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Abstract

Lack of tools for detailed, real-time observation of mosquito behavior with high spatio-tem-
poral resolution limits progress towards improved malaria vector control. We deployed a
high-resolution entomological lidar to monitor a half-kilometer static transect positioned over
rice fields outside a Tanzanian village. A quarter of a million in situ insect observations were
classified, and several insect taxa were identified based on their modulation signatures. We
observed distinct range distributions of male and female mosquitoes in relation to the village
periphery, and spatio-temporal behavioral features, such as swarming. Furthermore, we
observed that the spatial distributions of males and females change independently of each
other during the day, and were able to estimate the daily dispersal of mosquitoes towards
and away from the village. The findings of this study demonstrate how lidar-based monitor-
ing could dramatically improve our understanding of malaria vector ecology and control
options.

Introduction

Malaria is a predominantly tropical disease caused by Plasmodium parasites and transmitted
by Anopheles mosquitoes, which still claims almost half a million lives each year and slows the
economic development of the world’s poorest countries [1-3]. Malaria risk is exacerbated by
poverty and poor housing, especially in rural areas. Africa is disproportionately affected
because it is home to several mosquito species that are exceptionally efficient vectors of the
parasite because they specialize in feeding upon humans [4, 5]. Unprecedented reductions in
malaria burden since the turn of the century have averted several million deaths, largely due to
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the implementation of vector control with insecticide-treated nets and indoor residual spray-
ing of insecticides [6, 7]. However, malaria control is now truly at a crossroad, as progress has
recently stalled for two major reasons [1, 8]. First, behavioral evasiveness of mosquitoes defines
fundamental biological limits to the effects of insecticide-treated bed nets and indoor residual
spraying, because both approaches selectively target mosquitoes only when they feed and/or
rest inside human dwellings [5]. Second, increasing physiological resistance of mosquitoes to
insecticides contributes to rebounding transmission [9, 10]. Further progress towards malaria
elimination will undoubtedly require new technologies that target other vector behaviors [11,
12], notably those that occur outdoors and are widely distributed across landscapes. To this
end, greatly improved understanding of the landscape ecology and baseline behavior of mos-
quito populations is required, so that the design and deployment of these new tools may be
rationally optimized [13]. However, detecting and quantifying wild mosquito activities in situ,
and mapping their distribution across landscapes remains a challenge [14-16].

In this study, we demonstrate the applicability of lidar (laser radar) for mosquito surveil-
lance [17], by real-time in situ spatial profiling of malaria vectors, through the classification by
their wing-beat modulation, at the periphery of an African village. We present data collected
continuously over three days during the dry season, with no precipitation and virtually no
wind during recordings. Details such as male swarming and nocturnal host-seeking of female
mosquitoes, which were previously impossible to observe and quantify, are elucidated. We
demonstrate that groups of male and female mosquitoes appear at different distances from the
village and at different times of the day, and measure mosquito fluxes towards and away from
the village.

Methods
Entomological lidar

A static invisible near infrared laser beam was transmitted above adjacent fields of a village.
Insects transiting the laser beam at different distances from the system backscattered light
onto different sections of a linear sensor. Thus, insect activity was resolved in space and time
as measurements are conducted. Additional information relating to the size, wingbeat fre-
quency, heading and flight speed was obtained for each individual insect observation based on
the properties of the signal [18].

In this study, a 3.2 W 808 nm laser diode with vertical linear polarization was expanded
with a refractor telescope (f600 mm, 9127 mm) and focused into a 2.5x23.3 cm (height by
width) line at a remote neoprene termination target. Backscattered light was collected by a
Newtonian reflector telescope (800 mm, 200 mm), transmitted through a 10 nm FWHM
bandpass filter centered at 808 nm, and focused onto a 2048 pixel CMOS linescan camera.
Transmitter-receiver separation distance was 814 mm, the camera was tilted 45° relative to the
receiver telescope and the expander telescope was tilted roughly 1° relative to the receiver tele-
scope, fulfilling the Scheimpflug condition [19]. An infinite focal depth was thereby achieved,
with each pixel on the sensor sharply resolving a different section of the laser beam. The sensor
line rate was 3.5 kHz, and the laser was turned on and off intermittently between exposures to
enable background subtraction and daytime operation. A schematic of the system is shown in
Fig 1.

Field campaign

Lidar measurements were carried out continuously between August 31 and September 5, 2016,
in the village of Lupiro, Tanzania. Ethical approval for the study was obtained from Ifakara
Health Institute IRB (IHI/IRB/No: 34-2014) and Medical Research Coordination Committee
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Fig 1. Schematic of the lidar system used in Lupiro. 808 nm light from a laser diode is expanded into a 102 mm
diameter beam and transmitted through the air. The beam is terminated in a neoprene target attached to a tree 598 m
from the lidar system. Backscattered light from organisms transiting the laser beam is collected by a Newtonian
telescope and focused onto a detector array. The system has infinite focal depth, and due to the geometry of the
configuration, light scattered from different sections of the laser beam is focused sharply onto different sections of the
detector. The laser driver is used to intermittently turn the laser on and off, enabling the real-time acquisition of the
optical background.

https://doi.org/10.1371/journal.pone.0247803.9001

of the National Institute of Medical Research (Certificate No. NIMR/HQ/R.8a/Vo0l.IX/1903).
The lidar system was positioned in a hut at the outskirts of the village (8°23’03.8”S, 36°
40'26.7”E) and powered with a 2 kW portable generator. The laser beam was transmitted in a
roughly north-eastern direction, propagating 3-5 m above fields of corn and rice, and was ter-
minated on a neoprene target attached to a tree 598 m from the lidar system (8°22°44.8”S, 36°
40’31.4”E). The probe volume consisted of the overlap between the laser beam and the field of
view of the sensor. With the used laser, sensor and telescopes, the probe volume was 12 cm tall
and 0.75 cm wide at 35 m (the near limit of the system), and 2.5 cm tall and 18 cm wide at 598
m, yielding a total probe volume of ~2 m>. This orientation of the system is advantageous
because the vertically linearly polarized light may impinge on insect wings at Brewster angle
during wing beats, which may produce more detailed wave forms. It was also selected because
a higher probe volume at close range may lead to a larger number of observed insects, whereas
a wider probe volume at long range may lead to longer insect observations far away, resulting
in better frequency resolution. The measurement site and geometry is shown in Fig 2. Mosqui-
toes were captured with a CDC light trap near the lidar system and species classified, see
Table 1, enabling educated guesses on species identities of lidar-observed mosquitoes.
Weather data were collected concurrently with the lidar measurements using a USB weather
station. Temperature peaks of 30-32°C were obtained together with the lowest relative humidity
of about 40% in the afternoons around 15:00. The lowest temperatures and relative humidity
peaks of 22-24°C and 70%, respectively, were obtained in the early mornings around 06:00. The
wind speed peaked at 2.5 m/s at 10:00 September 4, but was below 1 m/s most of the time.

Extraction and calibration of insect observations

The data was stored in binary files of 2048x35,000 16-bit data points, corresponding to 10 sec-
onds of measurements. Every second exposure was respectively bright and dark,
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Fig 2. Overview of the measurement location. a) Satellite image of Tanzania showing the location of Lupiro village,
in which the experiment was conducted. b) Satellite image of Lupiro village. The lidar system was located in the north-
eastern outskirts of the village. ) Satellite image of the measurement site. The laser beam was transmitted across the
landscape, and was terminated at a distance of 598 m. The landscape contained fields of different crops, as well as
empty and burned patches. d) Image of the neoprene termination target, mounted ~5 m above ground on a tree trunk.
e) Near infrared photo of the termination target, showing the dimensions of the laser spot at that location. f) Photo of
the termination target as seen from afar, giving an indication of the landscape and measurement conditions. g) Photo
of the lidar system. The laser is transmitted through the expander telescope, and backscattered light is collected by the
receiver telescope and focused onto a line array. A camera is connected to the monitor telescope, allowing the operator
to aim the laser beam onto the termination target and giving a real-time overview of the experiment. Satellite images
were obtained from Landsat, courtesy of the U.S. Geological Survey.

https://doi.org/10.1371/journal.pone.0247803.g002

corresponding to the laser being on and off. The optical background in each pixel at each
point in time was obtained through interpolation of the dark time slots and subtracted. A
detection threshold with a signal-to-noise ratio SNR of 5:1 was set in each pixel as the median
signal of the pixel plus five times the interquartile range (IQR). A binary map of all intensities
exceeding the threshold was obtained and refined through image erosion and dilation. We
obtained 456,721 data segments of high intensity, corresponding to insects transiting the laser
beam, which were extracted from the raw data. The time duration of insect signals relates
directly to which frequencies can be observed in the signals. The observable frequency range

Table 1. Mosquitoes captured with a CDC light trap near the lidar. A CDC light trap was placed in the village near the lidar system. Captured mosquitoes were species
classified for comparison with lidar data.

Date An. gambiae s.l. An. funestus An. coustani Culex s.p.p. Mansonia s.p.p. Coquilettidia s.p.p.
02-Sep-2016 536 5 5 161 8 0
03-Sep-2016 152 1 0 74 1 0
04-Sep-2016 482 1 1 279 11 3
Total 1170 7 6 514 20 3
Proportion 68,0% 0,4% 0,3% 29,9% 1,2% 0,2%
https://doi.org/10.1371/journal.pone.0247803.t001
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extends from the inverse of the time duration of a signal up to the Nyquist frequency, which is
half of the sample rate. The minimum time duration of signals also determines the frequency
resolution. To obtain a sufficient frequency resolution, 223,061 insect observations were dis-
carded since their short transit times did not allow modulation spectra estimation, leaving
233,660 for further analysis. The full dataset is accessible at https://doi.org/10.6084/m9.
figshare.13318454.v1.

The optical cross section (OCS) of the termination was calculated from the laser spot height
(2.5 cm), the width of the probe volume and the reflectance of the neoprene termination target
(1.8%). The signal across the entire range was calibrated into OCS through the inverse-square
law and comparison to the integrated termination intensity. A time series oy, for each insect
observation was obtained by summing the extracted data segment along the range axis [20].
The parameterization process is explained in more detail in Malmqvist et al [18], and the steps
are shown in Fig 3. However, the frequency analysis used here differs from our previous work,
and is thus detailed below.

Frequency parameterization

The backscatter signals from flying insects are modulated due to the insect wing beats. Wing-beat
frequency is a good indicator of insect species, in particular for mosquitoes due to their character-
istically high frequencies [21, 22]. However, accurately and robustly estimating the fundamental
frequency of 233,660 time-series signal segments of varying duration and quality is a challenging
task. Two methods were developed to tackle this problem [23, 24], and are explained below.

An insect signal can be divided into two components: the body signal, proportional to an enve-
lope for the entire signal as the insect enters and exits the beam, and an oscillatory component
due to the wing beat dynamics. In order to distinguish these two signal components, the WBF
needs to be determined. A set of 500 test frequencies f.; between the lowest observable frequency,
defined by the transit time, and the Nyquist frequency, 875 Hz, was defined. For each insect
observation, all test frequencies between the lowest observable and the Nyquist frequency were
tested. A discrete time window was defined by the period time of the test frequency, and the signal
envelope was acquired by taking the average of a sliding minimum- and a sliding maximum fil-
tered signal. A discrete harmonic model containing the envelope and the sine- and cosine compo-
nents of the test frequency and its overtones up to the Nyquist frequency was implemented.
Furthermore, the frequency components were weighted by the envelope. The coefficients of the
model were obtained through regression, and the root-mean-square error (RMSE) was calculated.
Thereby, the RMSE of all test frequencies were obtained, yielding the error vector e;,;..

This model is biased toward both very low and very high frequencies. At low test frequencies
the model contains many overtones and degrees of freedom, yielding a lower RMSE (regressor
bias). At high test frequencies, the time window used by the sliding minimum- and maximum fil-
ters is smaller, causing the envelope to explain both body and wing contributions (window bias).
This means that the central frequency region in which most insect WBFs are found is the least
likely to perform well in the model, and the residual e;,;; needs to be adjusted for the biases to
identify an unbiased WBF. This can be understood as punishing for information fed to the model
through degrees of freedoms, either in the regressor or in the envelope time vector. The reasoning
is similar to Akaikes criterions in information theory. The two biases to the frequency selection
were treated separately. The regressor error was modelled analytically according to Eq 1,

éreg = 17Ndof/l7 (1)

where Ny is the frequency-dependent number of degrees of freedom of the model, and /is the
number of samples of the insect observation. A similar approach to modelling the window error
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Fig 3. Illustration of the data analysis procedure. a) Raw data, in which every second exposure corresponds to when
the laser is on and off, respectively. b-c) The raw data is sorted into the on- (b) and off components (c). d) The optical
background is acquired from (c) through interpolation, and subtracted from (b). e) A detection threshold with an
SNR = 2 is generated. A detection mask is generated to map all data segments which exceed the threshold. f) The
detection mask (black line) indicates all instances of the signal exceeding the threshold. Image erosion and dilation are
used to adjust the detection mask, filtering out signal segments too short to be of interest. g) The detection mask is
used to crop out signal regions of interest. h) The signal is summed along the range axis, generating a time series. i)
The signal intensity is calibrated into an optical cross section. j) Power spectrum of the time series in (i), with peaks at
the insect wing-beat frequency and its overtones.

https://doi.org/10.1371/journal.pone.0247803.9003

was attempted but found insufficient. However, since the window error e,,;, is independent of the
WBE f, it could instead be measured directly as the RMSE of the envelope and the insect signal.
The product of é,., and e,,;, thus contains information on the frequency biases of the model, with-
out being affected by f,. The adjusted RMSE vector is obtained according to Eq 2.

éﬁnal = einit/(éreg*ewin)7 (2)
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fo corresponds to the minimum of &;,,;. Fig 4 Shows e;,is, €yeg €in and €511 as function of f;y
for the same insect observation as shown in Fig 3, and marks the obtained WBF f.

Upon determination of fy, insect observations could be further parameterized. A sliding
minimum filter, with a window size equal to the period of f,, was used to separate the signal
backscattered by the insect body from that of the wings. Thus, the OCS of the bodies and
wings of all insect observations were obtained. Additionally, the coefficients from the Fourier
series model were used to calculate the strength and phase of f; and all overtones, thereby
decomposing oy, into a discrete set of components. Fig 5 shows the original signal oy, together
with the reconstructed signal from the Fourier series model, with wing- and body OCS
marked.

Hierarchical clustering

Due to the challenge involved in unbiased fundamental frequency estimation (well-known
pitch detection problem, e.g. in speech and music recognition), an alternative approach was
implemented. For each insect time series, the modulation power was calculated on a frequency

PLOS ONE | https://doi.org/10.1371/journal.pone.0247803 March 4, 2021 7/21


https://doi.org/10.1371/journal.pone.0247803.g004
https://doi.org/10.1371/journal.pone.0247803

PLOS ONE

Real-time dispersal of malaria vectors in rural Africa monitored with lidar

T I

4+ —Time series Ops M
- - -Reconstructed signal
- - -Body signal

n HI-
(9] H ]
o H
Qo

& =

£

£ =

0 2T] T

U v

O

T
(%]
Q
(@]
>
©
o
o
0 e ’ 1 i N
0 60 20

Time (ms)
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scale with 40 equidistant bins between 85 and 875 Hz by Welch method (80% overlap, Gauss-
ian window). The 40 frequency bins correspond to a 23 ms time window, which was the mode
of all observed insect transit times. An insect power spectrum was thus obtained. A corre-
sponding noise power spectrum was similarly obtained using a noise time series acquired at
the same distance and within a fraction of a second of the insect signal. A linear regression
model was applied to the noise spectrum. The insect power spectrum was divided with the
regression model and subsequently normalized. All 233,660 normalized spectra were sorted
into 20 clusters. This was done by calculating the Euclidean distances between all pairs of
observations, which is a multi-dimensional expansion of the Pythagorean theorem, and group-
ing similar observations (i.e. with short Euclidean distances) together. The clusters were
labeled according to their frequency contents based on literature values [21, 22, 25].

Cluster and frequency interpretation

Male and female mosquitoes were differentiated from other insects by their modulation signa-
tures and high pitch. Clusters with f, > = 550 Hz correspond to male mosquitoes, clusters with
300 Hz < =f, < 550 Hz correspond to female mosquitoes [22], clusters with f, < 300 Hz cor-
respond to other insects, and clusters with high-intensity signals correspond to larger insects.
Clusters lacking a distinguishable wing-beat frequency were labeled as unknown were
excluded from further analysis. Fig 6 shows a dendrogram and the average spectrum and vari-
ance of all clusters. The labels and number of observations of each cluster are also indicated.
Some further comparisons of signal parameters between clusters were made. Fig 7 shows histo-
grams of the maximum OCS and transit time At of all labeled clusters. As a general trend, mos-
quito clusters display the lowest OCS values out of the groups, which is consistent with their
size. Low-frequency insects display slightly higher values, and clusters labeled as larger organ-
isms display the highest values. Mosquitoes and low-frequency insects display similar transit
times, whereas larger organisms display shorter transit times that could correspond to higher
flight speeds. Cluster 2 displays the highest modulation frequency of the female clusters, and is
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henceforth labeled high-frequency females. Clusters 3 and 4 display very similar modulation
frequencies, and likely belong to the same species. Cluster 3 displays longer transit times and
lower OCS values, whereas cluster 4 exhibits higher OCS values and shorter transit times. This
indicates that C4 mosquitoes transit the probe volume laterally, whereas C3 mosquitoes fly
more along the laser beam.

Results and discussion

Entomological lidar measurements were carried out in the village of Lupiro in southern Tanza-
nia (Figs 1 and 2). A near-infrared (NIR) diode laser was transmitted horizontally across culti-
vated fields and terminated in a distant target. Data was collected continuously for a period of
3 days (September 2 to 4, 2016). We analyzed 233,660 insect observations and obtained their
optical cross sections (OCS), wing-beat frequencies (WBF) and power spectra (Figs 3-5).

Insect observations were hierarchically clustered based on the Euclidean distance between
their power spectra, and the first 20 branches of the dendrogram were interpreted. Based on
the centroid frequency contents [22, 25-28], clusters were labelled as ‘male mosquitoes’,
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https://doi.org/10.1371/journal.pone.0247803.9007

‘female mosquitoes’, ‘low-frequency insects’, ‘large organisms’ or ‘unknown’ (Fig 6). In the
subsequent analysis, three overarching groups of insects were considered: male mosquitoes
(one cluster), female mosquitoes (three clusters) and other insects (eight clusters correspond-
ing to the ‘low-frequency insects’). We observed 2,698 male mosquitoes, 13,820 female mos-
quitoes and 55,006 other insects during the measurement period, and their distribution in
space and time was investigated. The overall range distribution of male and female mosquitoes
as well as other insects is shown in Fig 8, and the 2-Dimensional time-range histograms of the
three groups are shown together with their WBF distributions in Fig 9.

The decrease in insect counts with range seen in Fig 8 is a product of the insect distribution
and instrument sensitivity [29]. Throughout the study period, mosquitoes were observed
closer to the village than other insects, and males were observed closer to the village than the
females. However, since the distributions are largely attributed to the system sensitivity, they
were nevertheless more alike than dissimilar. Large and small insects were affected differently,
thus making comparisons between insect groups challenging. The distributions can be approx-
imated with a power law, N = Njr%, in which the range decay exponent « sheds light on
group-specific range dependencies.
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https://doi.org/10.1371/journal.pone.0247803.9008

The WBEF distributions of mosquitoes in Fig 9 coincide with corresponding distributions
previously described [22, 30], as well as with the fundamental frequencies of the corresponding
clusters (Fig 6). This serves as a complement to the clustering method, independently indicat-
ing that the cluster interpretation was correct. The majority of insect activity takes place just
before dawn and right after dusk (Fig 9), consistent with previous studies [31, 32]. The activity
of female mosquitoes after midnight near the village was observed more frequently compared
to that of males (compare Fig 9A and 9B), i.e. during the peak biting activity period for anthro-
pophagic malaria vectors, such as Anopheles funestus [32]. Compared to female mosquito
activity during the rest of the day, females at night time exhibit longer transit times and smaller
cross sections (Fig 10). This shows that the mosquitoes are flying along the beam, toward or
away from the village rather than parallel to the village border, indicating that they may be
actively seeking a blood meal or have successfully obtained one.

Swarms of males were observed, spatiotemporally confined within a distance of ~210 m
from the lidar at 18:45 in the evenings, 13 min post sunset. Repeated observations of male
swarms during three consecutive nights were made (Fig 11), with the swarms appearing at the
same minute in the same location each night and remaining in the beam for 3 min. The spatial
extension of the swarm reads 17 m, but is due to the range uncertainty at the distance of the
swarm [33]. The swarm location coincides with a foot path through a rice plantation (Figs 2
and 12), which has previously been identified as a common swarming spot for male An. funes-
tus and An. arabiensis mosquitoes [34, 35]. A total of 16 female mosquitoes were observed
entering the swarms of males (Fig 11), likely Anopheles spp. based on their wing-beat
frequencies.

As shown in Fig 6, three clusters of insects were interpreted as female mosquitoes. Based on
the characteristics of the three clusters, these are labelled as high-frequency females (C2), par-
allel females (C3) and perpendicular females (C4). High-frequency females exhibit high WBFs,

PLOS ONE | https://doi.org/10.1371/journal.pone.0247803 March 4, 2021 11/21


https://doi.org/10.1371/journal.pone.0247803.g008
https://doi.org/10.1371/journal.pone.0247803

PLOS ONE Real-time dispersal of malaria vectors in rural Africa monitored with lidar

b) -
20
>
E
10 ©
=
o

0
d) R
20
>
E
10 ©
o
o

0
f) R
20 =2
2
108
&
o

0

00 06 12 18 24100 450 800
Local time (h) Frequency (Hz)

Fig 9. Activity of female and male mosquitoes, as well as other insects throughout the day. a,c,e) Smoothed contours of 2D histograms (1 h
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crepuscular activity peaks at dawn and dusk, the male swarming at 210 m and the nightly female activity. The classes are based on hierarchical
clustering. b,d,f) Distributions of fundamental wing-beat frequencies of the observed insects in each group, estimated with an independent
method [23].

https://doi.org/10.1371/journal.pone.0247803.9009

whereas parallel and perpendicular females exhibit lower WBFs split into two separate clusters
with differing body/wing ratios, indicative of heading in different directions. Parallel females
fly along the laser beam, toward or away from the village, whereas perpendicular females fly
straight through the beam, parallel to the village perimeter delimited by flood-prone rice fields.
Based on laboratory measurements [30], high-frequency females likely correspond to mixed
Culex spp., whereas parallel and perpendicular females appear more likely to be Anopheles. For
more information, see cluster interpretation in methods and Fig 12. Fig 13 shows the activity
per time of day of the different insect groups. The three clusters of female mosquitoes are
shown separately for comparison. Prior to sunset, parallel females are the earliest to initiate
activity. These females may correspond to unfed females, many of which could also be
unmated and therefore seeking males [36], with low WBFs due to a lack of payload [37]. Males
appear ~15 minutes after the parallel females, followed by high-frequency females that appear
after another ~20 minutes. Perpendicular females are the last to become active, appearing ~15
minutes after high-frequency females, and do not come out in large numbers until the major
evening peak at dusk. This is the least abundant female group, corresponding to roughly 25%
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Fig 10. Night-active females. Histogram of optical cross section (left) and transit time (right) of night-active female
mosquitoes and all other female mosquitoes. When an insect is observed from the front, flying along the laser beam, it
appears small and stays in the beam for a comparatively long time. Adversely, when an insect is observed from the side,
flying straight through the laser beam, it appears large and stays in the beam for a short time. As observed, night-active
female mosquitoes are smaller and remain in the beam longer than other females. This indicates that they are flying
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https://doi.org/10.1371/journal.pone.0247803.g010

of the parallel or high-frequency females. Males and parallel females peak in activity during the
male swarming time at 18:45 in the evening. High-frequency females and other insects display
peak activity slightly later, at 18:55, and perpendicular females peak in activity last at 19:00.

Fig 14 presents estimated fluxes to or from the village at six distinct time intervals, summa-
rized over all three days and exhibiting different insect activities. A peak of activity occurs
prior to sunrise (5:40-6:50), with some lingering activity post-sunrise (6:50-8:40), particularly
among male mosquitoes. The activity during the day (8:40-17:00) is generally low, but
increases gradually prior to sunset (17:00-18:20). The highest activity peak is observed post-
sunset (18:20-19:40), and the activity then decreases to relatively low levels during the night
(19:40-5:40). The activity peaks in the morning and evening are consistent with other studies,
but the nightly activity is comparatively lower than those reported by others [37, 38]. This may
be because the lidar transect was 3-5 m above ground, whereas most mosquito activity is
thought to occur closer to ground [32].

As mentioned previously, the decreasing insect counts with distance from the village (Fig 8)
can be approximated by a power law, N = N,-r*. By comparing the range decay exponent « for
an insect group at different times of the day, significant differences in the distributions can be
observed. The range decay exponent was calculated for all groups of insects during the afore-
mentioned time intervals. The power a is negative due to the decreased instrument sensitivity
with distance, with high magnitude values corresponding to mosquitoes congregating closer
to the village. The net flux of insects, i.e. the number of insects from each group flying out-
wards subtracted by the number of insects flying inwards, weighted by transit time for
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https://doi.org/10.1371/journal.pone.0247803.9011

Fig 12. Photo of the rice field and foot path where the swarms of male mosquitoes were observed. The field is
marked in Fig 2, and the photo is taken from the adjacent field SSE of the rice. The foot path was one of the larger ones
in the area, and was commonly used by workers going to and from the fields in the mornings and evenings.

https://doi.org/10.1371/journal.pone.0247803.g012
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https://doi.org/10.1371/journal.pone.0247803.g013

improved accuracy, was calculated and is shown together with ¢ in Fig 14. The confidence
interval of o reflects how well the insect distribution is represented by the power law. The con-
fidence interval may therefore be small even when there are low insect counts, as for male mos-
quitoes during the day time.

Insects are observed close to the village after dawn and during night, and further from the
village before dawn, during the day and after dusk (Fig 14A). Note that the spatial distributions
change significantly during the day, and the changes are distinct among the various groups.
The majority of insect flux occurs around sunset, going in towards the village. During the rest
of the day, the net flux is generally aligned outwards, away from the village. Whereas there is a
strong incentive for host-seeking females to disperse towards the village, the efflux may be less
directed as mosquitoes move away to oviposit because the village was surrounded on that side
by suitable breeding sites. Although studies using methods such as human landing catch
(HLC) have shown that most of the measurable biting occurs at night [39], the crepuscular dis-
persal activity of mosquitoes demonstrated here is consistent with field studies carried out else-
where with vehicle-mounted sweep nets [40, 41]. In addition, simulation analyses suggest that
HLCs may exaggerate measurements of feeding activity at times when most residents sleep
under nets [42]. However, whereas HLC-based observations catch host-seeking individuals,
lidar-observed mosquitoes are likely in different physiological states such as homing, mating
or swarming, and therefore not directly comparable. To our knowledge this is the first study in
which the dispersal direction has been investigated.
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https://doi.org/10.1371/journal.pone.0247803.9014

Mosquitoes are observed closer to the village than other insects at all times, except for dur-
ing the day. This fits well with the anthropophilic nature of African malaria vector mosquitoes.
Male mosquitoes exhibit significant “lingering” activity after the dawn peak, unlike females
and other insects (Fig 13B), which may be due to the different life requirements of the two
sexes. Interestingly, this morning male activity is concentrated far closer to the village than the
activity of all other groups at all times of the day (Fig 14A). This pattern is consistent across the
first two days, but the male counts were too low in the third morning to discern whether or
not it occurred then as well. We speculate that there may have been more nectar sources, rest-
ing places or females near the village at the time of the measurements, but are unable to verify
this. At other times of the day, males were observed at intermediate distances from the village
(Fig 14A). High-frequency females were observed near the village at night, far away during the
peak before sunrise, and closer to the village afterwards. During the day and around sunset
these females are observed far away. The nightly activity near the village may correspond to
host-seeking females. After dawn, the activity may correspond to females with a heavy payload,
observed close to the village just after taking a blood meal, consistent with previous simulations
[42]. In that case, they could be looking for an oviposition site. Perhaps more likely, they may
have been gravids that had rested while digesting and gestating until they ran out of time and
dispersed at dawn. Before and after sunrise, parallel mosquitoes are observed farther and
nearer, respectively, than their average. This female group was found at intermediate distances
during the day and prior to sunset, slightly further away after sunset and relatively close at
night. As this group is responsible for the increased nightly activity observed soon after mid-
night in Fig 94, it may contain host-seeking An. funestus [39] although they can presently not
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be distinguished from An. arabiensis in lidar data. Perpendicular females, being the least
numerous female group, display overlapping distributions at intermediate distances through-
out the morning and day. Before sunset and at night they are observed near the village,
whereas during the activity peak after sunset they are observed at intermediate distance. Other
insects are observed furthest away from the village during the activity peaks before sunrise and
after sunset, and display overlapping distributions relatively far away at all other times. Apply-
ing our power law model to the data from another study [43] yielded a = -0.9+0.2, which is
comparable to our results.

Weight and temperature are two factors affecting the WBFs of mosquitoes [28, 44, 45]. A
female An. arabiensis weighs roughly 1.7 mg, a blood-fed female weighs approximately 3.8 mg
and a gravid mosquito weighs 2.7 mg [44]. Mosquitoes feeding on nectar ingest about 0.38 mg
[46], but may eat as much as a few mg when starved [47]. The weight gains correspond to fre-
quency shifts of about 28% and 8.5% for blood-fed and gravid mosquitoes, respectively [45]. A
28% frequency shift is enough to confuse a female mosquito with a male one, but females are
known to remain stationary while digesting blood meals. Thus, we expect this to have little
effect on the results. An 8.5% frequency shift may cause confusion between the different
groups of females, but is not significant enough to cause confusion between sexes. It is worth
noting that the WBFs of perpendicular females match an 8.5% shifted WBF of parallel females
very well. Perpendicular females may thus correspond to gravid parallel females. Regarding
the temperature, the WBF is shifted about 2.8% per K [28], corresponding to an 11.2% differ-
ence between the morning and evening activity peaks (4 K difference). This is not significant
enough to confuse sexes in the analyses, but may confuse parallel and perpendicular females.
In particular, parallel females may be mistaken for perpendicular females in the early evening
when the temperature is high. Since the perpendicular activity is very low prior to dusk, we
conclude that this is unlikely. The weight gain from a typical nectar meal yields a smaller fre-
quency shift than that of gravid mosquitoes, and is therefore unlikely to lead to misclassifica-
tion. Large nectar meals as ingested by starved mosquitoes yield large frequency shifts that
could lead to misclassification. However, as in the case with blood meals, mosquitoes tend to
remain stationary while digesting these meals.

Perpendicular and parallel females displayed their primary influx towards the village after
sunset, and efflux before dawn. Parallel females were active earlier than other females and were
more night-active. They were active during male mating swarms and at night, and were gener-
ally flying along the beam, towards or away from the village. At night, they displayed noticeable
activity near the village, and appeared further away and flying outwards before dawn. These
observations indicate that the group may correspond to hungry and highly motivated females,
in search of blood and/or a mate. Although the mating swarm of males we observed formed
210 m from the village, there may be many other swarms at different locations. Perpendicular
females, which exhibited WBFs very similar to those expected from gravid parallel females,
were generally flying laterally across the beam rather than along it. Out of all groups, their
activity was the most concentrated to the crepuscular peaks, during which they were active
almost exclusively before sunrise and after sunset. Should they correspond to gravids, flying in
optimal conditions to avoid predators would make sense. Also, it would make sense that gravid
mosquitoes which have been resting and waiting for the opportunity all day would begin dis-
persing en masse in the evening, whereas others with less-developed eggs may defer such activ-
ity until dawn and then choose between either dispersing before the heat of the day sets in or
waiting it out until sunset. The less directional flight towards the village of perpendicular
females is also consistent with the interpretation that these correspond to gravid mosquitoes,
because they would be dispersing to larval habitats which were widely distributed in all direc-
tions eastward of the village. These two mosquito clusters closely match An. arabiensis in WBF
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[22], and may thus correspond to gravid and host-seeking states of this species, which by far is
the most abundant Anopheles species in this location and the only one from the An. gambiae
complex. Based on the spike activity of parallel females after midnight, the group may also con-
tain some An. funestus [48]. Like the other groups, high-frequency females displayed a very
directed flux towards the village around sunset. As for the parallel and perpendicular females,
the efflux of high-frequency females that took place during the rest of the day was less directed.
As previously highlighted, this group displayed activity resembling that predicted for blood-
fed or gravid females at night. Based on their WBFs, we expect that these correspond to Culex
mosquitoes [30]. Since the hierarchical cluster analysis (HCA) yielded only one cluster of male
mosquitoes, we conclude that this cluster likely contains both Anopheles and Culex males.
Studies carried out in laboratory environments with a limited set of mosquito species generally
report classification accuracies in the range of 70-90% [30, 49]. Misclassified abundant ones
could therefore obscure a rare species. However, our trap catch in Table 1 contained 68%
Anopheles gambiae s.l. and 29.9% Culex spp. mosquitoes. The remaining 2% can be assumed to
have limited impact on the overall results.

Conclusions and outlook

In this work, we demonstrated that modulation signatures obtained with lidar can be used to
differentiate different types of insects, revealing behavioral patterns that were previously
impossible to observe. In particular, we demonstrated that male and female mosquitoes can be
distinguished in field conditions using lidar. Behaviors such as male swarming and the poten-
tial host-seeking of anthropophilic malaria vectors were elucidated. Females entering male
swarms to mate were observed and may be studied in more detail with longer-running mea-
surements and more intensive statistical analyses. We also showed that different groups of
insects exhibit different activity levels throughout the day, and peak in activity at slightly differ-
ent times. As demonstrated previously, this may be related to predation pressure [31]. Insects
were also observed at different distances from the village at different times of day. We showed
that the majority of insect influx towards the village occurred in the evenings, in relation to
sunset, and that insects mostly disperse outwards, away from the village, during the rest of the
day.

Future studies could be carried out in conjunction with vehicle-mounted sweep net drives,
yielding an unbiased sample of the insect population for correlation with the lidar measure-
ments. They could also benefit from in-situ characterization of optical properties and wing-
beat harmonics of local insects. However, devices capable of such characterization are cur-
rently cumbersome and restricted to laboratory use, and further improvements are necessary.
Recently developed line sensors with higher sample rates could be implemented in lidar sys-
tems, which would potentially improve the frequency analysis and classification. Additional
spectral- and polarization bands have been shown to enable the classification of similar species
[22] and the distinction of gravid from non-gravid females [50] in the laboratory, despite the
overlapping WBF distributions of the groups. Radial activity maps could be obtained by scan-
ning the laser beam slowly over a field. This may be used to indicate mosquito hot spots and
improve collection strategies and the geopositioning of supplementary malaria vector control
interventions such as attractive targeted sugar baits or odor-based traps.
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