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Abstract: Today, non-expensive remote sensing (RS) data from different sensors and platforms can be
obtained at short intervals and be used for assessing several kinds of forest characteristics at the level
of plots, stands and landscapes. Methods such as composite estimation and data assimilation can be
used for combining the different sources of information to obtain up-to-date and precise estimates
of the characteristics of interest. In composite estimation a standard procedure is to assign weights
to the different individual estimates inversely proportional to their variance. However, in case the
estimates are correlated, the correlations must be considered in assigning weights or otherwise a
composite estimator may be inefficient and its variance be underestimated. In this study we assessed
the correlation of plot level estimates of forest characteristics from different RS datasets, between
assessments using the same type of sensor as well as across different sensors. The RS data evaluated
were SPOT-5 multispectral data, 3D airborne laser scanning data, and TanDEM-X interferometric
radar data. Studies were made for plot level mean diameter, mean height, and growing stock volume.
All data were acquired from a test site dominated by coniferous forest in southern Sweden. We found
that the correlation between plot level estimates based on the same type of RS data were positive and
strong, whereas the correlations between estimates using different sources of RS data were not as
strong, and weaker for mean height than for mean diameter and volume. The implications of such
correlations in composite estimation are demonstrated and it is discussed how correlations may affect
results from data assimilation procedures.

Keywords: airborne LiDAR; Composite estimators; forest inventory; SPOT-5 HRG; TanDEM-X

1. Introduction

Today, remote sensing (RS) data from different sensors and platforms have become increasingly
available for estimating forest characteristics at the scale of plots, stands, landscapes, and entire
countries or regions, e.g., [1]. For practitioners this development is welcome, but it also poses several
challenges with regard to the selection of RS data source for applications. An interesting possibility is
to make use of several sources of RS data simultaneously through composite estimation (CE) [2] or in
a sequential manner through data assimilation (DA) [3].

An ordinary CE is constructed as a weighted average of several individual estimates; to minimize
the variance of the CE, the weights are set inversely proportional to the variance of the individual
estimators, e.g., [2]. In case estimates are correlated, this must be taken into account in the calculation
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of weights and in estimating the variance of the CE. CEs are sometimes applied in national forest
inventories, e.g., [4].

DA [3] can be seen as an extension of ordinary CE for the case when time differences between
estimates make it necessary to include a model for updating previous estimates to current time before
combining with a new estimate. In case the time difference between estimates is short, the difference
(in results) between a CE and a standard DA-based estimator, such as the Kalman filter, e.g., [3],
is minor. However, DA is a more useful concept than ordinary CE at longer time spans between RS
data acquisitions and through DA entire time series of RS data of different kinds can be used for
improving the precision of an estimate of current state [5]. Many DA methods exist, e.g., [3], in which
the standard Kalman filter assumes independent estimators (or direct observations) at the different
time points and a linear model for updating previous estimates to current time. Similarly to ordinary
CE, the Kalman filter estimator of current state is a weighted average of a new and an updated estimate;
the weights are assigned to be inversely proportional to the variance of the estimators involved.

Studying recent developments in forestry applications of DA, promising results have been
obtained in simulation studies [5]. However, the empirical results presented by [6,7] pointed out
problems to fully realize the theoretical potential of DA in practice. In the latter studies, making use of
only the last measurement for estimating the current state of key forest characteristics was sometimes
almost as good as making use of the entire time series through DA. However, all these studies [5–7]
assumed the estimates to be uncorrelated between subsequent time periods, as is the practice in
standard DA through Kalman filtering [3,8,9]. However, using a certain kind of RS data repeatedly,
such as data from airborne laser scanning (ALS), e.g., [10], it is likely that certain conditions of a given
plot or stand will tend to make the estimates always deviate in a certain direction from the true value.
Such conditions could be that a plot is located in steep terrain or that it has an unusual stand structure.
Focusing on a specific plot (or stand), such systematic deviations cause biased estimates. However,
in applications it will not be known for which plots the estimates tend to be systematically too high
or too low, and a reasonable model assumption is that the deviation, based on a certain type of RS
data, is composed of two terms: a random effect which remains the same over a certain period of time
(due to plot conditions), and a random term which is independent of the other random effect and
between subsequent acquisitions (i.e., white noise due to variable RS data acquisition conditions).

Many standard applications of CE and DA assume that the estimates (or observations) are
independent. When this is not the case, more advanced methods should preferably be applied but this
issue is, sometimes, not fully acknowledged, not even in meteorology where DA has been applied for
several decades, e.g., [11], where it is pointed out that treating observations as independent when they
are not might lead to substantial loss of DA efficiency.

Although the literature about RS-based assessment of forest characteristics is vast, e.g., [10,12–14],
no studies appear to be available where error correlations between subsequent estimates are assessed.
For ocular stand level inventories, a study of correlated measurement errors was reported by [15].

The objective of this study was to estimate the correlation of plot level deviations between
estimated and ground truth values, for estimates of forest attributes from different datasets using
the same type of RS sensor as well as across estimates using different sensors. The RS data types
evaluated were multispectral data from the SPOT-5 satellite, 3D data from airborne laser scanning
(ALS), and TerraSAR-X add-on for Digital Elevation Measurement Interferometric Synthetic Aperture
Radar (TanDEM-X InSAR) radar data. The forest attributes studied were growing stock volume, basal
area weighted mean height (also known as Lorey’s height), and basal area weighted mean diameter.
All data were acquired from the Remningstorp test site in southern Sweden. Further, we demonstrate
the implication for CE of assuming estimates to be independent in case they are not and we discuss
similar implications in DA applications.

As a matter of terminology, we acknowledge the difference between predicting a random variable
(e.g., when a regression model is used for predicting an unknown random quantity) and estimating a
fixed parameter. However, in order to simplify the text, and since the convention to separate between
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prediction and estimation seems not to be generally adopted, we have chosen to use the term estimation
for both cases [16].

2. Materials and Methods

2.1. Study Area

The study was conducted at the Remningstorp test site in south-western Sweden (Lat. 58◦30′N,
Long. 13◦40′E) (Figure 1). The study area is relatively flat and dominated by Norway spruce (Picea abies)
and Scots pine (Pinus sylvestris). For several years, the Remningstorp site has been used for studies of
the performance of various types of RS data for forest inventories. Thus, several datasets with RS and
field data were available for this study.

Figure 1. Overview of the Remningstorp test site in southern Sweden. The location of the 10 m radius
sample plots which were used in the study are marked with black triangles.

2.2. Field Data

Field reference data were acquired at two time-points, during the summers 2010 and 2014. Sample
plots with 10 m radius were allocated in a systematic grid across the study area (Figure 1). At both
surveys, the diameter of all trees larger than 4 cm at breast height was measured and the species
recorded. For a sample of the trees on each plot, additional measurements of height and age were
made. Based on these registrations the basal area weighted mean height (Lorey’s height) for a plot
was calculated as a weighted average using tree basal area as the weight. The volume of each tree
was estimated using the models developed by [17]. The tree level volumes were aggregated and
recomputed to correspond to growing stock volume per hectare. The basal area mean diameter was
computed for each plot as a standard weighted (by tree basal area) average.
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In this study, only plots where no management or other disturbances had occurred during the
time period of interest, i.e., between 2010 and 2014, were used. Plots where disturbances due to,
e.g., storm or management activities had occurred were identified by comparing the plot level basal
area in 2014 with that in 2010. If a decrease was observed the plot was considered disturbed and was
discarded from the analysis. Further, plots where the basal area weighted mean age was lower than
20 years in 2014 were excluded since our focus was on middle-aged and old forests. Due to these
criteria, 117 of the original 211 plots were left for the analysis (Figure 1).

For each source of RS data and time point of acquisition (see the next section), field data were
either forecasted or back-casted a short period of time using linear interpolation, to match the time
point of the RS acquisition. Any minor errors caused by the fore- or back-casing were ignored.

Regression analysis, e.g., [18], was applied at the level of sample plots to estimate models
with growing stock volume, mean diameter, and mean height as response variables (from field
measurements) using RS data as predictor variables.

In Table 1 we present statistics based on the field data collected in 2010 and 2014.

Table 1. Field data statistics for the variables of interest (based on 117 field plots).

Year
Mean Diameter (cm) Mean Height (m) Volume (m3 ha−1)

min mean max sd min mean max sd min mean max sd

2010 8.00 25.15 50.10 8.46 6.30 18.67 27.60 4.67 16.40 218.60 667.1 127.05
2014 9.30 27.60 55.50 8.58 7.10 19.99 28.00 4.57 23.30 270.70 803.90 143.88

2.3. Remote Sensing Data

Estimates of forest characteristics based on three different kinds of RS data were evaluated in the
study. These were ALS data, e.g., [10], TanDEM-X InSAR satellite data, e.g., [19], and multispectral
data from the Satellite Pour l’Observation de la Terre 5 High Resolution Geometric (SPOT-5 HRG)
sensor, e.g., [20] (Table 2). The RS data were aggregated or resampled to spatial units corresponding to
field plots.

2.3.1. ALS Data

Laser scanning data were acquired in 2010, 2011 and 2014. The 2010 data were acquired using a
TopEye MK III scanner with wavelength 1550 nm and flown by a helicopter at 400 m.a.g.l. The scan
angle was up to 30 degrees and the resulting point density 15 points per m2.

The 2011 data were taken from the national laser scanning campaign [21], acquired during leaf off
conditions using a Leica ALS60/23 scanner with wavelength 1064 nm and flown at 1700–2300 m.a.g.l.
The scan angle was up to 20 degrees and the resulting point density 0.5–1 points per m2.

The 2014 data were acquired using a Riegl LMS Q680i scanner with wavelength 1550 nm and
flown by a helicopter at approximately 300 m.a.g.l. The scan angle was up to 30 degrees and the
average point density 30 points per m2.

First returns were used for the digital surface model (DSM) and last returns for the digital
elevation model (DEM). The DEM was used to extract the point cloud of returns corresponding to
the vegetation, i.e., the digital vegetation model (DVM). An upper threshold of 35 m height was used
for the DVM [13]; the lower threshold was 2 m. To compensate for uneven point densities in the
different datasets the point cloud was thinned by placing a regular grid with 0.5 by 0.5 m spacing
and randomly selecting (maximum) one point within each grid cell to be retained in the DVM. In this
study, an area-based estimation approach [10] was used. Points in the DVM within 10 m from the
center-coordinate of each plot were extracted and twenty-six ALS metrics were calculated:

• maximum height
• minimum height
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• mean height
• standard deviation
• variance
• coefficient of variation
• skewness
• kurtosis (a measure of whether the data are peaked or flat relative to a normal distribution)
• 15 different “height percentiles”, i.e., heights at different percentiles of the DVM
• canopy relief ratio
• percentage of first returns above 2 m as a crown cover estimate

2.3.2. Multispectral SPOT-5 HRG Data

The SPOT-5 HRG multispectral data were acquired at three time-points between 2010 and 2013.
Values of four different bands were available: Band 1 which is the green spectral band, Band 2 which
is the red spectral band, Band 3 which is the near infrared (NIR) spectral band, and Band 4 which
is the short-wave IR spectral band. The spectral reflectance values from all four bands were used as
predictor variables in regression modelling of forest attributes as dependent variables. Bands 1–3 have
a 10 × 10 m ground sampling distance (GSD), whereas Band 4 has a 20 × 20 m GSD. The weighted
mean value function was used to extract spatially interpolated band values for each field plot using
the R packages “rgdal” [22] and “raster” [23].

2.3.3. TanDEM-X Data

TanDEM-X InSAR data were selected from three acquisitions between 2011 and 2014, all acquired
in stripmap mode. SAR data can be acquired frequently, since they are not dependent on cloud free
conditions. The interferometric scattering height (ISH) and the coherence magnitude (COH) were
derived using a traditional interferometric processing scheme of the TanDEM-X pairs, as described
in [24]. Generated rasters had a 5 × 5 m GSD. The ISH was normalized with a digital elevation model
obtained from ALS. Both the normalized ISH and COH have been shown to have a strong correlation
with forest attributes in previous studies [7,24,25], and thus both these characteristics were extracted
for the field plots with the same procedure as for the SPOT-data.

A summary of the RS data used in the study is given in Table 2.

Table 2. A summary of the remote sensing (RS) data acquisitions used in the study. ALS: airborne
laser scanning.

Year/RS Data Type ALS SPOT-5 HRG TanDEM-X

2010 29 August 4 June −
2011 4 April 6 June 4 June
2012 − − 1 June
2013 − 17 July −
2014 14 September − 8 June

2.4. Methodology

In this section we present the methodological approach of the study. Figure 2 presents an overview.
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Figure 2. A flowchart overview of the methods applied in the study.

2.4.1. Regression Analysis

Four different regression model forms were investigated for every RS data type: a linear model,
denoted “LINEAR”; a model where both the response variable and the predictor variables were
transformed by taking natural logarithms, denoted ‘LOG–LOG’ [18]; a model where only the response
variable was transformed by the natural logarithm, denoted ‘SEMILOG’ [18]; and a model where the
response variable was transformed by the square root, denoted ‘SQRT’. In selecting the most appropriate
model for each RS data type and model form, a forward selection stepwise procedure, cf. [18], in the
R package “stats” [26] was applied, using the Akaike information criterion, e.g., [18], for selecting the
appropriate number of predictor variables to include in the models. Subsequently, to choose between
the four different model forms, residual scatterplots were examined for heteroscedasticity and in case
of severe heteroscedasticity (assessed by ocular inspection) the model was abandoned. Remaining
models were inspected for outliers and trends in the residuals versus the predictor variables; no such
trends were found and no outliers were removed (although the residuals of several observations
exceeded two standard deviations). Finally, transformed response variables were back-transformed and
corrected for back-transformation bias by multiplication with a factor calculated as the sum of observed
values over the sum of back-transformed (non-corrected) estimated values [27], and the model with
the smallest root mean square residual error, based on back-transformed values, was selected. Due to
the transformations of the response variable, the coefficient of determination (R-squared) was not an
appropriate measure for selecting the best model. Table 3 presents the selected model forms for each RS
data type and each variable of interest. Examples of residual scatterplots (after back-transformation) are
shown in Appendix A. Note that all the models provide estimates in “real space”, since in the case of
transformations back-transformations were made before the models were applied.

Table 3. Regression model forms used in this study.

Variable of Interest ALS SPOT-5 HRG TanDEM-X

Mean diameter (cm) LOG-LOG LINEAR LINEAR
Mean height (m) SEMILOG LINEAR LINEAR

Volume (m3 ha−1) LOG-LOG SEMILOG SEMILOG

The relative root mean-square errors (RMSEs) in relation to observed values for each RS type of
data and variable of interest are given in Table 4, for the regression models with best fit. The relative

RMSE is defined as 100%×
√

1
n ∑n

i=1 (yi−ŷi)
2

y , with y = 1
n ∑n

i=1 yi, where yi is the observed value at the
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ith plot, ŷi is the corresponding predicted value and n is the number of field plots. In Appendix B,
the results for all model types are shown.

Table 4. Relative RMSE (%) for the selected regression models.

Year
Mean Diameter Mean Height Volume

ALS SPOT-5 HRG TanDEM-X ALS SPOT-5 HRG TanDEM-X ALS SPOT-5 HRG TanDEM-X

2010 16.67 29.94 − 7.10 20.58 − 27.03 47.10 −
2011 16.90 25.41 24.27 6.39 17.35 13.67 18.82 43.60 39.60
2012 − − 24.31 − − 13.97 − − 44.64
2013 − 26.99 − − 19.07 − − 45.90 −
2014 15.53 − 23.68 4.43 − 14.20 23.62 − 41.95

It can be observed that the ALS-based models are most precise, and that the estimates based
on TanDEM-X are slightly more precise than the estimates based on SPOT data. These findings are
consistent with the results of previous studies, e.g., [12,28–30].

2.4.2. Correlation between Residuals

As described in the introduction, we assume that the residual deviations from the regression
models consist of two components: one random plot effect due to the specific conditions on a plot and
one component of white noise, due to variable conditions for the RS acquisitions. The properties of
both random components are specific to each source of RS data.

The correlations of residuals, obtained through regression analysis at each acquisition type and
time, is the focus of this study. The assumed model, used for description but not for calculating the
correlations, is

ŷsit = yit + bsi + δsit, (1)

which can be easily obtained from ŷsit − yit = bsi + δsit, where ŷsit is the regression analysis-based
estimate of a forest characteristic using RS data type s on plot i at time point t, yit is the corresponding
value obtained from field measurements, bsi is the plot random effect, specific to RS data type s, and δsit
is white noise. The expected values of b and δ are zero and their variances depend on the type of RS
sensor used and the general plot and RS acquisition conditions. Thus, the residual error, rsit is

rsit = bsi + δsit, (2)

with this model assumption, the b-term will make the residuals correlated across time on a given
plot (assuming the time period is reasonably short, so that the general plot conditions do not change).
The correlation between the residuals from two subsequent estimates for a given plot with the same
RS data type will be (assuming var(δ) is constant):

corr(rsi1, rsi2) =
cov( rsi1, rsi2 )√

var(rsi1) var(rsi2)
=

var(bsi)

var(bsi) + var(δsi)
. (3)

To estimate the correlations in Equation (3), pairs of plot level residuals across the 117 plots in
Remningstorp were selected. Assuming the variances of the random effects being constant across the
different plots, which was supported by fairly homogeneous (back-transformed) residual variances,
the correlations were estimated according to the standard formula

ĉorr(r̂s1, r̂s2) =
ĉov(r̂s1, r̂s2)√

v̂ar(r̂s1) v̂ar(r̂s2)
. (4)

Here, caps indicate that the quantities were estimated following the regression analysis; e.g., r̂s1 is
the notation for residuals obtained from the regression analysis based on data at time point 1 from the
RS data type s. Since three pairs of data were available for a given RS data type and nine pairs for a
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given combination of two RS data types, the average correlation across all pairs was computed using
average covariances and variances in Equation (4) across all three or nine pairs.

Average correlations obtained in this way is the main result of this study. Correlations for all pairs
are presented in Appendix C.

2.4.3. Demonstrating the Effect of Correlated Residuals on CE

As pointed out by [11], for meteorological applications, ignoring that measurements (or estimates)
are correlated reduces the precision of estimates in DA. Similarly, ignoring that estimates are correlated
reduces the potential gains in precision from using CE. In the following we demonstrate the effects of
correlated residuals in CE, assumed to be carried out at plot level using several sources of RS data.

The basics of CE are outlined below, in Equations (5)–(7). Denoting two individual estimates by
ŷ1 and ŷ2, the composite estimator is a weighted average, ŷCE, i.e.,

ŷCE = aŷ1 + (1− a)ŷ2. (5)

The weight, a, is chosen so that the variance of ŷCE is minimized. The variance is

var(ŷCE) = a2var(ŷ1) + (1− a)2var(ŷ2) + 2a(1− a)cov(ŷ1, ŷ2). (6)

The variance minimization can be conducted using standard optimization techniques, leading to
the weight

a =
var (ŷ2)− cov (ŷ1, ŷ2)

var (ŷ1) + var (ŷ2)− 2cov (ŷ1, ŷ2)
. (7)

This result is often referred to as weighting inversely proportional to the variance, in case
covariances are ignored. Composite estimators can be straightforwardly developed for cases with
more than two individual estimates. In the general case the weights should be selected as

w =
1

1T
nC−11n

× C−11n. (8)

Here, w is the vector of weights for the n individual estimates, C−1 is the inverse of an n × n
covariance matrix for the estimators involved, and 1n is an n-length vector of unit values.

When many estimates are available for a CE, the most straightforward approach is to apply
Equation (8) to obtain all the weights simultaneously. However, an alternative approach is to apply
Equations (5)–(7) repeatedly. In this case a first CE is formed from the first two individual estimates,
which is then combined with a third individual estimate, etc. Interestingly, this approach to forming a
CE resembles DA (using the Kalman filter) for the case where the forecasting step is either non-existing
or concerns very short time intervals, so that it can be assumed that the true state remains unchanged.

In the demonstration examples below we have formed CEs in the sequential way in order to show
consequences of ignoring correlated residuals and shed light on effects of such simplification in CE
and DA applications. The examples are based on assumed correlations which were selected to roughly
correspond to the findings in this study. The results are shown in relative terms so that the magnitude
of the standard deviation of the residuals is not important for the interpretation of the results.

We demonstrate the consequences of ignoring correlated residuals for the following three cases,
denoted A, B and C:

A. In a series of 10 RS-based estimates within a short period of time we show the consequences in
terms of estimated and true standard deviation of the CE, and the weight assigned to each new
estimate, when the same RS data type was used for all 10 estimates assuming:

1. uncorrelated estimates
2. a correlation of 0.4 between the residuals
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3. a correlation of 0.8 between the residuals

B. In a series of 10 equally precise estimates the first five were obtained using one type of RS
data and the last five another type of RS data. We demonstrate the consequences in terms of
standard deviation of the CE using weights that either take residual error correlations into
account, or assume uncorrelated residuals. We do this for two sub-cases:

1. the error correlation across estimates using the same type of RS data is 0.9 for the first
5 estimates and 0.4 for the last 5 estimates; the correlation of residuals across RS data types
was assumed to be 0.2

2. the error correlations for both types of RS data were assumed to be 0.6, and the correlation
across RS data types 0.2

Case B could occur if a certain type of RS data can only be acquired under certain weather
conditions (such as optical satellite data), whereas other sensors do not have such limitations
(such as radar data).

C. After a series of 10 estimates obtained from the same RS data type, an 11th estimate, independent
of the first ten, is obtained. Consequences in terms of estimated and true relative standard
deviation of the CE after the 11th observation, and the weight assigned to the 11th estimate,
are shown, for the cases of accounting for residual error correlations and ignoring them.
We assume that the correlation of residuals for the first ten estimates is 0.8 and that the 11th
estimate is uncorrelated with the previous estimates and has:

1. 50% standard deviation (compared to of each of the first ten estimates)
2. 100% standard deviation
3. 200% standard deviation

In the computations, we recursively applied Equations (5)–(7) over the series of 10 estimates. After
each new estimate, we calculated the variance of the CE, applying Equation (6) with the weight obtained
from Equation (7), and used it as the variance of the CE entering the next step. To do this the covariance
between the CE and a new estimate must be known. From Equations (1)–(3) it is noted that the correlation
between residuals is due to the random plot level effect that remains the same across estimates. In Case
A and Case C (up to the 10th estimate) each CE will contain exactly one bsi-component since they are
weighted averages of two estimates, each of which contains exactly one bsi-component. Thus, for these
cases the covariance was obtained by multiplying the correlation with the variance of the residuals for
the given RS data type. Case B is slightly more complicated and in this case there is a need to recursively
keep track of what proportion of the CE stems from estimates using the two different RS data types
involved. In this case, the covariance will include a component which is due to within-RS data type
correlation and another component which is due to across RS data type correlation.

3. Results

3.1. Correlations between and within RS Data Types

The averages correlations of residuals within and between RS data types are given in Table 5
(for mean diameter), Table 6 (mean height), and Table 7 (volume per hectare).

Table 5. Average correlation for the residuals of mean diameter.

RS Data Type ALS SPOT-5 HRG TanDEM-X

ALS 0.86 − −
SPOT-5 HRG 0.53 0.89 −
TanDEM-X 0.63 0.68 0.84
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Table 6. Average correlation for the residuals of mean height.

RS Data Type ALS SPOT-5 HRG TanDEM-X

ALS 0.54 − −
SPOT-5 HRG 0.21 0.84 −
TanDEM-X 0.31 0.43 0.63

Table 7. Average correlation for the residuals of volume per hectare.

RS Data Type ALS SPOT-5 HRG TanDEM-X

ALS 0.75 − −
SPOT-5 HRG 0.49 0.91 −
TanDEM-X 0.59 0.59 0.78

It can be noted that all correlations are positive and rather strong. The within-RS sensor
correlations are mostly stronger than the across-RS data type correlations. Further, the residuals
for growing stock volume and mean diameter have stronger correlations than the residuals for mean
height. In Appendix C, the correlations between all pairs of data are shown.

3.2. Demonstrating the Effects of Correlated Residuals

For the calculations, we used the R function datassim() available in the R package “DatAssim” [31].
The package is based on a C++ library for linear algebra developed by [32]. The R function datassim()
provides estimates based on Equations (5)–(7).

In Figure 3, the effect of correlated residuals for Case A are shown.

Figure 3. Demonstration of Case A in terms of relative standard deviation of a composite estimation
(CE), making use of 1–10 estimates sequentially assuming different residual error correlations.
The weights are the same for all subcases, and shown as red triangles; the values of the weights
are scaled by a factor of 100.
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Figure 3 demonstrates the rather dramatic decreased precision of CE at moderate to strong
residual error correlation compared to the case of uncorrelated estimates. With uncorrelated estimates,
the relative standard deviation after ten sequential CE steps is only 32% of the standard deviation of
an individual estimate. With an error correlation of 0.4 the relative standard deviation increases to 68%
and with a correlation of 0.8 it increases to 91%, which is a rather modest improvement.

However, in this case, where the same type of RS data is assumed to be used repeatedly,
the weights allocated to new predictions are the same regardless of whether correlations are accounted
for or not in the calculation of weights. This follows from Equation (7). Also, each observation impacts
on the final CE with the weight 0.1 once 10 estimates have been included, which can be observed if the
weights are calculated according to Equation (8).

Figure 4 demonstrates Case B, where two different RS data types are applied to obtain a series of
10 estimates. They are used in a block of five estimates with the first RS data type followed by a block
of five estimates with the second RS data type.

Figure 4. Demonstration of Case B in terms of true relative standard deviation on the left side panels
(a) and (c), and corresponding weights on the right side panels (b) and (d); for subcase (1) where five
estimates with error correlation 0.9 are followed by five estimates with error correlation 0.4 ((a) and (b));
and subcase (2) where five estimates with error correlation 0.6 is followed by five estimates with the
same error correlation 0.6 ((c) and (d)).
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From Figure 4 it can be seen that the weights differ quite substantially between considering and
ignoring correlations in the calculation, but although this is the case the standard deviations of the
CE do not vary very much (note that all standard deviations in Figure 4 are estimated correctly,
i.e., acknowledging the correlated errors, but the weights are computed in two different ways,
i.e., accounting for or ignoring residual error correlation).

In testing other subcases (not presented here), similar results were obtained. Thus, although
the weights may vary when correlations are correctly considered, the corresponding (true) standard
deviations typically do not increase very much if the weights are calculated without considering
the correlations.

In Table 8, results from Case C are presented, where 10 estimates from a given RS data type
are followed by an 11th, independent, estimate. In forestry, this could be that 10 RS-based estimates
precede a field-based survey.

Table 8. Weight allocated to an 11th independent estimate following 10 correlated (0.8) estimates.
In the second and third columns the weights account for correlated errors; in the last two columns
error correlations are ignored. “Double” precision of the 11th estimate means 50% standard deviation
compared to each of the 10 previous, “same” precision means 100% standard deviation, and “half”
means 200%.

Precision
Weight Computed

Accounting for
Correlations

Standard dev. (%)
Weight Computed

without Accounting
for Correlations

Standard dev. (%)

Double 0.77 43.8 0.29 65.9
Same 0.45 67.1 0.09 82.6
Half 0.17 82.5 0.02 88.4

From Table 8 it can be observed that residual error correlations in this case have a severely negative
effect on how an independent 11th estimate is taken into account in a combined estimator. In all three
subcases severely erroneous weights were obtained and, contrary to case B, the erroneous weights also
had a severely negative effect on the precision of the CE (after including the 11th estimate).

4. Discussion

The correlations between residuals of RS-based estimates of forest attributes were found to be
strong in the Remningstorp study area. Further studies are needed to show if this is the case in other
areas as well, but as will be further discussed below, several factors linked to how RS-based estimates
are derived make it plausible that similar results would be obtained also in other areas. Thus, CEs using
RS-data-based estimates of growing stock volume, mean diameter, and mean height (i.e., the attributes
evaluated in this study) ideally should consider that the estimates are correlated or otherwise the results
will be less precise and misleading in terms of reported variances (and thus confidence intervals) of
the CEs. However, it should be pointed out that in most cases only minor gains in precision would
be obtained through correctly considering residual error correlations in determining the weights of
the individual estimates in CE. Perhaps more importantly, considering correlations makes estimated
variances of CEs realistic, whereas CE variances otherwise might be severely underestimated.

In the methods section of the article, it was pointed out that there are many similarities between a
CE obtained in a sequential manner, as in this study, and data assimilation using standard Kalman
filter approaches [9]. Since the standard Kalman filter assumes uncorrelated estimates most of the
conclusions from this study, with regard to CE, would hold for DA as well, although the forecasting
step of DA makes direct comparison difficult.

When different types of estimators are mixed in a CE (cases B and C), it was demonstrated that the
differences between the estimators, in terms of residual error correlation, must be substantial before the
benefit of handling correlations in the computation of weights becomes evident. When the differences,
in terms of standard deviation and error correlation, between different RS-data-based estimates were
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small to moderate (case B) it was found that using slightly incorrect weights did not affect the (true)
standard deviation of CE very much. However, with substantial differences between methods (case C)
correct handling of error correlations appears to be important. In this case a precise estimate was
obtained after a series of correlated, less precise, estimates. The correct solution assigned high weight
to the last estimate, and as a result the standard error of the CE was substantially reduced. Ignoring
residual error correlation led to a CE with poor, and overestimated, precision.

Strong error correlation might be part of the reason why the empirical studies by [6,7] showed
that DA was only slightly better than consistently using only the last RS-data-based estimate. The RS
data used in these cases were point clouds from digital aerial photos and TanDEM-X InSAR data,
respectively. The first type of data was not evaluated in this study, whereas the latter was found to
lead to estimates with substantial error correlations.

Error correlation causes problems also in non-forestry applications of DA, but it appears that it is
only rather recently that the topic has been highlighted [11]. In that study, in the context of meteorology,
correlated errors obtained from RS data were found to lead to similar problems as the ones identified
in this study. In our study all RS data types resulted in moderate to strong error correlations between
the regression residuals, across acquisitions using the same sensor. The correlations across RS data
types were weaker and this suggests that efficient CE procedures might incorporate estimates from
different RS data types, provided the differences in precision are not substantial. However, in doing
so the problem observed by [33] must be avoided, i.e., that estimates and estimated variances can
be correlated thus causing CEs of the kind applied in this study to be biased. Further, in general the
correlations were weaker for height than for volume and diameter, which suggests that CE would work
better for this attribute. However, this study was conducted at the level of single plots but in practical
forestry estimating attributes at the level of stands is typically more important. Thus, an important
continuation of the current study would be to investigate if the plot level effects remain the same
within entire stands or if they vary between plots in stands. In the latter case, the potential problems
observed in this study would be less severe.

The reasons for the correlated residuals might be several. In general, plots that give a certain
response in terms of RS data from a specific sensor still are variable with regard to the target
characteristic. For example, plots with the same growing stock volume may have either dense or
sparse canopy cover, or they may be located in either steep or flat terrain, leading to different registered
reflectance values in a satellite image. This underlies the well-known effect in regression analysis that
the estimates “tend towards the mean”, i.e., that the highest true values tends to be underestimated
and the lowest true values overestimated.

5. Conclusions

The main conclusion of this study is that it is important to consider regression error correlation
between RS-based estimates in composite estimation. Ignoring the correlations might lead
to less precise CEs with substantially underestimated variances and, hence, non-trustworthy
confidence intervals.
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Appendix A. Estimated Values versus Residuals for All Variables of Interest and RS Data Types

Figure A1. Estimated values versus residuals for estimated mean diameter using (a) ALS data fitted to
“LOG-LOG” regression model, the residuals are calculated after back-transformation and corrected
for bias; (b) SPOT-5 HRG data fitted to “LINEAR” regression model; (c) TanDEM-X data fitted to
“LINEAR” regression model.
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Figure A2. Estimated values versus residuals for estimated mean height using (a) ALS data fitted to
“SEMILOG” regression model, the residuals are calculated after back-transformation and corrected
for bias; (b) SPOT-5 HRG data fitted to “LINEAR” regression model; (c) TanDEM-X data fitted to
“LINEAR” regression model.
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Figure A3. Estimated values versus residuals for estimated growing stock volume per hectare using
(a) ALS data fitted to “LOG-LOG” regression models; (b) SPOT-5 HRG data fitted to “SEMILOG”
regression model; (c) TanDEM-X data fitted to “SEMILOG” regression model. In all model residuals
are calculated after back-transformation and corrected for bias.

Appendix B. Relative RMSE values for Regression Models Fitted Using Different RS Data Types

Table B1. Relative RMSE (%) values for mean diameter. Results for models based on ALS- and
SPOT-5-based RS data are given for data collected in 2010 and results for TanDEM-X data are calculated
using data from 2011.

Model Form ALS SPOT-5 HRG TanDEM-X

LINEAR 17.14 29.94 24.27
SQRT 17.28 30.09 24.85

SEMILOG 17.50 30.37 26.05
LOG-LOG 16.67 30.63 27.71
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Table B2. Relative RMSE (%) values for the mean height variable of interest. Results for models based
on ALS- and SPOT-5-based RS data are given for data collected in 2010 and results for TanDEM-X data
are calculated using data from 2011.

Model Form ALS SPOT-5 HRG TanDEM-X

LINEAR 7.35 20.58 13.67
SQRT 7.20 20.59 14.07

SEMILOG 7.10 20.67 14.87
LOG-LOG 7.25 20.87 15.87

Table B3. Relative RMSE (%) values for the volume per hectare variable of interest. Results for models
based on ALS- and SPOT-5-based RS data are given for data collected in 2010 and results for TanDEM-X
data are calculated using data from 2011.

Model Form ALS SPOT-5 HRG TanDEM-X

LINEAR 30.72 48.05 40.79
SQRT 28.32 47.42 39.83

SEMILOG 27.37 47.10 39.60
LOG-LOG 27.03 47.31 41.40

Appendix C. Correlations between and within Different RS Data Types

Table C1. Residual correlations between and within three different RS data types in estimating
mean diameter.

RS Data Type
ALS SPOT-5 HRG TanDEM-X

Year 2010 2011 2014 2010 2011 2013 2011 2012 2014

ALS
2010 1 − − − − − − − −
2011 0.88 1 − − − − − − −
2014 0.86 0.84 1 − − − − − −

SPOT-5 HRG
2010 0.53 0.57 0.51 1 − − − − −
2011 0.54 0.57 0.50 0.89 1 − − − −
2013 0.52 0.56 0.51 0.92 0.87 1 − − −

TanDEM-X
2011 0.67 0.69 0.68 0.71 0.61 0.69 1 − −
2012 0.63 0.61 0.60 0.69 0.64 0.68 0.86 1 −
2014 0.58 0.61 0.58 0.69 0.62 0.73 0.83 0.84 1

Table C2. Residual correlations between and within three different RS data types in estimating
mean height.

RS Data Type
ALS SPOT-5 HRG TanDEM-X

Year 2010 2011 2014 2010 2011 2013 2011 2012 2014

ALS
2010 1 − − − − − − − −
2011 0.66 1 − − − − − − −
2014 0.49 0.44 1 − − − − − −

SPOT-5 HRG
2010 0.23 0.32 0.15 1 − − − − −
2011 0.19 0.31 0.13 0.88 1 − − − −
2013 0.10 0.24 0.19 0.86 0.79 1 − − −

TanDEM-X
2011 0.47 0.40 0.21 0.49 0.46 0.40 1 − −
2012 0.40 0.39 0.22 049 0.39 0.39 0.72 1 −
2014 0.29 0.23 0.21 0.42 0.33 0.49 0.56 0.61 1
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Table C3. Residual correlations between and within three different RS data types in estimating volume
per hectare.

RS Data Type
ALS SPOT-5 HRG TanDEM-X

Year 2010 2011 2014 2010 2011 2013 2011 2012 2014

ALS
2010 1 − − − − − − − −
2011 0.72 1 − − − − − − −
2014 0.88 0.69 1 − − − − − −

SPOT-5 HRG
2010 0.50 0.61 0.53 1 − − − − −
2011 0.47 0.56 0.52 0.95 1 − − − −
2013 0.42 0.53 0.45 0.91 0.87 1 − − −

TanDEM-X
2011 0.65 0.59 0.67 0.59 0.61 0.57 1 − −
2012 0.61 0.61 0.61 0.56 0.55 0.56 0.79 1 −
2014 0.54 0.55 0.59 0.59 0.61 0.66 0.77 0.79 1
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