence sampling is another routinely employed method for surveying individual plants or 
vegetation communities (e.g. Bonham 2013). Compared to the other methods, it is straightforward to 
apply since it requires only registrations of presences or absences of species on plots. This method is often 
less prone to surveyor judgement compared to cover assessment (e.g. Kercher et al. 2003; Ringvall et al. 
2005), although with large plots the variability between surveyors may still be substantial (Milberg et al. 
2008). A drawback is that state and change of plant occurrence frequencies are difficult to interpret due 
to their dependence on plot size and species occurrence patterns. Thus, several studies suggest that 
frequency should be recalculated to plant density (Royle and Nichols 2003; He and Reed 2006; Hwang and 
He 2011; Ståhl et al. 2017). Such recalculation depends on model assumptions about the species 
occurrence patterns. A straightforward and commonly adopted assumption is the Poisson model (e.g., 
Bonham 2013), which stipulates entirely random locations of individuals. However, many species tend to 
occur in clustered patterns and thus other spatial processes have been explored as well (e.g. Hwang and 
He 2011).  

To use presence-absence sampling effectively, the plot size need to be fixed or otherwise the probabilities 
of plant occurrence will vary between plots and the results will depend on the size distribution of the 
plots, unless variability in plot size is considered in the computations. However, to our knowledge, no 
theory seems to exist for handling variable plot sizes in connection with presence-absence sampling. A 
common ad-hoc approach is to set a size threshold below which all plots are excluded from the analysis 
(e.g. Odell and Ståhl 1998).  

Due to its simplicity, the presence-absence survey method is applied in several monitoring programmes 
(e.g. Tomppo et al. 2010). However, in many monitoring programmes (e.g. Fridman et al. 2014) the 
random distribution of plots implies that the plot sizes may vary. The reason is that plots are sometimes 
divided into subplots by land use or land cover boundaries (Fig. 1), or that parts of plots cannot be 
occupied by plants, e.g. due to disturbances, rocks or boulders.  
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Figure 1. An illustration of how land use and land cover boundaries may incur variable plot sizes in 
presence-absence sampling when plots are allocated randomly across a study landscape (in this case in a 
randomly located square cluster system). The plots with yellow parts are divided between different land 
use or land cover categories, and each part must be surveyed separately when results by land cover type 
or land use category are required. 

 

The objective of this study was to propose and evaluate five different methods for analyzing sample plot 
data with variable plot sizes from surveys based on presence-absence sampling, when the goal is to 
estimate state and change in plant density. The methods are (i) using data without modifications (our 
baseline method), (ii) removing all plots smaller than a certain threshold size from the analysis, (iii) re-
computing presence-absence registrations on plots smaller than the nominal size by adding a modelled 
presence probability; i.e. an “absence plot” may become a “presence plot”, (iv) allocating each plot to a 
specific size class followed by separate computations for each size class and then merging the results, and 
(v) using regression analysis to predict the probability of species occurrence on a plot, including plot size 
as a predictor variable and plant density as a parameter to be estimated.  

Throughout the article we use the term density for the average number of plants per area unit rather than 
the synonym intensity, which is commonly used in spatial statistics. 

 

Materials and Methods 

Plant population data 

Two different datasets were utilized in the study. The first set was obtained through simulation of 
occurrences of a hypothetical plant species in artificial landscapes, assuming different plant densities and 
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spatial patterns. In these landscapes, sample surveys were simulated and the performance of the different 
methods for handling variable plot size evaluated. The second dataset consisted of empirical observations 
from the Swedish National Forest Inventory (NFI). 

Artificial plant population data 

Three cases of artificial plant population data were simulated, each with subcases: 

- Case I: Plant occurrences within the study landscape followed a homogeneous Poisson process, 
i.e. the plants were located entirely at random in the landscape. Three subcases were distin-
guished by different plant densities: (a) 0.005, (b) 0.01, and (c) 0.02 plants m-2. According to Ståhl 
et al. (2017), the optimum plot size to use for assessing plant density at a true plant density of 
0.016 plants m-2 is 100 m2. Thus, we chose plant densities in this order of magnitude for the 
analyses. Case I is our baseline case where the plant densities are the same across the entire 
artificial landscapes. 
 

- Case II: Plant occurrences within the landscape followed the Poisson model, but with different 
densities in different strata. Four different strata were assumed to be present in the landscape, 
each with the same area proportion, i.e. 25%. The stratum-level plant densities were 0.005, 0.008, 
0.011, and 0.014 plants m-2. Two subcases were distinguished: (a) stratum identifiers were 
available and the differences between strata could be accounted for, and (b) stratum identifiers 
were not available. Thus, Case IIb resembles Case IIa with regard to average plant density, but in 
IIb the density varies across the landscape in a way that cannot be utilized in the analysis. Case II 
was introduced to mimic more realistic plant populations, compared to the baseline. 
 

- Case III: This case is similar to Case II (incl. the subcases), but plant densities close to boundaries 
were different compared to the interior densities. The plant densities were doubled within a 10 
m wide zone on both sides along all stand boundaries. This implies that the average plant densities 
were higher in Case III compared to Case II. Case III was introduced for assessing the sensitivity of 
the proposed methods to more complicated situations, with dependencies between plot size and 
plant density. Other similar cases could have been analyzed as well, but our ambition was not to 
analyze all possible cases. Our focus was to generically address more complicated population 
structures, compared to Case I and Case II.    

Each simulated artificial landscape consisted of 500 square forest stands. For Case II and Case III each 
stand was assigned to a specific stratum. 

We used landscapes with three different stand sizes to study how the different methods’ ability to handle 
variable plot size would be affected by the proportion of divided plots, and thus the degree of size 
variability among the plots. The intuition is that small stands imply that a large proportion of the landscape 
area will be located close to boundaries and thus a large proportion of the plots will be divided, since all 
plots extending across stand boundaries were divided and only the larger subplots were retained in the 
analysis. The stand areas studied were (i) 0.15 ha  resulting in about 50% of the plots being divided 
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(denoted small stands), (ii) 0.7 ha resulting in about 25%  of the plots being divided  (denoted intermediate 
stands), and (iii) 4.8 ha resulting in about 10% divided plots (denoted large stands). Thus, the total area of 
the study landscape varied depending on stand size, but this does not affect the results of the analysis. 
For Case III, the 10 m boundary zones with higher plant densities corresponded to about 77%, 42% and 
17%, respectively, of the total landscape area for the three stand size types.  

As an illustration, Fig. 2 shows a part of a simulated landscape (Case III with large stands) with plant 
locations marked as circles.  

 

 

Figure 2. An example of a part of an artificial landscape with different plant densities in different stands 
(depending on what stratum a stand belongs to). The example shows Case III with large stands. Individual 
plants are displayed as circles. 

 

Thus, a large number of artificial landscapes with different stand sizes and plant occurrence patterns 
(according to the three cases) were constructed as a basis for subsequent sampling simulations to assess 
the performance of the different methods for handling variable plot size. The details of the sampling 
simulations are described separately, further down.      
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Empirical plant population data 

The Swedish NFI uses 0.25 m2 and 100 m2 circular plots for presence-absence registrations of forest floor 
vegetation (Fridman et al. 2014). In this study, the 100 m2 plots were used, since they are often divided 
between land-use categories or forest types, and for practical reasons presence-absence registrations are 
only conducted on one part of divided plots (the larger subplot). Moreover, due to disturbances or 
occurrence of substrates on which the target species cannot grow, such as rocks and boulders, the 
potential growing space of a species on a plot may be smaller than the nominal plot size; the extent of 
such areas is recorded on the plots. Forest floor vegetation is assessed every 10 years on permanent plots 
in the NFI (Fridman et al. 2014). The NFI data were used mainly for illustrating differences in estimates 
when the five methods for handling variable plot sizes were applied on real data. In this case, we could 
not compare the results with a true value, as in the case of artificial data. 

Data from the NFI were retrieved for the years 2011 to 2015 from two large regions within Sweden 
(regions 2 and 4 according to the NFI; Fig. 3) for the forest age class 20-60 years. Data for two species 
were included: Trientalis europaea (L.) and Melampyrum pratense (L.). A summary of the NFI data is 
provided in Table 1, displaying the number of plots in different size categories. It can be noted that 12% 
and 21% of the plots were divided in region 2 and 4, respectively, i.e. for these plots the plot size was 
smaller than the nominal 100 m2.  

 

Figure 3. A map of Sweden and the locations of the National Forest Inventory regions 2 and 4, which were 
selected for the study. 
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Table 1. Number of sample plots in different size classes in the two study regions 

Size class (m2) Region 2 Region 4 

0-19 13 10 

20-39 16 37 

40-59 23 90 

60-79 69 134 

80-99 78 201 

100 1409 1762 

Total 1608 2234 

 

 

Evaluating methods for handling variable plot size 

In standard application of presence-absence sampling the plot size needs to be fixed or otherwise the 
results will depend on the specific mix of plot sizes, which complicates the interpretation of results (cf. 
the modifiable areal unit problem, e.g. Jelinski and Wu (1996), in geography). In making use of frequency 
data, the state and change of frequencies are typically reported (for a given nominal plot size) or the 
frequencies are recomputed to plant density. To compute density from frequency, assuming that the plant 
locations follow a Poisson model, we note that the probability, p, that at least one plant will occur on a 
plot with size a is (e.g. Ståhl et al. 2017)  

𝑝𝑝 = 1 − 𝑒𝑒−𝑎𝑎𝑎𝑎              (1)    

where λ is the plant density. For a sample survey using n plots, p can be estimated as �̂�𝑝 = 𝑛𝑛−1 ∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑖𝑖 is an indicator variable that takes the value 1 if the species is present on plot i and 0 otherwise. 
Rearranging (1), we can estimate plant density from the proportion of plots with plant occurrences as (e.g. 
Ståhl et al. 2017)   

�̂�𝜆 = −
ln(1 − �̂�𝑝)

𝑎𝑎
             (2)  

From (2) it is clear that the plot size must be fixed or otherwise it is unclear how the estimation of plant 
density should be conducted.  

In this study we propose and evaluate five different methods for handling variable plot size in surveys with 
presence-absence registrations. The methods are:  

(i) Use the presence-absence data without correction and apply the nominal plot size in all 
computations, even if the actual average plot area is smaller due to, e.g., some of the plot 
being divided. This is our baseline approach in which no attempt is made to adjust for the 
effect of variable plot size. This method is denoted BASELINE. 
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(ii) A size threshold is implemented and all plots with a smaller size are discarded from the 

analysis, i.e. some plots (smaller than the nominal size) are removed from the dataset when 
this method is applied. Two different size thresholds were implemented in the study: (a) 90% 
and (b) 60% of the nominal plot size. This method is denoted THRESHOLD; the notation 
THRESHOLD90 is used for the size threshold 90% and the notation THRESHOLD60 for the 
threshold 60%. 

 
(iii) Plots with presences are included without correction regardless of plot size while a 

recalculation is made for plots with absences, if they are smaller than the nominal size, so 
that a plot may shift to being registered as a plot with presences. The intuition is that a plant 
of the target species might have occurred on the plot, if the plot would have had the full 
nominal size. The recalculation is based on the probability that at least one plant would occur 
on the missing plot area (i.e. the nominal area minus the actual area) under a Poisson model 
assumption, estimated using plots with the nominal size only. A random number is selected 
for determining whether or not the registration for a plot should change from absence to 
presence. This method is denoted RECALCULATION.    
 

(iv) The plots are allocated to different size classes, for which separate analyses are made. Thus a 
plant density estimate is obtained from each size category of plots and these estimates are 
then combined through assigning to each estimate a weight inversely proportional to the vari-
ance of the corresponding estimator. Our plot size categories had 25% intervals, i.e. the plot 
size categories were 100%, 75-99%, 50-74%, and 25-49% of the nominal plot size; no plots 
were smaller than 25% of the nominal plot size. This method is denoted CLASSWISE. 

 
(v) Regression analysis was applied, using a model specification where plot size is included as a 

predictor variable and plant density is a parameter that is estimated. This method is denoted 
REGRESSION. 

In the following more details about the different methods are provided. While the methods BASELINE and 
THRESHOLD should be straightforward to understand from the previous short description, the other 
methods require further explanation.  

The idea behind RECALCULATION is to change some plots from being registered as “absence” to being 
registered as “presence”, with regard to the target species, if they are smaller than the nominal plot size. 
The reason is that a larger plot has greater probability for the species to be present. The probability that 
at least one plant of the target species occurs if a plot (with a size smaller than the nominal) is enlarged is 
𝑝𝑝 = 1 − 𝑒𝑒−𝑎𝑎𝜆𝜆 , with the same notation as previously and with 𝑧𝑧 being the missing area. In this case 
the density, λ, was estimated from the subset of plots which had the nominal plot size. Following this, a 
uniformly distributed random number between 0 and 1 was drawn and a plot registered as an “absence 
plot” was changed to a “presence plot” if the random number was smaller than 𝑝𝑝 . The intuition is that 
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a small “missing” area implies a low probability of change from absence to presence whereas a large 
“missing” area implies a greater probability of change.   

With the CLASSWISE method the sample plots were allocated to separate size classes and separate 
calculation of plant density according to Eq. 2 was made for each class, assuming that the plot area 
corresponded to the size of plots at the midpoint of the class. In case fewer than 5 observations were 
assigned to a specific class that class was discarded from the analysis. Using categories with at least 5 
observations a weighted average plant density was computed, where the weights were chosen inversely 
proportional to the estimated approximate variance of the density estimator. The approximate variance 
obtained through Taylor linearization is (Ståhl et al. 2017) 

𝑉𝑉��̂�𝜆�  =  
𝑝𝑝

𝑛𝑛𝑎𝑎2(1 − 𝑝𝑝)  =  
1 − 𝑒𝑒−𝑎𝑎𝑎𝑎

𝑛𝑛𝑎𝑎2𝑒𝑒−𝑎𝑎𝑎𝑎
              (3) 

and a variance estimator is obtained by inserting an estimated λ or 𝑝𝑝 in Eq. 3, based on empirical data. 

In the REGRESSION method, estimation of plant density, 𝜆𝜆, is regarded as a generalized linear model 
(GLM) problem, where the response variable  
𝑌𝑌𝑖𝑖 = 1 − 𝐼𝐼𝑖𝑖  and thus equals 0 if the species is present on plot 𝑖𝑖 and 1 otherwise, and the predictor variable 
𝑎𝑎𝑖𝑖  is the size of the 𝑖𝑖th plot. A GLM is constructed around a linear predictor 𝜂𝜂𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑖𝑖, and a link 
function 𝑔𝑔 that describes the relationship between the mean, 𝜇𝜇𝑖𝑖, of the response variable and the linear 
predictor is selected, 

𝜂𝜂𝑖𝑖 = 𝑔𝑔(𝜇𝜇𝑖𝑖);  

see, e.g., Myers et al. (2002, Section 5.2). The expected response may now be written as 𝜇𝜇𝑖𝑖 = 𝑔𝑔−1(𝜂𝜂𝑖𝑖) =
𝑔𝑔−1(𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑖𝑖), where 𝑔𝑔−1 is the inverse of the link function 𝑔𝑔. In the case of a homogeneous Poisson 
point process, the mean of 𝑌𝑌𝑖𝑖  is 𝜇𝜇𝑖𝑖 = 𝑒𝑒−𝑎𝑎𝑎𝑎𝑖𝑖. If 𝑔𝑔 is the natural logarithm function, 𝛽𝛽0 = 0, and 𝛽𝛽1 = −𝜆𝜆, 
then 𝑔𝑔−1(𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑖𝑖) = 𝑒𝑒−𝑎𝑎𝑎𝑎𝑖𝑖 . Thus, handling of different plot sizes can be treated as a GLM with a 
logarithmic link function, where plot size is included as a predictor variable and plant density is the model 
parameter to be estimated. By, e.g., Myers et al. (2002, Section 5.3), the estimator of the model parameter 
is found by solving the likelihood score equation, which in our setting can be expressed as 

�
(𝑌𝑌𝑖𝑖 − 𝑒𝑒−𝑎𝑎𝑎𝑎𝑖𝑖)𝑎𝑎𝑖𝑖

1 − 𝑒𝑒−𝑎𝑎𝑎𝑎𝑖𝑖
= 0.

𝑛𝑛

𝑖𝑖=1

                (4)  

Let 𝑌𝑌�  be the sample mean of 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛 . If all plot sizes are equal to 𝑎𝑎, then the solution of the above 
equation can be written as �̂�𝜆 = −𝑎𝑎−1 ln𝑌𝑌�, i.e., it coincides with the estimator (2). If the plot sizes are not 
equally large, then there is no explicit solution to equation (4), but it can be solved numerically using 
standard software for GLMs. From a general expression for the asymptotic variance-covariance matrix of 
a GLM estimator in Myers et al. (2002, p. 166), it follows that the asymptotic variance of the GLM 
estimator �̂�𝜆 can be written as 
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𝑉𝑉��̂�𝜆� = ��
𝑎𝑎𝑖𝑖2𝑒𝑒−𝑎𝑎𝑎𝑎𝑖𝑖

1 − 𝑒𝑒−𝑎𝑎𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
−1

.                  (5)  

If all plot sizes equal 𝑎𝑎, then (5) coincides with (3). 

We also address change estimation between two arbitrary time points, t2 and t1; the indices 2 and 1 are 
introduced to distinguish between the two time points. As in Ståhl et al. (2017) we assume the following: 
At time point 1, the locations of plants follow a homogeneous Poisson point process Λ1 with density λ1. In 
the time interval between t1 and t2, each existing plant from time point t1 has probability 𝜋𝜋 of surviving, 
independently of other plants, implying that the plants retained constitute a homogeneous Poisson 
process 𝛬𝛬1∗  with density 𝜆𝜆1∗ = 𝜋𝜋𝜆𝜆1 (see, e.g., Cressie 1991). At t2, it is assumed that the locations of plants 
follow the superposition of two independent processes,  𝛬𝛬1∗  and 𝛬𝛬2∗ , where the latter  is a homogeneous 
Poisson point process of newly regenerated plants with density 𝜆𝜆2∗ . This implies that the locations of plants 
at time point t2 follow a homogeneous Poisson point process Λ2 with density 𝜆𝜆2 = 𝜆𝜆1∗ + 𝜆𝜆2∗  (see, e.g., 
Cressie 1991). Let 𝜆𝜆3 = (1 − 𝜋𝜋)𝜆𝜆1. Ståhl et al. (2017) derived the following probabilities for an individual 
permanent plot of size 𝑎𝑎𝑖𝑖, 

 
𝜋𝜋00𝑖𝑖 = 𝑃𝑃(absence of plants at both time points) = 𝑒𝑒−𝑎𝑎𝑖𝑖(𝑎𝑎2+𝑎𝑎3),         
𝜋𝜋11𝑖𝑖 = 𝑃𝑃(presence of plants at both time points) = 1 − 𝑒𝑒−𝑎𝑎𝑖𝑖𝑎𝑎1 − 𝑒𝑒−𝑎𝑎𝑖𝑖𝑎𝑎2 + 𝑒𝑒−𝑎𝑎𝑖𝑖(𝑎𝑎2+𝑎𝑎3),            
𝜋𝜋01𝑖𝑖 = 𝑃𝑃(absence at time point 1 and presence at time point 2) = 𝑒𝑒−𝑎𝑎𝑖𝑖𝑎𝑎1 − 𝑒𝑒−𝑎𝑎𝑖𝑖(𝑎𝑎2+𝑎𝑎3),    
𝜋𝜋10𝑖𝑖 = 𝑃𝑃(presence at time point 1 and absence at time point 2) = 𝑒𝑒−𝑎𝑎𝑖𝑖𝑎𝑎2 − 𝑒𝑒−𝑎𝑎𝑖𝑖(𝑎𝑎2+𝑎𝑎3).        
 

Assume that we have presence-absence data from 𝑛𝑛 permanent field plots of sizes 𝑎𝑎𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛, i.e., 
each of the 𝑛𝑛 sample plots from time point 1 are revisited at time point 2. Define 𝐼𝐼𝑟𝑟𝑟𝑟𝑖𝑖, where 𝑟𝑟, 𝑠𝑠 = 0, 1, 
and 𝑖𝑖 = 1, … ,𝑛𝑛,  such that for plot 𝑖𝑖:  𝐼𝐼00𝑖𝑖  equals 1 if the species is absent at both time points and 0 
otherwise; 𝐼𝐼11𝑖𝑖 equals 1 if the species is present at both time points and 0 otherwise; 𝐼𝐼01𝑖𝑖 equals 1 if the 
species is absent at t1 and present at t2; and 𝐼𝐼10𝑖𝑖 = 1 − 𝐼𝐼00𝑖𝑖 − 𝐼𝐼11𝑖𝑖 − 𝐼𝐼01𝑖𝑖. We estimate 𝝀𝝀 = (𝜆𝜆1,𝜆𝜆2,𝜆𝜆3)′ 
using maximum likelihood (see, e.g., Rao 1973), i.e., the maximum likelihood estimator is any 𝝀𝝀 =
(𝜆𝜆1,𝜆𝜆2,𝜆𝜆3)′ that maximizes the likelihood function 

𝐿𝐿(𝝀𝝀) = �𝜋𝜋00𝑖𝑖𝐼𝐼00𝑖𝑖𝜋𝜋11𝑖𝑖𝐼𝐼11𝑖𝑖𝜋𝜋01𝑖𝑖𝐼𝐼01𝑖𝑖𝜋𝜋10𝑖𝑖𝐼𝐼10𝑖𝑖
𝑛𝑛

𝑖𝑖=1

. 

For BASELINE, THRESHOLD, and RECALCULATION, the plot sizes were set to the nominal size for all plots 
not discarded in the analysis. Due to the rather poor performance of method CLASSWISE we did not 
consider it for change estimation. For the REGRESSION method, 𝑎𝑎𝑖𝑖  was always the actual size of the plot. 

Sampling simulation 

Sampling simulation was applied to evaluate the performance of the different methods for handling 
variable plot sizes in the artificial landscapes previously described. Circular sample plots with the nominal 
size 100 m2 (corresponding to the large plot size in the Swedish NFI; Fridman et al. 2014) were allocated 
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entirely at random across the study landscape. The sample size was always 500 plots, i.e. our intention 
was to mimic a survey with a fairly large sample size. On each of the sample plots a presence-absence 
assessment was conducted. If a plot was located at a stand boundary (cf. Fig 1) it was divided, and only 
the largest sub-plot was retained and used in the calculations.  

The sampling simulations were conducted with 10,000 replications for each of the five methods and each 
of the cases (Cases I-III, with subcases) and in each replication plant density, λ, was estimated. For each 
subcase and method, we used the 10,000 estimates of λ for estimating bias, standard deviation (S.d.), and 
root mean square error (RMSE) of the plant density estimator.  

It should be noted that the true value of the plant density may vary slightly from one artificial landscape 
to the next. Therefore, all values of bias, standard deviation, and RMSE are given as percentages of the 
true density. That is  

Bias� = 100
Bias�(�̂�𝜆)

𝜆𝜆
, S.d.� = 100

S.d.� (�̂�𝜆)
𝜆𝜆

,         and        RMSE� = 100
RMSE� (�̂�𝜆)

𝜆𝜆
, 

where �̂�𝜆 denotes estimated plant density (for a specific subcase and method). All computations were 
made using the software R (R Core Team 2018)  

 

Calculations based on the National Forest Inventory data 

Using the National Forest Inventory data we computed state and change densities for each of the five 
methods by region and species. In this case no true densities were available and this part of the study only 
focused on assessing differences in numerical values between the different methods. The computations 
were made, following the previously described estimators for the five different methods, using the 
software R (R Core Team 2018). The dataset reference is Ståhl et al. (2019). 

 

Results 

Sampling simulations 

In Figure 4, the bias of the estimators corresponding to the different methods are presented for the 
populations with small stands (50% divided plots). In Figures 5 and 6 the corresponding results for 
intermediate and large stands, respectively, are presented (25% and 10% divided plots).  
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Figure 4. Bias (%) of the density estimators in the case of small stands (50% divided plots). In Case I the 
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case II and 
Case III the densities vary between different strata (in subcase a stratum identifiers were known and could 
be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the densities were 
the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone along 
all stand boundaries.    
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Figure 5. Bias (%) of the density estimators in the case of intermediate stands (25% divided plots). In Case 
I the plant populations follow a homogeneous Poisson process across the entire landscape, and in Case II 
and Case III the densities vary between different strata (in subcase a stratum identifiers were known and 
could be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the densities 
were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone 
along all stand boundaries.    
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Figure 6. Bias (%) of the density estimators in the case of large stands (10% divided plots). In Case I the 
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case II and 
Case III the densities vary between different strata (in subcase a stratum identifiers were known and could 
be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the densities were 
the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone along 
all stand boundaries.    
 
 
The BASELINE method often resulted in fairly large bias. THRESHOLD90 in most cases lead to an 
improvement whereas THRESHOLD60 typically resulted in larger bias than THRESHOLD90. The 
RECALCULATION method consistently was among the methods leading to the smallest absolute bias 
whereas the CLASSWISE method led to large bias in most cases.   

Overall, the REGRESSION method performed best (in terms of small absolute bias). The second best 
method was RECALCULATION and the third best THRESHOLD90.  

Studying the different methods across different artificial landscapes, the most difficult cases (i.e. the ones 
where large bias occurred) were the landscapes where the population densities varied between different 
strata, and no information was available to handle stratum membership in the estimation (Cases IIb and 
IIIb). The cases with higher densities along stand boundaries (Cases IIIa and IIIb) also led to severely biased 
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estimators.  In case stratum membership indicators were available and the densities were even within the 
stands (Case IIa), varying densities between strata did not, however, incur severe bias. 

Full results for bias, standard deviation, and root mean square error (RMSE) are given in Appendix A. No 
major differences in standard deviations were obtained for the different methods, exept for CLASSWISE 
which typically resulted in larger standard deviations of the estimators compared to the other methods. 

Turning to change estimation, below we present results for a case where the population densities at 
time point two were 40% larger than at time point one. Similar results were obtained when the change 
was 15%; results for the latter case are presented in Appendix B. 

In Figures 7, 8 and 9 change estimation results are shown for small, intermediate, and large stands, 
respectively. 

Figure 7. Bias (%) of the estimators of change in the case of small stands and 𝜆𝜆2 = 1.4𝜆𝜆1, i.e. the density 
at time point two was 40% higher than the density at time point 1. In Case I the plant populations follow 
a homogeneous Poisson process across the entire landscape, and in Case II and Case III the densities vary 
between different strata (in subcase a stratum identifiers were known and could be utilized in estimators, 
whereas identifiers were not available in subcase b). In Case II the densities were the same in all parts of a 
stratum whereas in Case III the densities were doubled in a 10 m wide zone along all stand boundaries.    
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Figure 8. Bias (%) of the estimators of change in the case of intermediate stands and 𝜆𝜆2 = 1.4𝜆𝜆1, i.e. the 
density at time point two was 40% higher than the density at time point 1. In Case I the plant populations 
follow a homogeneous Poisson process across the entire landscape, and in Case II and Case III the 
densities vary between different strata (in subcase a stratum identifiers were known and could be 
utilized in estimators, whereas identifiers were not available in subcase b). In Case II the densities were 
the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone 
along all stand boundaries.    

 

  



18 
 

Figure 9. Bias (%) of the estimators of change in the case of large stands and 𝜆𝜆2 = 1.4𝜆𝜆1, i.e. the density 
at time point two was 40% higher than the density at time point 1. In Case I the plant populations follow 
a homogeneous Poisson process across the entire landscape, and in Case II and Case III the densities vary 
between different strata (in subcase a stratum identifiers were known and could be utilized in estimators, 
whereas identifiers were not available in subcase b). In Case II the densities were the same in all parts of a 
stratum whereas in Case III the densities were doubled in a 10 m wide zone along all stand boundaries.    
 
 
The change estimation results turned out to be similar to the state estimation results. The regression 
method performed best, mostly followed by RECALCULATION and THRESHOLD90. When densities varied 
between strata and stratum membership was not known, large biases were obtained. 

The numerical results based on NFI data are presented in Tables 2 and 3, for Trientalis europaea (L.) and 
Melampyrum pretense (L.), for two different NFI regions (cf. Fig 3). 
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Table 2. Density estimates (plants per 100 m2) for Trientalis europaea (L.) based on NFI data 

Method Region 2 Region 4 
BASELINE 0.802 0.578 

THRESHOLD.90 0.811 0.584 

THRESHOLD.60 0.809 0.582 

RECALCULATION 0.837 0.618 

CLASSWISE 0.827 0.614 

REGRESSION 0.836 0.618 

 

 

Table 3. Density estimates (plants per 100 m2) for Melampyrum pratense (L.) based on NFI data 

Method Region 2 Region 4 
BASELINE 0.934 0.500 

THRESHOLD.90 0.940 0.505 

THRESHOLD.60 0.948 0.506 

RECALCULATION 0.956 0.525 

CLASSWISE 0.962 0.519 

REGRESSION 0.974 0.532 

 

The differences in results between the methods appear to be in the same order of magnitude as those 
obtained from the simulation studies in artificial populations. The regression method consistently 
resulted in the highest density estimates.  

 

Discussion 

In statistically sound sample surveys of forests or landscapes the sampling units should be selected 
randomly in order to ensure unbiased estimators of the studied population parameters (e.g. Gregoire and 
Valentine 2008). Important examples of such surveys are the national forest inventories that are being 
conducted in a large number of countries worldwide (Tomppo et al. 2010). When sample plots are 
randomly allocated in the landscape some will fall across boundaries between different land use or land 
cover categories. In such cases plots are often divided, since results are normally required to be presented 
separately by different land use or land cover categories. Intuitive approaches, such as purposively moving 
plots away from boundaries in order to avoid plot divisions typically lead to biased estimates since 
conditions at edges differ from interior conditions (Harper et al., 2005; Esseen et al. 2016). Several 
methods have been developed for coping with boundary plots in monitoring programmes.  For some types 
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of variables bias incurred by plot boundary issues can be avoided by applying special field protocols for 
such plots (e.g. Ducey et al. 2001), where features, such as trees, on plots are double counted on parts of 
a plot located close to a boundary. Alternatively, estimators that take subplot size into account can be 
applied (e.g. Fridman et al. 2014). However, none of these opportunities are available for presence-
absence registrations and thus there is currently a gap in the methodological tool-kit available for 
analyzing data from forest and landscape surveys. The current study offers methods to fill this gap.  

In this study we assume that plots at boundaries are divided and presence-absence registrations are only 
conducted on the larger subplot. Other reasons for variable plot size exist as well, such as accounting for 
disturbances on plots (e.g. large rocks) during the calculations or when merging data from several surveys 
into a single analysis (e.g. Grafström et al., 2019).     

Studying the simulation results for state estimation it is clear that the BASELINE method, i.e. treating the 
plots as if they all had the nominal size, leads to considerable negative bias, especially in the case of a high 
proportion divided plots. For example, with 25% of the plots being divided the density was 
underestimated by about 5 to 18%. However, with a small proportion of divided plots (<10%) the bias of 
the BASELINE method was mostly moderate.  The baseline method also consistently resulted in the lowest 
density estimates based on the empirical NFI data. 

The THRESHOLD method can be seen as a straightforward modification of the BASELINE method, in which 
all plots smaller than a certain proportion of the nominal size are discarded. When a 90% size threshold 
was used (i.e. all plots smaller than 90% of the nominal size were discarded), substantial improvements 
in terms of reduced bias were obtained in most simulated populations, although at the expense of a 
slightly increased standard deviation due to a smaller number of plots available for the density estimation. 
With a 60% size threshold (i.e. all plots smaller than 60% of the nominal size were discarded) the bias was 
larger, which indicates that the size threshold should probably not deviate too far from 100% when this 
method is applied. However, the results from empirical data were somewhat inconclusive as 
THRESHOLD90 sometimes resulted in lower density estimates than THRESHOLD60. Overall, the 
THRESHOLD method can be recommended in case a simple and straightforward approach to handling the 
problem of variable plot sizes is required. It is also a straightforward adjustment method for cases when 
frequencies are not transformed to plant density estimates. However, it should be noted that the 
THRESHOLD method is prone to substantial bias in case plant densities close to patch boundaries differ 
from interior densities. This was manifested by large negative biases when the THRESHOLD method was 
used in our simulated Case III populations. The reason is that plots at patch boundaries would often be 
discarded due to being divided and such plots (in the Case III populations) normally had higher plant 
densities. Thus, this method should be used with caution in case it can be expected that interior and 
boundary conditions differ with regard to plant density. 

The RECALCULATION method in most cases led to good results in the simulation, mostly somewhat better 
than the THRESHOLD method in terms of absolute bias. Based on empirical data it typically resulted in 
slightly larger values than the THRESHOLD method. Thus, the RECALCULATION method can also be 
recommended in applications, although it is slightly more complicated to apply compared to the 
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THRESHOLD method. It would also be a good alternative to the THRESHOLD method in cases when 
frequencies are not transformed to densities. 

The CLASSWISE method performed somewhat worse than the THRESHOLD and RECALCULATION methods. 
The reason is probably the weighting procedure involved, which requires variance estimates to be 
computed for the density estimates from the different classes. It is known from other studies (Grafström 
et al. 2019) that estimators and their corresponding variance estimators are correlated, a phenomenon 
that might have added to the bias in this study. To avoid this type of additional bias, the sample size in 
each class must be large, which is a restriction in applications and the method cannot be recommended 
in the case of surveys with small sample sizes. Moreover, the standard deviation of estimates based on 
the CLASSWISE method was high compared to the other methods.  

Although theoretically more complicated than the other methods, the REGRESSION method typically led 
to the best results in the simulations in terms of avoiding bias in the density estimators. Standard 
deviations of the REGRESSION method normally were comparable to the best of the other methods. It 
also consistently lead to the largest density estimates based on empirical data. An advantage of this 
method is that it has a strict theoretical foundation (e.g. Myers et al. 2002). Further, the application of 
REGRESSION is simplified by straightforward access to statistical software, where the proposed GLM 
regression technique (Nelder and Baker 1972) is implemented.  

Thus, the REGRESSION method is our preferred choice for density estimation using data with variable plot 
sizes, at least in case the analyst is willing to invest some additional time in the analysis. Our second best 
choice is the RECALCULATION method, which requires little additional complication during the analyses. 
Our third best method, THRESHOLD, can be applied at very minimal additional burden during the analysis. 

The study revealed the importance of having access to stratum information when plant population 
densities vary among strata, which is typically the case (e.g., Roberts and Gilliam 1995). Comparisons in 
this regard involved the Case IIa population vs the Case IIb population, and the Case IIIa vs the Case IIIb 
populations. In the a-cases, stratum identifiers were assumed to be available and could be utilized in the 
estimators, i.e. stratum level estimates were first computed and then aggregated to estimates for the 
entire study area. In the b-cases stratum identifiers were not available. For those cases, all methods 
performed rather poorly, in terms of negative bias. The reason for the negative bias is the non-linear 
estimator (Eq. 2). In contrast, many of the methods worked well when stratum identifiers were available. 
We suggest that using stratified approaches to density estimation based on presence-absence data is an 
interesting area for further study. Stratification may be based on land use or land cover categories, or 
more advanced schemes employing several sources of information available wall-to-wall for the study 
area (e.g. Saarela et al. 2015). Further, an interesting development of the REGRESSION method would be 
to include such information as additional predictor variables. 

The results from the change estimation study followed the general patterns obtained from the state 
estimation study. Substantial bias of the change estimators were obtained for several methods, especially 
if stratum membership was not known. Varying the level of change (from 40% to 15%) did not lead to any 
major changes in the result patterns. 
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The motivation for including the Case III artificial populations was to generically study complicated cases 
with dependencies between plant density and plot size. As expected, it was difficult to find an efficient 
method to handle variable plot size in this case. While we could have evaluated alternative cases with 
decreased densities along stand boundaries as well, our intention was, however, to generically address 
this type of problem rather than numerically evaluating a large number of different alternatives.  

It should be noted that our methods and results are based on the assumption that plants are located 
according to a Poisson process (e.g. Greig-Smith 1983; Bonham 2013). While this may only occasionally 
be the case in real life, this model assumption still is often used in studies of this kind (ibid.) due to the 
lack of straightforward alternatives. The Poisson process is an important reference model for modelling 
plant occurrences (e.g. Bonham 2013), but is not useful for modelling, e.g., clustered patterns of plant 
occurrences (e.g. Hwang & He 2011). In a parallel study (Ekström et al. 2019), we develop new theory 
for linking presence-absence data with plant density under spatial cluster models of Neyman-Scott type. 

Special caution is needed when applying the methods proposed in this study to common species 
inventoried in large plots or uncommon species inventoried in small plots. As described in Ståhl et al. 
(2017) different real plant densities imply different optimal plot sizes, and when the plot sizes deviate 
largely from the optimal plot size the density estimates are very uncertain. This was the reason for our 
choice of plant densities in the simulation study.  
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APPENDIX A: Detailed state estimation results 

In Tables A1, A2 and A3 detailed results from the state estimation simulations are provided in terms of 
bias, standard deviation and root mean square error. (Since the tables are large they are presented on 
separate pages.) 
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Table A1. Bias (%), standard deviation (S.d. %), and RMSE (%) of the density estimators in the case of small stands 
(50% divided plots). In Case I the plant populations follow a homogeneous Poisson process across the entire 
landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum identifiers 
were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the 
densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone 
along all stand boundaries.    
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I (a) Bıas� -12.68 -0.62 -7.87 0.18 -11.01 0.14 
  S. d.�    6.65  9.03  7.24 8.19  31.09 7.63 
  RMSE�   14.32  9.05 10.69 8.19  32.98 7.63 
 (b) Bıas� -13.40 -0.60 -8.19 0.22 -1.99 0.20 
  S. d.�    5.24  7.30  5.79 6.61 13.59 6.08 
  RMSE�   14.39  7.33 10.03 6.61 13.74 6.08 
 (c) Bıas� -15.16 -0.47 -9.06 0.36 -0.68 0.17 
  S. d.�    4.73  7.20  5.40 6.48  6.12 5.68 
  RMSE�   15.88  7.22 10.55 6.49  6.16 5.68 
II (a) Bıas� -13.11 0.19 -7.78 1.02 -4.33 0.70 
  S. d.�    5.68 8.02  6.35 7.33  9.17 6.64 
  RMSE�   14.29 8.03 10.04 7.40 10.14 6.67 
 (b) Bıas� -17.83 -6.47 -13.21 -5.27 -7.75 -5.16 
  S. d.�    5.02  6.95   5.56  6.33 14.56  5.82 
  RMSE�   18.53  9.50  14.34  8.24 16.50  7.78 
III (a) Bıas� -16.13 -10.40 -11.96 -4.95* -8.24 -2.48 
  S. d.�    5.17   7.14   5.79 6.64*  6.86  6.20 
  RMSE�   16.93  12.61  13.29 8.28* 10.72  6.68 
 (b) Bıas� -23.49 -19.19 -20.24 -13.90 -14.23 -11.63 
  S. d.�    4.17   5.59   4.60   5.19   5.62   4.92 
  RMSE�   23.85  19.99  20.76  14.84  15.30  12.63 

* Value computed without one replicate that gave �̂�𝜆 = ∞. 
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Table A2. Bias (%), standard deviation (S.d. %), and RMSE (%) of the density estimators in the case of intermediate 
stands (25% divided plots). In Case I the plant populations follow a homogeneous Poisson process across the entire 
landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum identifiers 
were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the 
densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone 
along all stand boundaries.    
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I (a) Bıas� -5.85 -0.08 -3.67 0.24 -4.44 0.24 
  S. d.�   6.97  7.98  7.24 7.65 20.42 7.42 
  RMSE�   9.10  7.98  8.12 7.66 20.89 7.43 
 (b) Bıas� -6.49 -0.27 -4.05 0.10 -1.82 0.07 
  S. d.�   5.61  6.42  5.83 6.21 13.05 6.01 
  RMSE�   8.58  6.43  7.10 6.21 13.17 6.01 
 (c) Bıas� -7.34 -0.05 -4.31 0.36 -0.43 0.28 
  S. d.�   5.20  6.28  5.54 6.04  6.21 5.70 
  RMSE�   9.00  6.28  7.02 6.05  6.22 5.71 
II (a) Bıas� -5.91 0.61 -3.39 0.91 -2.89 0.79 
  S. d.�   5.99 7.04  6.30 6.75  7.21 6.46 
  RMSE�   8.42 7.07  7.15 6.81  7.76 6.50 
 (b) Bıas� -11.50 -5.97 -9.34 -5.45 -7.23 -5.42 
  S. d.�    5.25  6.10  5.49  5.85 12.41  5.63 
  RMSE�   12.64  8.54 10.84  7.99 14.36  7.81 
III (a) Bıas� -11.30 -12.74 -10.55 -7.42 -11.87 -5.76 
  S. d.�    5.44   5.91   5.62  5.87   5.96  5.87 
  RMSE�   12.54  14.05  11.96  9.46  13.28  8.22 
 (b) Bıas� -17.91 -19.22 -17.29 -14.21 -16.92 -12.88 
  S. d.�    4.51   4.95   4.67   4.89   6.36   4.84 
  RMSE�   18.47  19.85  17.91  15.03  18.08  13.76 
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Table A3. Bias (%), standard deviation (S.d. %), and RMSE (%) of the density estimators in the case of large stands 
(10% divided plots). In Case I the plant populations follow a homogeneous Poisson process across the entire 
landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum identifiers 
were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the 
densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone 
along all stand boundaries.    
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I (a) Bıas� -2.40 -0.21 -1.58 -0.03 -1.75 -0.05 
  S. d.�   6.99  7.36  7.09  7.26 10.35  7.16 
  RMSE�   7.39  7.36  7.26  7.26 10.50  7.16 
 (b) Bıas� -2.50 -0.06 -1.58 0.06 -0.66 0.05 
  S. d.�   5.71  6.06  5.80 5.95  6.02 5.87 
  RMSE�   6.23  6.06  6.02 5.95  6.05 5.87 
 (c) Bıas� -2.77 0.13 -1.60 0.27 -0.47 0.26 
  S. d.�   5.52 5.92  5.64 5.85  5.71 5.71 
  RMSE�   6.17 5.92  5.86 5.86  5.73 5.72 
II (a) Bıas� -1.88 0.66 -0.92 0.79 -4.24 0.74 
  S. d.�   6.20 6.57  6.30 6.49  9.38 6.38 
  RMSE�   6.48 6.60  6.36 6.53 10.30 6.42 
 (b) Bıas� -7.97 -5.82 -7.15 -5.60 -6.30 -5.61 
  S. d.�   5.37  5.67  5.45  5.62  5.69  5.52 
  RMSE�   9.61  8.12  8.99  7.93  8.48  7.87 
III (a) Bıas� -5.65 -7.16 -5.62 -4.29 -7.99 -3.62 
  S. d.�   5.87  6.02  5.93  6.04  6.31  6.05 
  RMSE�   8.15  9.35  8.17  7.41 10.18  7.05 
 (b) Bıas� -12.02 -13.39 -12.00 -10.68 -12.63 -10.15 
  S. d.�    5.02   5.15   5.06   5.17   5.21   5.16 
  RMSE�   13.03  14.34  13.02  11.87  13.66  11.38 
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Appendix B. Detailed change estimation results 

In Figures B1, B2, and B3 change estimation results are presented for the case where the population 
change in density between period 1 and period 2 was 15%. 

In Tables B1-B6, detailed results from the change estimation simulations are presented. 

 

 

 

Figure B1. Bias (%) of the estimators of change in the case of small stands and 𝜆𝜆2 = 1.15𝜆𝜆1. In Case I the 
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case II and 
Case III the densities vary between different strata (in subcase a stratum identifiers were known and could 
be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the densities were 
the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone along 
all stand boundaries.    
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Figure B2. Bias (%) of the estimators of change in the case of intermediate stands and 𝜆𝜆2 = 1.15𝜆𝜆1. In 
Case I the plant populations follow a homogeneous Poisson process across the entire landscape, and in 
Case II and Case III the densities vary between different strata (in subcase a stratum identifiers were known 
and could be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the 
densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m 
wide zone along all stand boundaries.    
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Figure B3. Bias (%) of the estimators of change in the case of large stands and 𝜆𝜆2 = 1.15𝜆𝜆1. In Case I the 
plant populations follow a homogeneous Poisson process across the entire landscape, and in Case II and 
Case III the densities vary between different strata (in subcase a stratum identifiers were known and could 
be utilized in estimators, whereas identifiers were not available in subcase b). In Case II the densities were 
the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m wide zone along 
all stand boundaries.    
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Table B1. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of small stands (50% 
divided plots). Here, 𝜆𝜆2 = 1.15𝜆𝜆1. In Case I the plant populations follow a homogeneous Poisson process across the 
entire landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum 
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In 
Case II the densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m 
wide zone along all stand boundaries.    
 

    Method 
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I (a) �̂�𝜆1 Bıas� -12.77 -0.84 -8.03  0.09  0.02 
   S. d.�    6.72  9.17  7.38  8.32  7.72 
   RMSE�   14.43  9.21 10.91  8.32  7.72 
  �̂�𝜆2 Bıas� -12.85 -0.73 -8.02  0.13  0.07 
   S. d.�    6.39  8.74  7.06  7.87  7.37 
   RMSE�   14.35  8.77 10.69  7.87  7.37 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -13.38 -0.01 -7.96  0.40  0.37 
   S. d.�   50.87 70.02 56.37 64.82 58.96 
   RMSE�   52.60 70.01 56.93 64.82 58.95 
 (b) �̂�𝜆1 Bıas� -13.39 -0.67 -8.24  0.22  0.20 
   S. d.�    5.40  7.59  5.96  6.83  6.28 
   RMSE�   14.44  7.62 10.17  6.83  6.29 
  �̂�𝜆2 Bıas� -13.65 -0.69 -8.36  0.22  0.19 
   S. d.�    5.19  7.33  5.78  6.59  6.08 
   RMSE�   14.61  7.37 10.16  6.60  6.08 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -15.38 -0.87 -9.19  0.22  0.09 
   S. d.�   42.56 61.99 48.09 56.16 50.36 
   RMSE�   45.25 62.00 48.96 56.16 50.36 
 (c) �̂�𝜆1 Bıas� -15.04 -0.49  -8.94  0.47  0.30 
   S. d.�    4.86  7.20   5.51  6.60  5.81 
   RMSE�   15.80  7.22  10.50  6.61  5.81 
  �̂�𝜆2 Bıas� -15.59 -0.40  -9.17  0.53  0.31 
   S. d.�    4.86  7.36   5.54  6.74  5.86 
   RMSE�   16.33  7.37  10.71  6.76  5.87 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -19.26  0.21 -10.69  0.92  0.36 
   S. d.�   41.46 65.41  48.64 61.12 51.34 
   RMSE�   45.71 65.41  49.79 61.13 51.34 
II (a) �̂�𝜆1 Bıas� -13.02   0.48  -7.63   1.19   0.82 
   S. d.�    5.70   8.13   6.34   7.34   6.65 
   RMSE�   14.21   8.14   9.92   7.44   6.70 
  �̂�𝜆2 Bıas� -13.25   0.50  -7.73   1.29   0.86 
   S. d.�    5.46   7.96   6.15   7.16   6.43 
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    Method 
Case Subcase Estimator 
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   RMSE�   14.33   7.97   9.87   7.28   6.48 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -14.81   0.61  -8.34   1.94   1.18 
   S. d.�   45.48  67.09  51.72  62.70  54.21 
   RMSE�   47.83  67.09  52.39  62.73  54.22 
 (b) �̂�𝜆1 Bıas� -17.78  -6.30 -13.12  -5.14  -5.08 
   S. d.�    5.08   7.06   5.61   6.45   5.89 
   RMSE�   18.49   9.46  14.27   8.25   7.78 
  �̂�𝜆2 Bıas� -18.61  -7.22 -13.93  -5.94  -5.84 
   S. d.�    4.78   6.71   5.31   6.04   5.56 
   RMSE�   19.22   9.86  14.91   8.47   8.06 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -24.20 -13.37 -19.34 -11.28 -10.90 
   S. d.�   39.35  55.55  43.99  52.62  46.27 
   RMSE�   46.19  57.13  48.05  53.82  47.54 
III (a) �̂�𝜆1 Bıas� -15.98 -10.14 -11.76  -4.64  -2.48 
   S. d.�    5.25   7.94   5.96   7.93   6.28 
   RMSE�   16.82  12.88  13.19   9.19   6.76 
  �̂�𝜆2 Bıas� -16.37 -10.22 -12.04  -4.63  -2.57 
   S. d.�    5.37   9.62   6.10  11.26   6.51 
   RMSE�   17.23  14.03  13.50  12.18   7.00 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -18.94 -10.74 -13.90  -4.56  -3.18 
   S. d.�   45.75  82.40  52.73  94.74  55.24 
   RMSE�   49.51  83.10  54.52  94.84  55.33 
 (b) �̂�𝜆1 Bıas� -23.39 -19.02 -20.09 -13.73 -11.64 
   S. d.�    4.20   5.63   4.68   5.24   4.93 
   RMSE�   23.76  19.83  20.63  14.70  12.64 
  �̂�𝜆2 Bıas� -24.69 -20.42 -21.46 -15.22 -12.97 
   S. d.�    4.14   5.53   4.56   5.18   4.86 
   RMSE�   25.04  21.15  21.94  16.08  13.85 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -33.39 -29.74 -30.64 -25.17 -21.86 
   S. d.�   34.44  45.92  38.31  44.37  40.42 
   RMSE�   47.97  54.70  49.06  51.01  45.95 
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Table B2. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of intermediate stands 
(25% divided plots). Here, 𝜆𝜆2 = 1.15𝜆𝜆1. In Case I the plant populations follow a homogeneous Poisson process 
across the entire landscape, and in Case II and Case III the densities vary between different strata (in subcase a 
stratum identifiers were known and could be utilized in estimators, whereas identifiers were not available in 
subcase b). In Case II the densities were the same in all parts of a stratum whereas in Case III the densities were 
doubled in a 10 m wide zone along all stand boundaries.    
 

    Method 
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  B
AS

EL
IN

E 

  T
HR

ES
HO

LD
90

 

  T
HR

ES
HO

LD
60

 

  R
EC

AL
CU

LA
TI

O
N

 

  R
EG

RE
SS

IO
N

 

I (a) �̂�𝜆1 Bıas� -5.98 -0.25 -3.81  0.11  0.09 
   S. d.�   7.03  8.04  7.31  7.70  7.50 
   RMSE�   9.23  8.05  8.24  7.70  7.50 
  �̂�𝜆2 Bıas� -5.98 -0.20 -3.78  0.15  0.17 
   S. d.�   6.75  7.68  7.00  7.39  7.19 
   RMSE�   9.01  7.68  7.96  7.39  7.20 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -5.96  0.12 -3.58  0.44  0.65 
   S. d.�  53.53 61.44 55.70 59.95 57.28 
   RMSE�  53.86 61.44 55.81 59.95 57.28 
 (b) �̂�𝜆1 Bıas� -6.47 -0.29 -4.04  0.14  0.07 
   S. d.�   5.59  6.48  5.84  6.28  6.00 
   RMSE�   8.55  6.49  7.11  6.28  6.00 
  �̂�𝜆2 Bıas� -6.54 -0.21 -4.06  0.19  0.15 
   S. d.�   5.45  6.30  5.70  6.09  5.85 
   RMSE�   8.51  6.31  7.00  6.09  5.85 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -7.01  0.35 -4.17  0.50  0.69 
   S. d.�  45.47 53.63 47.89 52.42 49.24 
   RMSE�  46.01 53.63 48.07 52.42 49.24 
 (c) �̂�𝜆1 Bıas� -7.37 -0.06 -4.37  0.33  0.25 
   S. d.�   5.21  6.32  5.56  6.07  5.70 
   RMSE�   9.03  6.32  7.07  6.08  5.71 
  �̂�𝜆2 Bıas� -7.70 -0.03 -4.50  0.36  0.28 
   S. d.�   5.39  6.54  5.75  6.35  5.92 
   RMSE�   9.40  6.54  7.30  6.36  5.93 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -9.88  0.17 -5.33  0.59  0.48 
   S. d.�  46.54 58.08 50.38 56.83 51.81 
   RMSE�  47.58 58.08 50.66 56.83 51.81 
II (a) �̂�𝜆1 Bıas�  -5.91   0.61  -3.39   0.92   0.79 
   S. d.�    5.98   6.98   6.25   6.73   6.43 
   RMSE�    8.41   7.00   7.11   6.79   6.47 
  �̂�𝜆2 Bıas�  -5.96   0.78  -3.33   1.11   0.91 
   S. d.�    5.87   6.93   6.18   6.68   6.32 
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    Method 
Case Subcase Estimator 
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   RMSE�    8.36   6.97   7.02   6.77   6.39 
  �̂�𝜆2 − �̂�𝜆1 Bıas�  -6.30   1.98  -2.94   2.37   1.75 
   S. d.�   48.76  58.21  51.55  57.12  53.01 
   RMSE�   49.16  58.24  51.63  57.17  53.04 
 (b) �̂�𝜆1 Bıas� -11.47  -5.94  -9.32  -5.43  -5.39 
   S. d.�    5.23   6.05   5.45   5.82   5.60 
   RMSE�   12.61   8.48  10.79   7.96   7.77 
  �̂�𝜆2 Bıas� -12.27  -6.69 -10.07  -6.15  -6.12 
   S. d.�    5.04   5.85   5.29   5.64   5.40 
   RMSE�   13.26   8.88  11.37   8.34   8.16 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -17.55 -11.68 -15.06 -10.96 -10.99 
   S. d.�   41.50  48.42  43.49  47.47  44.79 
   RMSE�   45.05  49.81  46.02  48.72  46.11 
III (a) �̂�𝜆1 Bıas� -11.28 -12.68 -10.51  -7.41  -5.95 
   S. d.�    5.47   5.97   5.67   5.89   5.88 
   RMSE�   12.54  14.02  11.95   9.46   8.36 
  �̂�𝜆2 Bıas� -11.77 -13.18 -11.01  -8.01  -6.45 
   S. d.�    5.48   5.95   5.67   5.91   5.90 
   RMSE�   12.98  14.46  12.38   9.96   8.74 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -15.00 -16.49 -14.31 -12.04  -9.81 
   S. d.�   45.96  49.87  47.45  49.58  48.88 
   RMSE�   48.35  52.52  49.55  51.02  49.85 
 (b) �̂�𝜆1 Bıas� -17.90 -19.20 -17.27 -14.21 -13.02 
   S. d.�    4.60   5.04   4.76   4.98   4.92 
   RMSE�   18.48  19.85  17.91  15.06  13.92 
  �̂�𝜆2 Bıas� -19.18 -20.48 -18.58 -15.64 -14.38 
   S. d.�    4.45   4.87   4.60   4.80   4.77 
   RMSE�   19.69  21.05  19.14  16.36  15.15 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -27.70 -29.05 -27.30 -25.16 -23.43 
   S. d.�   37.04  40.14  38.15  40.47  39.27 
   RMSE�   46.25  49.55  46.91  47.65  45.73 
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Table B3. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of large stands (10% 
divided plots). Here, 𝜆𝜆2 = 1.15𝜆𝜆1. In Case I the plant populations follow a homogeneous Poisson process across the 
entire landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum 
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In 
Case II the densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m 
wide zone along all stand boundaries.    
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I (a) �̂�𝜆1 Bıas� -2.15  0.06 -1.32  0.20  0.20 
   S. d.�   7.07  7.45  7.17  7.34  7.24 
   RMSE�   7.39  7.45  7.29  7.35  7.24 
  �̂�𝜆2 Bıas� -2.22  0.03 -1.38  0.16  0.15 
   S. d.�   6.79  7.17  6.88  7.07  6.96 
   RMSE�   7.15  7.17  7.01  7.07  6.96 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -2.71 -0.19 -1.77 -0.15 -0.15 
   S. d.�  54.09 57.48 54.96 56.86 55.54 
   RMSE�  54.15 57.48 54.99 56.86 55.53 
 (b) �̂�𝜆1 Bıas� -2.40  0.01 -1.46  0.18  0.16 
   S. d.�   5.77  6.11  5.85  6.02  5.92 
   RMSE�   6.24  6.11  6.03  6.02  5.92 
  �̂�𝜆2 Bıas� -2.39  0.07 -1.43  0.25  0.23 
   S. d.�   5.63  5.99  5.74  5.90  5.79 
   RMSE�   6.12  5.99  5.91  5.91  5.79 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -2.35  0.41 -1.24  0.73  0.70 
   S. d.�  46.94 50.04 47.93 49.64 48.41 
   RMSE�  46.99 50.04 47.94 49.65 48.41 
 (c) �̂�𝜆1 Bıas� -2.81  0.13 -1.61  0.27  0.24 
   S. d.�   5.52  5.94  5.65  5.86  5.72 
   RMSE�   6.19  5.94  5.88  5.87  5.72 
  �̂�𝜆2 Bıas� -2.80  0.33 -1.52  0.44  0.41 
   S. d.�   5.65  6.09  5.78  6.02  5.87 
   RMSE�   6.31  6.10  5.98  6.04  5.88 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -2.76  1.68 -0.86  1.57  1.61 
   S. d.�  50.02 54.50 51.37 54.07 52.22 
   RMSE�  50.09 54.52 51.37 54.09 52.24 
II (a) �̂�𝜆1 Bıas�  -1.97   0.56  -1.02   0.69   0.64 
   S. d.�    6.13   6.50   6.23   6.43   6.30 
   RMSE�    6.44   6.52   6.31   6.46   6.33 
  �̂�𝜆2 Bıas�  -1.92   0.71  -0.91   0.86   0.77 
   S. d.�    6.01   6.41   6.11   6.31   6.19 
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   RMSE�    6.31   6.45   6.18   6.36   6.23 
  �̂�𝜆2 − �̂�𝜆1 Bıas�  -1.53   1.69  -0.18   2.00   1.68 
   S. d.�   50.53  54.23  51.55  53.81  52.23 
   RMSE�   50.55  54.25  51.55  53.84  52.25 
 (b) �̂�𝜆1 Bıas�  -8.03  -5.89  -7.21  -5.66  -5.67 
   S. d.�    5.32   5.61   5.40   5.54   5.46 
   RMSE�    9.63   8.13   9.01   7.93   7.87 
  �̂�𝜆2 Bıas�  -8.84  -6.69  -8.01  -6.46  -6.45 
   S. d.�    5.11   5.40   5.18   5.32   5.24 
   RMSE�   10.21   8.60   9.54   8.37   8.32 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -14.26 -12.00 -13.30 -11.79 -11.70 
   S. d.�   42.51  45.05  43.18  44.74  43.76 
   RMSE�   44.83  46.62  45.18  46.27  45.30 
III (a) �̂�𝜆1 Bıas�  -5.74  -7.24  -5.71  -4.39  -3.82 
   S. d.�    5.82   5.97   5.88   5.95   5.97 
   RMSE�    8.18   9.38   8.20   7.39   7.09 
  �̂�𝜆2 Bıas�  -5.94  -7.41  -5.91  -4.66  -4.04 
   S. d.�    5.78   5.89   5.82   5.91   5.93 
   RMSE�    8.29   9.47   8.30   7.53   7.18 
  �̂�𝜆2 − �̂�𝜆1 Bıas�  -7.29  -8.60  -7.29  -6.50  -5.54 
   S. d.�   48.41  49.43  48.79  49.49  49.35 
   RMSE�   48.95  50.17  49.33  49.91  49.65 
 (b) �̂�𝜆1 Bıas� -12.09 -13.44 -12.06 -10.73 -10.29 
   S. d.�    4.96   5.10   5.02   5.10   5.08 
   RMSE�   13.07  14.38  13.06  11.88  11.47 
  �̂�𝜆2 Bıas� -13.16 -14.48 -13.14 -11.88 -11.40 
   S. d.�    4.82   4.92   4.86   4.95   4.94 
   RMSE�   14.02  15.30  14.01  12.87  12.42 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -20.32 -21.40 -20.34 -19.54 -18.82 
   S. d.�   39.88  40.78  40.23  41.00  40.65 
   RMSE�   44.76  46.05  45.08  45.42  44.79 
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Table B4. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of small stands (50% 
divided plots). Here, 𝜆𝜆2 = 1.4𝜆𝜆1. In Case I the plant populations follow a homogeneous Poisson process across the 
entire landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum 
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In 
Case II the densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m 
wide zone along all stand boundaries.    
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I (a) �̂�𝜆1 Bıas� -12.70 -0.60 -7.91  0.13  0.10 
   S. d.�    6.77  9.19  7.41  8.34  7.78 
   RMSE�   14.39  9.21 10.84  8.34  7.78 
  �̂�𝜆2 Bıas� -13.04 -0.65 -8.09  0.17  0.08 
   S. d.�    5.99  8.24  6.62  7.45  6.90 
   RMSE�   14.35  8.27 10.45  7.45  6.90 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -13.88 -0.76 -8.53  0.26  0.01 
   S. d.�   21.54 29.90 23.83 27.70 24.99 
   RMSE�   25.62 29.91 25.31 27.70 24.99 
 (b) �̂�𝜆1 Bıas� -13.44 -0.55 -8.27  0.27  0.15 
   S. d.�    5.41  7.61  5.98  6.83  6.29 
   RMSE�   14.49  7.63 10.20  6.83  6.30 
  �̂�𝜆2 Bıas� -14.02 -0.43 -8.44  0.44  0.26 
   S. d.�    5.00  7.13  5.61  6.48  5.88 
   RMSE�   14.89  7.14 10.13  6.50  5.89 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -15.47 -0.12 -8.87  0.84  0.55 
   S. d.�   18.32 26.69 20.66 24.55 21.80 
   RMSE�   23.98 26.69 22.48 24.57 21.81 
 (c) �̂�𝜆1 Bıas� -15.17 -0.58  -9.04  0.38  0.15 
   S. d.�    4.87  7.24   5.55  6.62  5.84 
   RMSE�   15.94  7.27  10.61  6.63  5.84 
  �̂�𝜆2 Bıas� -16.41 -0.01  -9.40  0.86  0.50 
   S. d.�    5.04  8.20   5.92  7.44  6.25 
   RMSE�   17.17  8.20  11.11  7.49  6.27 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -19.51  1.42 -10.30  2.05  1.39 
   S. d.�   18.69 31.10  22.44 28.61 23.57 
   RMSE�   27.01 31.13  24.69 28.68 23.61 
II (a) �̂�𝜆1 Bıas� -13.04   0.21  -7.73   1.16   0.77 
   S. d.�    5.76   8.14   6.42   7.41   6.75 
   RMSE�   14.25   8.14  10.05   7.50   6.79 
  �̂�𝜆2 Bıas� -13.64   0.66  -7.84   1.44   0.95 
   S. d.�    5.38   8.03   6.12   7.27   6.40 
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   RMSE�   14.66   8.06   9.95   7.41   6.47 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -15.14   1.79  -8.12   2.16   1.41 
   S. d.�   19.62  29.62  22.45  27.35  23.56 
   RMSE�   24.78  29.67  23.87  27.43  23.60 
 (b) �̂�𝜆1 Bıas� -17.77  -6.47 -13.16  -5.22  -5.09 
   S. d.�    5.12   7.08   5.68   6.41   5.95 
   RMSE�   18.49   9.59  14.33   8.27   7.83 
  �̂�𝜆2 Bıas� -19.98  -8.62 -15.26  -7.23  -7.09 
   S. d.�    4.52   6.45   5.05   5.86   5.30 
   RMSE�   20.49  10.77  16.08   9.30   8.86 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -25.51 -13.99 -20.52 -12.24 -12.10 
   S. d.�   16.59  23.58  18.51  22.04  19.58 
   RMSE�   30.43  27.41  27.63  25.21  23.02 
III (a) �̂�𝜆1 Bıas� -16.03 -10.20 -11.88  -4.71  -2.50 
   S. d.�    5.28   7.64   5.92   8.10   6.33 
   RMSE�   16.88  12.75  13.27   9.37   6.80 
  �̂�𝜆2 Bıas� -16.81  -8.37 -11.84  -2.28  -2.35 
   S. d.�    6.22  22.77  11.12  24.69   9.01 
   RMSE�   17.92  24.26  16.24  24.80   9.32 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -18.76  -3.77 -11.74   3.80  -1.99 
   S. d.�   22.91  79.72  39.52  86.02  32.46 
   RMSE�   29.61  79.80  41.22  86.10  32.52 
 (b) �̂�𝜆1 Bıas� -23.41 -19.07 -20.18 -13.78 -11.67 
   S. d.�    4.25   5.70   4.69   5.31   4.99 
   RMSE�   23.79  19.90  20.71  14.77  12.69 
  �̂�𝜆2 Bıas� -26.69 -22.65 -23.51 -17.42 -15.00 
   S. d.�    3.99   5.47   4.47   5.04   4.77 
   RMSE�   26.99  23.30  23.93  18.14  15.74 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -34.89 -31.61 -31.83 -26.54 -23.32 
   S. d.�   14.89  19.91  16.58  19.14  17.64 
   RMSE�   37.94  37.35  35.89  32.72  29.24 
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Table B5. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of intermediate stands 
(25% divided plots). Here, 𝜆𝜆2 = 1.4𝜆𝜆1. In Case I the plant populations follow a homogeneous Poisson process across 
the entire landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum 
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In 
Case II the densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m 
wide zone along all stand boundaries.    
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I (a) �̂�𝜆1 Bıas� -5.94 -0.24 -3.78  0.17  0.14 
   S. d.�   6.95  7.94  7.20  7.65  7.41 
   RMSE�   9.15  7.94  8.13  7.65  7.41 
  �̂�𝜆2 Bıas� -6.18 -0.28 -3.91  0.13  0.08 
   S. d.�   6.20  7.10  6.44  6.85  6.61 
   RMSE�   8.75  7.10  7.53  6.85  6.61 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -6.78 -0.37 -4.26  0.02 -0.08 
   S. d.�  22.39 25.82 23.29 25.16 24.00 
   RMSE�  23.40 25.82 23.67 25.15 23.99 
 (b) �̂�𝜆1 Bıas� -6.41 -0.20 -3.95  0.19  0.14 
   S. d.�   5.60  6.49  5.86  6.25  6.01 
   RMSE�   8.51  6.50  7.07  6.25  6.01 
  �̂�𝜆2 Bıas� -6.87 -0.29 -4.23  0.08  0.07 
   S. d.�   5.32  6.23  5.59  6.01  5.74 
   RMSE�   8.69  6.24  7.01  6.01  5.74 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -8.04 -0.51 -4.93 -0.17 -0.12 
   S. d.�  19.67 23.23 20.78 22.65 21.36 
   RMSE�  21.25 23.23 21.36 22.65 21.36 
 (c) �̂�𝜆1 Bıas�  -7.37 -0.06 -4.36  0.33  0.25 
   S. d.�    5.22  6.31  5.57  6.06  5.70 
   RMSE�    9.03  6.31  7.08  6.07  5.71 
  �̂�𝜆2 Bıas�  -8.13  0.31 -4.58  0.69  0.52 
   S. d.�    5.61  7.09  6.06  6.81  6.25 
   RMSE�    9.88  7.10  7.59  6.84  6.27 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -10.06  1.22 -5.12  1.60  1.18 
   S. d.�   21.19 27.19 23.12 26.19 23.86 
   RMSE�   23.46 27.21 23.68 26.23 23.89 
II (a) �̂�𝜆1 Bıas�  -5.99   0.49  -3.48   0.82   0.67 
   S. d.�    5.99   7.00   6.27   6.75   6.44 
   RMSE�    8.47   7.02   7.17   6.80   6.48 
  �̂�𝜆2 Bıas�  -6.37   0.64  -3.61   0.97   0.75 
   S. d.�    5.79   6.93   6.12   6.67   6.28 
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   RMSE�    8.61   6.96   7.10   6.74   6.33 
  �̂�𝜆2 − �̂�𝜆1 Bıas�  -7.32   1.02  -3.94   1.35   0.94 
   S. d.�   21.50  25.96  22.83  25.22  23.48 
   RMSE�   22.72  25.98  23.17  25.25  23.50 
 (b) �̂�𝜆1 Bıas� -11.53  -6.02  -9.38  -5.50  -5.47 
   S. d.�    5.26   6.11   5.49   5.85   5.64 
   RMSE�   12.67   8.58  10.87   8.03   7.86 
  �̂�𝜆2 Bıas� -13.86  -8.32 -11.66  -7.72  -7.67 
   S. d.�    4.80   5.62   5.04   5.40   5.18 
   RMSE�   14.67  10.04  12.70   9.42   9.25 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -19.68 -14.05 -17.35 -13.25 -13.15 
   S. d.�   17.86  20.89  18.78  20.44  19.33 
   RMSE�   26.58  25.18  25.56  24.36  23.37 
III (a) �̂�𝜆1 Bıas� -11.17 -12.62 -10.42  -7.28  -5.81 
   S. d.�    5.44   5.93   5.62   5.88   5.86 
   RMSE�   12.43  13.94  11.84   9.36   8.25 
  �̂�𝜆2 Bıas� -12.30 -13.76 -11.59  -8.78  -6.96 
   S. d.�    5.53   6.09   5.75   6.02   6.02 
   RMSE�   13.48  15.04  12.94  10.64   9.20 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -15.11 -16.60 -14.52 -12.53  -9.83 
   S. d.�   20.69  22.69  21.47  22.56  22.20 
   RMSE�   25.62  28.12  25.92  25.80  24.28 
 (b) �̂�𝜆1 Bıas� -17.82 -19.15 -17.20 -14.14 -12.94 
   S. d.�    4.54   4.99   4.68   4.89   4.86 
   RMSE�   18.39  19.79  17.83  14.97  13.82 
  �̂�𝜆2 Bıas� -21.13 -22.44 -20.59 -17.84 -16.46 
   S. d.�    4.19   4.58   4.32   4.51   4.49 
   RMSE�   21.55  22.90  21.04  18.40  17.06 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -29.43 -30.66 -29.07 -27.09 -25.25 
   S. d.�   15.75  17.13  16.24  17.00  16.73 
   RMSE�   33.38  35.12  33.30  31.99  30.29 
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Table B6. Bias (%), standard deviation (S.d. %), and RMSE (%) of the estimators in the case of large stands (10% 
divided plots). Here, 𝜆𝜆2 = 1.4𝜆𝜆1. In Case I the plant populations follow a homogeneous Poisson process across the 
entire landscape, and in Case II and Case III the densities vary between different strata (in subcase a stratum 
identifiers were known and could be utilized in estimators, whereas identifiers were not available in subcase b). In 
Case II the densities were the same in all parts of a stratum whereas in Case III the densities were doubled in a 10 m 
wide zone along all stand boundaries.    
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I (a) �̂�𝜆1 Bıas� -2.28 -0.09 -1.47  0.07  0.07 
   S. d.�   7.17  7.53  7.26  7.43  7.34 
   RMSE�   7.52  7.53  7.41  7.43  7.34 
  �̂�𝜆2 Bıas� -2.30 -0.04 -1.44  0.12  0.13 
   S. d.�   6.34  6.66  6.43  6.58  6.49 
   RMSE�   6.74  6.66  6.59  6.58  6.49 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -2.34  0.09 -1.39  0.23  0.28 
   S. d.�  23.01 24.40 23.39 24.15 23.63 
   RMSE�  23.13 24.40 23.43 24.15 23.63 
 (b) �̂�𝜆1 Bıas� -2.41  0.01 -1.48  0.12  0.14 
   S. d.�   5.73  6.05  5.82  6.00  5.88 
   RMSE�   6.22  6.05  6.00  6.00  5.88 
  �̂�𝜆2 Bıas� -2.58  0.04 -1.57  0.14  0.14 
   S. d.�   5.48  5.81  5.57  5.76  5.64 
   RMSE�   6.06  5.81  5.79  5.76  5.64 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -3.01  0.12 -1.77  0.20  0.16 
   S. d.�  20.21 21.52 20.60 21.41 20.86 
   RMSE�  20.43 21.52 20.68 21.41 20.86 
 (c) �̂�𝜆1 Bıas� -2.83  0.09 -1.65  0.22  0.21 
   S. d.�   5.51  5.92  5.63  5.83  5.70 
   RMSE�   6.19  5.92  5.86  5.83  5.70 
  �̂�𝜆2 Bıas� -2.98  0.46 -1.54  0.61  0.54 
   S. d.�   6.06  6.67  6.28  6.58  6.35 
   RMSE�   6.75  6.68  6.46  6.61  6.37 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -3.37  1.40 -1.28  1.59  1.37 
   S. d.�  22.93 25.16 23.77 24.93 24.09 
   RMSE�  23.18 25.20 23.81 24.98 24.12 
II (a) �̂�𝜆1 Bıas�  -1.94   0.64  -0.98   0.76   0.68 
   S. d.�    6.17   6.57   6.27   6.46   6.35 
   RMSE�    6.47   6.60   6.35   6.51   6.38 
  �̂�𝜆2 Bıas�  -1.85   0.98  -0.75   1.09   0.99 
   S. d.�    5.94   6.36   6.07   6.30   6.14 
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   RMSE�    6.22   6.44   6.12   6.39   6.21 
  �̂�𝜆2 − �̂�𝜆1 Bıas�  -1.62   1.83  -0.16   1.90   1.76 
   S. d.�   22.24  23.95  22.75  23.72  23.04 
   RMSE�   22.30  24.01  22.75  23.79  23.10 
 (b) �̂�𝜆1 Bıas�  -8.04  -5.86  -7.24  -5.68  -5.68 
   S. d.�    5.36   5.68   5.45   5.59   5.50 
   RMSE�    9.67   8.16   9.06   7.97   7.91 
  �̂�𝜆2 Bıas� -10.20  -7.98  -9.34  -7.78  -7.77 
   S. d.�    4.88   5.17   4.96   5.10   5.02 
   RMSE�   11.31   9.51  10.57   9.30   9.25 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -15.59 -13.28 -14.60 -13.03 -12.98 
   S. d.�   18.19  19.31  18.48  19.23  18.75 
   RMSE�   23.96  23.43  23.55  23.23  22.80 
III (a) �̂�𝜆1 Bıas�  -5.68  -7.19  -5.65  -4.32  -3.75 
   S. d.�    5.76   5.89   5.80   5.89   5.90 
   RMSE�    8.09   9.29   8.10   7.30   6.99 
  �̂�𝜆2 Bıas�  -6.18  -7.57  -6.14  -5.01  -4.29 
   S. d.�    5.86   5.98   5.91   6.00   6.02 
   RMSE�    8.52   9.65   8.53   7.82   7.40 
  �̂�𝜆2 − �̂�𝜆1 Bıas�  -7.42  -8.54  -7.36  -6.73  -5.63 
   S. d.�   21.70  22.15  21.91  22.21  22.17 
   RMSE�   22.93  23.74  23.11  23.21  22.87 
 (b) �̂�𝜆1 Bıas� -12.06 -13.42 -12.04 -10.72 -10.26 
   S. d.�    4.93   5.06   4.97   5.06   5.05 
   RMSE�   13.03  14.35  13.02  11.86  11.44 
  �̂�𝜆2 Bıas� -14.85 -16.09 -14.83 -13.68 -13.15 
   S. d.�    4.60   4.70   4.64   4.71   4.71 
   RMSE�   15.55  16.76  15.53  14.47  13.97 
  �̂�𝜆2 − �̂�𝜆1 Bıas� -21.85 -22.74 -21.80 -21.09 -20.37 
   S. d.�   17.03  17.38  17.17  17.46  17.36 
   RMSE�   27.70  28.62  27.75  27.38  26.77 
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