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Little strokes fell great oaks. small RNA in potato and 
Phytophthora infestans interactions 

Abstract 
Small RNAs (sRNAs) are non-coding RNAs of approximately 20-30 nucleotides in length. sRNAs bind 

to Argonaute proteins (AGOs) an integrated partner of the RISC complex. sRNAs act as templates for 

RISC to recognize complementary mRNA transcripts which can be cleaved by AGOs and thereby cause 

gene inactivity. In this study, 14 AGOs were discovered in potato. Phylogenetic analysis separated AGOs 

from Solanaceae and Brassicaceae families into three different clades, identifying AGO15 as 

Solanaceae-specific located in an evolutionary early branch in the AGO4 clade.  

In previous work, PiAgo1 was categorized to associate with 20-22 nucleotide sRNA. In this study, 

potato was infected by a pHAM34:PiAgo1-GFP strain, followed by co-immunoprecipitation and sRNA 

sequencing. We found that the proportion of 5’U sRNA increased mostly among the nucleotides during 

infection. Based on sRNA target predictions mRNAs for resistance proteins were the dominating class. 

A potato alpha/beta hydrolase-type encoding gene (StABH1) was predicted to be cleavage by the single 

microRNA of Phytophthora infestans (miR8788). Cleavage was confirmed by 5’ RACE and transient 

transcription Dual-LUC assays. Transgenic StABH1 knockout potato lines were significant more 

diseased, demonstrating the importance of StABH1 in the defence to P. infestans. 

To further investigate infection-induced sRNA events in the potato and P. infestan system, 

degradome sequencing was performed resulting in more than 30,000 targets, highlighting the need of an 

improved analytic strategy. Hence, the R package smartPARE was created with functionality to 

distinguish between true and the false cleavages. smartPARE was based on a deep learning convolutional 

neural network applying cyclical learning rate and Bayesian optimisation. smartPARE generated a cross-

validated accuracy of 100% and identified 4,073 cleavages in potato and 702 in P. infestans. Several 

cascade events were seen either induced by Pi-sRNAs or St-sRNAs. In conclusion, by applying 

smartPARE to our 10 datasets, a more complex interaction than earlier demonstrated between the two 

organisms were found.  An observation calling for further detailed analysis of precursor and target sites. 
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Liten tuva stjälper ofta stort lass. små RNA i interaktionen 
mellan potatis och Phytophthora infestans  

Sammanfattning 
små RNA är 20-30 nukleotider långa och är betydelsefulla då de reglerar geners uttryck. Dubbelsträngat 

RNA binder till Dicer proteinet som klyver RNAt till de korta längderna. I proteinkomplexet RISC 

associeras den ena RNA-strängen med komplementärt mRNA som bryts ner, det vill säga genen uttrycks 

inte. Argonauten (AGO) är integrerad i RISC och är ett av de aktiva proteinerna vid klyvningen av 

mRNAt. I denna studie påträffades 14 AGOs hos potatis (Solanum tuberosum, St). Fylogenetisk analys 

separerade AGOs från familjerna Solanaceae och Brassicacea i tre olika grupper. AGO15 kunde endast 

identifieras i Solanaceae och påvisades att tidigt i evolutionen ha förgrenats från AGO4-gruppen. Vi har 

utnyttjat en pHAM34:PiAgo1-GFP stam vid infektion av potatis och påföljande sRNA sekvensering för 

att närmare studera sRNA-processerna i Phytophthora infestans (Pi) såväl som i värdväxten potatis.  

Bland resultaten kan nämnas att andelen 5’U sRNA ökade mest jämfört med de andra nukleotiderna under 

infektion. P. infestans har bara ett mikroRNA - miR8788. Bioinformatisk analys föreslog klyvningar i 

flera möjliga mRNA under infektion. Ett membranprotein i potatis (StABH1) visades klyvas via en rad 

experimentella analyser. Ytterligare undersökningar gjordes av StABH1 som visade att genen är viktig 

för försvaret mot P. infestans. För att ytterligare identifiera infektionsinducerade målsekvenser hos potatis 

och P. infestans utfördes en degradomsekvensering. Degradomsekvenseringen pekade ut fler än 30 000 

möjliga klyvningar men visualisering av rådata påvisade att flertalet målsökningar var felaktiga. Således 

konstruerades smartPARE, ett R-paket med funktion att skilja på sanna och falska klyvningar. 

smartPARE baserades på en modell framtagen genom djupinlärning med konvolutionella neurala nätverk. 

För att ytterligare förbättra modellen tillämpades metoderna cykliskt inlärande och Bayesiansk 

optimering.  smartPARE resulterade i en exakthet hos korsvaliderat data på 100%. Analys av de ca 30 

000 möjliga klyvningarna identifierade 4073 sanna klyvningar i potatis samt 702 i P. infestans. Ett flertal 

sRNA från P. infestans visade sig målsöka mRNA i potatis. Några av dessa sRNA härstammade från 

effektorgener i P. infestans, vilket ger effektorerna en möjlig dubbelfunktion, det vill säga, de kan påverka 

potatis både som protein och sRNA.   

   

Nyckelord: Argonaut, Degradom, mikroRNA, små RNA, Phytophthora infestans, Solanum tuberosum  
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To my family – The root to my life, my crutch to lean on and the flowers on my table 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The creation of a thousand forests is in one acorn. 

 
― Ralph Waldo Emerson 
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Bioinformatics and the study of small RNA (sRNA) are both two relatively young 
fields of research, bioinformatics popularized in the 1990’s (Hogeweg, 2011); the 
same decade small interfering RNAs were discovered (Lee et al., 1993; Fire et al., 
1998). The demand for implementation of bioinformatics to study sRNA interactions 
has increased since the first microRNA (miRNA) expression array (Krichevsky et 
al., 2003; Gusev & Brackett, 2007), to date comprising analyses of the full spectrum 
of sRNAs of biological systems (Li et al., 2020). Arduously, many of the methods 
available (laboratory or bioinformatics) are designed for model organisms and 
demand adaptation to be applied on crops such as potato or on a pathogen like 
Phytophthora infestans (Pi), having gene silencing pathways not yet fully 
characterized (Vetukuri et al., 2011; Amar et al., 2014). 

When predicting the impact of sRNAs in biological systems, one challenge is the 
extensive scope of analyses involved. A bioinformatician needs to know how to 
analyse the origin of the sRNA, sRNA targeting of messenger RNA (mRNA) or 
other transcripts and effect of the sRNA on the transcript level. Furthermore, if the 
targeted transcript is of unknown character, analysis might comprise protein 
prediction studies and phylogenetic analyses in attempts to deduce possible protein 
functions. It is also important to know the genome content of the studied 
organism(s), so that corrections for possible biases from the sequencing or specific 
genomic features, e.g. repetitive sequences, can be accounted for. Furthermore, 
programming might be necessary to combine results from different large-scale 
analyses or to construct software that might take the analysis to the next level.       

The intention of this thesis introduction is to give a brief overview of the areas a 
bioinformatician might encounter while working in the plant-pathogen sRNA field, 
with emphasis on potato-Phytophtora infestans. The introduction is hence written to 
an audience with basic understanding of bioinformatics. The content comprises 
analysis of: i) sRNA-field related sequencing methods ii) protein analytics methods, 
iii) different types of sRNA including development and benchmarking of selected 
software/tools/programs iv) software development v) genome information of potato 
and P. infestans. Due to the wide range of topics discussed, the following text is 

1. Introduction 
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biased towards recent findings from key papers. Many reviews are referred to which 
contain additional information in each research field.  

1.1 Sequencing methods 
Since the discovery of the three-dimensional structure of DNA (Watson & Crick, 
1953), the development of nucleotide sequencing has been progressing, resulting in 
the first whole nucleic acid sequence (Holley et al., 1965) and the development of 
Sanger’s ‘chain-termination’ or dideoxy technique (Sanger et al., 1977), known as 
Sanger sequencing. The second generation of DNA sequencing measuring 
pyrophosphate synthesis was developed during the 1980’s and advanced into the 
first considerable commercial “next-generation sequencing” (NGS) technology 
(Nyrén, 1987; Heather & Chain, 2016), licensed  to 454 Life Sciences. A method of 
sequencing of single DNA molecules attached to microspheres was developed in 
1997 (Voelkerding et al., 2009) and commercialized in 2006 as the Solexa (later 
acquired by Illumina) Genome Analyzer, the first sequencing platform of “short 
reads”. The next year SOLiD, a short-read sequencing technology based on ligation, 
was released. SOLiD is characterized by interrogation of multiple octamer ligations 
(Buermans & den Dunnen, 2014), each octamer significantly improving read 
accuracy.  

Third-generation DNA sequencing comprises real time sequencing of single 
DNA molecules, generating reads ranging up to several kilobases in length 
(Dumschott et al., 2020). Commonly, third-generation sequencing technologies are 
Pacific Biosciences’ (PacBio) single-molecule real-time (SMRT) technology and 
Oxford Nanopore Technologies’ platforms MinION, GridION and PromethION. For 
a more comprehensive description of the history and theory behind the DNA 
sequencing methods, please see articles referred to in Voelkerding et al. (2009), 
Heather & Chain (2016) and Dumschott et al. (2020).       

With the development of new sequencing methods, the tools for their analysis 
have developed, both in numbers and in complexity. In the following chapters, the 
focus will be on the description of the sequencing analysis methods of mRNA, sRNA 
and degradome sequencing, which are important for sRNA analysis and has been 
relevant for this thesis work. 

1.1.1 Quality control and pre-processing of data 
Independent of type of sequencing methods applied, it is important to have high 
quality in-put materials and that the data used for downstream analysis is optimized 
(Chen et al., 2018b). Sequences might contain adapter contamination, base content 
biases, over-represented sequences, library preparation errors and sequencing 
inaccuracies. The quality of FASTQ data can be monitored using FASTQC 
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(Andrews, 2010), offering per-base and per-sequence quality profiling features. 
FASTQC can detect overrepresented sequences, including adapters that can be 
trimmed with an adaptor trimming tool, for instance Cutadapt (Martin, 2011). 
Cutadapt was designed to trim 454 sequencing data and sRNA data, however it also 
perform well on Illumina data. Cutadapt can trim or discard adapter-containing reads 
and discard reads of specified length. Trimmomatic was developed to handle 
Illumina sequence data, with main algorithmic innovations related to adapter 
identification and quality pruning (Bolger et al., 2014). Trimmomatic applies two 
main quality filtering alternatives, sliding window and maximum information 
quality filtering. Moreover, Trimmomatic also perform: 5’ and 3’ end-trimming, 
read cropping, read filtering (dropping a read not meeting user specified criteria) and 
quality score conversion.  

Several other tools are developed to quantify quality control, for instance fastp 
which is estimated to run two to five times faster than Cutadapt or Trimmomatic 
(Chen et al., 2018b). MultiQC was developed to integrate metrics from several 
quality control tools (Ewels et al., 2016), enabling quick identification of global 
trends and biases. Other pre-processing tools compatible with MultiQC are 
available, see the MultiQC documentation page https://multiqc.info/docs/#. 

1.1.2 RNA sequencing analysis 
RNA sequencing (RNAseq) was developed more than 10 years ago (Emrich et al., 
2007; Wang et al., 2009a; Raplee et al., 2019), comprising RNA extraction, 
ribosomal RNA depletion or mRNA enrichment, cDNA synthesis, adaptor ligation 
of sequencing libraries and sequencing (Stark et al., 2019). RNAseq can be applied 
to a wide range of applications, commonly coupled with diverse types of 
biochemical assays (Conesa et al., 2016). Analysis pipelines of the various 
experimental set-up sequencing data might hence vary. Common steps comprise 
design of experiment, quality control, sequence mapping, quantification, data 
visualization, differential gene expression analysis, alternative splicing analysis, 
functional analysis, gene fusion discovery and expression quantitative trait loci 
mapping. In this chapter, I will go through the present steps that have been useful 
for me during work related to sRNA (excluding alternative splicing analysis, gene 
fusion discovery and expression quantitative trait loci mapping from the steps 
mentioned above).  The RNAseq steps are briefly discussed in this chapter (except 
for quality control, which was already discussed in chapter 1.1.1). For a more 
comprehensive summary, please see the review by Conesa et al. (2016) and papers 
referred to in the chapter.  

When designing experiments, it is important to consider library type, sequencing 
depth and number of biological replicates sufficient for achieving the statistical 
power needed for detection of trends in the system of study (Conesa et al., 2016). 
Secondly, the sequencing itself needs to be performed to avoid unnecessary biases, 
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for instance exclusion of ribosomal RNA, generally accounting for more than 90% 
of the total RNA of the cell. 

RNAseq quantification tools comprise two major categories, alignment-based 
and alignment-free (Jin et al., 2017). Alignment-based quantification comprises 
estimation of transcript-abundance based on reads mapping to a specific genome or 
transcriptome. Alignment-free quantification is defined by estimation of transcript 
abundance via pseudo-alignment in k-mer space. Pseudo-alignment is based on the 
de Bruijn Graph (Bray et al., 2016), which is represented by all possible 
combinations of sequences by the defined character or symbol overlaps between 
sequences of symbols (Compeau et al., 2011). A k-mer based method uses k-mer 
features of genome sequences, e.g. positions or frequencies to perform the assembly 
(Han & Cho, 2019). 

 A recent study was performed by Schaarschmidt et al. (2020) comparing the 
performance of the following six aligners from the different assembly categories: 
HISAT2 (Kim et al., 2019), CLC Genomics Workbench 
(https://digitalinsights.qiagen.com), RSEM (Li & Dewey, 2011), kallisto (Bray et 
al., 2016), STAR (Dobin et al., 2013) and Salmon (Patro et al., 2017). The study 
was performed on two polymorphic Arabidopsis accessions, showing highly similar 
results. In another recent study (Corchete et al., 2020), HISAT2 and STAR 
outperformed TopHat2 (Kim et al., 2013), RUM (Grant et al., 2011) and Bowtie2 
(Langmead & Salzberg, 2012) regarding unmapped reads. The gene expression 
quantification level was also compared between the aligners revealing that aligners 
using any of the following methods: raw reads, effective counts, estimated counts or 
coverage normalization, achieved poorest ranks.  

In a study of human disease prediction (Tong et al., 2020), the performance of 
278 different pipelines was studied, featuring 13 sequence mapping methods, three 
methods for quantification and seven normalization methods. The assessment in 
regard to accuracy, precision, and reliability revealed that the higher scoring 
pipelines were more precise in predicting disease outcome. The most important 
pipeline factor for variation in performance was the normalization, where median 
normalization scored best compared to upper quartile (UQ), fragments per million 
mapped fragments (FPM), fragments per kilobase of gene length per million mapped 
fragments (FPKM), trimmed mean of M-values (TMM), relative log expression 
(RLE) and expression index (EIndex) in most combinations of other pipeline factors. 

After read alignment, quantification of expression levels for transcripts of each 
sample is performed (Teng et al., 2016). A benchmarking R/Bioconductor package 
(http://bioconductor.org/packages/rnaseqcomp) was compiled by Teng et al. (2016) 
in an attempt to (unbiasedly) evaluate RNA-seq quantification pipelines free of bias. 
They compared Flux Capacitor (Montgomery et al., 2010), Cufflinks (Trapnell et 
al., 2010), eXpress (Roberts & Pachter, 2013), kallisto, RSEM, Salmon and Sailfish 
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(Patro et al., 2014) revealing that Flux Capacitor and eXpress clearly were 
underperforming and that RSEM slightly outperformed the other tools.  

Differential gene expression (DGE) analysis is one of the most implemented 
features in RNAseq analysis (McDermaid et al., 2019). The procedure involves 
evaluation of differential genes over dataset specific conditions, for example type of 
treatment or time after treatment. Seventeen DGE methods were reviewed by 
Corchete et al. (2020) under six experimental conditions and three FDR (Benjamini-
Hochberg False Discovery Rate) levels (FDR < 0.05, 0.01, 0.001). It was found that 
limma trend (Ritchie et al., 2015) was the most stable tool for analysis followed by 
limma voom, NOISeq FPKM (Tarazona et al., 2011), baySeq (Hardcastle & Kelly, 
2010) and some of the applications in edgeR (Robinson et al., 2010). The 
performance of the tools depended to a large extent on the number of differentially 
expressed genes (DEG) included in the analysis and the FDR level compared.  

Visualization of data enables the researcher to detect patterns and issues that they 
otherwise might oversee with traditional modelling (Rutter et al., 2019), for instance 
negative binomial modelling or linear regression modelling (Law et al., 2014). 
Visualization tools can detect designation problems of differentially expressed 
genes, normalization issues, and pipeline errors of usual character (Rutter et al., 
2019). A traditional data visualization tool for viewing of read levels is the 
Integrative Genomics Viewer (Thorvaldsdóttir et al., 2013). Some DGE tools 
provide visualization functions e.g. edgeR and DESeq2. The R package “bigPint” 
can detect designation problems of differentially expressed genes, normalization 
issues, and pipeline errors of usual character (Rutter et al., 2019). Several RNAseq 
visualization tools are listed in the article by Nazarie et al. (2019).    

Functional analysis is often the last part of the RNAseq analysis (Conesa et al., 
2016) and comprises determination of functions or identification of molecular 
pathways of the DEGs. Functional profiling is dependent on available data of 
functional annotations for the specie(s) analysed. Several tools are available for 
different comparisons, some of which integrates different RNAseq biases e.g. GOseq 
(Young et al., 2010) accounts for selection bias and SeqGSEA (Wang & Cairns, 
2013) integrates splicing and determines enrichment. A protocol for pathway 
enrichment analysis was published by Reimand et al. (2019) applying g:Profiler 
(Reimand et al., 2016), GSEA (Subramanian et al., 2005), Cytoscape (Shannon et 
al., 2003) and EnrichmentMap (Merico et al., 2010). The protocol comprises 
creation of omics data-based gene list, the establishment of pathways that are 
statistically enriched, and feature interpretation from visualized data.  
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1.1.3 Small RNA sequencing analysis  
Small RNA sequencing (sRNAseq) analysis resembles RNAseq analysis in many 
aspects. A sRNAseq pipeline could include quality control (discussed in chapter 
1.1.1), normalization, differential expression (DE) analysis of annotated reads and 
visualization of the expression patterns (Beckers et al., 2017). Often relative 
normalization is performed on sRNAseq data (Meyer et al., 2010). This is performed 
by scaling to the dataset size and reported in reads per million (RPM) for each 
respective dataset. For this normalization to be valid sRNA sub-populations must 
have equal proportions across the different conditions being analysed, e.g. tissues or 
mutant backgrounds (Lutzmayer et al., 2017). In a study by Qin et al. (2020), 
comparing the performance of nine normalization tools, trimmed mean of M-values 
scored best and the median and the upper quantile performed worst. With extensive 
and asymmetric level of DE none of the involved methods was better than 
moderately helpful. Because of the poor standard of the normalization methods, it 
might be worth to mention the sRNA spike-in oligonucleotides developed by 
Lutzmayer et al. (2017), that enable absolute normalization of sRNAseq data, even 
across independent experiments.     

Several tools are developed to analyse DE of sRNA data between conditions of 
interest. One strategy is to map sRNA reads to a reference genome, count features 
and statistically evaluate differences between conditions (similar to DE analysis in 
RNAseq, (Anders et al., 2013). Examples of such tools are sRNAtoolbox (Rueda et 
al., 2015) and sRNAnalyzer (Wu et al., 2017). Another approach is to perform DE 
of unique sequences instead of mapping the sRNA reads to genome features (Jeske 
et al., 2019). This approach overcomes obstacles of short reads with multiple 
mappings in the genome or mapping to unannotated parts of the genome. One tool 
capable of this approach is DEUS. 

Several RNAseq pipelines available can be configured to process different stages 
of sRNAseq (Beckers et al., 2017). However, to date there are specific sRNAseq 
pipelines and platforms with different approaches available e.g. sRNAnalyzer (Wu 
et al., 2017), UEA sRNA Workbench (Beckers et al., 2017) and sRNAPipe 
(Pogorelcnik et al., 2018). 

A part of the sRNAseq analysis might also be the characterization of the sRNAs 
in the analysis. This is often in line with the classification of the precursor transcript 
of the sRNA. Morgado & Johannes (2019) list 60 different tools for plant sRNA 
categorization. Characterization of selected types of sRNA and other possible parts 
of the analysis, such as target prediction, will be discussed further in chapter 1.3.   
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1.1.4 Degradome sequencing analysis 
A degradome is used to generate high-throughput information on transcript targeting 
by sRNAs. Most eukaryotic mRNA possess an m7G (a methylated version of 
guanosine) cap at the 5’ end (Furuichi, 2014, 2015). When an mRNA is cleaved by 
an AGO, the 3’ part of the cleaved mRNA will be uncapped and instead of the m7G 
cap possess a 5ʹ-phosphate at the 5’ end that can be ligated to a 5’ adaptor (German 
et al., 2008). As the 3’ end of the truncated RNA is polyadenylated, reverse 
transcription using oligo(dT) with 3’-adapter sequence can be applied to construct a 
cDNA with adaptors in both ends. Further details about library preparation can be 
found in Zhai et al. (2014) and Sanz-Carbonell et al. (2020).  

After sequencing and quality control of the reads, degradome analysis tools can 
be applied. In a paper by Thody et al. (2018), three popular degradome analysis tools 
CleaveLand4 (Brousse et al., 2014), PAREsnip (Folkes et al., 2012) and sPARTA 
(Kakrana et al., 2014) were benchmarked against PAREsnip2. PAREsnip2 
outperformed the other tools, both in the categories speed and resources. PAREsnip2 
also detected more of already validated cleavages than the other tools, especially 
when the Fahlgren and Carrington (2010) targeting rules were applied. These rules, 
as opposed to Allen et al. (2005) targeting rules, tolerate a mismatch or G:U wobble 
pairs at positions 10 and 11.   
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1.1.5 DNA sequencing concepts 
If a species already is sequenced and reference genome(s) already are provided 

(like when working with the potato-P. infestans system) working with sRNA 
interactions demand no extensive knowledge in the field of whole genome 
sequencing. However, to obtain an understanding for how the sequencing of the 
potato and the P. infestans genome was performed (presented in chapter 1.5) some 
concepts need to be clarified.  

A genome assembly is the process of sorting reads of sequenced DNA in the 
correct order of the genome (Kalyanaraman, 2011). The genome can be assembled 
of reads into smaller contiguous overlapping parts called contigs (Batzoglou et al., 
2002). The contigs might then be sorted into super-contigs or scaffolds. N50 is a 
measurement implying that 50% of the nucleotides (nt) are located to contigs of this 
length or longer.  

When performing DNA sequencing some difference apply to the techniques 
available to date. Maybe the most prominent difference is the sequencing lengths of 
the output. The length of short read technology reads is commonly only a few 
hundred bases. The invention of paired-end reads (each read being linked with 
another read some distance away (Risca & Greenleaf, 2015)) has improved the 
coverage of short reads techniques. Third generation sequencing methods, e.g. 
PacBio sequencing, produce reads longer than 10 kb at average (van Dijk et al., 
2018), revolutionizing the field. For example, third generation sequencing improves 
genome resolution, filling of gaps between contigs (Jain et al., 2018). 

Computational gene prediction is essential for automatic annotation of large 
genomes (Wang et al., 2004). Ab initio gene prediction methods generally utilize 
statistical models, e.g. hidden Markov models, neural networks or Support Vector 
Machines (Wang et al., 2019c; Scalzitti et al., 2020), to combine signal and content 
sensors. Signal sensors refer to specific patterns and sites namely, promoter and 
terminator sequences, splicing sites, branch points or polyadenylation signals. 
Content sensors refer to species-specific patterns of codon usage allowing 
distinguishability between coding and surrounding non-coding sequences (Wang et 
al., 2004), e.g. nucleotide composition or exon and intron lengths (Scalzitti et al., 
2020).   
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1.2 Protein analyses 
When working with sRNA data analyses, investigation into protein analyses might 
be necessary to gain information about target genes in case there are no annotations 
available, or further information about the protein is desired. The following chapter 
is hence dealing with methods that have been useful during my PhD education.  

1.2.1 Protein function and domain predictions  

To acquire information about a protein of which the amino acid sequence is available 
there are two main concepts which can be followed (Eisenhaber, 2013). The first 
concept represents function heritage from a mutual predecessor gene, comprising 
homology searches such as BLAST or BLAST+ (Altschul et al., 1994; Camacho et 
al., 2009). The second concept comprises lexical analysis, interpretation of physical 
properties and sequence motif-function association (Eisenhaber, 2013). Segment-
based analysis is the core of protein studies (Eisenhaber et al., 2016). In general 
terms, proteins consist of two types of segments, namely globular domains and non-
globular segments. Eisenhaber et al. (2013) present a strategy of six steps for protein 
sequence analysis comprising linguistic analysis, subcellular motifs, post-
translational modification motifs, structural preference of nonglobular regions, 
families of globular domains, searches in sequence databases, sequence analytics 
and molecular function synthesis.  

The InterPro database determines the protein families of sequences and predicts 
relevant sites and domains of the proteins (Mitchell et al., 2019). InterPro integrates 
results from 14 different databases specialized in different areas of prediction. 
Among these 14 databases, several are found in the protein sequence analysis 
strategy by Eisenhaber et al. (2013) mentioned above. Uniprot is the largest resource 
of predicted sequence annotations in UniProt Knowledgebase 
(The UniProt Consortium, 2017).  

1.2.2 Phylogenetic analysis  

Phylogenetic analyses can be applied to determine evolutionary relationships 
between proteins, genes or species (Som, 2015). To compare sequence data in 
phylogenetic trees, a multiple sequence alignment (MSA) of the sequences must first 
be performed (Ashkenazy et al., 2019). The accuracy of the phylogenetic tree hence 
relies on the correctness of the MSA (Kemena & Notredame, 2009). PASTA is an 
example of an MSA method that has scored well on larger protein datasets at reduced 
computational effort (Collins & Warnow, 2018).    

Previous studies have concluded that trimming of unreliable MSA regions can 
enhance the accuracy of the phylogenetic analyses (Kück et al., 2010; Di Franco et 
al., 2019). However, other evaluations have indicated that filtering might exclude 
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phylogenetically informative sites (Chang et al., 2014). The challenge with filtering 
algorithms is to remove phylogenetically uninformative sites (Tan et al., 2015). 
Introduction of weights to the columns in the MSA has also been proposed to 
improve phylogenetic tree reconstruction (Chang et al., 2014). Furthermore, a 
method based on concatenation of a large set of MSA into a single SuperMSA  
demonstrated to perform better than unfiltered MSA and single weight-based MSA 
(Ashkenazy et al., 2019) .  

Several different types of algorithms can be inferred to produce the phylogenetic 
tree. When comparing tree reconstruction accuracy of common phylogenetic 
algorithms, Bayesian and Maximum likelihood algorithms have been proposed to 
outperform maximum parsimony and neighbor joining algorithms (Ogden & 
Rosenberg, 2006). Beerli (2006) compared the inference of Bayesian and maximum-
likelihood using the same sampling algorithm. In general, the Bayesian method 
performed better in accuracy and coverage, although for some comparisons both 
methods scored the same. In a review by Yang & Rannala (2012) it is claimed that 
Bayesian and Maximum likelihood inference belong to opposing statistical 
philosophies. Hence, a feature of one of the inferences might be considered an 
advantage or a limitation depending on the philosophy. More on strengths and 
weaknesses among major methods of phylogenetic analysis can be read about in this 
review. 

Four of the most common fast maximum likelihood-based phylogenetic tools 
RAxML/ExaML (Stamatakis, 2014; Kozlov et al., 2015), PhyML (Guindon et al., 
2010), IQ-TREE (Nguyen et al., 2015), and FastTree (Price et al., 2010) were 
compared applying 19 extensive phylogenomic datasets, comprising hundreds to 
thousands of genes (Zhou et al., 2018). Slower approaches comprising ten tree 
searches per alignment exceeded faster approaches of one search per alignment 
applying PhyML, RAxML, or IQ-TREE. IQ-TREE scored the best-observed 
likelihoods for all concatenation-based species trees, with RAxML/ExaML scoring 
almost as well. Another investigation testing the inferences on bacterial genomes 
concluded that RAxML and IQ-TREE performed equally (Lees et al., 2018). 
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1.3 Small non-coding RNA analyses 
Non-coding RNAs (ncRNA) are defined as RNAs that are transcribed from DNA 
but not translated into proteins (Mattick & Makunin, 2006). There are several classes 
of ncRNA, however the most diverse range of ncRNAs belongs to the category of 
small ncRNAs (sRNAs). sRNAs are approximately 20–30 nucleotides long and 
include, inter alia, small interfering RNAs (siRNAs), miRNAs and phased 
secondary siRNAs (Borges & Martienssen, 2015). Just as their biogenesis differ 
(Fig. 1) (Brant & Budak, 2018) so do their functions, even if some features overlap. 
The differences between them make them separable and predictable using sequence-
based algorithms.  

Figure 1. Simplified biogenesis of miRNA and phasiRNA in plants. A miRNA 1. Pri-miRNAs are 
transcribed from miRNA genes and processed into pre-miRNAs. 2. The pre-miRNAs are further 
processed by DICER-LIKE1 (DCL1) into an RNA duplex consisting of a 5p and a 3p miRNA. Any of 
the miRNAs might be incorporated into AGOs involved in the RISC complex and target single stranded 
transcripts through base-pairing. B phasiRNA biogenesis. 1. The phasiRNA biogenesis is activated by an 
AGO RISC complex, generally loaded with a 22 nt miRNA cleaving the phasiRNA precursor transcript. 
2. The 5’ fragment of the cleaved transcript is degraded whereas the 3’ fragment is transformed into a 
double-stranded RNA by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6). 3. The double-
stranded RNA is cleaved by a DCL yielding phasiRNAs. 4. The phasiRNAs might be incorporated into 
AGOs in the RISC complex to target single stranded transcripts through base-pairing.  
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1.3.1 Argonautes 
Argonaute proteins (AGOs) are involved in the RNA induced silencing complex 
(RISC) (Qi et al., 2005), incorporating sRNA to target mRNA or long-ncRNA by 
sequence complementarity (Hamilton & Baulcombe, 1999; Chi et al., 2009). 
Eukaryotic AGOs are characterized by the four domains: PAZ (Piwi-Argonaute-
Zwille), MID, PIWI (P-element-induced wimpy testis), and N-terminal (Höck & 
Meister, 2008). The PAZ domain is anchoring the 3’ end of the sRNA in eukaryotes 
(Ma et al., 2004). The mid domain contains a pocket responsible for sorting of the 
5′ end nucleotide of sRNA (Ma et al., 2005), resulting in different abundances of 
sRNAs with different 5’ end-nt in different plant AGOs (Mi et al., 2008). 
Recognition of base-pairing at position 15 of miRNA duplexes is performed by a 
QF-V motif within the PIWI domain in Arabidopsis (Zhang et al., 2014). The PIWI 
domain also contains a catalytic tetrad important for the slicing function of AGOs 
(Faehnle et al., 2013; Arribas-Hernández et al., 2016), together with the N-terminal 
domain. The N-terminal domain is the least characterized AGO domain (Miyoshi et 
al., 2016). Base-pairing between the sRNA and the target strand was prevented in 
the bacterium Thermus thermophilus by the N-terminal domain (Wang et al., 
2009b). In humans, unwinding of the sRNA/target duplex is enabled by the N-
terminal domain during RISC assembly (Kwak & Tomari, 2012).  

The number of AGOs differ between species, for example the fission yeast 
Schizosaccharomyces pombe contains one AGO (Höck & Meister, 2008), 
Arabidopsis contain 10 AGOs (Morel et al., 2002) and the nematode Caenorhabditis 
elegans 27 AGOs (Höck & Meister, 2008). Phylogenetic analyses have revealed that 
plant AGOs can be grouped into three major clades based on Arabidopsis AGO 
nomenclature: AGO1/5/10, AGO2/3/7, and AGO4/6/8/9 (Fang & Qi, 2016). 
Individual functions of plant AGOs can be found in the review by Zhang et al., 
(2015).  
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1.3.2 microRNA prediction  
miRNAs are small non-coding RNAs, with a usual length of 19-24 nucleotides (Ling 
et al., 2013), transcribed from miRNA genes into primary miRNAs (pri-miRNAs, 
Xie et al., 2005) by RNA polymerase II and coactivators (Fig. 1A) (Xie et al., 2005; 
Wang et al., 2013). Plant pri-miRNAs are processed into precursor miRNAs (pre-
miRNAs) with a length of 49-900 nt (Bologna & Voinnet, 2014). The pre-miRNAs 
are further processed by RNase III enzyme DICER-LIKE1 (DCL1) into a RNA 
duplex consisting of mature miRNA and the complementary miRNA* (Kurihara & 
Watanabe, 2004). The mature miRNAs can be incorporated in AGOs involved in the 
RISC complex (Baumberger & Baulcombe, 2005), which recognize and target the 
mRNA via base-pairing between the mature miRNA and the mRNA. Generally, the 
miRNA* is regarded as a functionless “passenger strand”, hence degraded (Eamens 
et al., 2009). However, an accumulation of functions among miRNA* sequences has 
been discovered over the years (Devers et al., 2011; Peng et al., 2011; Aceto et al., 
2014). The association with miRNA* being functionless does no longer apply, why 
the miRNA/miRNA* nomenclature can be deceptive and preferably is written 5p/3p 
(referring to the positions in the pre-miRNA) (Desvignes et al., 2015). Further details 
about plant miRNA biogenesis can be found in recent reviews (Wang et al., 2019a; 
Gao et al., 2020)  

miRNAs can be identified using four different approaches (Mishra et al., 2015): 
Conservation-based strategies, machine-learning strategies, high throughput 
techniques (including next-generation sequencing (NGS) strategies) and homology-
based strategies.  

Conservation-based strategies originate from the homology shown between 
miRNAs in different species (Mishra et al., 2015). However, the levels of 
conservation differ between miRNAs through phylogenetic analyses. It has been 
demonstrated that the most plant miRNAs are inherited from ancestral embryophytes 
and spermatophytes (Taylor et al., 2014). It was also proposed that more ancient 
miRNAs are not more conserved than younger miRNAs, which earlier was 
suggested.  The early approach of conservation-based strategies was to predict 
miRNAs located to intergenic regions that were conserved between related species 
(Mishra et al., 2015). Furthermore, the candidate regions should have predicted 
secondary structures folding into stem-loops. Along with increased identification of 
miRNA genes, homology-based search methods were developed, focusing on the 
similarity to known mature miRNA sequences. Genomic features of the matches to 
known mature miRNAs are extracted and aligned with their miRNA families. Tool-
specific-criteria are then applied to construct the final list of the candidates (Artzi et 
al., 2008; Lucas & Budak, 2012; Mishra et al., 2015).  

The machine-learning strategies utilize already confirmed miRNA hairpins as a 
positive training dataset and a negative training dataset with other hairpin structures, 
containing for example mRNAs, tRNAs and rRNAs. Properties distinguishing the 
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datasets are then generated by the machine learning tools (Mendes et al., 2009). The 
current machine-learning strategies and future perspectives are discussed in the 
review by Schäfer & Ciaudo (2020).  

High throughput techniques can be applied after miRNA sequencing with for 
example NGS technology (Motameny et al., 2010).  High throughput techniques are 
characterized by two steps; a filtering step and a modelling step (Mishra et al., 2015). 
The filtering step comprises mapping of the sequenced reads to the genome of the 
sequenced species or mapping to sequences as similar to the genome as possible, 
e.g. a genome of a related species or a transcriptome of the query species. Unwanted 
reads, for instance those mapping to tRNA, are commonly discarded. Reads mapping 
to miRNA databases are identified as miRNA candidates. In the modelling the 
remaining uncharacterized reads are utilized to identify miRNA transcripts based on 
miRNA features. An example of a high throughput technical tool is ShortStack 
(Axtell, 2013). ShortStack is an example of attempts to characterize full pre-miRNA 
(hairpin) from the read data, (including mature miRNA and miRNA*). ShortStack 
annotations were hence proven highly specific with a very low number of false 
positives. A review handling trends in the field of the miRNA bioinformatics tools 
is presented by Chen et al. (2019). 

1.3.3 phasiRNA detection 
Phased secondary small interfering RNAs (phasiRNAs) are sRNA with a reported 
length of 18-29 nt in plants (Zhao et al., 2020), with a characteristic phased 
configuration (Liu et al., 2020).  A pattern of regularly spaced siRNAs is generated 
by an endonucleolytic cleavage, which can be detected by mapping of siRNAs to the 
precursor transcript. The phasiRNA biogenesis is activated by the AGO1 RISC 
complex loaded with a 22 nt miRNA in Arabidopsis (Cuperus et al., 2010) (Fig. 1B). 
The 22 nt miRNA is produced by DCL1 when an asymmetric bulge is present at the 
complementation of the miRNA-5p with the miRNA-3p (Chen et al., 2010; 
Manavella et al., 2012b). The 22 nt miRNA RISC complex cleavage generates a 5’ 
fragment which is degraded by a 3′-5′ exonucleolytic complex, for instance the 
SKI2-3-8 complex (Branscheid et al., 2015). The 3’ fragment is transformed into a 
double-stranded RNA by the RNA-Dependent RNA Polymerase 6 (RDR6) in plants 
(Liu et al., 2020), possibly recruited by AGO1-RISC or AGO7-RISC. It is 
speculated that a one-hit RISC directed target might recruit RDR6 to the 3’ end of 
the transcript and a two-hit target might recruit RDR6 to the 5’ end. Furthermore, 
the double-stranded RNA produced by RDR6 is cleaved by one of at least three 
different Dicer family members yielding different phasiRNA lengths.  

PhasiRNA are derived from PHAS loci which can be mRNA of protein-coding 
genes or long noncoding RNAs in plants (Peragine et al., 2004; Johnson et al., 2009). 
PHAS loci within protein-coding genes is the largest group of known PHAS loci, 
including the large group of nucleotide binding leucine-rich repeat (NLR) resistance 
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genes (Zhai et al., 2011; Fei et al., 2015; Liu et al., 2020). PhasiRNA from protein-
coding genes are also involved in plant development (Marin et al., 2010), plant 
parasitism (Shahid et al., 2018) and seed germination (Guo et al., 2018). One group 
of phasiRNAs from the long, non-coding RNAs are trans-acting and are hence called 
trans-acting siRNA (tasiRNA), originating from TAS loci (Fei et al., 2013).  

There are different approaches for computational detection of phasiRNA. 
Historically, one approach was to use ShortStack (Axtell, 2013). ShortStack detects 
phasiRNAs based on a user-defined size range and threshold for number of sRNAs. 
Firstly, sRNAs are clustered depending on alignment localization of the reads. 
sRNAs of the cluster within the user-defined size range and threshold are annotated 
as Dicer-derived. The primary sRNA size of the cluster is denoted DicerCall. A 
phase score is calculated for the phase size of the DicerCall to evaluate the level of 
phasing of the loci (Axtell, 2020). Additional functions are available in the 
ShortStack package such as miRNA annotation (as mentioned in chapter 1.3.2), 
estimation of RNA size distributions, repetitiveness, strandedness (specification of 
strand) and hairpin-association (Axtell, 2013).    

PhaseTank was released with improved average sensitivity (77.9%) compared to 
ShortStack (26.9%) (Guo et al., 2015). PhaseTank defines phasiRNA clusters as a 
region containing at least four phased reads with maximal separation of 84 nt. 
PhaseTank applies an algorithm that estimates the relative sRNA production (RSRP) 
of each cluster. It keeps the clusters with top 5% RSRP value. The abundances are 
then estimated for every potential 21-nt phasing of the clusters, after which the 
clusters are filtered and given a phased score. The different functions of PhaseTank 
comprise phasiRNA detection, phasiRNA cluster determination, triggered miRNA 
prediction and identification of phasiRNAs/tasiRNAs functional cascades. 

unitas was published by Gebert et al. (2017), scoring equally well as PhaseTank 
on artificial (non-natural) datasets, consisting of only phasiRNA. However, unitas 
keeps the sensitivity with increased numbers of non-phased sequences when 
PhaseTank loses sensitivity. unitas calculates the probability to observe more than a 
defined number of phased reads within a sliding window (default = 1 kb) based on 
binomial distribution. If the Bonferroni corrected p value is below the significant 
level (default = 0.05) to reduce the false discovery rate unitas utilizes the following 
thresholds: i) There must at least be the same number of mapped phased reads as 
there is un-phased reads within a sliding window. ii) The phasiRNA has to be derived 
from at least five different loci. iii) At least 10% of the phased reads need to map to 
each genomic strand.   
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1.3.4 small RNA target prediction  
Argonaute-incorporated sRNAs guide the RISC complex to mRNAs that base pair 
with the sRNA, degrading the mRNA through cleavage (Martinez et al., 2002) or 
translational inhibition (Doench et al., 2003). Because of the wide conservation in 
plants, miRNA is believed to be the most functionally important sRNA and hence 
most studied (Chen et al., 2018a). Animal miRNA target sites are mainly located 
within the 3′-untranslated region of the targeted mRNA (Bartel, 2009). In plants, the 
most confirmed target sites are located in open reading frames (Liu et al., 2014). 
Plant miRNA require a greater complementarity to the target mRNA than animal 
miRNAs. One region of the miRNA, called the “seed”, is of greater importance to 
complement with the target site. In animals, this region is often detected from 
nucleotides number two to eight from the 5’ end. However, a more centred seed 
region is also observed from position four to 15, counting from the 5’ end of the 
sRNA (Shin et al., 2010). In plants, complementation allows up to 5 mismatches 
(Liu et al., 2014) and the seed region ranges from nucleotide two to 13, with base-
pairing at position ten and eleven (close to the Argonaute-catalysed slicing site) 
being more critical for target repression (Schwab et al., 2005). In the absence of 
base-pairing at sites nine to eleven, slicing is inhibited (Wang et al., 2015), which 
occurs in natural target-mimic sites that inhibit regulation of miRNA targets (Franco-
Zorrilla et al., 2007).  

Because of differences among animal and plant miRNA target sites, different 
tools are needed to predict the target sites. A comparison was performed of eleven 
plant miRNA prediction tools (Srivastava et al., 2014), concluding that a 
combination of psRNATarget (Dai & Zhao, 2011) and Targetfinder (Fahlgren et al., 
2007) delivers high true positive coverage. Additionally, intersection of 
psRNATarget and Tapirhybrid (Bonnet et al., 2010) provided highly precise 
predictions. The comparison conducted by Srivastava (2014) also concluded that 
many tools were optimized towards Arabidopsis. Other tools with different 
approaches have been developed, e.g. comTar (Chorostecki & Palatnik, 2014) which 
is focused on predicting targets conserved across species. Many recent tools involve 
the inclusion of a degradome, which is discussed more in detail in chapter 1.1.4.  
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1.4 Programming 
Programming is defined as the action of writing a sequence of coded instructions to 
a computer to process data (Blackwell, 2002). A certain level of programming skills 
is desirable when working with bioinformatic analyses. Programming is useful to 
concatenate results from different tools into pipelines. It can also aid with 
preparation of data for visualization. 

One can separate programming languages depending on their levels of 
abstraction into ranges from low-level to higher level languages (Kahanwal, 2013). 
In computer science, abstraction refers to the closeness of the language to the 
computer’s own language (Machine language, comprised of binary digits, i.e. zeroes 
and ones). Popular bioinformatics programming languages are high-level language 
Python (Van Rossum & Drake, 2009) and R, a language and environment adopted 
for graphics and statistical computing (Oliphant, 2007; Bayón et al., 2016; R Core 
Team, 2017). High-level programming languages are independent of any 
architecture, hence portable across various platforms (Watt, 2004). The first high-
level programming language was Plankalkül, designed in 1945 (Bauer & Wössner, 
1972; Rojas et al., 2000). Freely available “Bio-toolkits” are compiled for several 
programming languages that make customization of pipelines or analyses easier 
(Mangalam, 2002). Examples of such are BioPython for Python or Bioconductor for 
R (Gentleman et al., 2004). 

1.4.1 Artificial intelligence  
Artificial intelligence (AI) is the capability of a computer or computer-controlled 
robot to execute an assignment usually associated with rational creatures (Copeland, 
2020). AI has problem solving, decision making, and pattern recognition capacities 
(Du et al., 2020). Simplified, AI can be divided into two main categories: strong AI 
and weak AI. Strong AI refers to a programmed computer possessing a mind being 
able to understand and have cognitive states (Searle, 1980). Weak AI gives us 
powerful tools, empowering humans to develop and test hypotheses more accurately. 
Strong AI does not yet exist (Du et al., 2020).  

The expression “Artificial intelligence” was launched in 1956 (Brunette et al., 
2009). Early AI development resulted in two main approaches: the “top down” 
approach, comprising implementation of higher-level functions, and the “bottom up” 
approach, simulating neurons to create higher level functions. For further details in 
the history of AI, please see the review by Brunette et al. (2009). 
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1.4.2 Machine learning  
Machine learning (ML) is a subset of AI which directs its attention to the ability of 
computers to learn from received data, while organizing processed information by 
manipulation of algorithms (Du et al., 2020). Algorithmic models are trained on 
input data to recognize patterns and based on the patterns perform specific tasks. 
There are several types of ML algorithms available, however the two main methods 
are supervised (the most common) and unsupervised (Moore et al., 2019). In 
supervised learning, the algorithmic model is provided with a training dataset 
consisting of labelled input examples and preferred output (Paeglis et al., 2018). The 
aim of the algorithm is to create a function that links the input variable with the 
output variable so that the function can predict the output variable as correctly as 
possible for each new input variable. In unsupervised learning, no labels are 
provided to the model propelling it to create the input-output linking from 
unstructured data. 

1.4.3 Deep learning  
Deep learning (DL) refers to a specific type of ML that applies artificial neural 
networks or ANNs (Fig. 2A, Hogarty et al., 2020). DL is capable of using infinite 
number of layers, each layer being able to learn distinct features of the training 
dataset. Different weighing for different stimuli allows adaptation to accomplish 
complex tasks (Hogarty et al., 2018). Except for the multiple layer similarity 
between biological neural networks and ANNs, a resemblance of some ANNs lies 
in the Heaviside function. Similar to nerve firing, the Heaviside function returns an 
all-or-nothing response. Improvements in several fields of analysis, comprising 
image recognition, has been achieved applying DL algorithms (LeCun et al., 2015). 
DL algorithms are sometimes referred to as “black boxes” (Lu et al., 2018), because 
the ANN-generated features are of too high dimensionality for the human mind to 
interpret. Present DL algorithms comprises deep Boltzmann machines 
(Salakhutdinov & Hinton, 2012), long-term and short-term memory (LeCun et al., 
2015) deep kernel machines (Nikhitha et al., 2020), deep recurrent neural networks 
(Pascanu et al., 2013), and convolutional neural networks (CNN) (LeCun et al., 
2015). CNN have good advantages in the field of image classification predominantly 
because extraction of multi-level images features is possible in the CNN architecture 
(Mo et al., 2019). Characteristic for CNN architecture is the transformation of simple 
features (e.g. lines and edges) of the input images into complex features (e.g. shapes 
and colours, Lu et al., 2018). The transformation is done in what is referred to as 
hierarchical feature maps (Fig. 2B) built by multiple convolutional layers. Further, 
some layers can merge similar features to reduce dimensionality. 
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Figure 2. Deep learning architecture. A Artificial neural network of a deep learning algorithm. Each layer 
processing image features hierarchically. B Simplified hierarchical feature map of layers in a 
convolutional neural network. Each descendant layer consists of separated features of the ascendant layer. 
Concepts collected from Mukkulainen (1990) and Waldrop (2019).  
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1.5 Genomes 

1.5.1 Potato 
Potato (Solanum tuberosum, St) belongs to the family Solanaceae. Potato is, with a 
worldwide production of 368 million tons, the fourth most produced crop in the 
world (2018, http://faostat.fao.org/), being the most produced non-grain food crop. 
Potato origins from South America, where 151 wild species have been discovered 
(2020, http://cipotato.org). The wild species contain extremely large genetic 
diversity (Machida-Hirano, 2015). However, breeding with too few parental lines is 
proposed to have resulted in a small genetic variation in most present cultivars of the 
world (Salimi et al., 2016; Wang et al., 2019b). Cultivated potato is generally 
autotetraploid (2n = 4x = 48) and heterozygous (Manrique-Carpintero et al., 2018), 
however some varieties are also diploid (2n = 2x = 24), triploid (2n = 3x = 36), or 
pentaploid (2n = 5x = 60) (Machida-Hirano, 2015). 

The assembly of the first potato genome was released ten years ago (The potato 
genome sequencing initiative, 2011), comprising 86% (723 megabases, Mb) of the 
estimated full genome (844 Mb). The assembly consisted of 39,031 protein coding 
genes and was constructed from a homozygous double-monoploid potato clone. The 
assembly comprised 66,254 super-scaffolds. However, the 443 largest super-
scaffolds were larger than 349 kb, together corresponding for 90% of the assembly. 

A reference chromosome-scale genome (v4.03) was later constructed for potato 
using 951 of the super-scaffolds (Sharma et al., 2013), comprising 674 Mb (~93%) 
of the 723 Mb assembly and ~96% (37,482) of the predicted genes (Fig. 3). 674 Mb 
corresponds to ~80% of the estimated 844 Mb genome. The v4.03 reference genome 
was assembled using in silico anchoring approaches with physical and genetic maps 
from a diploid potato genotype and tomato, resulting in a sorting of the super-
scaffolds into 12 chromosomal “pseudomolecules” and one pseudomolecule 
consisting of unanchored super-scaffolds. A study of monoploid and double 
monoploid clones expanded the genome with an additional pseudomolecule of 
unanchored super-scaffolds (Hardigan et al., 2016, v4.04). Copy number variations 
were discovered, affecting 219.8 Mb (30.2%) of the genome. With almost 30% of 
the genes partially duplicated or deleted, this study revealed a heterogeneous nature 
of the potato genome. Recently, an updated version of the genome was released 
(Pham et al., 2020, v6.1), based on Oxford Nanopore Technologies long reads 
coupled with proximity-by-ligation scaffolding (Hi-C). The potato genome v6.1 
assembly comprises 741.6 Mb (87.8%) of the 844 Mb genome, 731.2 Mb anchored 
to the 12 chromosomes. A 99% reduction in the number of contigs and an increase 
in N50 scaffold size by 44 times resulted in that 741.5 Mb of the assembly was non-
gapped and the discovery of 32,917 high-confidence protein-coding genes. 
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Figure 3. Gene density at the potato chromosomes (v4.03). The left side of the chromosomes depicts 
genes at the 5’ strand and the right side depicts genes at the 3’ strand. Chromosome positions for each 
gene are extracted from the Potato Genome Sequencing Consortium (PGSC) General Feature Format 
(GFF) file (v4.03) (The potato genome sequencing consortium, 2011; Sharma et al., 2013). 
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1.5.2 Phytophthora infestans 
Phytophthora infestans is an oomycete in the Peronosporaceae family and causes the 
potato and tomato late blight. The potato losses were estimated to M€4800 in the 
world, representing 15% of the total value of the grown potato (Haverkort et al., 
2008). P. infestans overcomes host-based resistance and fungicides effectively 
(Leesutthiphonchai et al., 2018). Hence, improving defence against P. infestans at 
minimal resource expenses is of great importance. To improve control strategies 
against P. infestans, developing deeper understanding of the genetic complexity of 
the pathogen is necessary.  

The P. infestans genome sequencing of strain T30-4 revealed a size of ~240 Mb 
(Haas et al., 2009), still the largest Phytophthora genome sequenced (Vetukuri et 
al., 2018).  Repetitive DNA accounted for 74% of the genome sequence. In course 
of comparisons with other Phytophthora species ab initio and expressed sequence 
tag homology, 17,797 genes were identified. Simultaneously, 563 RXLR and 196 
Crinklier (CRN for crinkling and necrosis) effectors were identified, although later 
updated to 557 RXLR and 129 CRNs (Cano et al., 2019). Effectors are described in 
a review by Sharpee & Dean (2016) as pathogen secreted molecules that change 
plant processes promoting host colonization. The P. infestans genome comprised 
4,921 scaffolds based on 18,288 contigs. Strain T30-4 is an F1 progeny of 80029 
and 88133 strains (Lee et al., 2001). The majority of dominant asexual P. infestans 
strains are found triploid (Knaus et al., 2016; Li et al., 2017; Tzelepis et al., 2020). 
However, sexually reproducing P. infestans strains so far studied are diploid. P. 
infestans has two mating types, referred to as A1 and A2, both necessary for sexual 
reproduction and formation of oospores (Drenth et al., 1994). 

Oxford Nanopore and Illumina Nextseq were applied to produce two improved 
genome sequences of P. infestans (Lee et al., 2020). The strains used to create the 
genomes originated from the Republic of Korea with different mating types 
(KR_1_A1 and KR_2_A2). The number of contigs was reduced to 1,510 and 3,344 
in the A1 and the A2 strain, respectively. The A1 genome (201 Mb) was detected 
shorter than the A2 version (231 Mb). Both genome versions contained almost as 
much repeat-sequence as the T30-4 genome, approximately 72% each. More genes 
were discovered in these genomes, 20,172 in KR_1_A1 and 23,771 in KR_2_A2. A 
prediction of effectors was performed using EffectR and SignalP5, accounting for 
433 and 310 RXLRs as well as 40 and 50 CRNs in each genome. When applying the 
same methods to the T30-4 genome, 306 RXLRs and 54 CRNs were discovered. A 
decrease of spanned gaps was also detected in the recent P. infestans genomes, from 
38,410,029 in T30-4 to 0 in KR_1_A1 and 1700 in KR_2_A2.   
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Computational analyses can support RNA biology research in several ways. Reliable 
predictions and analyses of biological patterns can aid the scientist in developing 
hypotheses and deducing possible mechanisms, which can be followed up in vivo. 
Development of better performing analysis tools will hence imply more reliable in 
silico results, leading to less time and costs spent searching for true knowledge in 
vivo. The long-term aim of this project was to deepen the knowledge on plant 
immunity and in this context elucidate the role of small RNA-associated activities 
in an important crop system. In this case, potato and the late blight pathogen P. 
infestans. 
 
The aims of my PhD education are the following: 
 

 Clarify numbers of Argonautes in potato and their evolution 
 Examine events in potato when infected by an Ago1-GFP tagged P. 

infestans strain 
 Examine events in potato during P. infestans infection with emphasis on 

potato AGO1 
 Develop strategies to decipher sRNA cleavages based on degradome 

sequencing data during interaction between potato and P. infestans  
  

2. Aims of the study  
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3.1 Insights into Argonautes in the Solanaceae family 
(Paper I) 

The Solanaceae family comprises more than 3000 species (Gebhardt, 2016) and 
contains species human civilization treat as crops, ornamentals and drugs. To this 
study we mined for AGOs present in databases at that time and focused the 
investigation into certain species more closely related to potato, which was our main 
focus. However, also Brassicaceae species were involved in the study including 
Arabidopsis. Plant Argonautes (AGOs) vary in both function and number between 
species (Fang & Qi, 2016).  Most plant AGO functions are studied in Arabidopsis 
and conclusions could hence be made from comparing differences and similarities 
of additional species in Solanaceae and Brassicaceae. 

3.1.1 Solanaceous AGO gene evolutionary events 
To infer AGO gene evolutionary events, a Solanaceae AGO gene family tree was 
reconciled with a species tree constructed in the NCBI taxonomy browser. For 
replication confidence, the procedure was repeated three times using the different 
outgroups Arabidopsis, Erythranthe guttata and Vitis vinifera. The analysis revealed 
six gene duplication events before the diversification of Petunia and the remaining 
Solanaceae species. After the Petunia split, four duplications and two losses were 
detected before the speciation processes of Nicotiana and Solanum lineages. Among 
the species analysed the number of AGOs varied between ten AGOs in N. obtusifolia 
and 17 in N. tabacum. 
  

3. Results and Discussion 
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3.1.2 Potato contains 14 AGOs  
Mining for potato AGO sequences resulted in 14 unique AGO homologs (Fig. 4), all 
containing PAZ and PIWI domains. Orthologs of Arabidopsis AGO1, AGO2, AGO3, 
AGO4, AGO5, AGO6, AGO7 and AGO10 were present among the potato AGOs. 
AGO1, AGO2 and AGO10 were present as two orthologs each and three orthologs 
were detected for AGO4. The AGO phylogenetic clades comprise the AGO1 clade 
(AGO1/5/10, the AGO2 clade (AGO2/3/7), and the AGO4 clade (AGO4/6/8/9, Fang 
& Qi, 2016). The AGO1 and AGO4 clades consisted of five potato homologs each 
and the AGO2 clade of four. 

Alignment of the potato AGO genes to the potato chromosomes revealed that 
AGO2a, AGO2b, and AGO3 were located close to each other on chromosome 2. The 
fact that AGO2a, AGO2b, and AGO3 are closely related homologs, amongst others 
seen in the phylogenies of the paper and Fig. 4, indicated that they have been exposed 
to gene duplication. 

Two-hundred three Solanaceae AGO homologs and 99 Brassicaceae homologs 
were used to reconstruct a maximum likelihood phylogeny, revealing that AGO10 
occurred in an ancestor before the divergence of Solanaceae and Brassicaceae. The 
duplication of the AGO1 gene likely occurred after the split between the plant 
families. Solanaceae AGO4 diverged into two groups, one partitioning with the 
Brassicaceae AGO8/AGO9 subclade.  
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Figure 4. Unrooted maximum likelihood phylogeny (RAxML, model JTT + Γ, 250 replicates) of the 
Argonaute (AGO) family in potato. Branches are coloured according to clade identity. Bootstrap values 
are indicated at the branch forks. Bar = number of substitutions per site. 

3.1.3  Solanaceae AGO15 diverged from the AGO4 clade 
In the Solanaceae and Brassicaceae family tree, Solanaceae AGO15 was detected 
unique for the family, diverging early in evolution from the AGO4 clade. For further 
analysis the potato and rice AGOs were compared, revealing that no other AGOs 
from potato or rice clustered with StAGO15. Alignment between amino acids 
surrounding the proposed catalytic tetrads of Solanaceae AGO15 and AGO1 variants 
displayed divergence. StAGO15 catalytic tetrad indicated the motif G-E-Q-R instead 
of D-E-D-H/D. The residues of the nucleotide specificity loop (NSL), responsible 
for 5’specificity regulation in Arabidopsis, differed between the Solanaceae AGO1 
and AGO15 sequences.  Electrophoretic mobility shift assays (EMSA) were run to 
test for sRNA affinity of StAGO1a, StAGO10a, StAGO10b and StAGO15 (Fig. 5). 
The four StAGOs have basic isoelectric points (pI), (StAGO15 pI = 9.48, StAGO1a 
pI = 9.46, StAGO10a pI = 9.28 and StAGO10b pI = 9.24) making them positively 
charged. The positive charge interfered with their migration under the gel running 
conditions, making the experiments inconclusive (unpublished). 
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Figure 5. Electrophoretic mobility shift assays of StAGO1a, StAGO15, StAGO10b and StAGO10 with 
A 32P-labeled St-miR482-3p (left), pin-miR8788-5p (middle) and 24nt sRNA (right) and B 32P-labelled 
St-miR482-3p (left), and a 44nt single-stranded non-sRNA control (44nt ssRNA, right). + = 32P-labeled 
sRNAs alone. NTC = non-template control of in vitro translation. (Photo: Zhen Liao). 

3.1.4 Differential expression of RNA interference involved genes in 
potato during infection (Unpublished) 

The complex responsible for miRNA processing consists in plants of DCL1, and 
cofactors Hyponastic Leaves 1 (HYL1) and the zinc finger protein Serrate (Song et 
al., 2007; Dong et al., 2008; Yang et al., 2010; Manavella et al., 2012a). A DE 
analysis of six DCL genes (excluding a potential pseudogene) discovered by 
Esposito et al. (2018) was performed on P. infestans and H2O inoculated leaves. The 
DE analysis revealed a slight increase (<2 fold) in DCL1, DCL2a, DCL3 and DCL4 
and a slight decrease (<2 fold) in DCL2b and DCL2d (Fig. 6A). The analysis 
included genes from the International Tomato Annotation Group (ITAG) annotation 
of the potato genome (Sato et al., 2012). In the PGSC annotation (v4.03) of the 
potato genome, also transcripts PGSC0003DMT400019213, 
PGSC0003DMT400020650, PGSC0003DMT400020673, 
PGSC0003DMT400053499 and PGSC0003DMT400001805 were predicted to 
encode DCLs by the PANTHER tool (Thomas et al., 2003). The corresponding 
proteins lack characteristic domains such as DExD-helicase, helicase-C, Duf283, 
PAZ, RNaseIII and double stranded RNA-binding (dsRB) domains (Margis et al., 
2006) when applying the Pfam domain prediction tool (El-Gebali et al., 2019).  

Only one HYL1 could be detected in potato (StHYL1, Fig. 6B), however StHYL1 
only was slightly up-regulated (log2 fold change ~ 0.4) upon infection. The slight 
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difference in HYL1 expression indicates that the total production of miRNAs might 
be relatively steady between uninfected and infection state of potato.  

  

 
Figure 6. Differential expression (log2 fold change) of P. infestans (strain 11388) and H2O inoculated 
potato (cv. Sarpo Mira), 5dpi. A ITAG DCL homologs in potato. StDCL1 (PGSC0003DMT400029301) 
and StDCL2a (PGSC0003DMT400042918) are also present in the PGSC annotation (v4.03) of the 
genome. B The only detected StHYL1 in potato. Colours of the heatmaps are related to the different log2 
fold change ranges next to the heatmaps. 

RDR homologs synthesize the complementary strand of a single-stranded RNA 
to generate double-stranded sRNA precursors (Polydore & Axtell, 2018). The six 
RDRs so far detected in plants are divided into two subclades: RDRα (RDR1, RDR2 
and RDR6) and RDRγ (RDR3, RDR4 and RDR5) (Zong et al., 2009). RDR1 is 
resistance related, induced upon virus infection in cucumber (Leibman et al., 2018). 
RDR2 is involved in the heterochromatic siRNA pathway in Arabidopsis (Matzke 
et al., 2009). RDR6 is involved in production of phasiRNAs (Howell et al., 2007), 
and involved in virus defence in Arabidopsis and N. benthamiana (Li et al., 2014). 
The functions of Arabidopsis RDR3, RDR4 and RDR5 are so far unknown 
(Leuschen & Downing, 2020), although investigations have concluded that their 
catalytic domains share an atypical DFDGD amino acid motif (Willmann et al., 
2011).  

A phylogenetic tree on RDRs in potato was reconstructed with Arabidopsis 
homologs (Kapoor et al., 2008), tomato (Solanum lycopersicum, Sl) homologs (Bai 
et al., 2012), already predicted potato RDR homologs in the ITAG potato genome 
version (Esposito et al., 2018), and BLAST-mined homologs of the PGSC 
annotation (Fig. 7A). Based on homology in the phylogenetic tree and similarity 
percentage, the PGSC potato homologs were characterized. StRDR3b was more 
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similar (69%) to SlRDR3b than itagRDR3f (65%), why it was assigned the 3b 
extension. StRDR3g was 81% similar to itagRDR3d and itagRDR3e and hence 
assigned its own extension.  

Potato RNAseq data surprisingly showed strong down-regulation (log2 fold 
change ~ -4) of both StRDR1 homologs upon P. infestans infection (Fig. 7B), 
indicating that although involved in virus defence RDR1 might not be involved in 
P. infestans defence. Instead, StRDR3b was most up-regulated upon infection, 
possibly involved in the defence against P. infestans. Redundancy among RNA 
interference-involved proteins has been summarised in Arabidopsis by Vazquez 
(2006), and might also explain potential similar functions between cucumber RDR1 
and StRDR3b, just activated by different stresses. Potato has two RDR6 homologs, 
where StRDR6a was up-regulated and StRDR6b down-regulated upon infection, 
indicating that StRDR6a might be involved in the infection triggered biogenesis of 
phasiRNA. 
 

 
Figure 7. RDR6 homologs in potato. A Maximum likelihood phylogeny (RAxML, model JTT + Γ, 50 
replicates) of the RDRs in A. thaliana (At), S. lycopersicum (Sl), S. tuberosum (ITAG denoted itagRDRx 
and PGSC denoted StRDRx). Outgroup = Laccaria bicolor RDR3 (clade β). Branches are coloured 
according to clade identity. Bootstrap values are indicated at the branch forks. Bar = number of 
substitutions per site. Accession numbers for each branch are annotated in column to the right of the tree. 
B Differential expression of P. infestans (strain 11388) and H2O inoculated potato (cv. Sarpo Mira), 5dpi. 
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3.2 Analysis of Phytophthora infestans Ago1-associated 
sRNAs during infection (Paper II)  

Co-immunoprecipitation and sRNAseq analysis of the Agos in P. infestans was 
performed by Åsman et al. (2016), resulting in the discovery that P. infestans 
miRNA and effector derived sRNAs were associated to PiAgo1. Hence, it was of 
interest to investigate in the association of sRNAs to PiAgo1 during infection. The 
material consisted of leaves infected with a P. infestans transformant expressing 
PiAgo1-GFP or a control expressing GFP and mycelia from the same transformants. 
sRNA co-immunoprecipitation was performed applying a GFP trap, after which 
libraries were prepared and sequenced. The data was quality controlled and 
separated into six datasets depending on what genome each sRNA read aligned to.      

3.2.1 Increase in 5’U sRNAs upon infection 
In the study performed by Åsman et al. (2016) a 5’C preference was detected among 
the PiAgo1-associating sRNA, which was also confirmed in the samples of this 
study. During infection, an increase was detected among the 5’C nt, however the 
proportional increase of 5’U was larger. Target predictions of the sRNA was 
performed applying psRNATarget (Dai et al., 2018), revealing that the majority of 
all predicted targeting sRNAs had a 5’U preference. Further investigation revealed 
that only about 16% of the sRNA with 5’U in the infected samples were also present 
in the mycelia samples, indicating that there might be a mechanism altering the 5’U 
preference or production upon infection, potentially to invade potato with the 5’U 
sRNA. It has earlier been discovered that sRNA can act as effectors (Weiberg et al., 
2013). The majority of the sRNAs with 5’U were derived from intergenic regions. 

3.2.2 Resistance protein transcripts is one major sRNA target 
Most of the St-sRNAs associated with PiAgo1 were derived from intergenic regions 
(64%). A similar pattern could be distinguished among the 33 St-miRNAs in the 
dataset. However, none were significantly enriched compared to the control sample 
(p-value < 0.05, log2 fold change > 2). Among the target predictions from the sRNAs 
derived from both genomes, groups of kinases, transferases, resistance proteins and 
transporters contained most predictions. Four predicted miRNAs discovered by 
homology-based detection had 21 potential target sites with most potential targets in 
resistance genes, transcription factors, kinases and synthases. Resistance proteins 
recognizes pathogen effector proteins and trigger one part of the innate plant immune 
system, reviewed by Han (2019). In total 638 mRNAs coding for resistance proteins 
were predicted as targets.  
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3.2.3 P. infestans miR8788 induces cleavage of StABH1 mRNA  
Among the Pi-sRNAs with predicted targets in potato, miR8788-3p was detected to 
target an alpha/beta hydrolase-type encoding gene (StABH1). The cleavage of 
StABH1 was confirmed by 5’RACE upon infection, where no cleavage was detected 
in control samples of leaves inoculated with H2O. The cleavage was also confirmed 
with a dual-luciferase reporter system, applied on Agro-infiltrated Nicotiana 
benthamiana leaf materials. PhasiRNAs were predicted applying PhaseTank (Guo 
et al., 2015), and none of the discovered phasiRNAs were predicted to target 
StABH1. 

3.2.4 PITG_10391 is presumably a pseudo-gene 
miR8788 is located in PITG_10391, a predicted gene of unknown function. The gene 
could not be detected at cDNA levels. cDNA surrounding miR8788 was identified. 
The discovered transcript overlapped with an intron so it could not belong to the 
proposed PITG_10391 gene. The transcript was hence concluded to origin from 
either pri- or pre-miR8788. Metazoan pre-miRNAs are ~70 nt long, however plant 
miRNAs can measure up to 900 nt (Bologna & Voinnet, 2014). In mirBASE the 
longest pre-miRNA measure over 2000 nt (Fig. 8). The cDNA transcript surrounding 
miR8788 measured 403 nt with no poly adenosine tail detected at 3’ end of the 
transcript. A polyadenylation tail would have indicated an origin from a pri-miRNA 
so the detected transcript presumably is the pre-miR8788.    
   

 
Figure 8. Number of pre-miRNAs in relation to nucleotide length in miRbase (release 22.1: October 
2018, Kozomara et al., 2019). 
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3.2.5 Tonoplast localization of StABH1  
An StABH1-GFP construct was generated and Agro-infiltrated in N. benthamiana. 
Confocal microscopy located StABH1-GFP to the tonoplast, a membrane 
segregating the vacuole and the cytoplasm. In line with this discovery, domain 
prediction of StABH1 revealed a transmembrane domain upstream the ABH domain. 

StABH1 is conserved in other potato cultivars and orthologs of the gene are 
observed in other plants. When analysing the orthologs of StABH1, a paralog was 
discovered in potato. Through phylogenetic analysis, StABH1 and the paralog were 
located to two different clades among the Solanaceae species, indicating that the 
gene was derived from the same sequence in an early Solanaceae ancestor. 

3.2.6 StABH1 is vital for potato defence  
Transgenic potato lines were produced, over expressing the earlier mentioned 
construct StABH1-GFP. StABH1-GFP transformants infected with P. infestans 
displayed smaller lesions 5 days past inoculation than control plants treated 
correspondingly. Transcript levels of StABH1 were 10-fold lower than StABH1-GFP 
transformants inoculated with H2O. In addition, transgenic potato lines were 
produced, expressing an artificial miRNA (StamiRNA) silencing the StABH1 
transcript. Three days post inoculation, P. infestans lesions covered the whole leaves 
of the StamiRNA lines. DNA content was significantly higher in the StamiRNA lines 
than in control plants. Although StABH1 transcript level already was reduced due to 
the silencing by the artificial miRNA, StABH1 was further reduced by infection. The 
further reduction in StABH1-levels was probably caused by miR8788-3p. To inhibit 
miR8788 in P. infestans, six miRNA target mimic candidate strains were 
constructed. Two strains showed reduced expression of miR8788-3p, enhancing 
StABH1 levels upon infection.  
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3.3 Degradome analysis reveals infection induced targets 
(Paper III) 

The extensive number of sRNA target predictions in Paper II motivated more in-
depth methods to confirm the targets. Degradome sequencing is in simplicity a high-
throughput modification of the 5′-rapid amplification of cDNA ends (5’RACE) 
(German et al., 2008); a standard method for sRNA cleavage confirmation in plants 
(Llave et al., 2002; Wang et al., 2016; Huen et al., 2018). We performed the 
degradome sequencing on material from potato inoculated with H2O or spore 
solutions from the P. infestans transformant harbouring PiAgo1-GFP or the wild 
type strain 88069 (wt). Also, mycelia degradomes from both the earlier mentioned 
strains were sequenced. Three sRNA datasets constructed from the following 
material were compared: i) Potato leaves infected with the P. infestans transformant 
PiAgo1-GFP and mycelia from the same transformant. ii) Potato leaves from a 
transformant harboring StAGO1a-GFP inoculated with H2O and P. infestans (wt). 
iii) Background set with potato leaves inoculated with H2O and P. infestans (wt) and 
P. infestans (wt) mycelia. 

3.3.1 Degradome analysis improvements 
Analysis of the sRNA and degradome data with PAREsnip2 predicted 32,886 
cleavages. Manual plotting of BAM raw data from the degradome in cleavage 
windows revealed that most images lacked the characteristic degradome cleavage 
appearance (Fig. 9). Instead, the images displayed background noise. In earlier 
comparison of PAREsnip2, only evaluating miRNA targets, predictions were 90% 
true (Thody et al., 2018). To separate the true cleavages from the false in this study, 
the R package smartPARE was constructed, based on a deep learning CNN. The 
CNN was implemented based on the R interface to Keras (Chollet, 2015), and was 
designed to comprise cyclical learning rate (CLR) and Bayesian optimization to 
enhance the classification accuracy of the trained model (Snoek et al., 2012; Smith, 
2017). Cross-validation of the final model revealed an accuracy of 100% and a loss 
of 0.10. Evaluation of 65,772 cleavage window images (two replicates of all 32,886 
predicted cleavages) identified 4,073 true cleavages in potato and 702 in P. infestans.  
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Figure 9. Cleavage plot displaying a characteristic appearance of a true cleavage in the centre of the plot 
at the 5’ Watson strand. CS = cleavage site.  

3.3.2 Evaluation of smartPARE 
Apart from the outstanding cross-validation mentioned, seven miRNA targets were 
detected that matched pairs of miRNA/target-gene combinations already confirmed 
in potato or in other species. To further evaluate smartPARE, Arabidopsis miRNA 
and degradome data was applied to PAREsnip2 to generate miRNA cleavage 
predictions. smartPARE was utilized to test the cleavages, confirming that all 
predicted miRNA cleavages in the Arabidopsis dataset were true. 

3.3.3 Infection affected cleavages revealed cascades and dual 
effector-functionality  

To clarify which specific cleavage sites were affected by infection, comparison 
datasets were generated comparing normalized fragment abundance (NFA) between 
infection-based datasets and control datasets. With this approach, resistance genes 
and transcription factors protruded as the largest groups with both increased and 
decreased NFA in potato. As mentioned in Paper I, 638 mRNA coding for resistance 
genes were predicted targets by sRNA associated with PiAgo1. Analysis of the same 
dataset with smartPARE only mRNA from seven resistance genes could be 
confirmed. Expansion of the analysis to also include the background and StAGO1 
datasets, confirmed cleavage of totally 105 resistance involved mRNAs. 

In P. infestans the greatest groups of targets were genes producing ribosomal 
RNA and enzymes. Translocating sRNAs were discovered from both P. infestans 
and potato, where sRNA translocating from P. infestans effectors was a major group. 
This indicates that effectors have evolved to assist infection, both at the protein level 
and at the post-transcriptional level. Potential sRNA cascades were also detected in 
both P. infestans and potato. In P. infestans several potential cascades were located 
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to ribosomal RNAs, whereas in potato, numerous cascades were located to PHAS 
and TAS loci, often related to resistance genes. Furthermore, several cis-regulatory 
sRNAs were detected that were generated from the same loci they targeted. 

3.3.4 Other sRNA might trigger phasiRNA biogenesis 
From the extensive sRNA pool of all the sRNA datasets of the study phasiRNA and 
corresponding PHAS loci were predicted applying PhaseTank (Guo et al., 2015), 
revealing phasiRNA from 114 PHAS loci. Although all potato miRNAs to date 
uploaded to mirBASE were included in the analysis only 17 of the previously 
mentioned PHAS loci were predicted triggered by miRNAs. We found 22 transcripts 
containing PHAS loci targeted by other sources of sRNA (three sRNA from R genes, 
five from other types of protein coding genes, 17 from intergenic sequences and one 
from an mRNA in P. infestans). The diversity of PHAS loci targeting sRNAs 
together with the scarcity of targeting miRNAs is raising the hypothesis that 
phasiRNA biogenesis could be triggered by multiple sources of sRNA. Furthermore, 
only one miRNA among the miRNAs predicted to trigger phasiRNA biogenesis 
were detected in our sRNA datasets from StAGO1a and PiAgo1, indicating that also 
other AGOs might be involved in the triggering of the phasiRNA biogenesis.     

3.3.5 Sequencing depth and noise limits degradome coverage  
Sequencing coverage is dependent on the sequencing depth (Wang et al., 2009a). If 
the depth in RNAseq is too low, detection of rarely occurring transcripts is not 
possible. Theoretically, this should also apply for degradome sequencing because 
depth also varies at the cleavage sites, making the probability to sequence a read 
from a cleavage of high depth higher than a cleavage of low depth. In course of this 
study, several established cleavage sites in potato could not be detected in the raw 
cleavage data.  

The level of noise is a significant factor for cleavage detection difficulties in two 
ways. First, the background noise makes low read cleavages blend in with the 
surrounding noise, making the cleavages indistinguishable from the noise. Second, 
the level of noise minimizes chances of detecting the rare cleavages. As a simple 
example, if half the reads were inferred by noise during sequencing, only half the 
number of reads would represent true data. The probability of detecting the rare 
cleavage would hence only be half the probability of detecting the same event in the 
same sample given there were no noise at all. This example neglects the decreased 
probability to detect rare events among the noise. Degradome sequencing would 
hence benefit from improvements in the protocol that would decrease the level of 
noise in the sample.  
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The main conclusions presented in this thesis are the following: 
 
 The potato genome contains 14 AGOs 

 Potato AGO15 diverged early in evolution from the AGO4 clade 

 PiAgo1 induces 5’U sRNA preference upon infection 

 P. infestans miR8788 induces cleavage of potato mRNA from StABH1 

 StABH1 is a vital gene for potato defence against P. infestans  

 4,073 cleavages are identified in potato and 702 in P. infestans by 

degradome analysis 

 P. infestans effectors might possess dual functionality 

Due to the covid-19 pandemic, a number of laboratory analyses originally planned 
are significantly delayed. 
  

4. Conclusions  
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This thesis presents a series of results opening up for further research in the area of 
sRNA interactions between potato and P. infestans.  
 
The number of potato AGO proteins were clarified and their evolution was 
reconstructed. It would be interesting to further investigate in their structure and 
functions. Protein crystallization can be performed to deduce differences in the AGO 
structures. However, this process is often expensive and time consuming. Protein 
structure prediction tools like AlphaFold are currently developing the field and might 
become an alternative to making crystals (Senior et al., 2020).  
 
sRNA association of one potato AGO and one Ago from P. infestans were examined 
in this thesis. It would be extensive but optimal to pull down sRNA from all sRNA-
associating AGOs of these interacting organisms during infection. This would 
provide the community with an expanding picture of the potato and P. infestans 
sRNA landscape.   
 
RXLR effectors have been shown to enter host vesicles (Petre et al., 2021). 
However, the mechanism of sRNA transport between P. infestans and potato is still 
unknown. For example, investigation of miR8788 transport to potato would be of 
interest. Furthermore, knowledge in the transport of the P. infestans effector derived 
sRNAs targeting in potato could be incorporated in resistance work. If understood 
how these sRNAs enter the potato, methods could be developed to prevent the 
sRNAs from entering.  
 
The degradome analysis revealed extensive numbers of sRNAs potentially involved 
in mRNA silencing during infection. These targets might be individually studied to 
identify the impact and implications of each diverse targeting event. It would be for 
example be interesting to study the cis-regulatory sRNAs, identified to target the 
same loci they were derived from. Moreover, only a minority of all detected PHAS 
loci also had a predicted triggering miRNA. Further work is required to deduce the 
trigger related to the other PHAS loci.   

5. Future perspectives 
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Further optimization of the degradome sequencing protocol would be of great value 
for the sRNA community. Noise reduction through laboratory work would increase 
the percentage of true cleavage reads achieved per sequencing which in turn would 
result in a higher true cleavage site coverage, exposing more rare cleavages. 
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Potato is, with a worldwide production of 368 million tons, the most produced non-
grain food crop in the world. To feed a constantly growing world population it is 
important to get a rich harvest. Hence, breeders attempt to breed potato with higher 
yields and defence mechanisms against pathogens. Potato late blight is the world’s 
worst potato disease causing the world losses estimated to 4.8 billion € yearly, which 
represents approximately 15% of the total yield. Late blight is caused by the water 
mould P. infestans, which effectively adapts to pesticides and host-based resistance. 
Hence, it is important to investigate further in interactions between potato and P. 
infestans. Small RNA (sRNA) are short RNA molecules that, instead of getting 
translated into proteins, bind to Argonaute protein (AGOs) in a complex. The sRNA 
guides the complex to an mRNA, which is silenced by cleavage or blocked to inhibit 
the production of protein. sRNAs are reported to spread between host and pathogen 
to contribute in the infection process. To explore the sRNA world we first needed to 
investigate in the AGO content of potato. Through phylogenetic analysis we 
characterized several AGOs in closely related species to potato and determined the 
number of AGOs in potato to 14. Potato AGO15 was one of the AGOs unique in 
potato and related species. Further, we investigated in the sRNA binding to P. 
infestans AGO1 during infection. We found that a P. infestans sRNA of type 
microRNA entered potato and silenced the expression of a potato gene. The gene 
was deduced very important for potato defence as over-expression of the gene 
resulted in a very resilient plant and down-regulation of the gene resulted in 
increased susceptibility. To further examine sRNA silencing-events in potato and P. 
infestans, degradome sequencing was performed. A degradome sequencing 
comprises sequencing of the pieces of sRNA-cleaved mRNAs. Through 
combination of sRNA- and degradome data with cleavage rules, it is possible to 
deduce which sRNA guides the cleavage of what mRNA. Unfortunately, the 
degradome data contained noise, which forced us to develop a deep learning-based 
computer tool with functionality to distinguish between noise and true cleavages. In 
total, the tool identified almost 5000 cleavages in potato and P. infestans. One of the 
greatest groups of targets was resistance genes, a group we continue to investigate 
in. 
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Potatis är tillsammans med vete, ris och majs en av de fyra mest producerade 
grödorna, sett ur ett världsproduktionsperspektiv. Potatisodlingen har en lång 
tradition i Europa och Nordamerika. I dagsläget ökar den framförallt i Kina men 
även i Afrika ökar produktionsvolymen. Potatis är en gröda som kan användas inom 
många områden förutom livsmedel vilket är en faktor bakom det allt mer ökande 
intresset. Potatis som många andra grödor kan drabbas av många sjukdomsalstrande 
organismer och växtskadegörare. Phytophthora infestas är en algsvamp som orsakar 
sjukdomen bladmögel när blasten angrips och när den har spridit sig till knölarna går 
angreppen under namnet brunröta. En total skördeförlust kan uppkomma om 
knölarna angrips. Två alternativa kontrollmetoder används idag och ofta i 
kombination.  Kemisk bekämpning på blasten för att undvika utveckling av brunröta 
och resistensförädling. Den här patogenen har en speciell organisation av sitt genom 
där det stora antalet gener som utnyttjas för infektion (ca 1000) är insprängda bland 
transposoner som har förmåga att skapa förändringar dvs mutationer. Då miljoner 
sporer kan produceras varje vecka i ett fält sprids mutationerna snabbt i en 
population. Detta är bakgrunden till att denna algsvamp är så framgångsrik 
sjukdomsalstrare. Anpassning till kemisk bekämpning samt nya resistenta 
potatissorter sker mycket snabbt. Vi försöker förstå de bakomliggande molekylära 
mekanismerna vid denna sjukdomsutveckling. En typ av molekyl involverad i bland 
annat växters immunförsvar kallas små RNA (sRNA). sRNA är korta RNA-
molekyler som binder till så kallade Argonaut-proteiner (AGOs) i komplex istället 
för att själva översättas till protein. sRNAt leder komplexet till ett mRNA, vilket 
”tystas” genom klyvning eller blockering och förhindrar bildandet av protein. 
sRNAn har rapporterats kunna spridas mellan växt och patogen för att bidra i 
infektionsprocessen. För att undersöka sRNA-världen behövde vi först undersöka 
vilka sorts AGOs som finns i potatis. Fylogenetisk släktskapsanalys påvisade att 
arter i potatisfamiljen har tappat och skapat nya AGO-gener under evolutionens gång 
samt att dagens potatis har 14 AGOs. En av dessa är AGO15 som är unik för potatis 
och dess nära släktingar. AGO15 är högt uttryckt under angrepp av P. infestans. 
Därefter undersökte vi vilka sRNAs som associeras till P. infestans AGO1 under 
infektion. Vi hittade i den studien ett P. infestans sRNA av typen mikroRNA, som 

Populärvetenskaplig sammanfattning 
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tystar en potatisgen vilket vi i uppföljande analyser kunde bekräfta. Den här genen 
visade sig vara mycket viktig för potatisens försvar då överuttryck av genen ledde 
till en mycket motståndskraftig växt och nedreglering av genen gav upphov till en 
mycket sjuk potatisplanta. För att vidare undersöka sRNA-nedtystningar i potatis 
och P. infestans genomfördes en degradomsekvensering, det vill säga, en 
sekvensering av de mRNA-fragment som klyvs av sRNA. Genom att kombinera 
sRNA- och degradomdata med statistiska klyvningsregler kan man härleda vilket 
sRNA som matchar klyvning av individuella mRNA sekvenser. Den första analysen 
innehöll en hög frekvens falska sRNA-mRNA par. Därför skapade vi ett nytt 
bioinformatiskt verktyg (smartPARE) som kunde särskilja störningar från riktiga 
klyvningar. Verktyget identifierade totalt nästan 5000 klyvningar i olika 
gensekvenser i potatis och P. infestans.  
  



   67 

Like leaves, we fall from branches. Caught by the wind we travel through the air. 
Some cruise with a gust. Some are pushed to the ground. On the way we bump into 
each other. We hitch for some time to later disentangle.  
 
When I started my bachelor studies, it was not my intention to pursue all the way to 
a graduate degree. I did not even intend to work with plants. However, along the 
road the horizon changed. Experiences and encounters made me alter my mind and 
suddenly I was mucking up my hands with soil and filling my nostrils with the 
Phytophthora scent.      
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