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A B S T R A C T   

The sustainable land management program (SLMP) of Ethiopia aims to improve livelihoods and create resilient 
communities and landscape to climate change. Soil organic carbon (SOC) sequestration is one of the key co- 
benefits of the SLMP. The objective of this study was to estimate the spatial dynamics of SOC in 2010 and 
2018 (before and after SLMP) and identify the SOC sequestration hotspots at landscape scale in four selected 
SLMP watersheds in the Ethiopian highlands. The specific objectives were to: 1) comparatively evaluate SOC 
sequestration estimation model building strategies using either a single watershed, a combined dataset from all 
watersheds, and leave-one-watershed-out using Random Forest (RF) model; 2) map SOC stock of 2010 and 2018 
to estimate amount of SOC sequestration and potential; 3) evaluate the impacts of SLM practices on SOC in four 
SLMP watersheds. A total of 397 auger composite samples from the topsoil (0–20 cm depth) were collected in 
2010, and the same number of samples were collected from the same locations in 2018. We used simple statistics 
to assess the SOC change between the two periods, and machine learning models to predict SOC stock spatially. 
The study showed that statistically significant variation (P < 0.05) of SOC was observed between the two years in 
two watersheds (Gafera and Adi Tsegora) whereas the differences were not significant in the other two water-
sheds (Yesir and Azugashuba). Comparative analysis of model-setups shows that a combined dataset from all the 
four watersheds to train and test RF outperform the other two strategies (a single watershed alone and a leave- 
one-watershed-out to train and test RF) during the testing dataset. Thus, this approach was used to predict SOC 
stock before (2010) and after (2018) land management interventions and to derive the SOC sequestration maps. 
We estimated the sequestrated, achievable and target level of SOC stock spatially in the four watersheds. We 
assessed the impact of SLM practices, specifically bunds, terraces, biological and various forms of tillage practices 
on SOC using partial dependency algorithms of prediction models. No tillage (NT) increased SOC in all water-
sheds. The combination of physical and biological interventions (“bunds + vegetations” or “terraces + vegeta-
tions”) resulted in the highest SOC stock, followed by the biological intervention. The achievable SOC stock 
analysis showed that further SOC stock sequestration of up to 13.7 Mg C ha–1 may be possible in the Adi Tsegora, 
15.8 Mg C ha-1 in Gafera, 33.2 Mg C ha-1 in Azuga suba and 34.7 Mg C ha-1 in Yesir watersheds.   

1. Introduction 

Ethiopia is investing a huge amount of resources to tackle land 
degradation through land restoration under its various initiatives such 
as Food for work, Managing Environmental Resources to Enable 

Transitions (MERET), and the sustainable land management program 
(SLMP). In the last decade, Ethiopia has invested more than US$1.2 
billion annually in restoring landscapes in its major regions (Adimassu 
et al., 2018). Some of the Sustainable Land Management (SLM) practices 
implemented include physical measures (soil/stone terraces, trenches, 
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micro basins, percolation bonds, and gully treatments); biological 
measures (area closure, tree/forage planting on terraces, bamboos); or a 
combination of the two. The full list of SLM practices implemented in 
Ethiopia are detailed in Nedessa et al. (2015). SLM interventions have 
been implemented across the country to achieve multiple aims such as 
(i) reducing soil erosion and surface water sediment loads (Tamene and 
Vlek, 2007), (ii) reducing surface water runoff and enhancing ground-
water recharge (Woldearegay et al., 2018), and (iii) promoting revege-
tation and soil fertility, thereby increase agricultural productivity 
(Abera et al., 2020). In addition to improving livelihoods, the land 
restoration efforts also support the government of Ethiopia to achieve its 
regional and international commitments such as the “4 per 1000” 
initiative and the Land Degradation Neutrality programme (Chabbi 
et al., 2017). It is also expected to contribute to the achievement of both 
the national REDD + programme and the Climate Resilient Green 
Economy (CRGE) strategy. 

Land management practices implemented in many parts of Ethiopia 
showed positive impacts on restoring degraded landscapes and 
enhanced soil fertilities (Abdalla et al., 2018). Abera et al. (2020) con-
ducted a meta-analysis to summarize how different land restoration 
practices and interventions affect ecosystem services. Other studies also 
investigated the effect of land restoration on various ecosystem and 
livelihood benefits in Ethiopia (Balehegn et al., 2019; Adimassu et al., 
2018; Araya et al., 2011). Despite these efforts, there is however a 
knowledge gap about the impacts of land management practices on 
sequestration of soil organic carbon (SOC; see e.g. Namirembe et al., 
2020). SOC plays a key role in various agricultural and ecological pro-
cesses related to soil fertility (Abdalla et al., 2018), carbon cycle and 
soil-atmosphere interactions including CO2 sequestration (Ramesh 
et al., 2019; Xu et al., 2019; Murty et al., 2002). As SOC is the largest 
pool of carbon in the terrestrial ecosystems (Schlesinger and Bernhardt, 
2013), any effort to sequester SOC is a key mechanism to reduce CO2 in 
the atmosphere due to humans and contribute to mitigate climate 
change (Paustian et al., 2016; Smith et al., 2016; Zomer et al., 2017). 
Thus, our knowledge about the relationship between land management 
practices and SOC will be crucial to facilitate informed decision making 
and also contributes to the global and regional knowledge pool. 

The scientific community has spent considerable efforts in mapping 
SOC, modelling its spatiotemporal variation and confirming its primary 
role in shaping ecosystems functioning (Grinand et al., 2017; Ajami 
et al., 2016; Ratnayake et al., 2014). Accurate estimation of SOC and its 
dynamics are necessary to support improved carbon management and 
climate change mitigation, and to identify land management practices 
with higher SOC sequestration benefits. Good understanding of the 
spatiotemporal dynamics of SOC in relation to land management prac-
tices can also enable us to understand what options placed where can 
sequester the most carbon, making our interventions more effective and 
efficient. This can ultimately enable governments to achieve their Na-
tionally Determined Contributions (NDCs) within their planning hori-
zons. In CRGE, the contribution of soil as potential for carbon 
sequestration through land restoration and climate smart agriculture 
practices is stated. 

At a local scale, SOC concentrations are largely governed by soil 
physical and chemical properties, which determine the SOC stabilization 
(Cotrufo et al., 2019), environmental conditions and land use changes 
(Martin et al., 2010; Fantappiè et al., 2010; Abegaz et al., 2016), 
intensive agricultural practices (Yan et al., 2012), and shifts in soil 
management practices (Powlson et al., 2011; West and Post, 2002). 
Conservation tillage practices such as reduced tillage and no-tillage have 
been proposed, as an alternative to conventional tillage, for their ad-
vantages in preserving SOC (Beare et al., 1994; Liu et al., 2014) and 
improve soil physicochemical properties (Blanco-Canqui and Ruis, 
2018; Johnson and Hoyt, 1999). The relationship between environ-
mental variables, land management factors and SOC is complex and 
non-linear. Recently, the use of machine learning (ML) techniques to 
unravel patterns and identify complex relationships is suggested to 

improve the SOC prediction (Khaledian and Miller, 2020; Lamichhane 
et al., 2019). In most cases, random forest (RF) as an ensemble ML 
method has often outperformed other ML models (Keskin et al., 2019; 
Mahmoudzadeh et al., 2020; Tajik et al., 2020; Forkuor et al., 2017). In 
this study, we used RF to estimate the impacts of SLMP interventions on 
SOC in four selected watersheds in Ethiopia. The specific objectives were 
to: (i) comparatively evaluate RF model calibration strategies; (ii) esti-
mate and map the impacts of SLMP on SOC sequestration and; (iii) es-
timate and map the achievable SOC sequestration hotspots due to 
existing land management practices such as conservation tillage and 
physical soil managements. 

2. Materials and methods 

2.1. Study area description 

The study was conducted in four watersheds (Adi tsegora, Yesir, 
Gafera and Azuga shuba) where the SLMP has been implemented. The 
watersheds are systematically selected from different agro-ecological 
zones (Fig. 1 and Table 1). The watershed areas are 88.7 ha (Azuga 
shuba), 99.8 ha (Gafera), 116 ha (Yesir) and 129 ha (Adi Tsegora). In all 
watersheds, implementation of the SLM program started in 2010. Each 
watershed has distinct characteristics in terms of land use and topog-
raphy (Table 1). 

2.2. Soil sampling and laboratory analysis 

Soil samples were collected in 2010, before SLMP interventions, and 
in 2018, after 8 years of interventions. The former were collected by the 
SLMP project as baseline data while in 2018 the research team collected 
samples from corresponding locations of 2010. The soil samples were 
collected from a 1 km grid in both years. This sampling design was 
chosen to give an unbiased estimate of SOC contents and SOC stocks in 
the areas. The sampling approach was the same in all the four water-
sheds. A total number of 397 soil sample locations were surveyed both in 
2010 (before scenario) and in 2018 (after scenario), constituting 794 soil 
samples in the four watersheds. The distributions of number of soil 
samples across the four watersheds is presented in Table 1. The sampling 
depth is the topsoil (0–20 cm). The same laboratory analyses procedures 
and methods were used for both years (2010 and 2018). During the field 
survey, the land uses/covers types corresponding to each sampling point 
of each site were recorded. Within each individual sampling plot, four 
sub-plots were established, one in the center and three on a radial arm 
with 120◦ angles between them (Vågen et al., 2013; Abegaz et al., 2016) 
and four equal subsamples were used for a composite sample. Composite 
samples were produced by hand-mixing after removing unwanted ma-
terials like dead plants, roots, and organic piles. The soil samples were 
air-dried, crushed, and passed through a 2-mm sieve for laboratory 
analysis. SOC content was determined using the Walkley-Black oxida-
tion method (Schnitzer, 1982), and SOC stock ha-1 was quantified for 
the 0–20 cm soil depth according to Eq. (1) (Aynekulu et al., 2011): 

SOCst = SOC*BD*D (1)  

where SOCst is the soil organic carbon stock (Mg C ha− 1), SOC is the soil 
organic carbon concentration (g C g− 1 soil), BD is the bulk density (g 
cm− 3), D is soil sampling depth (cm), in this case 20. 

2.3. Statistical analysis 

One of the key objectives of this study was to evaluate if the SOCst 
varied between before and after the SLM interventions in the four wa-
tersheds covering different agro-ecological zones (Table 1). Tests of 
inferential statistics (paired samples t-test and one-way analysis of 
variance (ANOVA)) were done and results were tested at the 0.05 sig-
nificance level. The paired-samples t-test was used to test whether the 
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mean SOCst between the before and after of each of the studied water-
sheds was significantly different or not. The one-way ANOVA was con-
ducted to examine whether the mean SOCst among the studied 
watersheds were significantly different or not. 

2.4. Selection of environmental variables for modelling 

It has been well-established that factors such as topography, vege-
tation, climatic conditions, farming practices, and soil properties affect 

the SOCst variability to different extents (Jobbágy and Jackson, 2000; 
Miller et al., 2004; Kemmitt et al., 2006; Fantappiè et al., 2010). 
Included topographic variables are: elevation, slope, topographic posi-
tion index (TPI), and topographic wetness index (TWI). These are 
derived from the digital elevation model (DEM). DEM of 90-m resolution 
was obtained from the Shuttle Radar Topography Mission terrain 
(STRM). Climate variables of various seasons, in addition to the 
long-term mean, were considered as important covariates to enable us to 
consider if the seasonal climate variables have influence on SOCst 

Fig. 1. The four watersheds and soil sampling point locations where SOC sequestration assessment is conducted in Ethiopia a) Adi Tsegora, b) Yesir, c) Gafera, d) 
Azuga shuba (elevation data from SRTM (Jarvis et al., 2008)). The four soil composites at each sampling site are not plotted here as they are really close each other 
(20 m-50 m). 

Table 1 
Studied watersheds, their regional locations and selected physical characteristics.  

Watersheds Region Area (ha) # of sample locations Dominant 
topography 

Mean altitude (m.a.s. 
l) 

Mean temp 
(oC) 

Mean precip 
(mm) 

Agroecological 
zone 

Adi tsegora Tigray 129 95 Mountainous 1818 20 921 Sub-moist 
Yesir Amhara 116 98 Flat 2044 18 1269 Moist 
Gafera Oromia 99.8 106 Mountainous 1816 20 1791 Sub-humid 
Azuga shuba SNNPa 88.7 98 Undulating slope 2242 17 1203 Sub-humid  

a Southern Nations Nationalities and Peoples. 
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dynamics. Climate data particularly precipitation and temperature, at 
4-km and monthly temporal resolution, were acquired from the Ethiopia 
Institute of Agricultural research (EIAR) (Dinku et al., 2018). Long term 
average (2010–2018) Moderate Resolution Imaging Spectroradiometer 
(MODIS) derived normalized difference vegetation index (NDVI) data 
product (MOD13Q1) were used to infer the spatial variability of 
greenness. The complete list of covariates used to develop predictive 
models are detailed in Table 2. The selection of those variables is guided 
by previous literature (Mahmoudzadeh et al., 2020; Were et al., 2015; 
Minasny et al., 2013). All covariates were resampled using nearest 
neighbor approach to a common grid of 90 × 90 m resolution. 

2.5. SOC stock and sequestration hotspot mapping 

The RF is a classical, powerful and efficient machine learning method 
which is commonly used in the research of environmental modelling 
(Mahmoudzadeh et al., 2020; Tajik et al., 2020). RF models are rela-
tively robust with respect to collinearity among predictor variables and 
noisy covariate data (Svetnik et al., 2003; Wang et al., 2018). As a result, 
we chose an RF model to estimate soil carbon stock and its spatial dy-
namics in our study sites. In the RF model, the data is divided into 
training and testing components for building the model and model 
validation/testing, respectively (Svetnik et al., 2003). In order to assess 
the effect of model building strategies on the model performances and 
identify the best model that can be used for prediction, we evaluated 
three modelling strategies. These are (1) the use of a single watershed 
data for calibration, validation and prediction of SOCst spatially, 2) the 
use of all the four watersheds’ combined dataset for calibration, vali-
dation and prediction of SOCst, and 3) the use of three watersheds’ 
dataset to train the model and use this model to test and predict at the 
fourth watershed. This is important to know where the machine learning 
model can be extrapolated spatially. Specifically, we used three 
modelling and validation strategies conducted based on: i) each water-
shed individually, ii) four watershed datasets combined, and iii) 
leave-one-watershed-out. To assess goodness-of-fitness of the mod-
elling/training strategy, we used R2 between predicted and observed 
SOCst in both the training and testing datasets. Among the three mod-
elling/training strategies, we selected the one with higher R2 for testing 

dataset because a good model performance for testing dataset is an 
indication of a good predictive capacity of a model as it indicates the 
model performance in places with no in-situ measurements. In addition 
to R2, we used root mean square error (RMSE), to diagnostic the model 
performance. Then, the selected model is used for predicting SOCst 
spatially. 

To build an optimal predictive model we tuned the Random forest, in 
ranger package (Wright and Ziegler, 2015), hyper parameters: we varied 
mtry (i.e. number of variables randomly sampled as candidates at each 
split) from 2 to 20; and min. node.size (i.e. minimum node size) varied 
from 2 to 15, in R caret package (Kuhn, 2008). Finally, an optimized 
ensemble of regression trees (in this case 100) and their parameters were 
constructed at the training stage and then for the model prediction. We 
used repeated 30-fold cross validation (CV) to search the hyper-
parameter space. Approximately 25% of data in the overall dataset were 
randomly selected for validation, and the other 75% were used for 
model training. Based on the final model, important covariates that are 
responsible for predicting SOCst were selected based on variable of 
importance analysis. The difference between the predicted SOCst in 
2018 and SOCst in 2010 is used to map the actual SOCst sequestration 
due to the SLM implementation in this period: 

SOCst seq= SOCst2018 − SOCst2010 (2) 

Map areas with positive SOCst seq indicate good performance of SLM 
practices in sequestering SOC in 8 years while areas with low and 
negative SOCst seq depict poor sequestration or even further depletion 
of soil carbon loss. To obtain target SOCst, which is the practically 
obtainable SOC level by implementing existing available SLM practices 
in the area (Piikki et al., 2019), we estimated the 95% quantile of the 
scenario based model considering a combination of SLM practices. We 
have developed spatial layer of managements, for instance, one layer for 
SLM practice 1 (all same value for the whole area e.g. bunds), another 
layer for SLM practice 2 (terrace), SLM practice 3 (reduced tillage), etc. 
For each management scenario, we calculated SOCst based on all 
covariates used in SOCst2018 and SOCst2010 model and these manage-
ment layers. The target SOCst is then estimated as the maximum SOCst 
values of all the scenarios and the SOCst2018, as in the following: 

Table 2 
List of covariates considered in building the RF model for prediction of SOC sequestration in the four SLMP watersheds of Ethiopia. TPI = topographic position index; 
TWI = topographic wetness index.  

Variable Derived element Acronyms Source Native resolution References to data or method 

Climate Annual precipitation Annual Precip EIAR 4 km Dinku et al. (2018) 
Kiremt (Summer) Precipitation Kiremt Precip 
Bega (Winter) Precipitation Bega Precip 
Belg (Autumn) Precipitation Belg Precip 
Annual Temperature Annual Temp 
Kiremt (Summer) Temperature Kiremt Temp 
Bega (Winter) Temperature Bega Temp 
Belg (Autumn) Temperature Belg Temp 

Topography Elevation Elevation SRTM 90 m Jarvis et al. (2008); Zhu et al. 
(2019); She et al. (2014); 
Patton et al. (2019) 

Slope Slope SRTM-derived 90 m 
TWI TWI SRTM-derived 90 m 
TPI TPI SRTM-derived 90 m 

Soil pH Soil pH ISRIC 250 m Liang et al. (2019); 
Novara et al. (2020) clay Clay 

Silt Silt 
CEC CEC 

Land use Land use Land use Ethiopia Sentinel 2 Land Use 
Land Cover 2016 

20 m Fusaro et al., (2019); Nyawira 
et al. (2016) 

Vegetation NDVI NDVI MODIS (MOD13Q1) 250 m Hunt et al. (2002); 
Socio-economic Population density Pop density www.worldpop.org 100 m Linard et al. (2012); 
SLM practices Tillage practice (conventional tillage, 

reduced tillage, and No tillage) 
CT, RT, and NT 
respectively 

Survey At each soil 
sample point  

Physical and biological measures  Survey At each soil 
sample point  

ISRIC = International Soil Reference and Information Center 
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targetSOCst=argmax(SOCst2018 ,SOCstPractice1,SOCstPractice2,…SOCstPracticen)

(3) 

The target SOCst status (what could be reached in eight years) is 
what we can potentially achieve by implementing SLM technologies that 
are appropriate to a specific location. We conducted a survey on which 
land management (physical, biological) and what kind of conservation 
agriculture practices have been implemented on each sampling plot and 
to fit relevant management options for each site. The list of SLM prac-
tices used to generate spatial model scenarios are described in section 
2.5. Based on the partial dependence plot, we showed the effect of the 
different SLM practices on the SOCst level. In cases where the targeted 
SOCst was not achieved at the current condition, we calculated the 
achievable SOCst sequestration potential as the difference between the 
SOCst2018 and target SOCst, as follows (Piikki et al., 2019): 

Achievable SOCst seq= target SOCst − SOCst2018 (4) 

Model uncertainty due to many factors affect SOC estimations at 
watershed scale. The source of uncertainty in the current approach is the 
quality of input covariates. The availability of Ethiopia national soil 
information system (ETHIOSIS), produced some years back, for re-
searchers would have improved the model quality and model results. In 
our approach, we have limited ourselves to those covariates with 
spatially coverage at national scale and freely accessible by anyone so 
that we can use the model to predict SOC at any location in the country. 
In addition, there is a lack of detailed, geolocated, land management 
practice data, which also affect the model performances. 

2.6. The impact of selected SLM practice on SOCst 

We have collected the list of SLM technologies implemented at each 
sampling location. Bunds, terraces, biological (such as grasses and trees) 
are the most common interventions at the landscape level. A combina-
tion of physical (Bund, or terraces) and biological is also found in some 
sites. At farmland, there are some conservation tillage practices such as 
reduced tillage (RT) and no-tillage (NT) which have been implemented 
as an alternative to conventional tillage (CT). 

In this study, we evaluated the impacts of two categories of SLM 
practices: i) the impacts of biophysical intervention existed at the 
landscape level particularly bunds, terraces, biological and a 

combination of physical (bunds and terraces) and biological; and ii) the 
impacts of conservational tillage practices particularly conventional 
tillage (CT), reduced tillage (RT) and no-tillage (NT) on the SOCst 
sequestration, and recommend optimal practice that optimize SOC stock 
in the four SLMP watersheds. We used the partial dependence plot 
(Álvarez-Cabria et al., 2017), which illustrates the effect of a predictor 
variable on the SOCst level after considering the mean effects of all the 
other predictor variables (Elith et al., 2008), of 2018 RF prediction 
model to evaluate the relationships between these SLM practices and the 
SOCst level. 

3. Results and discussion 

3.1. SOC stocks in the studied watersheds 

The mean statistics for SOCst for each watershed in the two years 
(before and after SLM interventions) have been presented in Fig. 2. The 
general level of SOCst varied between the highest 57.9 (±18.5) Mg C ha- 
1 in Gafera, followed by 52.2 (±20.7) Mg C ha-1 in Yesir, 40.5 (±15.9) 
in Azuga shuba, and 25.3 (±11.2) Mg C ha-1 in Adi Tsegora watersheds. 
The standard error values are estimated from spatial distribution of 
SOCst at the watershed level. The highest mean of SOCst in the Gafera 
watershed is because the area is dominated by forest land use while the 
lowest in Adi Tsegora watershed is because the site is dominated by 
relatively degraded landscape. The relatively high SOCst level at Yesir 
watershed could be due to better agricultural land management options 
such as cover crops being implemented compared to the other water-
sheds. In addition, the initial soil fertility of the site was better than the 
others. The range of SOCst reported here (25.3 ± 11.2 to 57.9 ± 18.5 Mg 
C ha− 1) is similar to the ranges previously reported in the highlands of 
Ethiopia. For example, Abegaz et al. (2020) reported a mean surface 
(0–20 cm depth) SOC stock of 31.4 Mg C ha− 1 for intensive grazing 
lands, 50.4 Mg C ha− 1 for intensive croplands, 49.8 Mg C ha− 1 for 
controlled grazing lands, 108.3 Mg C ha− 1 for managed cropland, and 
69.4 Mg C ha− 1 for enclosures based on survey collected from different 
part of the country. Many case studies confirmed that the implementa-
tion of SLMP improved SOCst in different part of the country (Woolf 
et al., 2018; Hishe et al., 2017; Aynekulu et al., 2017). The carbon 
sequestration values observed in the four watersheds are relatively 
lower than the values report by Akpa et al. (2016) which is in the ranges 

Fig. 2. Distribution of soil organic carbon stock (SOCst) in the four SLMP watersheds. The mid horizontal lines of the boxes show the mean, the boxes show the 25- 
75-interpercentile range, the whiskers represent the non-outlier range and the points represent outlier observations. 
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of 17–30 Mg C ha− 1 for Nigeria using a similar approach. The ANOVA 
result revealed that the mean SOC stocks (for both before and after) 
spatial variation among the four watersheds was significant (P < 0.05; 
Fig. 2), and generally increasing from the north (Adi Tsegora) to 
southwest (Gefera) (Figs. 1 and 2). The paired samples t-test revealed a 
significant statistical difference in SOCst between the two years in 
Gafera watershed in southwest Ethiopia and Adi Tsegora watershed in 
Northern Ethiopia (Fig. 2), but the differences in Azuga shuba and Yesir 
watersheds were not significant. This indicates that significant SOCst 
can be achieved in a short period (in this case in 8 years) in high po-
tential areas whereas an increase in SOCst could take a longer period in 
some other areas. The observed differences could be attributed to 
different factors – on the proper application of SLM, the specific SLM 
technologies implemented and their potential differences in SOC 
sequestration, agroecological and other environmental variables that 
influence the performances of SLM options. These results are in agree-
ment with a recent meta-analysis study conducted by Abera et al. (2020) 
which shows that agroecological zone and the specific technology 
implemented affect the performances of SLM technologies. 

3.2. SOC stock estimation using the RF model 

Table 3 shows the results of RF modelling approach in three cali-
bration phases: single watershed, leave-one-watershed-out and all wa-
tersheds combined dataset. The results show that combining dataset 
from all the four watersheds outperform a single watershed calibration 
for modelling within a sampled watershed. The leave-one-watershed-out 
strategy tell us how well the RF model can be expected to work if applied 
in unsampled watersheds. The use of a single watershed data to build a 
predictive model results in high performance in the training period (R2 

= 0.78–0.93 and RMSE = 8.1–14.4 Mg C ha-1) but the performance 
dramatically decreased in the testing dataset (R2 = 0.21–0.34 and RMSE 
= 11.8–14.4 Mg C ha-1) (Table 3). The poor model performance during 
the testing dataset indicates that the models built for a single watershed, 
with relatively few data points, is susceptible for overfitting problem i.e. 
a case where the model is perfectly fitting the data during the training 
period but unable to explain the data during the testing period. This 
could be due to the smaller data size to capture the variabilities in the 
dataset and produce a robust model. Similarly, in the case of leave-one- 
watershed-out, the model performance for testing dataset is poor most 
likely due to the fact that the variabilities in the testing dataset are not 
captured by the other three watersheds used to train the model. In other 
words, it is most probably because RF model does not scale very well for 
a new data that lies outside the range of training dataset. This tells us 
that the model shall not be applied in areas where no local samples are 
included in the model calibration dataset. When combining all the 

dataset, the predictive capacity of the model has improved, and in fact 
the model performance was almost equal for training and testing. 
Comparison between the two years, during the training, the model 
performance was higher when predicting the 2018 data. In 2010, for the 
training dataset, the model performance was R2 = 0.55 and RMSE =
13.8 Mg C ha-1, and for the testing dataset, the model performance was 
R2 = 0.50 and RMSE = 13.2 Mg C ha-1. Similarly, in 2018, the model 
performance for the training dataset is about R2 = 0.56 and RMSE =
14.5 Mg C ha-1, whereas for testing case, the model performance is R2 =

0.55 and RMSE = 14.1 Mg C ha-1. The results obtained during the 
testing can be taken as equivalent to the predictive capacity of the model 
in any areas within the four watersheds where there is no soil mea-
surement available. Those results obtained in both years are relatively 
high in comparison to SOCst models presented in literature in the region 
and beyond (Owusu et al., 2020; Forkuor et al., 2017; Keskin et al., 
2019; Mahmoudzadeh et al., 2020; Tajik et al., 2020). A recent study by 
Owusu et al. (2020) developed a similar spatially explicit predictive 
model of SOCst in Ghana and achieved R2 = 0.34. 

One of the key challenges of SOCst modelling is to identify which 
factors are responsible for SOC dynamics. Here, we presented the 
importance of covariates considered in the model inputs to clarify which 
data are useful for SOCst prediction in both years. The order of the 
importance of variables varies from year to year (Fig. 3). In 2010, clay, 
soil pH, NDVI, TPI and topographic slope were the five top important 
variables for predicting SOCst. In the case of 2018, NDVI, soil pH, bulk 
density, TPI and Sand are the top five covariates used to predict the SOC 
in the four watersheds. There is high overlap between the two years in 
terms of rank of importance (Fig. 3). It is noted that the climate element 
during the rainy season (Kiremt) is not as important as the dry season in 
both cases. Generally, non-rainy season precipitation and temperature 
are more important variables than the annual and Kiremt (June, July, 
Auguest) season. Contrary to Gomez et al. (2008), our result shows that 
the SOC is highly related to vegetation cover, i.e. NDVI index, and it 
influences SOC prediction (Fig. 3). Many studies confirmed that soil 
parameters predominantly influence SOC stocks at different spatial scale 
(Hobley et al., 2015; Schulp and Verburg, 2009; Wiesmeier et al., 2014a; 
Xiong et al., 2014). Specifically, strong correlation between SOC stocks 
and clay content is found in many studies (Arrouays et al., 2006; Zinn 
et al., 2007). At the watershed scale, Wiesmeiera et al. (2019) also 
reviewed that topographic and vegetation information are considered to 
be important driver of SOC stock. 

3.3. Mapping SOCst and sequestration potential 

The spatial patterns of SOCst predicted by the RF model for four 
watersheds in the years 2010 and 2018 are shown in Fig. 4. In addition 

Table 3 
Model performance indicators (R2 and RMSE) for random forest based estimation of SOCst in four SLMP watersheds of Ethiopia using three modelling strategies.  

Model building 
strategy 

Dataset 2010 2018 2018 with SLMP scenarios 

Training (R2/RMSE 
[Mg C ha-1]) 

Testing (R2/RMSE 
[Mg C ha-1]) 

Training (R2/RMSE 
[Mg C ha-1]) 

Testing (R2/RMSE 
[Mg C ha-1]) 

Training (R2/RMSE 
[Mg C ha-1]) 

Testing (R2/RMSE 
[Mg C ha-1]) 

Watershed 
specific 

Yesir 0.83 (14.4) 0.34 (14.7) 0.87 (15.2) 0.21 (16.01)   
Gafera 0.78 (11.2) 0.16 (10.5) 0.78 (10.3) 0.07 (16.1)   
Azuga shuba 0.88 (13.6) 0.22 (12.2) 0.88 (13.1) 0.50 (12.3)   
Adi Tsegore 0.93 (8.1) 0.21 (11.8) 0.92 (8.6) 0.03 (14.1)   

All watersheds 
combined 

All watersheds 
combined 

0.55 (13.8) 0.50 (13.22) 0.56 (14.5) 0.55 (14.1) 0.68 (10.2) 0.52 (11) 

Leave-one- 
watershed-out 

Case 1 0.57 (13.1) 0.04 (16.2) 0.55 (14.8) 0.03 (16.2)   
Case 2 0.32 (14.0) 0.03 (18.5) 0.43 (14.8) 0.01 (14.6)   
Case 3 0.53 (13.5) 0.003 (17.2) 0.54 (13.7) 0.02 (24.9)   
Case 4 0.55 (12.1) 0.04 (22.5) 0.63 (12.4) 0.01 (25.6)   

Case 1 (training watersheds Yesir, Gafera, and Adi Tsegore; and testing watershed Azuga suba); 
Case 2 (training watersheds Yesir, Gafera, and Azuga suba, and testing watershed Adi Tsegore); 
Case 3 (training watersheds Yesir, Adi Tsegore, and Azuga suba, and testing watershed Gafera); 
Case 4 (training watersheds Gafera, Adi Tsegore, and Azuga suba, and testing watershed Yesir). 
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to the two period SOCst maps, the difference between the two is also 
mapped as SOC sequestration in the 8 years. The spatial pattern of SOCst 
in all watersheds show low values for the year 2010 and higher values 
for 2018. This corresponds with the implementation and SLM options 
that started after 2010. The prediction maps show mostly gradual SOCst 
changes across the study areas and spatial variabilities within sites are 
pertinent. For example, for Adi Tsegora watershed, large values are 
predicted in the eastern and northeastern parts (Fig. 4A). The highest 
SOCst sequestration has occurred in the central eastern part of the Yesir 
watershed (Fig. 4B) whereas the lowest is observed in the northern tip 
part of the watershed most likely due to steep slope that can facilitate 
SOC removal in the form of erosion (Martinez-Mena et al., 2018). In the 
Gafera watershed relatively high SOCst sequestration is observed be-
tween 2010 and 2018 across all parts of the watershed compared to the 
other sites. SOCst sequestration increased from south to north, with the 
highest stocks in the northern part of the watershed, most probable 
because of increasing rainfall and altitude gradients with high biomass 
production. In the Azuga shuba watershed, SOCst sequestration is 
observed in all parts of the watershed, the amount varying in the 
northern and southern parts. The low SOCst sequestration areas in the 
upper part of the watershed are dominated by high elevation and crop 
lands whereas the high SOCst sequestration areas are in the lowlands 
characterized by concave curvature. 

3.4. Achievable SOC sequestration at landscape scale 

Achievable SOC sequestration potential shows ‘a positive gap’ in 
most SLMP watersheds indicating that there is still potential for im-
provements in terms of retaining more SOC (Fig. 5). The specific loca-
tion of improvement (where within each landscape there is potential to 
sequester more carbon) is mapped spatially in the achievable SOC 
sequestration maps. On average at watershed level, the highest amount 

of SOCst achievable sequestration potential is predicted in the Yesir 
watershed (34.7 Mg C ha− 1), followed by Azuga shuba watershed (33.2 
Mg C ha− 1). The lowest achievable SOCst potential is observed at Adi 
Tsegora watershed (13.7 Mg C ha− 1), followed by Gafera watershed 
(15.8 Mg C ha− 1) (Fig. 6). Predicted rate of SOCst sequestration po-
tential at Adi Tsegora watershed is the lowest because the area is 
characterized by low precipitation, poor vegetation cover and steep 
slope landscape. This means implementing additional SLM practices 
would not bring significant improvement in SOCst sequestration. Simi-
larly, in Gafera watershed, the prospect to sequester more SOCst due to 
conservation measures and conservation agricultural practices are 
limited most likely because the watershed is dominated by forest cover 
resulting in high current SOCst that is close to the target SOCst level. The 
other two watersheds (Yesir and Azuga shuba), which are characterized 
by agricultural land and medium level of current SOCst have higher 
achievable SOC sequestration. Spatially distributed assessment of 
achievable SOC sequestration potentials is important to develop tar-
geted land management and climate change mitigation measures and 
guide investments on the land and soil fertility management practices. 
For instance, locations with low SOCst, but with high achievable 
sequestration potential may be targeted for SLMP and conservation 
agriculture practices compared to those sites which show saturated 
SOCst sequestration potential. The maps in Figs. 4–5 and the density 
functions in Fig. 6 show that there is variation in achievable SOC within 
the watersheds. The positive impact of sustainable management practice 
program in Ethiopia on SOC storage already substantiated by many 
studies (Abera et al., 2020; Abegaz et al., 2016, 2020; Woolf et al., 2018; 
Hishe et al., 2017; Aynekulu et al., 2017). Our study extended these 
works and showed how SOC stocks have changes due to these in-
terventions spatially. 

The effects of SLM practices on SOCst are presented in Fig. 7. No- 
tillage (NT) slightly improved SOC by 0.8 Mg C ha− 1 compared to 

Fig. 3. Important variables for predicting SOCst in before (2010) and after (2018) SLM interventions in Ethiopia as identified based on RF model. Predictors are 
explained in Table 2. 
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conventional tillage (CT) (Fig. 7). It is obvious that NT showed a high 
increase in comparison to CT and reduced tillage (RT), as it is the highest 
form of conservation agriculture. A study by Namirembe et al. (2020) 
also confirms that the SOC increases by various conservation tillage 
practices. On the contrary, RT shows lower SOCst in comparison to the 
CT practices. There are other factors determining if conservation tillage 
practices affect the SOC such as the duration of practices, the nature of 
the soil, the availability of vegetation cover (Luo et al., 2010). In terms of 
biophysical measures, the lowest effect on SOC stock is observed for 
bund interventions (Fig. 7). Trench structure, however, has a higher 
effect on SOCst, and equal effect to biological intervention. The com-
bined effect of biological and physical measures as it is implemented in 
some locations in Ethiopia has shown highest SOCst. Hailu et al. (2012) 
has also showed significant effect of physical structures particularly 
fanyajuu on SOC change in western part of Ethiopia. Similar findings are 
observed in Abera et al. (2020) that the combined effect of physical and 
biological (mostly grasses along the physical structure) has a good effect 
on soil fertility status in Ethiopia. Overall, the effect of the two SLM 
practices are minimal, with maximum effect of 3 Mg C ha-1. 

4. Conclusions and recommendations 

SLM practices have various benefits in arresting land degradation 
and enhancing soil fertility, generating enabling conditions for food 
security of small farmers. This study is conducted to study 1) the impact 
of SLM practice, implemented in the last 8 years, on SOC stock, 2) 
identify SOC sequestration hotspots, and achievable SOC sequestration 
potential spatially. The following results are obtained:  

- Generally, soils in the Gafera watershed contain the highest amount 
of SOC stock and soil in Adi Tsegora have the lowest SOC stock.  

- Comparing SOCst in 2010 and 2018, significant differences between 
the two years are observed in two watersheds (i.e. Gafera watershed 
in southwest Ethiopia and Adi Tsegora watershed in Northern 
Ethiopia). 

- We used the RF model to predict the spatial distribution character-
istics of SOC at two periods (2010 and 2018), based on which we 
determined the key environmental factors affecting their spatial- 
temporal changes.  

- The use of a single watershed to build a predictive model using RF 
resulted in overfitting, where the model performance is very good 
during the training dataset and very low during testing.  

- Combining all the four watersheds data improves the RF model 
predictive capacity, and this strategy is used to predict the SOC maps 
spatially. The model performance is better than those reported in 
literature in the region.  

- The relatively poor performance of the leave-one-watershed-out 
model evaluation showed that it is essential to include data from 
the area in question when parameterizing RF models for SOC 
prediction.  

- The results of variable importance show that clay, NDVI, soil pH and 
TPI are some of important covariates that explain the spatial vari-
ability of SOC.  

- SOCst sequestration levels between the 2010 and 2018 are estimated 
spatially in four watersheds in the highland of Ethiopia, with a good 
accuracy.  

- Achievable SOCst sequestration potentials are spatially mapped to 
facilitate land management targeting to achieve the target SOCst at 
landscape level.  

- The highest amount of achievable SOCst sequestration potential is 
obtained in Yesir watershed (34.7 Mg C ha− 1), followed by Azuga 
shuba watershed (33.2 Mg C ha− 1), followed by Gafera watershed 
(15.8 Mg C ha− 1), and Adi Tsegora watershed (13.7 Mg C ha− 1) for 
this eight year period. 

Fig. 4. Spatial distribution of SOC stocks (Mg ha-1) using RF model in 2010, 
2018; and difference (SOC sequestration in 8 years) in the four SLMP water-
sheds of Ethiopia: A) Adi Tsegora, B) Yesir, C) Gafera, D) Azuga 
shuba watershed. 
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- The overall effect of physical and conservation agriculture on SOCst, 
on average, is minimal, which is about 3.5 Mg C ha− 1. No tillage 
(NT) increased SOC in all watersheds.  

- The highest SOC stock is obtained for a combination of physical and 
biological interventions (“bunds + vegetations” or “terraces + veg-
etations”) followed by the biological intervention. 

Fig. 5. Spatial distribution of SOC stocks (Mg ha-1) in 2018 (after SLMP practice interventions), target SOC sequestration level, and achievable SOC sequestration 
potential in A) Adi Tsegora, B) Yesir, C) Gafera, D) Azuga shuba watershed. 

Fig. 6. The density distribution of achievable SOC sequestration potential of four SLMP watersheds in Ethiopia.  
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