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Simple Summary: Animal breeding in recent years has benefited greatly from the availability of large-
scale genetic information. The most widely applied genomic tools in selective breeding are specialized
arrays that use DNA hybridization. However, the high financial investments accompanying this
practice impair the profitability of emerging aquaculture species, including Arctic charr. The aim
of the current study was to assess and compare the potential of two cost-efficient genotyping
strategies applicable in a variety of breeding-related tasks, such as pedigree verification, genetic
diversity screening and detection of genomic regions that are associated with phenotypes of economic
importance. Both strategies are based on reduced representation sequencing but differ in sequencing
coverage (low and high). The low coverage strategy offers a higher density of DNA markers, but
also presents a greater proportion of missing data in the marker set and is characterized by more
uncertainty in determining heterozygosity compared to high coverage. Our results show that while
high coverage genotyping performs better in genetic diversity and kinship analyses, a low coverage
strategy is more successful in identifying genomic regions associated with phenotypic traits, leading
to the conclusion that both strategies could be of value into selection schemes.

Abstract: Incorporation of genomic technologies into fish breeding programs is a modern reality,
promising substantial advances regarding the accuracy of selection, monitoring the genetic diver-
sity and pedigree record verification. Single nucleotide polymorphism (SNP) arrays are the most
commonly used genomic tool, but the investments required make them unsustainable for emerging
species, such as Arctic charr (Salvelinus alpinus), where production volume is low. The requirement
to genotype a large number of animals for breeding practices necessitates cost effective genotyping
approaches. In the current study, we used double digest restriction site-associated DNA (ddRAD)
sequencing of either high or low coverage to genotype Arctic charr from the Swedish national breed-
ing program and performed analytical procedures to assess their utility in a range of tasks. SNPs
were identified and used for deciphering the genetic structure of the studied population, estimating
genomic relationships and implementing an association study for growth-related traits. Missing
information and underestimation of heterozygosity in the low coverage set were limiting factors in
genetic diversity and genomic relationship analyses, where high coverage performed notably better.
On the other hand, the high coverage dataset proved to be valuable when it comes to identifying
loci that are associated with phenotypic traits of interest. In general, both genotyping strategies
offer sustainable alternatives to hybridization-based genotyping platforms and show potential for
applications in aquaculture selective breeding.

Keywords: reduced representation sequencing; Salvelinus alpinus; selective breeding; GBS; salmonid

1. Introduction

Over the last decade, genomic technologies have transformed the field of aquaculture,
opening up exciting new avenues for in-depth studies of practically any trait of interest [1].
Implementations of genomic technologies in aquaculture breeding schemes relying on
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single nucleotide polymorphism (SNP) arrays have been most beneficial for the major aqua-
culture species [2]. Nevertheless, SNP arrays require considerable financial investments
and running costs that are particularly difficult to sustain in the case of rare aquaculture
species. Reduced-representation genotyping platforms offer a cost-effective solution for
detecting genome-wide genetic polymorphisms irrespective of the availability of prior ge-
nomic information [3]. An abundance of reduced-representation based methodologies have
become available over the last years following the introduction of restriction site-associated
DNA (RAD) sequencing [4].

The RAD-derived platforms supported by a plethora of available restriction enzymes
have proven to be particularly flexible in their applications [5]. Most commonly used
type II restriction enzymes recognize between 4 and 8 bases of sequence motifs. Since the
sequencing output per lane and the associated cost are in general fixed for each platform
(minimal variation between sequencing runs), a balance needs to be obtained between geno-
typing density and sequencing cost per sample. Naturally, more frequent enzymatic cutters
will result in higher genotyping densities. On the other hand, the required sequencing
effort, and as such, the associated cost per sample for identifying genomic polymorphisms
increase in correspondence with the number of interrogated sites [6]. In comparison, the
choice of less frequent enzymatic cutters would allow multiplexing a higher number of
animals in a sequencing lane, reducing the genotyping cost per sample at the expense
though of reducing the obtained genotyping density.

A number of common enzymatic cutters used for genotyping by sequencing (GBS) [7]
have been successfully applied in the form of low read coverage per interrogated site for
deciphering genomic relationships at a high resolution [8]. Low coverage genotyping by
sequencing has been successfully applied for estimating genome-wide linkage disequilib-
rium [9], genetic map construction [10], gender prediction [11], parentage assignment [12]
and genomic selection purposes [13,14]. Nevertheless, the aforementioned strategy usually
results in an increase of missing genotypic data and in a reduction of confidently identify-
ing heterozygotes due to the low number of supporting reads as opposed to high coverage
genotyping approaches.

Arctic charr (Salvelinus alpinus) is an attractive candidate for diversifying the Nordic
aquaculture industry, with an ongoing breeding program having been operational in
Sweden for approximately 40 years [15,16]. Nevertheless, limited implementation of
modern genomic technologies has taken place to guide selection decisions. Double digest
RAD (ddRAD) relying on the simultaneous usage of two enzymes is one of the most
popular reduced-representation sequencing platforms. The combination of a relatively easy
library construction workflow and cost-efficiency [6] makes ddRAD particularly useful for
studying the genetic diversity of populations [17–20], constructing genetic maps [21–24]
and quantitative trait loci mapping [25–29].

In the current study, we compared two genotyping strategies based on ddRAD that
were applied on 277 (ten full-sibling families) and 188 (eight full-sibling families; subset
of the 277 samples) samples, respectively, of Arctic charr originating from the national
Swedish breeding program. During the first genotyping scenario, we applied less frequent
cutting restriction enzymes (SbfI-SphI) while aiming to identify SNPs supported by high
read coverage. In the second scenario, we constructed shallow coverage ddRAD libraries
through the usage of more frequent enzymatic cutters (PstI-NlaIII). SNPs were identified
under both scenarios and were used for estimating genetic diversity metrics, genomic
relationships, and identifying growth-related quantitative trait loci (QTLs).

2. Materials and Methods
2.1. Sample Background and Phenotypes

Arctic charr from the national Swedish breeding program was used for the needs of
our study. The animals were located at the facilities of Aquaculture Center North (ACN) in
Kälarne, Sweden. Growth measurements (body weight and total length) were recorded
from 277 animals (10 months old) of the 2017 class, representing 10 full-sibling families
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(with two families having the same sire). In addition, the condition factor (K) was calculated
for all the genotyped animals using the formula K = 105 × weight/length3. Finally, fin-clips
were collected for DNA extraction and ddRAD library preparation.

2.2. DNA Extraction and Quantification

Fin clips of Arctic charr of about 3 mm2 were collected and preserved in 100%
ethanol. Genomic DNA from individual samples was extracted using a salt precipita-
tion method [30] and eluted in 30 µL of 5 mM Tris. The quality of the obtained DNA was
assessed through gel electrophoresis (1% agarose gel). DNA samples were quantified using
a Qubit fluorimeter (Thermo Fisher Scientific, Waltham, MA, USA) and diluted with Tris
buffer (5 mM) to 15 ng/µL.

2.3. ddRAD Library Preparation and Sequencing

ddRAD libraries were simulated in silico using RADinitio v1.1.1 [31] and were pre-
pared according to a standard protocol [6], with minor modifications that have been
previously described [32]. Two different types of ddRAD libraries were prepared using
either less frequent (SbfI-SphI; n = 277; File S1) or more frequent enzymatic cutters (PstI-
NlaIII; n = 188; File S2). Briefly, each sample (15 ng/µL DNA) was digested at 37 ◦C for
60 min in the same reaction with either SbfI (recognizing the CCTGCA|GG motif) and
SphI (recognizing the GCATG|C motif) or PstI (recognizing the CTGCA|G motif) and
NlaIII (recognizing the CATG|N motif) high fidelity restriction enzymes (New England
Biolabs, UK; NEB), by using 6 U of each enzyme per microgram of genomic DNA in 1×
Reaction Buffer 4 (NEB). The reactions (6 µL final volume) were then heat inactivated at
65 ◦C for 20 min. Individual-specific combinations of P1 and P2 adapters, each with a
unique 5 or 7 base pair (bp) barcode, were ligated to the digested DNA at 22 ◦C for 120 min
by adding 1 µL SbfI-PstI compatible P1 adapter (25 nM), 0.7 µL SphI-NlaIII compatible P2
adapter (100 nM), 0.06 µL 100 mmol/L rATP (Promega, Southampton, UK), 0.95 µL 1×
Reaction Buffer 2 (NEB), 0.05 µL T4 ligase (NEB, 2 × 106 U/mL) and reaction volumes
made up to 12 µL with nuclease-free water for each sample. Following heat inactivation at
65 ◦C for 20 min, the ligation reactions were slowly cooled to room temperature (over 1
h) then combined in a single pool (for one sequencing lane) and purified. Size selection
(300–600 bp) was performed by agarose gel separation and followed by gel purification
and PCR amplification. A total of 100 µL each of the amplified libraries (12–14 PCR cycles)
was purified using an equal volume of AMPure beads. The libraries were eluted into 20
µL EB buffer (MinElute Gel Purification Kit, Qiagen, Chadstone, Australia). The libraries
were sequenced on two SP flow cells of an Illumina NovaSeq6000 using 300 cycles and
v1.5 chemistry kits (150 bp paired end-reads) at the National Genomics Infrastructure in
Uppsala, Sweden.

2.4. Sequence Data Analysis and SNP Genotyping

Reads of low quality (Q < 20) and missing the expected restriction sites were dis-
carded. The retained reads were aligned to the Salvelinus sp. reference genome assembly
GCA_002910315.2 using bowtie2 [33]. Stacks v2.5 [34] was used to identify and extract
single nucleotide polymorphisms (SNPs) using the gstacks module. An alpha threshold of
0.01 and 0.05 for calling SNPs and genotypes respectively was applied using the maruk-
ilow model of gstacks. From each putative ddRAD locus, only a single SNP was used for
downstream analysis. SNPs with minor allele frequency (MAF) < 0.05 and maximum
heterozygosity > 0.7 across the tested samples were discarded using the populations module
of Stacks. Only SNPs found in at least 50% and 70% of the samples in the low and high
coverage datasets respectively were retained for downstream analysis.

2.5. Genetic Diversity and Kinship

For the direct comparison of the two genotyping strategies, the intersecting population
(individuals present in both SbfI-SphI and PstI-NlaIII filtered datasets; n = 175) was used.
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Expected (He) and observed (Ho) heterozygosity metrics were calculated separately for
the two datasets using the R package adegenet 2.1.3 [35]. Principal component analysis
(PCA) was performed for both genotyping scenarios with the aforementioned software to
gain information regarding the population structure. Additionally, discriminant analysis
of principal components (DAPC) was conducted to further investigate the presence of
genetic clusters. The optimal number of clusters (K) was selected for each dataset using
the Bayesian Information Criterion (BIC) [36]. Furthermore, a cross-validation scheme was
performed to test the ability of the two marker sets to discriminate between individuals
from different full-sibling families. More specifically, data from ~75% of the individuals
were used as training sets and the rest were utilized as testing sets (one family was excluded
since after quality control it consisted of only 2 members). Information derived from DAPC
(predict.dapc) performed on the training data sets was used to predict the family of origin
for the members of the testing sets and assignment accuracies were calculated. Finally, in
order to determine the effect of MAF on the reassignment performance of the low coverage
set, we applied a series of MAF filters (0.05, 0.1, 0.15, 0.2 and 0.25) and subjected the yielded
sets to the same cross-validation method.

The intersecting population was also used to compute genomic relationship matrices
(GRMs) and compare the two datasets in regard to kinship estimations among full siblings.
For this purpose, we employed R/rrblup 4.6.1 [37,38] and calculated the GRMs for each
dataset setting a threshold of 0.3 for maximum missing data and using the Expectation-
Maximization (EM) algorithm [39]. Genomic relatedness for full-sibling and non-sibling
pairs was then expressed using the following formula:

GRij =
gij√gii · gjj

(1)

where GRij is the genomic relatedness between individuals i and j, and g refers to the
genomic relationships as calculated in the GRMs mentioned above.

2.6. Association with Phenotypic Traits

Association studies for the recorded growth traits were performed separately for the
two genotyping strategies and their respective populations. Analyses were performed
using the R package gaston 1.5.5 [40]. The tests were carried out aiming to identify genomic
regions associated with body length and log2 transformed K factor. A linear mixed model
was applied:

Y = Xα + Zβ + Sω + ε (2)

whereα is the vector of fixed effects other than marker effects (intercept, sex, family-tank),β
is the fixed effect of each SNP marker,ω is the vector of animal random effect ~N (0, Gσα

2)
and ε is the vector of residuals ~N (0, Iσe

2). X, Z and S are incidence matrices relating Y
with α and β respectively. G is a genomic relationship matrix computed with the GRM
function, I is an identity matrix, σe

2 is the residual variance andσα
2 represents the additive

genetic variance. Multi-test adjustment of the genome-wide significance thresholds was
achieved using Bonferroni corrections (0.05α level/n), where n is the number of tested
SNPs. Furthermore, Benjamini–Hochberg (BH) adjustment of p-values was performed to
control for false discovery rate.

3. Results
3.1. Genotypic Information

Due to high rate of missing data, 24 animals from the high coverage dataset (HC)
and nine animals from the low coverage dataset (LC) were removed. Therefore, the HC
dataset was comprised of 253 animals, and 179 were finally represented in the LC dataset.
The number of individuals successfully genotyped with both SbfI-SphI and PstI-NlaII
was 175 (intersecting population) and was used for analyses where direct comparisons
were necessary. The expected number or RAD loci as estimated with the in-silico library
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stimulations was 1524 for SbfI-SphI (HC) and 305,077 for PstI-NlaIII (LC). In contrast,
the filtered variant sets in our study consisted of 1034 SNP genotypes for SbfI-SphI, and
38,224 SNPs for PstI-NlaIII. The mean coverage for the former was 428X, while for the
latter the mean coverage was 3X. The distributions of MAF and SNP call rates after filtering
are shown in Figure 1. The marker set derived from the shallow coverage approach was
characterized by a greater proportion of low call-rate genotypes and MAF compared to
high coverage.

Animals 2021, 11, x  5 of 15 
 

3.1. Genotypic Information 
Due to high rate of missing data, 24 animals from the high coverage dataset (HC) and 

nine animals from the low coverage dataset (LC) were removed. Therefore, the HC dataset 
was comprised of 253 animals, and 179 were finally represented in the LC dataset. The 
number of individuals successfully genotyped with both SbfI-SphI and PstI-NlaII was 175 
(intersecting population) and was used for analyses where direct comparisons were nec-
essary. The expected number or RAD loci as estimated with the in-silico library stimula-
tions was 1524 for SbfI-SphI (HC) and 305,077 for PstI-NlaIII (LC). In contrast, the filtered 
variant sets in our study consisted of 1034 SNP genotypes for SbfI-SphI, and 38,224 SNPs 
for PstI-NlaIII. The mean coverage for the former was 428X, while for the latter the mean 
coverage was 3X. The distributions of MAF and SNP call rates after filtering are shown in 
Figure 1. The marker set derived from the shallow coverage approach was characterized 
by a greater proportion of low call-rate genotypes and MAF compared to high coverage. 

 
Figure 1. Distributions of post-filtering minor allele frequency (MAF) and single nucleotide poly-
morphism (SNP) call rate for SbfI-SphI (n = 253) and the intersecting (n = 175) animals that were 
also genotyped with PstI-NlaIII. 

3.2. Descriptive Statistics of Phenotypic Traits 
The distributions of phenotypic data are graphically presented in Figure 2. The over-

all mean body length of the studied sample was 169.03 mm (sd = 19.01), and the mean wet 
body weight was 55.88 gr (sd = 19.57). For condition factor K, the mean value was 1.11 (sd 
= 0.11) and a log2 transformation was performed to obtain a normalized distribution (Fig-
ure 2). 

Figure 1. Distributions of post-filtering minor allele frequency (MAF) and single nucleotide polymor-
phism (SNP) call rate for SbfI-SphI (n = 253) and the intersecting (n = 175) animals that were also
genotyped with PstI-NlaIII.

3.2. Descriptive Statistics of Phenotypic Traits

The distributions of phenotypic data are graphically presented in Figure 2. The overall
mean body length of the studied sample was 169.03 mm (sd = 19.01), and the mean wet body
weight was 55.88 gr (sd = 19.57). For condition factor K, the mean value was 1.11 (sd = 0.11)
and a log2 transformation was performed to obtain a normalized distribution (Figure 2).
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3.3. Genetic Diversity

For the high coverage dataset, the expected (He) and observed (Ho) heterozygosity
were 0.34 and 0.31 respectively; and the same metrics for the shallow coverage scenario were
0.23 and 0.22. Differences in subpopulations detection were visualized when dimensionality
reduction was used through PCA (Figure 3). The first and second principal components for
the SbfI-SphI SNP set accounted for 10.39% and 8.34% of the observed variation, while for
the PstI-NlaIII dataset, the proportions for PC1 and PC2 were 9.11% and 4.62% respectively.
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DAPC provided further insights of the formed genetic clusters (Figure 4). The optimal
number of clusters (K) was suggested to be seven for SbfI-SphI and five for PstI-NlaIII. In
general, clustering according to the shallow coverage dataset was less efficient and only
provided a rough discrimination between the different families. In the analyses of the high
coverage SNP sets, two individuals (belonging to families F77 and F79) failed to group with
their original families and were assigned to closely related groups (Figure 4A). Finally, the
genetic clusters representing families F4 and F5, which had the same sire, always appeared
to group closely (SbfI-SphI) or were indistinguishable (PstI-NlaIII).
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A cross-validation scheme was employed to assess the accuracy of family reassignment
(DAPC) using the two datasets. The relative frequency (observed minimum) of assignment
to the original (according to pedigree records) family was 95.83% for SbfI-SphI and 68.75%
for PstI-NlaIII. Frequencies of family assignments as calculated during cross-validation
are visualized in Figure 5 for both SNP sets. Furthermore, the analysis performed on
PstI-NlaIII dataset demonstrated that reassignment accuracy remained at the same levels
for MAF filtering thresholds spanning from 0.05 to 0.25 (Figure S1).
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Mean genomic relatedness (see Genetic Diversity and Kinship in Materials and Meth-
ods) among full siblings was found to be 0.23 (sd = 0.09) for SbfI-SphI and 0.19 (sd = 0.16)
for PstI-NlaIII, and the same metric for non-sibling pairs was −0.05 (sd = 0.06) for SbfI-SphI
and −0.05 (sd = 0.11) for PstI-NlaIII. The density plots in Figure 6 visualize the overlapping
of GRs distributions between full-sibling and non-sibling pairs, which was found to be
3.70% for SbfI-SphI and 16.08% for PstI-NlaIII.
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3.4. Association Scans for Phenotypic Traits

No significant QTL peaks were observed for body length or log2 transformed condition
factor (K) when using genotypic information from the high coverage dataset (Figure 7).
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Association of markers derived from the shallow coverage strategy with body length
failed to identify QTLs. Nevertheless, SNPs from the same dataset were found to be
significant in the case of log2K. As shown in Figure 8, a total of eight SNPs were identified.
More specifically, three SNP markers passed the Bonferroni adjusted significance threshold,
and another five SNPs were found to be significantly associated with the log2 transformed
condition factor after adjusting the obtained p-values with the BH method.
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Finally, we highlight 11 genes based on physical distance (less than 20 kb) from the
chromosomal position of each variant (Table 1) and found that three of these SNPs were
located in genes, while two others were located within a distance of less than 1000 bp from
genes.

Table 1. SNPs significantly associated with the logarithmically transformed condition factor and nearby candidate genes. *
SNP located within 1 kb of gene, ** SNP located in gene.

Linkage Group SNP Position (bp) Unadjusted p-Value BH Adjusted p-Value

Annotated or
Predicted Genes

within 20 kb on Either
Side

NC_036876.1 6,904,331 2.317911 × 10−9 8.859984 × 10−5 LOC111960292 **

NC_036872.1 16,812,304 1.710431 × 10−8 3.268976 × 10−4 nkx2.7, LOC111957894,
LOC111957491

NC_036874.1 10,834,663 1.568166 × 10−7 1.998052 × 10−3 apom *, LOC111959084,
LOC111958785

NW_019945418.1 7585 2.161829 × 10−6 2.030243 × 10−2 -
NC_036874.1 13,345,514 2.655718 × 10−6 2.030243 × 10−2 -
NC_036869.1 2,707,853 4.399173 × 10−6 2.761334 × 10−2 LOC111955246 *, pex1
NC_036839.1 21,199,964 5.056859 × 10−6 2.761334 × 10−2 klf7 **
NC_036839.1 17,537,842 8.506600 × 10−6 4.064454 × 10−2 LOC111972823 **

4. Discussion

In the current study, both high and low coverage ddRAD genotyping scenarios pro-
vided genotypic information that is useful for different applications in a wide range of
breeding related tasks. Reduced representation sequencing can be a valuable tool for selec-
tive breeding practices in emerging aquaculture species, such as Arctic charr [14]. Genomic
information is useful for important aspects of fish breeding that include, but are not limited
to estimating relationships between individuals, assessing genetic diversity in populations
and even investigating the genetic basis of phenotypic variation [41]. However, the cost
of genotyping is a limiting factor for the sustainability of breeding programs. Available,
reduced representation methods include strategies that yield for the same cost either deep
coverage but low density of genetic markers, or high genotyping density with shallow
coverage—and thus, a greater proportion of missing data. Encouragingly, as suggested
by both simulated data and empirical studies, low coverage genotyping by sequencing
appears to be an attractive option for selective breeding practices [12,42].

As expected by RADinitio library simulations, the PstI-NlaIII library resulted in
significantly higher number of SNP biallelic genotypes than SbfI-SphI. The actual counts of
filtered variants were lower than estimated in silico with the deviation being larger and
more profound for the low coverage scenario. This could be attributed to a number of
factors that among others include the low depth in the case of PstI-NlaIII (~ 3X) and the
fact that the reference genome was derived from a distant population and might not be
adequately representative of the nucleus of the national Swedish breeding program.

4.1. Genetic Diversity

The deep coverage strategy outperformed shallow coverage genotyping. A compar-
ison of heterozygosity metrics indicates that the latter underestimates the proportion of
heterozygotes in the population, possibly due to missing information in the marker set [10].
Observed heterozygosity (Ho) was found to be lower than expected heterozygosity (He) in
both cases, reflecting the fact that the studied population was derived from a closed-nucleus
breeding program [43].

Furthermore, genotyping in the SbfI-SphI scenario resulted in better and more robust
detection of subpopulations and clustering at the family level in the PCA and DAPC ana-
lytical procedures. This finding was further supported by a cross-validation scheme where
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the estimated accuracy of family reassignment was higher for deep coverage, suggesting
that high quality genotypic information is a priority over marker density for genetic diver-
sity and population structure analysis. Despite providing a much more defined view on
genetic clusters, DAPC for the SbfI-SphI scenario resulted in two individuals not grouping
with their original families, but this could be explained by putative errors in the pedigree
records.

It should be highlighted that in our study we tried to decipher the population struc-
tures and genetic clustering of full-sibling families in a closed breeding nucleus, a task that
is more challenging and demanding than studying genetic diversity and differentiation
among distant populations [44]. Even though differing MAF thresholds could potentially
affect population structure inference [45,46], setting stricter MAF filtering thresholds for
the PstI-NlaIII dataset in our study did not affect the clustering performance. However,
the total number of SNP markers decreased, which could consequently result in decreased
computational intensity.

4.2. Kinship Investigation

Kinship estimations among full-sibling pairs were higher for the high coverage dataset
and provided better discrimination from the GR values of non-sibling pairs, despite incor-
porating remarkably less genotypic information than the low coverage dataset. As with
genetic diversity analyses, this might have been due to the higher SNP calling uncertainty
entailed by shallow coverage genotyping-by-sequencing approaches. Overall, both geno-
typic datasets underestimated the average relationship between full-sibling pairs, thereby
performing worse compared to similar studies in livestock that used SNP arrays [47]. The
above was probably to be expected in the case of HC dataset, since the number of SNPs
(~1000) is considered low for providing the resolution needed for a genomic relationship
matrix. Notably, genomic relationship matrices are most commonly constructed from SNPs
in the range of tens of thousands [48]. On the other hand, a high-density SNP dataset
even at low coverage is expected to result in a more accurate genomic relationship matrix
and better discern relationships between full siblings. More specifically, low coverage
genotyping by sequencing has been shown to be effective in estimating genomic relation-
ships amongst full siblings both in Atlantic salmon [8] and in Arctic charr [14]. However,
compared to the above studies the library preparation protocol of our study differed. In
particular, opposed to the previous studies, the size selection during library preparation
was performed manually which might have rendered the detection of SNPs in the low cov-
erage dataset more challenging due to the larger number of sampled sites. As a result, the
LC dataset in our study had a mean coverage of 3X compared to 5X of the aforementioned
studies. Nevertheless, both datasets in our study were able to successfully separate full
siblings from more distantly related animals as shown from their respective distributions
of genomic relationships.

4.3. Association Analysis

Our association study for length and log2 transformed condition factor (K) confirmed
that the density of the marker set is crucial when conducting genome-wide regression
studies in aquatic animal populations [49–51]. All SNPs of the high coverage set failed
to reach the genome-wide adjusted significance threshold for both studied traits. SNPs
from the low coverage dataset failed to significantly associate with body length but eight
of them were identified as significantly associated with log2K. Further analysis showed
that some of those loci are located in genomic regions containing genes that are affiliated
with development and metabolism. Among them, a SNP was located 570 bp upstream of
the apolipoprotein M (apom) gene, which has been previously associated with obesity in
mice [52,53] and humans [54,55]. Moreover, two of the significant SNPs were located in or
near genes that code for transcription factors such as klf7 and nkx2.7. Genetic studies on
QTLs of condition factor in Arctic charr have been previously conducted [56–58], but to
our knowledge the current article is the first to present genetic associations using genomic
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approaches. The authors acknowledge though, that the association study was performed
on small sample sizes, and further validation regarding the putative role of the above SNPs
would be required. Nevertheless, it should be noted that the studied sample consisted
of full-sibling families from a closed breeding nucleus, meaning that the probability of
detecting QTLs is higher compared to scenarios where distant related individuals are used.

5. Conclusions

Both deep and shallow coverage genotyping by sequencing strategies provides valu-
able genomic information that can be incorporated in fish breeding programs. While deep
coverage results in high quality but less dense genotypes, shallow coverage provides higher
genotypic density with a greater proportion of missing data and higher uncertainty. The
first strategy performed better in genetic diversity and population structure analyses, while
low coverage genotyping proved to be more informative regarding genome-wide regres-
sion for association, with phenotypic traits demonstrating the potential of both approaches
in aquaculture breeding schemes.
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