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Interest in the electrification of agricultural vehicles is increasing along with growing in-

terest in autonomous vehicles. Individual technologies have been well-explored, but not

their combined use and the effects on agricultural fieldwork. In this study, cost analysis

was conducted based on a simulated vehicle system with 50 kW self-driving battery-

electric drive (BED) tractors. The analysis included battery degradation due to cycling and

the cost of inadequate machine capacity, as these factors are suspected to be problems for

electric tractors. A dynamic discrete-event vehicle systemmodel, a linear timeliness model

and a one-dimensional battery cell ageing model were assumed. Costs obtained were

compared with those of contemporary manned diesel-based systems. BED systems had

equal or lower annual costs compared to conventional manned diesel-based systems; this

was due to lower costs for fuel and maintenance, while providing adequate capacity and

lower energy usage. Sensitivity analysis showed that operating costs were of greater sig-

nificance than investment costs. The generally more expensive investment costs of BED

systems were outweighed by the reduced operating costs for several different BED system

systems. Battery degradation costs and timeliness were influential, but not sufficient to

make the system uncompetitive. The synergistic effect of vehicular autonomy and BED

outweighed several of the drawbacks of BED systems, such as frequent recharging,

increased transport and reduced consecutive work time.

© 2021 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).
1. Introduction

Making agricultural systems autonomous can be an important

component in increasing agricultural productivity, feeding the

world and achieving sustainable food production (Bakken,
Lagnel€ov).
.02.005
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nd/4.0/).
Moore, & From, 2019; Lampridi et al., 2019). Vehicle electrifi-

cation is seen as one of the main methods for reducing

vehicular emissions and reliance on fossil fuels, both on and

off road. Sweden aims to have its vehicle fleet independent of

fossil fuel by 2030 and to have net zero CO2 emissions by 2050,
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Nomenclature

A Total arable area (ha)

a,b,c Battery model parameters

An Area of field n (ha)

BED Battery electric drive

BES Battery exchange system

BEV Battery electric vehicle

cB,cyc Battery cost per eq. cycle (V)

CC Conductive charging

CC/CV Constant current/constant voltage

CAN, COW, COP Total annual cost, ownership cost and

yearly operating cost (V y�1)

Cx Total investment/operating cost for component

x (V)

cx Investment/operating cost for each unit of x

(var.)

d Inflation (%)

EB Battery energy content (kWh)

EOL End-of-life (primary, for batteries)

Etot Total yearly energy requirement (kWh y�1)

EV Electric vehicle

h Vehicle work hours per day (h d�1)

i Interest rate (%)

ir Real interest rate (%)

lg timeliness factor for grain g (kg ha�1 d�1)

MCTR Mean cycles to replacement

MTTR Mean time to replacement (yr)

n Field number

NB Number of (additional) batteries

NC Number of chargers

NCA Number of additional chargers

Ncycl Number of battery cycles

NV Number of vehicles

OF,OR,OC Fraction of time operator is required for

fieldwork, road transport and charging

(fraction)

PC Charger power (kW)

Pg Grain price for the grain g (V kg�1)

PV Vehicle power (kW)

Rx Salvage value of component x (V)

Sn Timeliness cost for field n (V yr�1)

SoC State-of-charge

TD Total active time (d)

tn Delay from optimal day for field n (d)

Tx Economic lifetime for component x (y)

xc Relation between battery energy capacity and

charger power (h)

Y Yield (kg ha�1)

q State-of-charge (fraction)

qEOL State-of-charge value at end-of-life (fraction)
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with electrification listed as one of the vital tools in achieving

this (The Government of Sweden, 2013).

In a previous study (Lagnel€ov, Larsson, Nilsson, Larsolle, &

Hansson, 2020), the technical possibility of a vehicle system

utilising smaller, self-driving, battery-electric drive (BED) field

tractors was explored. In terms of time required for spring and
yearly operations they were found to be comparable with

manned diesel vehicles and they were also better in terms of

energy use. However, to achieve broad appeal and market

uptake, a good understanding of the cost of the system is vital.

Lagnel€ov et al. (2020) provided a system model and technical

systemunderstanding but in this study the focus is on the cost

of autonomous vehicles and battery electric systems. Previous

research has examined the cost and utilisation of general

autonomous systems (Lampridi et al., 2019; Marinoudi,

Sørensen, Pearson, & Bochtis, 2019), performed cost analysis

on autonomous row-crop cultivation (Goense, 2005) and

analysed autonomous systems in specialist crops (Le,

Ponnambalam, Gjevestad, & From, 2020; Reiser, Sehsah,

Bumann, Morhard, & Griepentrog, 2019; Young, Kayacan, &

Peschel, 2018). However, the cost of electric autonomous

field tractor systems has not been thoroughly researched.

The possible cost to yield or quality loss due to lack of ca-

pacity in the system (i.e. lack of timeliness) and the cost and

limitations of batteries have been identified as potential

drawbacks for agricultural BED tractors (Caban, Vrabel,

Sarkan, Zarajczyk, & Marczuk, 2018; Magalh~aes et al., 2017;

Mocera & Soma, 2020; Moreda, Mu~noz-Garcı́a, & Barreiro,

2016). In cost analysis it is therefore important to include

these drawbacks and their system effects.

Untimely or non-optimal operations can lead to indirect

costs, due to yield losses or a decrease in crop quality. Pre-

diction of optimal work time and the negative effects of non-

optimal work time have been well studied (ASAE, 2000;

Edwards, Dybro, Munkholm, & S€orensen, 2016; Gunnarsson,

Sp€orndly, Rosenqvist, De Toro, & Hansson, 2009; Nilsson,

1976; Rotz & Harrigan, 2005; Savin, Matic-Kekic, Dedovic,

Simikic,& Tomic, 2014; Witney, 1988). Witney (1988) identified

untimely establishment, spraying and harvesting as the most

important operations and concluded that adequate machine

capacity is vital, but it is difficult to assess, partly due to the

unique nature of each site and the erratic behaviour of the

weather. The common approach is therefore to have over-

capacity in the machine pool.

The effect of agricultural use and load cycles on electric

vehicle (EV) batteries is not well analysed. The concern with

the use of BED tractors in the field is that this heavy use will

rapidly age the batteries and therefore make the system

economically uncompetitive.

The aim of this study was to evaluate an autonomous

battery electric vehicle (BEV) system for a Swedish agricultural

context with regards to cost. Changes in timeliness and loss of

battery capacity, and related costs, were studied specifically

and included in the overall cost. The model developed in

Lagnel€ov et al. (2020) was used to develop basic data for the

calculations, but in addition, a sensitivity analysis was made

for several relevant variables, including component cost,

charger power, degree of autonomy, and battery size, lifetime

and cost.
2. Method

This section firstly presents the models used for battery

ageing and timeliness, and then describes the economic cal-

culations. Overall costs were calculated as a combination of

https://doi.org/10.1016/j.biosystemseng.2021.02.005
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annual ownership costs and operating costs, including battery

and timeliness costs. The costs of ownership and operation

were calculated from the inputs (number and size of vehicles,

chargers etc.) or the main results from the system model

(numbers of hours a driver is needed etc.). For timeliness and

battery ageing, separate models were required, as shown in

Fig. 1.

The discrete-event model from Lagnel€ov et al. (2020) was

used to simulate the analysed vehicle systems. The model

simulates the machinery operations on a Swedish grain farm

in theUppsala region. To bring the farmmachinery operations

more in line with that commonly used in Sweden, a sow bed

harrow replaced the spring tooth harrow used in Lagnel€ov

et al. (2020) with power use described by Lindgren,

Pettersson, Hansson, and Nor�en (2002). The average power

usage and working width are shown in Fig. 2. Additionally

breakdown rates taken from ASAE (2000) were included in the

simulations. The breakdown rates were the combined factors

for a vehicle system with a field area of 200 ha and each

breakdown was assumed to put the vehicle out of operation,

leading to 12 h of downtime. The cost of repairing is included

in the maintenance cost, so the only cost effect of a break-

down was a delay of operations. Due to being a less well-

developed system it was assumed that the breakdown rate

for the autonomous electric tractors was double that of the

manned diesel tractors.
Fig. 1 e Overview of the models used (sharp-cornered boxes) an

where system inputs were used for cost calculations.
For timeliness, the model by Gunnarsson (2008) was used,

which takes the delay in key operations for each field and

turns it into an annual cost. For battery ageing, a one-

dimensional battery cell model for NCA Li-ion batteries that

connected voltage and capacity loss to the number of full use

cycles was used. These results were then used in the main

model to incorporate the effects of continuous degradation of

the vehicle batteries. In addition, the results were used to

dynamically determine the useful lifetime of the batteries

before they needed replacing, which led to a cost per year or

per cycle. All the costs were then summed to a total annual

cost of operations.

2.1. Battery ageing

Battery ageing is a common electrochemical process that is

dependent on different factors, including use pattern, depth of

discharge, battery temperature, charge/discharge rate etc.

(Barr�e et al., 2013; Uddin, Perera, Widanage, & Somerville,

2016). This often leads to EV batteries having a shorter life-

spans than the vehicles they power, and this might require a

change of battery before a change of vehicle. Therefore, it is

important to estimate and include the effect of battery ageing

in economic analysis of BEVs. For novel vehicle systems, the

effect of battery ageing is important information when

designing the system, especially if the work includes high-
d costs analysed (rounded boxes). The dotted lines indicate

https://doi.org/10.1016/j.biosystemseng.2021.02.005
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Fig. 2 e Average total power requirement (bars, left axis) and working width (circle markers, right axis) for the operations

used in the simulations for the tractor sizes 250 kW (dark gray) and 50 kW (white). The maximum power of the 50 kW

tractor is marked (dashed line).

b i o s y s t em s e ng i n e e r i n g 2 0 4 ( 2 0 2 1 ) 3 5 8e3 7 6 361
power use of the battery over a longer period, as is the case in

agricultural fieldwork. In this regard, the use of batteries in

heavy off-road applications is different from their use in on-

road personal vehicles. In this study, battery ageing was

characterised as capacity of NCA batteries depending on the

number of cycles for each battery and the charge rate (C-rate)

of the charging station.

2.1.1. Battery model
A one-dimensional battery cell model was created using the

‘Lithium-Ion Battery’ module in COMSOL Multiphysics 5.5

(COMSOL AB, Stockholm, Sweden). In this model, graphite is

used as the negative electrode (thickness 55 mm), LiPF6 in

3:7 EC:EMC as electrolyte (30 mm) and NCA (LiNi0.8Co0.15Al0.05-
O2) as the positive electrode (40 mm). The model was based on

the porous electrode theory and concentration solution theory

(Thomas, Newman, & Darling, 2002). It included ageing in the

graphite electrode, where a parasitic solid electrolyte interface

(SEI)-forming reaction results in irreversible loss of cyclable

lithium. The kinetic expression for the SEI-forming reaction

used here was based on work by Ekstr€om and Lindberg (2015).

More details regarding thismodel can be found in the COMSOL

library (COMSOL Multiphysics, 2020). Specific simulations in-

puts can be found in Table A1.

2.1.2. Model assumptions and adaptation
Calendar ageing of the batteries was omitted, as it is less im-

pactful for battery degradation than the number of cycles and

as one of the defining characteristics of Li-ion batteries is their

low capacity fade during storage (Barr�e et al., 2013). Ambient

temperaturewas assumed to remain constant at 293 K and the

vehicle was assumed to have a temperature control system

with adequate ability to keep a constant battery temperature

of 293 K during charging and discharging. The state-of-charge

(SoC) is limited in the system model to stay above 20% at all
times, giving a maximum depth-of-discharge interval of

20e100%, with fast charging applicable in the interval 20e80%

and slower charging during the interval 80e100%. Considering

field operations and type of use, it was assumed that C-rate

and number of battery cycles (Ncycl) would be the most influ-

ential direct factors (Uddin et al., 2016; Wenzl et al., 2005).

In the model, the cycles are calculated for each battery and

all batteries in operation are assumed to be used equally. The

number of cycles for each battery is carried over between each

year according to:

NcyclðiÞ¼Ncyclði� 1Þ þ NcyclðiÞ
ðNB þNVÞ (1)

where Ncycl is the number of cycles at the end of year i, NV is

the number of vehicles (as each vehicle carries one battery)

and NB is the number of spare batteries in the system.

Vehicles continue their operations even if the SoC of the

batteries dips below 80%, with the batteries being replaced

between working seasons. The SoC of a battery is related to

the number of cycles as:

q¼ aN3
cycl þ bN2

cycl þ cNcycl þ d (2)

where a, b, c and d are curve fitting parameters of the third-

order polynomial curve used as a representation of the

simulated values. High-order polynomials have been used to

represent battery capacity fade and voltage curves by e.g.

Stamps, Holland, White, and Gatzke (2005).

When the capacity fade is at q ¼ 0.8, the battery is sched-

uled for replacement in the model, as this is common practice

in the industry (Berg, 2015). The number of cycles this takes is

denoted mean cycles to replacement (MCTR). The MCTR for

each individual battery is the same, irrespective of EB and NB,

but themean time to replacement (MTTR) in years will change

depending on the number and size of the batteries. Since the

cycles were disturbed roughly evenly between the different

https://doi.org/10.1016/j.biosystemseng.2021.02.005
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batteries in the system, it was assumed in this study that

MTTR increases with a higher number of batteries in the

system and with larger batteries.

2.2. Timeliness

When studying timeliness, there is often mention of an opti-

mum day, i.e. the day where the specific operation will pro-

duce the highest yield (Gunnarsson, 2008; Witney, 1988). In

this study, the timeliness of sowingwas themain focus, as the

simulation model used (Lagnel€ov et al., 2020) concentrates on

operations performed by tractors. Of those, sowing was

viewed as having the greatest impact and other operations

were considered generally as being preparation for sowing.

It was assumed that the first workable day of the year was

optimal for spring-based sowing and that the first day after

harvesting finished in autumn was optimal for autumn sow-

ing. This was based on the concept of delayed scheduling

presented by Gunnarsson (2008), where all the time that

elapses beyond the optimal day is assumed to incur a yield

loss. Since harvesting was not included in the simulation, it

was assumed that harvesting was carried out with adequate

capacity and that no timeliness penalty was incurred.

The slope and shape of the curve displaying yield loss are

different in different sources, e.g. Gunnarsson (2008) and

ASAE (2000) characterised the yield loss as linear and Witney

(1988) characterised it as parabolic. Here the linear method

was used, with the timeliness factors taken from Gunnarsson

(2008).

For each scenario, the total time elapsed from the first

possible day wasmeasured. The cost of yield loss for a specific

field n (Sn, in V y�1) due to non-optimal sowing date was

assumed to depend linearly on the delayed scheduling

described by Gunnarsson andHansson (2004) and Gunnarsson

et al. (2009).

A dynamic simulation was used to simulate many of the

events described by Gunnarsson and Hansson (2004) and

combine them into a single parameter for the particular field,

n (see Table 1). This allowed use of the following equation, as

also proposed by Nilsson (1976) and used by Gunnarsson and

Hansson (2004):

Sn ¼ lg � tn � pg �An (3)

where lg is the timeliness factor in kg ha�1 d�1 for grain g, tn is

the time delay from the optimal day in d for field n, pg is the

grain price in V kg�1 for grain g and An is the total crop area in

ha for field n. The delay, tn, wasmeasured at the completion of

each field.

The optimal day was calculated for sowing and was set as

the first workable day of the year. As explained in Lagnel€ov

et al. (2020), in the model it is assumed that the simulation

period starts with the soil saturated, due to thawing and

precipitation, so it takes a period of time before the first

workable day for the soil, and it is from that day that the delay

is calculated.

To calculate the cost of the delay, the optimum price for

grain, pg, and the yield needed to be defined. The price of grain

was taken from the agricultural wholesale dealer Lantm€an-

nen’s prices for 2019, and yieldwas based on the normal yields
given in Statistics Sweden (2019) for the Uppsala region for

2018 (Table 2). The timeliness factors proposed in Gunnarsson

(2008) were used (Table 2). For some grain crops, only the

factor values for organic production were available, but this

was assumed to have little effect on the results.

2.3. Economic analysis

2.3.1. Cost calculation
The cost of the autonomous BED system was calculated using

the total annual cost of operation (CAN) and comparedwith the

calculated cost for a diesel counterpart, and with literature

values. The calculation method based on combined invest-

ment, ownership and operating costs of vehicles found inWu,

Inderbitzin, and Bening (2015) and Lampridi et al. (2019) was

adapted and used, including straight-line depreciation as seen

in Eq. (4). When considering the cost of an autonomous sys-

tem and agricultural robotics, the methods found in Lampridi

et al. (2019) and Marinoudi et al. (2019) were used.

CAN ¼COW þ COP (4)

where CAN is the annual cost of operations, COW is the

ownership cost calculated as shown in Eq. (5) and COP is the

operating cost, calculated as shown in Eq. (6). All values are in

V yr�1.

COW is the combined cost of investment (fixed depreciation

cost and capital cost) as an equivalent annual cost with the

average interest rate method used, as used by Lampridi et al.

(2019):

COW ¼
XCx � Rx

Tx
þ ðCx � RxÞ

2
ir ; ½x¼B; C; CA; BCS; A; V� (5)

COP ¼
X

Cy;

�
y¼

�
E; ME; O ðBEDÞ
D; MD; O ðDieselÞ

�
(6)

where cx is the component investment cost in V, Rx is the

salvage value in V (normally 10% of purchase price), Tx is the

economic lifetime in years and Cy is the operating cost in V

yr�1 (where x and y are the specific component subscript for

the investment and operating costs respectively, described in

Tables 3 and 4) and ir is the real interest rate correction factor

(Lampridi et al., 2019), calculated as shown in Eq. (7).

ir ¼ iþ d
1þ d

(7)

where i is the interest rate and d is inflation, both in %.

Here, dwas set to 2% tomatch Sweden’s inflation goal, and

i was set to 2.75%, which is a reasonable interest rate for

agricultural businesses (L. Hylander (Swedbank), personal

communication, June 17, 2020).

The component costs and equations for each parameter

are shown in Tables 3 and 4. Sections 2.3.2, 2.3.3, 2.3.4, 2.3.5,

2.3.6, 2.3.7, 2.3.8 and 2.3.9 explain the costs, sources and as-

sumptions for each category. When no data were available, it

was assumed that both the BED system and the corresponding

diesel tractor system had equal costs. This included vehicle

housing, seeds, fertilisers, pesticides, insurance and non-

field-related farming expenses. For all conversions between

currencies, the following rates from May 7, 2020 were used: 1

V ¼ 10.64 SEK ¼ 1.10 US$.

https://doi.org/10.1016/j.biosystemseng.2021.02.005
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Table 1 e Field number and area in the simulations, and type of grain grown; O¼ oats,W.W¼winter wheat, S.W¼ spring
wheat and B ¼ barley.

Field no. (n) 1 2 3 4 5 6 7 8 9 10 11 12

Area (An) [ha] 10 16 22 13 15 26 6 14 22 28 15 13

Grain O W.W B B S.W O W.W O S.W W.W B S.W

Table 2eTimeliness factors and yields for the grain crops
assumed in simulations. Timeliness factors from
(Gunnarsson, 2008) and yield data from Statistics Sweden
(2019).

Winter
wheat

Spring
wheat

Barley Oats

pg, Grain price [V kg�1] 0.130 0.130 0.118 0.143

Yg, Yield [kg ha�1] 5658 4221 4581 3823

lg, Timeliness factor

[kg ha�1 d�1]

55 59a 40 23a

Timeliness, [% d�1] 1.1 1.5 1.0 0.9

a Value for organic production instead of conventional.
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2.3.2. Charging infrastructure
The cost of chargers included the price for the charging sta-

tion, the grid connection cost, casing, site establishment,

wiring, installation safety control and the cost of contract

work. The total cost for this ranged from 35,000e80,000 V,

according to Swedish Energy Agency (2019). The assumed cost

was set to cC ¼ 50,000 V. It was assumed that the full cost of

establishing charging infrastructure was required for the first

charging station (NC ¼ 1), and that any additional charging

(NC > 1) just required investing in additional charging stations,

which was priced at cCA ¼ 25,660 V for a Siemens mode 3 fast

charger (Engstr€om & Lagnel€ov, 2018). It was assumed that the

connection of charging stations were within the limit of the
Table 3 e Costs, lifetime and equations used to calculate comb
investment cost in V and c (lower-case) is the investment cost p
2.3.3, 2.3.4, 2.3.5, 2.3.6, and 2.3.7.

Component (subscript) Component cost (cx) Assum

Battery (B) 146 V kWh�1

Charger (C) 50,000 V

Additional charging stations (CA) 25,662 V

Battery changing system (BCS) 10,000 V

Autonomy system (A) 17,446 V

Tractor, PR ¼ 50 kW (V) 45,005 V

Tractor, PR ¼ 250 kW (V) 191,550 V

Table 4 e Costs and equations used to calculate operating cost
2.3.4, 2.3.5, 2.3.6, 2.3.7, 2.3.8 and 2.3.9.

Parameter Variable Component

Electricity CE 0.08

Diesel CD 0.086

Maintenance Diesel CMD 48.8

Maintenance BED CME 35.1

Operator CO 28.2

Battery cost per cycle CB,cyc (see section
farms pre-existing power capacity and that no upgrade in fuse

size was needed.

2.3.3. Battery changing system
An industry sector that has similar needs to the agricultural

sector, and has solutions for battery replacement technology,

is the forklift sector. Its solutions are less complex and costly

than the large-scale systems found in mining vehicles or

buses. For example, a battery storage and replacement system

used for forklift trucks from the Solus Group costs

5000e10,000 V, depending on capacity and complexity (Solus

Group, 2019). The higher cost (cBCS ¼ 10,000 V) was chosen

here, since knowledge of the system is low.

2.3.4. Tractor prices
The cost of investing in a new field tractor was calculated

using Eq. (8) which was developed by Engstr€om and Lagnel€ov

(2018) and estimates the vehicle price based on the rated en-

gine power. The equation is regression-based and uses data

from Swedish tractor retailers. The equation was verified

using official data on the average price of tractors in 2018

(Statistics Sweden, 2019), with acquisition values from

Maskinkalkylgruppen (2020), and compared with linear re-

lationships between price and rated power presented in

Goense (2005). It was assumed that engine/motor and other

driveline components were included in this price. To repre-

sent the lack of mass production for BED systems, it was
ined cost of investment (COW), where C (capital) is the total
er component or unit in V. Sources given in sections 2.3.2,

ed economic lifetime (Tx) [yr] Equation

(see section 2.3.6) CB ¼ cB ERðNV þNBÞ
20 CC ¼ cC þ ðNC � 1ÞcCA
20

20 CBCS ¼ cBCS NBCS

15 CA ¼ cA NV

15 CV ¼ NV ð8107:2 � PR þ 10970Þ
10:64

15

s of the system (COP). Sources given in sections 2.3.2, 2.3.3,

cost (cx) Units Yearly cost [V yrs�1]

V kWh�1 CE ¼ cE Etot

V kWh�1 CD ¼ cD Etot

V ha�1 CMD ¼ cMD A

V ha�1 CME ¼ cME A

V h�1 CO ¼ P
cO a hd

2.3.6) V cycle�1 CB;cyc ¼ cB;cycNy

https://doi.org/10.1016/j.biosystemseng.2021.02.005
https://doi.org/10.1016/j.biosystemseng.2021.02.005
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assumed that the BED tractors had a 15% increase in invest-

ment cost compared to Eq. (8).

cT ½V� ¼ ð8107:2 *PR þ10970Þ½SEK�* 1
10:64

½V = SEK� (8)

2.3.5. Autonomous systems
The system architecture and sensory requirements for

autonomous systems can vary between different sectors, ve-

hicles and levels of autonomy. There is a lack of data for

autonomous systems in the agricultural sector, which neces-

sitates use of data from other sectors. Engstr€om and Lagnel€ov

(2018) used a 10,000 V template value based on the increased

price of Volvo cars when equippedwith autonomous capacity,

which is similar to the findings of Daziano, Sarrias, and Leard

(2017) for the add-on Cruise-RP1 system (Cruise, San Fran-

cisco, CA, USA), priced at 10,000 $ (~9000 V). Vedder, Vinter,

and Jonsson (2018) estimated that building a vehicle with

self-driving capacity was possible at prices from 2000 V.

Higher estimates have been given, putting the price for full

autonomous capability in cars at 70,000 $ (Fagnant,

Kockelman, & Bansal, 2015). B€osch, Becker, Becker, and

Axhausen (2018) assumed that for fleet-based cars, the price

increase would be 20% higher for cars with autonomous sys-

tems compared with those without, a value that Brundrett

(2014) found applicable for autonomous mining vehicles.

The autonomous diesel-powered tractor Robotti (Agrointelli,

Aarhus, Midtjylland, Denmark) is priced in range as modern

manned tractors, 133,170e192.447 V depending on rated

power and options (F. Rom (Agrointelli), personal communi-

cation, January 20, 2021). It was assumed that the cost for the

total autonomous system of SAE level 4 or above (SAE, 2018)

was 20% of the average Swedish tractor price (Statistics

Sweden, 2019), which resulted in cA ¼ 17,450 V.

2.3.6. Batteries
In a summary by Comello and Reichelstein (2019), the market

price for a Li-ion battery system in the US was projected to

range between 113 and 172 V kWh�1 in 2020. Tsiropoulos,

Tarvydas, and Lebedeva (2018) estimated a cost in the range

of 170e215 V kWh�1 for Li-ion battery packs in the EU in 2017.

This was based on predictions by Nykvist andNilsson (2015) of

a possible pack cost of 182 V kWh�1 in 2020. The actual cost

will depend on cell chemistry, producer and production

method (Tsiropoulos et al., 2018). Here, the cost, cB, was set to

146 V kWh�1, as it fitted multiple predictions, was the average

price given by Comello and Reichelstein (2019) and was close

to the 2019market average of 142V kWh�1 (McKerracher et al.,

2020). For clarity, batteries are shown as both an investment

cost and as an operating cost. Therefore it may be easier to

calculate the cost per year, cycle or unit of energy stored,

which is shown in Appendix B.

2.3.7. Fuel
Both electricity and diesel were considered as fuels in this

study. The base price of diesel was taken from the Swedish

average price for March 2020, as reported by SPBI (2020), and

reworked to the current net price for the agricultural sector.

Swedish agricultural businesses are exempt from VAT (25%)

on diesel and are entitled to a carbon tax refund of 181.8Vm�3
diesel. The total pump-price of 1.32 V l�1 is thereby reduced to

0.87 V l�1. Further conversion to price per unit of energy was

made using the density (845 kg m�3) and net calorific value

(43.1 MJ kg�1) of diesel found in Reif and Dietsche (2014) for a

total price of 0.086 V kWh�1. The price for electricity, 0.08 V

kWh�1, was taken from the official Swedish statistics for

businesses with annual consumption between 20 and

500 MWh (Statistics Sweden, 2020).

2.3.8. Maintenance
The maintenance costs for agricultural tractors were taken

from Pettersson and Davidsson (2009, pp. 1401e4963), who

analysed the maintenance costs for Swedish field tractors in

grain production on farms with 150e300 ha. This was verified

with data fromOlt, Traat, and Kuut (2010) for similarmachines

and production types. This put the maintenance costs within

the range 20.5e48.8 V ha�1 for diesel systems, and the highest

value of 48.8 V ha�1 was chosen for the present analysis.

For BED tractors there are less available data. Sources

studying on-road vehicles give the maintenance cost reduc-

tion for BED tractors compared with diesel at 19e28%

(Delucchi & Lipman, 2010; Propfe, Redelbach, Santini, &

Friedrich, 2012), which puts the maintenance costs for BED

tractors in the range 18.8e39.5 V ha�1. A maintenance cost of

72% of that of a diesel tractor (35.1 V ha�1) was chosen.

2.3.9. Driver & operators
For manned vehicles, it was assumed a driver needed to be

hired. It was assumed that this driver was contracted on a per-

hour basis related to the active time of the tractor, which is the

sumof the timespent performingfieldwork, road transport and

refuelling. For the autonomous systems, it was assumed that

an operator was required to control the vehicle during more

challenging operations and for general management of the

system. The fraction of vehicle time assumed to need an

operator was called operator factor, O. It was defined as a

fraction between 0 and 1, and describes the fraction of hours

that the vehicle needs to be managed by an operator for that

specific task, with 0 being fully autonomous and 1 being fully

monitored. Engstr€omand Lagnel€ov (2018) used a valueof 0.1 for

all tasks and Goense (2005) used 0.2 for field operations based

on the complexity level of different field manoeuvres, but did

not include road transport or refuelling. In this study, different

values were set for fieldwork (OF ¼ 0.2, i.e. 20% of all fieldwork

hours needed to be monitored), road transport (OR ¼ 0.3) and

refuelling (OC ¼ 0.1), as they had different levels of complexity,

with road transport assumed to be the most complex task.

The operator was assumed to have an hourly cost of 28.2V,

which is the rate recommended for the total cost of an expe-

rienced employee in the agricultural sector, including social

benefits, taxes, vacation and 15% write-up for non-productive

time (Maskinkalkylgruppen, 2020). For the manned systems,

the values were verified with the normal yearly tractor use of

650 h y�1 fromMaskinkalkylgruppen (2020), andwere found to

be within 10% of that value.

2.4. Simulation inputs

The vehicle system cases with the parameters shown in

Table 5 were simulated and analysed, unless specifically
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Table 5 e Base case simulation inputs for the battery
electric drive (BED) tractor and inputs for the reference
cases with one and two diesel tractors (D1, D2).

Case name BED D1 D2

Number of vehicles (NV) 2 1 2

Vehicle power (PV, kW) 50 250 250

Battery energy eq. carried (EB, kWh) 50 1315 1315

Number of extra batteries (NB) 2 e e

Charging power (PC, kW) 50 30,345a 30,345a

Number of chargers/fuel pumps (NC) 1 1 1

Number of battery exchange stations (NBCS) 1 e e

Daily working time (h, h d�1) 24 10 10

a Diesel pump with a flow of 50 L min�1.
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stated otherwise. They were chosen as a previous study

found that BES performed slightly better and that a two-

vehicle system provided adequate overall capacity for

200 ha, which was explored in Lagnel€ov et al. (2020). The

case D1 was chosen as being a reasonable diesel counter-

part and D2 was chosen to represent a system with

overcapacity.

The inputs were used in the dynamic discrete-event model

of a 200 ha Swedish grain farm presented in Lagnel€ov et al.

(2020). The weather data for the years 2008e2018 were used

in the soil water balance sub-system in the model, as the

model was run for those years, so some results are 11-year

averages.
Fig. 3 e Decrease in (a) state-of-charge (SoC) and (b) voltage as a

charging rates: C/10 (circles), 1C (squares) and 4C (diamonds). L

different charging rates are shown in (a).
3. Results

This section firstly presents the results of the simulation

concerning battery ageing and timeliness, and then calculates

the system cost from those results.

3.1. Battery ageing

Battery ageing due to cycling at different charging rates was

simulated as described in section 2.1 and the results are

shown in Fig. 3. The results for the capacity fade were fitted

with third-order polynomials and were used in the model as

an approximation of the capacity fade due to cycling. The

polynomial constants were decided by the charging rate of the

chargers, as depicted in Table 6.

The choice of charging rate for each case was determined

using Eq. (9) and Eq. (10). The polynomial they represent was

used as input in the main model:

C� rate ¼
8<
:

4C; 2 � xC

1C; 0:5 � xC < 2;
0:1C; xC < 0:5

(9)

xC ¼EB

PC
(10)

where xc is the relationship between battery energy (EB) and

charging power (PC) in h, and is used as a metric to decide the

C-rate.
function of cycle number, simulated for three different

ine-fitting curves from Eq. (2) (dotted lines) for the three
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Table 6 e : Parameters used in Eq. (2) for different charge
rates shown in Fig. 3.

C-rate A b c d R2

0.1C �8.81 * 10�13 7.65 * 10�9 �2.97 * 10�5 0.9820 0.997

C �3.37 * 10�12 2.77 * 10�8 �9.60 * 10�5 0.9655 0.994

4C �7.07 * 10�12 5.43 * 10�8 �1.69 * 10�4 0.9371 0.982
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3.2. Battery replacement

A higher charging rate led to a shorter charging time and

higher productivity, but it also aged the battery more rapidly

than lower charging rates. This can be seen in Fig. 4, as MTTR

for the given system at 4C was 2 years, while the same system

had a MTTR of 7 years with 1C. For the C/10 charging rate, the

chosen system did not reach the point of battery replacement

in the 11 years simulated.

The limit for end-of-life (EOL) was set at 80% of starting

capacity and the different charging rates reached it in

differing amount of cycles: 4C reached it in 1200 cycles, 1C in

4240 cycles and C/10 in 7760 cycles.

3.3. Timeliness

A plot of the average delay for different vehicle systems (Fig. 5)

revealed that the BED system has a longer delay in the spring

than the systems with manned diesel tractors (D1 & D2). It is

worth noting that the delay between fields was not insignifi-

cant, as even the best cases showed an average delay of 20

days for the highest numbered field. For autumn, none of the

systems showeda long delay comparedwith the spring period.

The sowing interval for the BED system (Fig. 6) was within

the range stated in Myrbeck (1998), with a comparable delay in

the spring period to the 1-vehicle system of diesel tractors (D1)
Fig. 4 e Capacity fade and replacement rate for three different c

(dashed line) over 11 years. Simulation of a system of four batte

the batteries. End-of-life (qEoL) set at 0.8 (dotted line) and the ba

system on average reached q ¼ 0.8. Calendar ageing not includ
and with increased delay compared with the 2-vehicle system

(D2). The autumn period sowing interval was short in all three

scenarios and all systems were within the stated interval.

However, since harvest was not simulated, but was simply

assumed to be completed at the start of the autumn period, it

is plausible that the starting date for sowing should be akin to

that stated by Myrbeck (1998).

3.4. Economics

3.4.1. Timeliness
The delay for each grain and field in the three cases can be

seen in Fig. 5. The cost for the delay for the BED case was

20,846 V in total, 18,370 V for the spring-sown crops and 2476

V for the winter wheat. The total yield loss was 30.1%

compared with the optimum. For the diesel cases, the corre-

sponding yield loss was 19.6% (D1) and 10.6% (D2), which

resulted in costs of 13,569 V (D1) and 7321 V yr�1 (D2).

3.4.2. Battery and energy cost
The battery cost for the BED case, with 4 � 50 kWh NCA li-ion

batteries, was 29,200 V in investment costs. The average

yearly energy use was 91,462 kWh and the average number of

equivalent cycles was 2464 cycles yr�1 (616 per battery and

year). With a charging rate of 1C, the system had a theoretical

MTTR of 6.8 years (7 years in simulation) and a MCTR of 4240

cycles. Using linear depreciation, this resulted in a cost of 6.8V

cycle�1 or 0.17 V kWh�1. The total energy cost (including

electricity and battery cost) was then 0.97V kWh�1, compared

with 0.86 V kWh�1 for diesel. Compared with the diesel cases,

the BED systemhad lower energy consumption (54% of D1 and

52% of D2) and fuel costs (49e50% lower). The batteries made

up 6% of the total operating costs and 14% of the investment

costs for the BED case.
harging rates, 4C (dash-dotted line), 1C (full line) and C/10

ries with energy content of 50 kWh, assuming even load on

ttery packs were replaced at the end of the year where the

ed.
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Fig. 5 e Average delay (lines, left axis) from the optimum date of sowing for scenarios with a battery electric drive (BED)

tractor (dashed line) and a conventional manned diesel tractor system with two tractors (D2; full line) and one tractor (D1;

dashed double-dotted line). Field sizes (bars, right axis) are shown, with the pattern and shade in columns denoting the

type of grain crop grown in the field (winter wheat (grey), spring wheat (white), barley (vertical) and oats (diagonal)).
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3.4.3. Investment, operating and total annual costs
The total cost of investment for the autonomous BED system

with BESwas 218,868V, and the annual cost was 57,002V yr�1.

The BED system had slightly higher investment costs and
Fig. 6 e Actual sowing (dotted pattern) and harvesting (diagona

central Sweden from Myrbeck (1998) and simulated sowing date

a conventional manned diesel tractor system with one (D1) and

light grey, while non-active periods (black) and the growing pe

reserve period (medium grey) was included in the autumn perio

was the only task performed during the reserve period.
lower operating costs than the 1-vehicle diesel system (D1)

and lower costs of both compared with the 2-vehicle system

(D2) (Fig. 7). The investment costs for D1 were 196,554 V and

the annual costs were 69,774V yr�1, while the investment
l pattern) interval with mean values (black diamond) for

s in scenarios with a battery electric drive (BED) tractor and

two (D2) tractors. The three work periods are indicated in

riod (white) are shown in the bottom bar. A one-month

d to make sure the simulation ran to completion. Ploughing
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costs for D2 were 393,108 V and the annual costs were

80,656 V yr�1.

The largest fraction of the investment costs for the BED

system was purchase of the tractor (41%) followed by instal-

lation of the charging system (23%) and the autonomous

system (16%). For the diesel systems, the investment costs

were similar for both D1 andD2, and comprised only purchase

of tractor/s (97%) and cost of interest (3%).

For the diesel cases the three largest components of the

annual cost (CAN) were cost of investment (COW), operator cost

and fuel, contributing 67e79% of the total operating costs

(Fig. 8). For the BED case the three largest components were

timeliness (30%), COW (23%) and operator cost (23%) for a total

of 76% of CAN. Timeliness was a relevant component for the

operating costs for all cases, at 20,847 V y�1 (30%) for the BED

system, 13,569 V y�1 (19%) for D1 and 7321 V y�1 (9%) for D2.

3.5. Sensitivity analysis

A sensitivity analysis of several parameters was performed to

assess their influence on different costs. The costs of batte-

ries, autonomous system, charger installation, operator and

electricity were varied in the BED case, to gain an under-

standing of their influence on the yearly cost of operations. In

addition, the interest rate, timeliness factors, economic life-

time and the autonomous fraction of different operations

and activities for the autonomous systems were varied. Ab-

solute change, absolute sensitivity and relative sensitivity

were measured.

3.5.1. Parameter-based sensitivity analysis
Table 7 shows the absolute sensitivity and the relative

sensitivity for some key parameters included in the cost

analysis. Relative sensitivity is denoted as the change in the
Fig. 7 e Investment costs (COW) in V for a simulated battery electr

two manned diesel counterparts (D1, D2). Columns show the co

system (dotted), battery changing system (dark grey), autonom
total annual cost given a change of one unit in the given

parameter.

3.5.2. Rate of autonomy and operator factor
The amount of autonomy is a key concept in the analysis

of self-driving vehicle systems. Discussions on autono-

mous vehicles in agriculture usually focus on the amount

of autonomy in fieldwork (Engstr€om & Lagnel€ov, 2018;

Goense, 2005; Oksanen, 2015). However, for an indepen-

dent generalist vehicle it is also necessary to consider

additional activities, such as charging and road transport.

The intricacies of on-road autonomy are a complex sub-

ject outside the scope of this article, but the scenarios of

fully manned/monitored drive and fully autonomous

operation were explored as a cost function, as shown in

Table 8.

3.5.3. Battery cost and lifetime
As mentioned previously, the cost of the batteries was

assumed to be low compared with other annual costs, but it

is still critical for any electric vehicle. To verify the choices

made and see the potential effect of other assumptions

on prices and lifetimes, these parameters were varied

independently.

As can be seen in Fig. 9b, the annual battery cost varied

linearly with the pack cost. The battery cost was a small part

of the total annual cost for all values tested and, evenwith the

highest price in the interval, 330 V kWh�1 (Nykvist & Nilsson,

2015), the total annual cost was still lower than for D2 and

similar to D1. The operational lifetime of the battery before

replacement was important for the battery cost, as the cost

decreased exponentially with increased lifetime (Fig. 9a).

Extending the battery lifetime beyond the first few years is

paramount to keep a low annual cost.
ic drive (BED) tractor systemwith autonomous capacity and

st of the tractor (grey), battery (diagonal stripes), charger

ous system (vertial stripes) and cost of interest (black).
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Fig. 8 e Annual cost of operation (CAN) in V yr¡1 for a simulated battery electric drive (BED) tractor system with autonomous

capacity and two manned diesel counterparts (D1, D2). Columns show the annual costs of operator (white), fuel (thin

diagonal stripes), maintenance (grey), timeliness (dotted on light grey background), batteries (broad diagonal stripes) and

COW (annual cost of investment, dark grey).

Table 7 e Change in total annual cost given a change in a single parameter and relative sensitivity for different parameters
influencing the annual cost in the battery electric drive (BED) tractor scenario. The closer the relative sensitivity is to one,
the more sensitive the annual cost to changes in that parameter. Relative sensitivity of Tx is not shown as it is non-
constant. In addition, changes deemed unrealistic are represented with a dash (¡).

Parameter change
Absolute sensitivity, in % Relative sensitivity

¡50% ¡25% þ50% þ100%

Investments

Charger (cC) �3.3 �1.6 þ3.3 þ6.5 0.07

Battery (cB) e �1.5 þ2.9 þ5.8 0.06

Tractor (cV) �5.6 �2.8 þ5.6 þ11.1 0.11

Autonomous system (cA) �2.2 �1.1 þ2.2 þ4.3 0.04

Operating costs ¡50% þ50% þ100% þ200%

Operator (cO) �11.3 þ11.3 þ22.6 þ45.2 0.23

Electricity (cE) �4.0 þ4.0 þ7.9 þ15.9 0.08

Timeliness factor (l) �15.1 þ15.1 þ30.2 þ60.3 0.30

Other ¡50% þ50% þ100% þ200%

Interest rate (ir) �1.9 þ1.9 þ3.8 þ7.6 0.04

Economic life (Tx) þ16.4 �5.5 �8.2 e e

Table 8 e Change in annual cost (CAN, in %) compared
with the battery electric drive (BED) case. The operator
factor for three different activities (road transport,
charging and fieldwork) was varied from 0 (fully
autonomous operation) to 1 (fully monitored operation).
In the BED case, Or ¼ 0.3, Oc ¼ 0.1, Of ¼ 0.1 (section 2.3.9)
and CAN ¼ 57,002 V yr¡1 (section 3.4.3).

Operator factor 0 0.5 1

Road transport (Or) �13% þ9% þ30%

Charging (Oc) �2% þ7% þ15%

Fieldwork (Of) �8% þ12% þ32%

All (Or ¼ Oc ¼ Of) �23% þ27% þ77%
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3.6. Case-based cost analysis

Several other cases were simulated and their cost and active

time requirement calculated. The different cases included the

two different battery recharging methods described in

Lagnel€ov et al. (2020) and vehicles with larger batteries, mul-

tiple smaller batteries, high-powered chargers, lowered

working time and autonomous diesel systems (Table 9).

Figure 10 shows the different annual costs for the different

cases in Table 9. Notably, all but one of the electric cases had a

cost comparable or lower than the manned diesel cases,
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Fig. 9 e Impact on annual battery cost of a) battery lifetime before replacement and b) battery pack cost for the battery

electric drive (BED) tractor case. The cost interval (dashed lines, arrow) from relevant literature is given (Comello &

Reichelstein, 2019; McKerracher et al., 2020; Nykvist & Nilsson, 2015; Tsiropoulos et al., 2018). The values used in the BED

case are shown as black triangles.

b i o s y s t em s e n g i n e e r i n g 2 0 4 ( 2 0 2 1 ) 3 5 8e3 7 6370
indicating that multiple system designs, charging systems

and component sizes are competitive, even in the caseswhere

the number of active days were higher.

In total, the autonomous diesel system (D2A) had the

lowest annual cost and active number of days, indicating

the high profitability of autonomy. A system with multiple

smaller exchangeable batteries (BES2) had a significantly

higher cost than the other BED systems, mostly due to a high

number of active days, which led to high operator cost and

timeliness cost. The system with four vehicles (NV4 BES) had

the second lowest number of active days, but the third highest

annual cost of the BED systems, due to its large investment

cost and subsequent depreciation, as it provided expensive

overcapacity.

For both conductive charging (CC) and BES, the systems

with lowest total annual cost were those with large batteries

(CC3 and BES3). This shows that the rate at which the battery

ages is important, as the CC system with a higher powered

charger, but one-third the energy content in batteries (CC2),

had an annual battery cost that was more than seven times

that of CC3, due to the rapid replacement of the batteries.
Table 9 e Cases simulated in cost analysis. D ¼ diesel, E ¼ ele
system.

Case name D1 D2 BED D

Fuel, Charging method D D E/BES D

Number of vehicles (NV) 1 2 2 2

Vehicle power (PV, kW) 250 250 50 50

Battery energy eq. carried (EB, kWh) 1315 1315 50 13

Number of extra batteries (NB) e e 2 e

Charging power (PC, kW) 30,345 30,345 50 30

Number of chargers/fuel pumps (NC) 1 1 1 1

Number of battery exchange stations (NBCS) e e 1 e

Daily working time (h, h d�1) 10 10 24 24
The BES studied had a lower number of yearly cycles per

battery compared with CC, although they had similar total

yearly cycles, as the yearly cycles were distributed on a higher

number of batteries. This resulted in comparatively longer

time to EOL for BES and gave a lower battery cost per kWh,

even though the battery investment costs were higher

(Fig. 10). All BED systems shown had lower yearly energy

usage and cost compared with the diesel alternatives. Energy-

and battery-related results for the different cases are shown in

Table B1.
4. Discussion

4.1. Battery ageing

Battery ageing gave a large variation in MTTR between the

different C-rates studied (Fig. 4). Increased rate of degradation

with increased C-rate is discussed in the literature and linked

to high cell temperatures, Li-plating on the negative electrode

and electrolyte decomposition, which all lead to accelerated
ctricity, CC ¼ conductive charging, BES ¼ battery exchange

2A CC 1 CC 2 CC 3 BES 2 BES 3 NV4 BES BES 18 h

E/CC E/CC E/CC E/BES E/BES E/BES E/BES

2 2 2 2 2 4 2

50 50 50 50 50 50 50

15 50 100 50 25 50 50 50

e e e 6 2 3 2

,345 50 50 150 25 100 50 50

1 1 1 2 2 3 1

e e e 1 1 1 1

24 24 24 24 24 24 18
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Fig. 10 e Average annual costs (bars, left axis) and active time (grey diamonds, right axis) for different cases. The annual

costs are divided into costs for operator (white), fuel (thin diagonal stripes), maintenance (grey), timeliness (dotted on light

grey background), battery (broad diagonal stripes) and annuity of investment (dark grey). The number of active days is

shown, with error bars indicating one standard deviation.
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ageing. In particular, high cell temperature is reported to be a

major driver in battery ageing (Barr�e et al., 2013; Keyser et al.,

2017; Tomaszewska et al., 2019; Uddin et al., 2016). However,

Keyser et al. (2017) pointed out the difficulty in decoupling the

effect of high C-rates from that of increased cell temperature

in general, and the fact that different cell chemistries and

designs respond differently to high C-rates. Because of this, it

is difficult to compare the simulated results with literature

values. However, for parameters described in this study,

Keyser et al. (2017) gave a MTTR of 4e9 years for a NMC bat-

tery, depending on temperature, and de Hoog et al. (2017)

showed a MCTR ranging from 1200 to 3500 cycles, which is

similar to the results of this study. This indicates that the

MCTR and MTTR used in this study are feasible, but further

research is needed as data on the heavy duty off-road use of

batteries is sparse.

By using the relationship shown in Fig. 9, the assump-

tion of different lifetimes and the cost can be explored. As

the relationship between annual cost and lifetime of the

battery decreased exponentially, the most important

consideration appears to be to increase the lifetime beyond

the first years. In those intervals, the chosen C-rate was

highly influential.

Battery size appeared to be of less importance than battery

lifetime. However, the cases with larger batteries performed

better than other changes in battery parameters (Fig. 10). They

had a lower total annual cost and lower annual battery cost,

even though their investment costswere higher. Thiswas true

for both CC and BES, with similar results. This seems to

indicate that optimising the system for long-term battery use

gives a better pay-off than investing in fast charging.
4.2. Timeliness

In previous studies (Magalh~aes et al., 2017; Moreda et al., 2016),

it was assumed that a BED would suffer as regards capacity,

due to the need for frequent recharging. Thiswas encountered

in the simulations made as the BED case had a 54% larger

timeliness cost compared to D1. Inclusion of autonomy

seemed to mitigate this, as BED still had a slightly lower

annual cost. In addition, other cases were shown to have

comparable or lower timeliness cost, indicating that with the

right optimisation it is not an issue. Compared with other

literature values, the resulting cost of timeliness appeared

reasonable. Costs in the range 46e121 V ha�1 was shown for

different caseswith BED and 36e68V ha�1 for the diesel cases.

Gunnarsson and Hansson (2004) found a timeliness cost of 102

V ha�1 and de Toro (2005) a range of 30e145 V ha�1, with an

average of 60 V ha�1 for similar crops, conditions and climate.

It is worth noting that harvest is included in both these ranges

of values. However, as discussed in Lagnel€ov et al. (2020), the

number of workable hours in the field due to weather was

lower in those studies than in other similar studies, which

might explain part of the discrepancy.

The cost of timeliness is a theoretical comparison to an

assumed optimal yield. As the sowing dates for BED would

have been within the intervals shown by de Toro (2005);

Witney (1988) and Myrbeck (1998), it is possible that the actual

timeliness cost would have been lower than presented (Fig. 6).

However, as it affected all cases equally, it still shows the

dynamics of the concept. In addition, other climates and sites

often have awider window of suitable conditions, for example

the UK (Witney, 1988), USA (ASAE, 2000; Edwards et al., 2016)
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and southern Europe (Savin et al., 2014). Since timeliness was

not found to be an insurmountable part of the cost in the

northern European climate in Sweden, it follows that this type

of autonomous BED system would have a lower timeliness

cost in those other regions, provided that the other parame-

ters are similar.

4.3. Economics

For the BED case, part of the investment cost was for new

infrastructure in the form of charging stations and battery

changing stations, while all the infrastructure for the

diesel cases was assumed to be in place, with no further

need for improvement. This might appear to be an unfair

comparison, but when trying to replace an existing solu-

tion it is a reality that the cost of new infrastructure must

be included. Even with the installation of new infrastruc-

ture leading to a higher investment cost for BED compared

with D1, the BED case had slightly lower annual costs

thanks to the reduced operating costs, most notably fuel

and maintenance. The annuity on investment was a rela-

tively small part of the total annual costs, but the operating

costs were of high significance (Fig. 8). For on-road vehi-

cles, especially cars, the increased investment cost of BED

vehicles is seen as a barrier to effective market penetra-

tion. For heavy duty vehicles this is a much less severe

problem, as the vehicles in that market segment also have

higher operating costs.

A high number of active days often involved a high cost,

as it affected both timeliness (more delay) and operator costs

(more hours where the vehicles must be monitored) (Fig. 10).

In some exceptions, there was a trade-off with other costs,

for example CC1 had a higher number of active days than

CC2, but a lower cost due to the reduced battery cost. The

number of active days could not be used on its own to draw

conclusions on the annual cost of a system, but a high

number of active days was often indicative of a system with

poor optimisation, associated in turn with higher annual

costs.

The actual cost of autonomous systems is difficult to

determine correctly and only assumptions are possible

without calculating the cost on component level, which was

beyond the scope of this study. Instead, the investment cost

of the autonomous system was included in the sensitivity

analysis. The price of Robotti indicates that a tractor with a

high level autonomy can be made for a similar price to

manned tractor. Engstr€om and Lagnel€ov (2018) theorised that

the removal of driver comfort systems and cabin could make

for a cheaper vehicle and potentially make up for the

increased cost of the autonomous system. The degree of

automation is also important for the production cost of

autonomous systems (Table 8). Marinoudi et al. (2019) found

increased total costs at a certain level of automation for

agricultural vehicles at which the component costs overtake

the avoided labour cost and any further increase is

economically sub-optimal. As the present study considered a

highly autonomous system, it is possible that the cost of

automation would have increased non-linearly and posed

higher costs than presented here for highly autonomous so-

lutions. However, unless exorbitantly expensive, it would be
covered by the variations presented in the sensitivity

analysis.

Fieldwork proved to be the operation for which a high de-

gree of autonomy was most important, followed by road

transport. The most time-consuming operation needed to

have a high autonomy rate to have a low cost, which generally

proved to be fieldwork and, for some BED cases, road trans-

port. Road transport is a complex task to make autonomous,

but there are indications that fieldwork is a more suitable task

(Goense, 2005). Requiring the system to be monitored

constantly (Otot ¼ 1) would increase the annual cost by 77%,

making it more expensive than both the diesel cases studied

here and generally economically unsuitable. This indicates

that manned BED systemswill struggle to compete in terms of

costs with conventional diesel systems, whereas even partly

autonomous systems may be competitive. This was some-

what explored with the BED 18 h-case, which showed a slight

decrease in capacity but still had a comparable cost to the BED

case with a 24-h working day, and the D1-case. It also high-

lights the benefit of understanding and minimising the

number of hours of monitored non-productive work, most

notably road transport. Due to more time spent refuelling and

in transit the operator costs for BED andD1was similar, which

indicates an under capacity for the BED systems. Systems

with higher battery capacity reduced the time spent in transit

while having a slightly higher amount of time spent charging,

which overall led to a low operator cost, notable in the CC3

and BES3 cases.

It is also worth discussing the manner in which the driver

can be replaced. In this study, it was assumed that a single

operator would monitor a certain fraction of the machine-

hours. In reality, this function might hamper the vehicle’s

ability to work independently at all hours of the day, as the

restrictions of human supervisionwould still be imposed, only

at a higher level compared with a tractor driver’s more direct

involvement. The approach used in this study calculated the

cost for every manned or monitored hour and other ap-

proaches would likely give different operator costs. Our

approach was suitable for cost analysis, but there are many

questions regarding general management that require further

research.

4.4. Sensitivity analysis

The results from the sensitivity analysis showed that

changes in the operating costs were more influential than

changes in the investment costs, as the investments were

distributed over the economic lifetime of the system, but

changes in the operating costs were incurred directly. This

indicates that in order to achieve a low annual cost, the

operating costs need to be minimised and the economic

lifetime maximised.

The case-based cost analysis (Fig. 10) showed the effects of

different system design parameters, from large chargers to

many small, replaceable batteries. The main dynamics dis-

cussed in (Lagnel€ov et al., 2020) were confirmed, i.e. the dif-

ference between CC and BES was small but slightly favoured

BES, EB < 50 kWh led to a poorly optimised system; and a

balanced ratio between battery size and charging speed is

needed (here also shown as C-rate). It was also shown that
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cases with larger battery capacity (CC3 and BES3) had a

noticeably lower annual cost compared to the diesel system,

with BES3 having a comparable annual cost to D2A. This

indicate that BED tractor systems can cost-effectively

compete with manned and unmanned diesel systems. Addi-

tionally, the low costs obtained for most BED cases and the

autonomous diesel system indicate that autonomy in an

agricultural field setting can decrease the annual costs

substantially.
5. Conclusions

In a simulated scenario, autonomous BED systemswere found

to have comparable or lower annual costs than equivalent

cases with both one and twomanned diesel vehicles. The BED

systems had lower maintenance and fuel costs, but generally

higher investment and timeliness costs and a higher number

of required active days. The reduction in the operating costs

outweighed the higher investment costs in the BED cases.

To ensure equal or comparable working rate to contem-

porary diesel systems, autonomy was shown to be necessary

for the BED systems. The analysis revealed high sensitivity to

degree of autonomy, with a fully monitored BED system

having costs exceeding those of the diesel systems. Simula-

tions of a diesel system running on the same assumptions as

the BED systems (multiple smaller vehicles with a 24-h

working day) showed low cost and high capacity, indicating

the advantages of autonomy. These findings indicate that

many of the predicted problems with agricultural field BEVs

are solvable or can be mitigated by vehicular autonomy. In

addition, this study showed that the cost of timeliness was

generally larger for BED systems than for diesel systems but
Table A1 e Simulation and modelling parameters used in sim

Parameter [unit] Variable

Ageing parameter alpha

Surface area Av_neg

Bruggeman coefficient for tortuosity in

positive electrode

brugl_pos

Bruggeman coefficient for tortuosity in

separator

brugl_sep

Initial electrolyte salt concentration

[mol m�3]

cl_0

[mol m�3] cs_pos_ma

Initial SEI layer thickness [mm] dfilm_0

Maximum cell voltage [V] E_max

Minimum cell voltage [V] E_min

Electrolyte phase volume fraction

negative electrode

epsl_neg

Electrolyte phase volume fraction positive

electrode

epsl_pos

Electrolyte phase volume fraction

separator

epsl_sep

Solid phase volume fraction negative

electrode

epss_neg

Solid phase volume fraction positive

electrode

epss_pos
still resulted in a lower annual cost due to savings in opera-

tional costs.

The increased investment costs associated with BEVs

proved to be a small proportion of the total annual costs of

operation. Battery ageing had a significant impact on the

associated costs, but using batteries larger than 50 kWh or

multiple batteries extended the lifetime of the batteries

significantly. In addition, it was shown that the operating

costs of the vehicle systems were more influential than the

investment costs. Cases that ensured low operating costs

through reduced maintenance, fuel, timeliness and operator

costs had lower annual costs.
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Appendix A. Battery model simulation
parameters
ulation of battery ageing

Value

0.67

3*0.384/rp_neg

2.98

3.15

1200

x 48,000

1

4.1

2.5

0.444

0.41

0.37

1-epsl_neg-0.172

1-epsl_pos-0.170

(continued on next page)
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Table A1 e (continued )

Parameter [unit] Variable Value

Ageing parameter [s�1] f 2.0e2

Ageing parameter H 6.7

1C discharge current [m̂2/3600s] i_1C Q0*1

Constant current, charge I_ch i_1C

Constant current, discharge I_dch -i_1C

Minimum cell current for constant voltage

charge

I_min_ch i_1C/20

Ageing parameter [h] i1C_loc Q0/(Av_neg*L_neg)/1

Ageing parameter J 8.40e-04

Reaction rate coefficient negative

electrode [m s�1]

k_neg 2e-11

Reaction rate coefficient positive electrode

[m s�1]

k_pos 5e-10

SEI layer conductivity [S m�1] kappa_film 5e-6

Length of negative electrode [m] L_neg 55e-6

Length of positive electrode [m] L_pos 40e-6

Length of separator [m] L_sep 30e-6

Molar mass of product of side reaction [kg

mol�1]

M_sei 0.16

Number of cycles no_cycles 2000*2 þ 80

Initial capacity Q0 cs_pos_max*(1e0.25)*epss_pos*L_pos*F_const

Density of product of side reaction

[kg m�3]

rho_sei 1.6e3

Particle radius negative electrode [m] rp_neg 2.50e-6

Particle radius positive electrode [m] rp_pos 0.25e-6

Cell temperature [oC] T 20

Approximative total cycling time t_cycling (no_cyclesþ1)*10000/t_factor

Time acceleration factor t_factor 80
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Appendix B. Case-based detailed results
Table B1e Energy and battery results from the case study. Battery lifetimes longer than the simulated 11 years are denoted
11þ. The results from the BES18h case were omitted, as the case is a variant of the BED case.

Case
name

C-rate Etot
[kWh y�1]

Energy
cost

[V y�1]

Eq. cycles
[y�1]

Eq. cycles
per battery

[y�1]

MCTR
(calculated)

MTTR [y] Battery
investment
cost [V]

Battery cost
per cycle [V]b

Battery cost
per kWh

(over lifetime) [V]

D1 e 168,748 14,512 243a e e e e e e

D2 e 174,294 14,989 218a e e e e e e

BED 1C 91,462 7317 2464 616 4,24 6.9 29,200 6.8 0.17

D2A e 208,994 17,973 229a e e e e e e

CC 1 1C 88,636 7091 2432 1216 4,24 3.5 14,600 3.0 0.08

CC 2 4C 93,384 7471 2554 1277 1,2 0.9 14,600 11.4 0.29

CC 3 C/10 73,069 5846 741 370 7,76 11þ 43,800 5.6 0.05

BES 2 1C 116,966 9357 5834 729 4,24 5.8 29,200 6.7 0.33

BES 3 1C 79,302 6344 1,09 272 4,24 11þ 58,400 13.4 0.17

NV4 BES 1C 95,766 7661 2544 363 4,24 11þ 51,100 11.7 0.29

BES 18H 1C 87,616 7009 2354 588 4,24 7.2 29,200 6.2 0.16

aFor diesel systems, the term “cycling” is best replaced with “refuellings.”
bCalculated on the annuity cost of batteries and yearly cycles per battery.
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