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Abstract 

Background: For multivariate data analysis involving only two input matrices (e.g., 
X and Y), the previously published methods for variable influence on projection (e.g., 
 VIPOPLS or  VIPO2PLS) are widely used for variable selection purposes, including (i) variable 
importance assessment, (ii) dimensionality reduction of big data and (iii) interpreta‑
tion enhancement of PLS, OPLS and O2PLS models. For multiblock analysis, the OnPLS 
models find relationships among multiple data matrices (more than two blocks) by 
calculating latent variables; however, a method for improving the interpretation of 
these latent variables (model components) by assessing the importance of the input 
variables was not available up to now.

Results: A method for variable selection in multiblock analysis, called multiblock vari‑
able influence on orthogonal projections (MB‑VIOP) is explained in this paper. MB‑VIOP 
is a model based variable selection method that uses the data matrices, the scores and 
the normalized loadings of an OnPLS model in order to sort the input variables of more 
than two data matrices according to their importance for both simplification and inter‑
pretation of the total multiblock model, and also of the unique, local and global model 
components separately. MB‑VIOP has been tested using three datasets: a synthetic 
four‑block dataset, a real three‑block omics dataset related to plant sciences, and a real 
six‑block dataset related to the food industry.

Conclusions: We provide evidence for the usefulness and reliability of MB‑VIOP by 
means of three examples (one synthetic and two real‑world cases). MB‑VIOP assesses 
in a trustable and efficient way the importance of both isolated and ranges of variables 
in any type of data. MB‑VIOP connects the input variables of different data matrices 
according to their relevance for the interpretation of each latent variable, yielding 
enhanced interpretability for each OnPLS model component. Besides, MB‑VIOP can 
deal with strong overlapping of types of variation, as well as with many data blocks 
with very different dimensionality. The ability of MB‑VIOP for generating dimensionality 
reduced models with high interpretability makes this method ideal for big data mining, 
multi‑omics data integration and any study that requires exploration and interpretation 
of large streams of data.
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Background
Multivariate data analysis can involve thousands of input (manifest) variables in just one 
data block. These variables may contain latent information that can help (i) to extract 
inferences and explain phenomena and relationships that might not be obvious from 
the experimental results obtained in the laboratory, (ii) to get a more meaningful and 
visual interpretation of the data, (iii) to optimize processes in both industry and research 
environments, and (iv) to understand the holistic pattern in complex biological sys-
tems where different parts interact by underlying connections. Compared to the analy-
sis of a single dataset, the analysis of a large number of datasets (blocks) implies that 
the number of variables and their underlying inter-connections grow very much indeed; 
at this point, reducing the number of variables involved in the multiblock data analysis 
becomes a meaningful and much needed strategy.

Interest in multiblock approaches has risen in psychology [1–3], chemistry [4–7], biol-
ogy [8, 9] and sensory science [10, 11], among other; an interest mainly motivated by the 
goal of extracting the maximum useful information from two or more datasets interre-
lated among themselves. Early multiblock methods based on projections and latent vari-
ables, e.g. partial least squares (PLS) [12, 13], allowed the analysis of a limited number 
(usually two or three) of data matrices, but without taking full advantage of how the data 
blocks were connected. Two commonly used multiblock approaches based on principal 
components were consensus principal component analysis (CPCA) [14, 15] and hier-
archical principal component analysis (HPCA) [16], whose algorithms are very similar, 
differing only in the normalization steps [5]. For PLS applied to multiblock analysis, it is 
worth mentioning hierarchical partial least squares (HPLS) [14] and multiblock partial 
least squares (MBPLS) [17], which are similar but with two main differences: (i) the nor-
malization is done on different model parameters, and (ii) the regression of the Y-block 
is done on different matrices [5]. Some interesting applications of multiblock-PLS were 
reported by Wise and Gallagher in 1996 [18], and a better understanding of the underly-
ing patterns in latent models was attempted by Kourti et al. [4] using multiblock multi-
way PLS for analyzing batch polymerization processes in 1995. Although many different 
multiblock methods based in different criteria and principles can be found in the lit-
erature (e.g. regularized generalized canonical correlation analysis, RGCCA [19]), this 
paper will mainly keep its scope inside methods based on partial least squares regression 
[20–30], such as sparse partial least squares presented by Le Cao et  al. [31] (and fur-
ther implemented by Rohart et al. [32]). Multiblock methods based on orthogonal pro-
jections have received interest within life-sciences provided the model structure it can 
decompose the data blocks into; two examples of this are the multi-omics factor analysis 
(MOFA) presented by Argelaguet et  al. in 2018 [33] and the N-block orthogonal pro-
jections to latent structures (OnPLS) method presented by Löfstedt and Trygg in 2011 
[34]. The latter can be used to provide some input parameters for improved model inter-
pretation using MB-VIOP. From a methodology perspective, OnPLS provides means to 
take full advantage of the shared and unique variations of more than two data blocks. 
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Examples of alternative methods with different objective functions include JIVE (joint 
and individual variation explained) [35], GSVD (generalized singular value decomposi-
tion) [36], and msPLS (multiset sparse partial least squares path modelling) [37].

The numerous variable selection methods for multivariate analysis of one data 
matrix [38–47] cannot handle the complexity and the underlying patterns of a large 
number of datasets; therefore, data integration and multiblock variable selection 
methods are needed. An important consideration is to be aware of the multiset struc-
ture since the integration of multiple datasets can be performed in different ways, 
and different methods may have specific requirements on this aspect. For instance, 
OnPLS followed by MB-VIOP has a similar integration framework than the N-inte-
gration of block sparse PLS requiring the same number of samples (N) for all data 
matrices, whilst mint sparse PLS has a K-integration (also called P-integration in the 
literature) framework which requires the same number of variables (K) instead of the 
same number of samples [32]. Besides, some methods are more suitable for improv-
ing model interpretability, whilst other are more suitable for improving predictability; 
hereby, the importance of selecting the appropriate variable selection method accord-
ing to the purpose of the data analysis, an example of this was shown by compar-
ing the obtained root mean square error of prediction (RMSEP) using two different 
variable selection methods on the Marzipan dataset in Galindo-Prieto et al. [48]. The 
fact that variable influence on projection (VIP) approaches for OPLS  (VIPOPLS) [39], 
O2PLS  (VIPO2PLS) [48] and OnPLS (MB-VIOP) base their calculations on the product 
between the normalized loadings (p) and the sum of squares of X and Y leads to an 
enhanced model interpretability that other methods cannot achieve. However, if the 
aim of the analysis is to achieve enhanced model predictability, other methods such 
as sparse PLS [31] (that uses the Q2 parameter as criterion to choose the number 
of model components, and the root means square error of prediction criterion for 
evaluation of the predictive power of each Y variable between the original non penal-
ized PLS models and the sparse PLS model) may be more suitable. We include a com-
parison for unsupervised multiblock variable selection using the sparse PLS method 
for multiblock cases (block-sPLS) [32] and MB-VIOP in the Results and Discussion 
section.

In addition, variable selection aiming to enhance the interpretation of latent variables 
containing uncorrelated (orthogonal) variation can be challenging. An example of an 
approach able to deal with multiple datasets is the sparse generalized canonical correla-
tion analysis (SGCCA) for variable selection that combines RGCCA with the L1-penalty 
[49]; however, to deal also with orthogonalization in an analysis of multiple datasets, 
methods such as  VIPO2PLS (also called O2PLS-VIP) [48], MOFA [33], or the MB-VIOP 
explained here are more suitable options. We include a comparison for unsupervised 
integrated feature selection between MOFA and MB-VIOP in the Results and Discus-
sion section.

It is worth mentioning that for one PLS component, loadings or weights can be used 
for determining which variables are more influential [50], but this has limited use. There 
is a need for a diagnostic giving the described variable influence in a PLS model, or any 
of its derived orthogonal versions, using more than 1 component. All VIP diagnostics 
are constructed for that purpose.
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A multiblock variable selection method called multiblock variable influence on 
orthogonal projections (MB-VIOP) for OnPLS models was developed as part of previ-
ous thesis work [51] and is now published and explained in this paper. The mathemat-
ical principles of MB-VIOP relate to those used in  VIPOPLS (a.k.a., OPLS-VIP) [39, 44] 
and  VIPO2PLS (a.k.a., O2PLS-VIP) [48]. However, the cornerstone of MB-VIOP is its 
inter-block connectivity with emphasis on the variable influence, making MB-VIOP 
substantially different (i) from its two predecessors  VIPOPLS and  VIPO2PLS in terms of 
connectivity, and also (ii) from OnPLS regression [34] since the normalized OnPLS 
p loadings cannot provide by themselves a reliable and precise variable importance 
assessment while this is easily achieved by MB-VIOP by taking these normalized 
loadings as starting point for the variable importance assessment (as it will be shown 
in the synthetic example). MB-VIOP allows the selection of the most important vari-
ables for enhanced interpretation of OnPLS models when three or more data blocks 
are simultaneously modelled. It is worth mentioning that MB-VIOP is also applicable 
to O2PLS® models that involve only two data blocks. Furthermore, MB-VIOP pro-
vides four MB-VIOP profiles (total, global, local and unique) to help answer questions 
such as:

a. Total MB-VIOP profile: Which are the variables that are more relevant for the inter-
pretation of the whole model? Which variables could be eliminated from the model 
in order to improve it?

b. Global MB-VIOP profile: Which variables help to interpret the variation that is com-
mon to all the data blocks involved in the model?

c. Local MB-VIOP profile: Which variables are important to interpret the variation that 
is common to some of (but not all) the blocks? And how do these variables connect 
among the data blocks to explain the information shared by them (i.e., the variation 
related to the same component or latent variable)?

d. Unique MB-VIOP profile: Which are the variables that contain unique information 
that can be only found in one specific data block? And which inferences related to 
the data can be elucidated from the selected variables in the unique MB-VIOP pro-
files?

The MB-VIOP algorithm has been tested by using three multiblock datasets, (i) a 
simulated four-block dataset called SD16_235GLU, (ii) a real three-block omics data-
set here called Hybrid Aspen, and (iii) a real six-block industrial dataset called Mar-
zipan. The three datasets are described in detail in sections  "Synthetic dataset (four 
blocks)"–"Metabolomics, proteomics and transcriptomics data of hybrid aspen (three 
blocks)".

Results and discussion
The results and the discussion aim to validate the multiblock variable influence on 
orthogonal projections (MB-VIOP) method for its application in OnPLS models 
(extended interpretations related to biology or spectroscopy are out of the scope of 
this paper). Thus, an OnPLS model followed by an MB-VIOP variable selection will 
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be performed in all multiblock analyses. The input variables will be sorted accord-
ing to their importance for the entire multiblock model (i.e., the total variation), but 
also for each model component separately (i.e., the unique, the local and the global 
variations). Figure 1 shows the different types of variation present in a generic OnPLS 
model.

Description of the OnPLS models

For the synthetic four-block SD16_235GLU data, an OnPLS model was built in MAT-
LAB. The OnPLS algorithm found two global components (in black and blue in Fig. 2), 
three local components (in cyan, orange and green in Fig.  2), and three unique com-
ponents (in pink color in Fig.  2); which points to a conservative, but well conducted, 
modelling by the OnPLS algorithm. Only two unique components included in the design 
of the synthetic data were not found; i.e., one unique component in block D1 (which rep-
resented a 14.3% of the variation of D1) and one unique component in block D4 (which 
contained a 20% of the variation of D4). The rest of the variation was extracted by the 
model (see Table 1); the percentage of total variation explained by the model was 85.8% 
for D1, 100% for D2, 100% for D3 and 80% for D4.

For the Marzipan data, the six data matrices were used to generate an OnPLS model, 
which yielded two global components and two unique components (the percentages 
of explained variation per component and per block are shown in Table 2). The model 
was able to explain almost all variation; more specifically, a 96.2% of total variation for 
the NIRS1 block, a 93.8% for the NIRS2 block, a 95.8% for the INFRAPROVER block, 

Fig. 1 Venn diagram that shows the three types of variable influences in MB‑VIOP according to the type 
of variation (global, local or unique) that they explain. The three data blocks are represented by three big 
circles (yellow for D1, blue for D2, red for D3). There are three different types of zones according to how the 
information is shared (i.e. globally, locally or uniquely) by the variables among the blocks. Variables that 
belong to D1 are represented by stars, variables of D2 by squares, and variables of D3 by circles. Variables filled 
in white are important, whereas the ones filled in black are not. Variables labeled with an e are special cases. A 
further explanation is provided in section "Methods"
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a 97.0% for the BOMEM block, a 99.9% for the INFRATECH block and a 75.5% for the 
IR block. Since all blocks are related to NIR/IR spectroscopy, it is not surprising that 
the OnPLS algorithm found two global components. The Marzipan data mostly has 

Fig. 2 MB‑VIOP results for the synthetic data set SD16_235GLU. An overview of the 4‑block (D1–D4) system 
and its interactions is shown at the top right of the figure. The normalized loadings directly extracted from 
the synthetic dataset (not from the model) are provided at the top left. For the whole figure, the color code 
is indicated in the legend (pink is used for unique, black and blue for global, cyan (D1–D4) and orange 
(D1–D2) for local information related to two‑block interactions, and green for local information related to 
the three‑block interaction (D2–D3–D4)). The MB‑VIOP plots are distributed by columns according to type 
of interpreted variation, and by rows according to data block. The important variables are the ones with 
MB‑VIOP values above the red line (MB‑VIOP > 1). A more detailed interpretation of the results of this figure is 
given in section "Evidence of the reliability and the efficiency of MB‑VIOP using synthetic data"

Table 1 Values of explained variation per data block (D1–D4) and per component for the OnPLS 
model of the SD16_235GLU dataset

Values are given as percentages (%), a stands for component, g for global, l for local, and u for unique

SD16_235GLU MODEL

Percentage of explained variation per data block and per component

Data block ag1 ag2 al1 al2 al3 au1 au2 au3

D1 14.3 14.3 14.3 14.3 14.3 14.3

D2 25.0 25.0 25.0 25.0

D3 25.0 25.0 25.0 25.0

D4 20.0 20.0 20.0 20.0
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predictive (joint) variation, which is absolutely dominant over the orthogonal (unique) 
variation [48].

For the Hybrid Aspen data, an OnPLS model was built obtaining four global com-
ponents, two local components (one shared between the transcript and the metabolite 
data, and another shared between the transcript and the protein data), and two unique 
components (one for the transcriptomics block, and another for the metabolomics 
block). The OnPLS model explained 75.0% of the total variation for the transcriptomics 
data block (14,738 variables), 55.0% for the proteomics data block (3132 variables), and 
58.3% for the metabolomics data block (281 variables). The decomposition of explained 
variation for the different types of variation is shown in Table 3.

Evidence of the reliability and the efficiency of MB‑VIOP using synthetic data

For the variation contained in the local component that D1 shares with D4, MB-VIOP 
selected as relevant variables 10–18, represented as a peak marked in cyan in the local 
MB-VIOP plot for D1 (Fig. 2); in the same local MB-VIOP plot, variables 35–47 (marked 
in orange) were considered important for explaining the variation that D1 shares with 
D2. The unique MB-VIOP plot for D1 pointed at variables 7–19 as the important ones 
for explaining the unique variation of D1; interestingly, variable 13 stood out from the 
rest of variables.

By comparing the MB-VIOP variable importance results to the normalized load-
ings (Fig. 2), it can be seen that the MB-VIOP method is very reliable finding the exact 

Table 2 Values of explained variation per data block and per component for the OnPLS model of 
the Marzipan dataset

Values are given as percentages (%), a stands for component, g for global, and u for unique

Marzipan model

Percentage of explained variation per data block and per model component

Data block ag1 ag2 au1 au2

NIRS1 76.3 11.1 8.8

NIRS2 90.5 3.3

INFRAPROVER 84.7 11.1

BOMEM 94.2 2.8

INFRATECH 99.2 0.7

IR 41.5 26.9 7.1

Table 3 Values of explained variation per data block and per component for the OnPLS model of 
the Hybrid Aspen dataset

Values are given as percentages (%), a stands for component, g for global, l for local, and u for unique

Hybrid aspen model

Percentage of explained variation per data block and per component

Data block ag1 ag2 ag3 ag4 al1 al2 au1 au2

Transcriptomics 11.9 30.9 12.0 2.4 4.4 5.3 8.1

Proteomics 17.8 14.4 10.6 4.0 8.2

Metabolomics 12.3 14.2 7.8 6.1 5.7 12.3
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variables that are important for the different types of variation of D1; furthermore, MB-
VIOP assesses the correct proportion of importance for each variable, which cannot 
be achieved by the normalized loadings plot. Hence, looking at variable 13 in the nor-
malized loadings plot, it can be seen that this variable was related to the two unique 
components of D1 (explaining 28.6% of variation), whereas the other variables (7–12 
and 14–19) linked to the unique variation of D1 were only related to one of the unique 
components (explaining only 14.3% of the variation); however, the normalized loading 
plot did not highlight such an important variable (no. 13) in any way. Auspiciously, MB-
VIOP highlighted the importance of variable 13 (marked in dark pink color in Fig. 2) as 
an intense peak standing out from the crowd; this variable was also depicted in the total 
MB-VIOP plot for D1. Therefore, the total and the unique MB-VIOP plots for D1 evi-
dence the efficiency of MB-VIOP algorithm to not lose track of any variable, even if it is 
a lonely variable.

The MB-VIOP results obtained for block D2 are encouraging, since, even with a high 
overlapping of the normalized loadings (profiles), the MB-VIOP algorithm identified the 
variables that were relevant for each type of variation (see Fig. 2).

For block D3, the variables considered important in the global MB-VIOP plot (Fig. 2) 
contributed to explain a 50% of the total variation of the OnPLS model, whilst the vari-
ables related to explain other types of variation did not overpass the 25%; therefore, the 
variables related to the information globally shared by all the data matrices were selected 
as the most important ones for the whole model, leaving out the variables related to 
information that was local or unique. The unique variation of D3 (25% of the total varia-
tion) was explained by the large range of variables 15–74. For an overview assessment of 
the variable importance, the total MB-VIOP plot pointed at variables 33–52 and 75–89 
as the most relevant ones. Interestingly, the total MB-VIOP plot emphasizes the effi-
ciency of MB-VIOP giving the proportionally fair importance to the variables according 
to the amount of information that they help to explain in the OnPLS model; the absence 
of the large amount of variables which were relevant for the unique variation (i.e., vari-
ables 15–74 of  D3) enlightened another achievement of the MB-VIOP algorithm: it does 
not matter if there is an outsize number of variables that are important for a specific 
type of variation, in case that their importance for interpreting/explaining variation in 
the whole model is not significant enough, they will not be considered relevant variables 
in the total MB-VIOP plot. The latter fact demonstrates that MB-VIOP properly sorts 
the variables according to their importance for explaining a specific type of variation.

Enhancement of the interpretability in an OnPLS model for the Marzipan case by using 

MB‑VIOP

The MB-VIOP results (see Fig.  3) obtained for the OnPLS model generated using the 
Marzipan dataset (previously described in section "Description of the OnPLS models") 
helped to better interpret the pattern of information overlapping between the six data 
matrices (that would be a painstaking task if it was done by using the normalized load-
ings provided in Fig. 3). There is not significant amount of local variation in the Mar-
zipan dataset, which explains the fact that no important variables for explaining local 
variation were selected by MB-VIOP. In addition, due to the extreme dominance of 
the joint variation over the unique variation, the MB-VIOP results for the global latent 
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Fig. 3 MB‑VIOP results for the marzipan dataset. The normalized loadings (for all the blocks and components) 
obtained from the OnPLS model are provided on the top. The unique, global and total MB‑VIOP plots are also 
provided, including the threshold line at MB‑VIOP = 1. The variables determined as relevant by the MB‑VIOP 
algorithm have been annotated in the unique MB‑VIOP plot for the data block NIRS1 according to the 
organic compound of marzipan and/or cocoa that they help to explain
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variables were very similar to the MB-VIOP results for the total variation, as can be seen 
by comparison of the plots in Fig. 3.

Giving an overall look at the MB-VIOP plots of Fig. 3, the manifest variables selected 
as relevant for the two global latent variables (global model components) seemed to 
relate to (i) the sugar content (majorly sucrose, but also small amounts of invert sugar 
and glucose syrup), and (ii) the almonds and apricot kernels. The unique MB-VIOP plots 
were related to special and unique characteristics of some marzipan samples and/or 
some spectrometers, as it will be explained in this section.

Block NIRS1 contains measurements done using an instrument that was able to cover, 
not only the NIR region, but also the visual light range (400–800 nm). Thanks to this, 
differences in color could be detected for the marzipan samples. Interestingly, MB-VIOP 
determined that some variables corresponding to the range between 450 and 800  nm 
(visual light region) were relevant for explaining variation only detectable in NIRS1 (i.e., 
unique for this data block). These important variables relate to the cocoa that was added 
to some marzipan samples (they had a more brownish color). Besides, by looking at the 
whole unique MB-VIOP plot (from 450 to 2448 nm) in Fig. 3, it can be seen that, aside 
from the variables with high MB-VIOP values detected in the visual light range, there 
were also important variables located at 1232–1396 nm, 1428–1506 nm, 1638–1682 nm, 
1818–1872 nm, and 1902–1986 nm. The cocoa NIR spectrum has been described in the 
literature [52], thus by matching of some of the important wavelengths found by MB-
VIOP and the known composition of the cocoa, it is possible to realize the enhanced 
and easier model interpretation achieved by using MB-VIOP (which is not possible by 
using the OnPLS model loadings provided in Fig. 3). The wavelengths at 1478–1506 nm 
are important to uncover the OnPLS model variation related to the first overtones of the 
C-H groups of the cocoa, and variables at 1902–1986 nm explain the variation related to 
the second overtones of the C = O groups of the cocoa (see Fig. 3).

The Infratec MB-VIOP revealed three clear regions of important variables located at 
960–972 nm, 978–990 nm and 996–1002 nm (see MB-VIOP plots for Infratec in Fig. 3). 
These variables are selected as relevant by the MB-VIOP algorithm because they are 
related to the carbohydrates, proteins, water and lipids (i.e., the second overtones of 
O–H and N–H stretching vibrations, and the third overtones of C-H stretching vibra-
tions). These substances are common to all the marzipan samples, which explains that 
these wavelengths (variables) were highlighted in the global MB-VIOP plot. It is worth 
noticing that these three wavelength regions can be also seen (albeit not so clearly) in 
the MB-VIOP plots of NIRS2.

As in the  VIPO2PLS analysis of Marzipan data published in 2017 [48], the multiblock 
model generated for the VIP analysis is only between spectra, not between spectra and 
concentrations; which can be unusual, but also useful either for technical reasons (e.g., 
to compare spectrometers) or for spectroscopic reasons (e.g., to see the correspond-
ence between bands in IR and bands in NIR – overtones –). The MB-VIOP plots for 
NIRS1 and Bomem (Fig.  3) were very similar because of the characteristics that the 
NIR spectrometers had in common, however MB-VIOP found some differences in 
the variable importance that could (maybe) be attributable to the different optical 
principles of the two instruments (dispersive scanning for the NIRS1, and FT inter-
ferometer for the Bomem). On the other hand, the IR data block contained relevant 
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variables (wavenumbers) that explained information that is unique for this block, due 
to the differences in type of spectroscopy (IR/NIR) and instrumentation (spectrometer 
components).

Some very intense peaks in the MB-VIOP plots correspond to variables that are impor-
tant for some major marzipan compounds. For example, the peak around 1440 nm in 
the MB-VIOP plot for NIRS2 could be related to the O–H bonds, and the peak around 
2100 nm in the MB-VIOP plot for Bomem could relate to the protein amino acids.

Selection of the most relevant variables in systems biology multiblock analysis 

for enhanced model interpretation and dimensionality reduction

For the Hybrid Aspen data, the variables were sorted by importance using MB-VIOP, 
and afterwards, this information was used for achievement of enhanced interpretabil-
ity (higher percentage of explained model variation) and reduced model dimensions 
(less variables). The purpose was not only to validate MB-VIOP as a method for vari-
able importance sorting, but also for multiblock variable selection. To this end, two 
MB-VIOP variable selections (both of them from the original model, i.e. not sequen-
tially done) were carried out, one choosing the variables with MB-VIOP values over 
the default threshold (MB-VIOP ≥ 1), and another variable selection with a more con-
servative criterion (i.e., MB-VIOP ≥ 0.5). Afterwards, two new OnPLS models were gen-
erated using only the variables selected by MB-VIOP; the number of variables used in 
the original and the two new reduced multiblock models, as well as the percentages of 
total explained variation, are summarized in Table  4. We want to emphasize that the 
MB-VIOP profile used for selecting the variables was the total MB-VIOP because the 
goal was to improve the total model interpretation without focusing on any concrete 
part of the model. Nevertheless, it would be possible to select the variables that are more 
convenient for improving the interpretation of a specific type of variation (e.g., the local 
variation) by using its corresponding MB-VIOP profile (e.g., the local MB-VIOP) and 
building a new model with this selected subset of variables; hereby, MB-VIOP is a vari-
able selection method à la carte according to the part of the model (total, global, local or 

Table 4 Summary of the number of variables used for the OnPLS models (the original and the two 
reduced models) and the percentages of explained total variation for the Hybrid Aspen data

The information has been distributed in three areas according to data block (transcriptomics, proteomics and 
metabolomics), and each area is divided in three rows: one for the original model, one for the reduced model using the 
variables with total MB‑VIOP ≥ 0.5, and one for the reduced model using the variables with total MB‑VIOP ≥ 1

Data OnPLS models Number of variables used Explained total 
variation (%)

Transcript Original 14,738 75.0

Total MB‑VIOP ≥ 0.5 13,127 80.1

Total MB‑VIOP ≥ 1.0 4452 85.2

Protein Original 3132 55.0

Total MB‑VIOP ≥ 0.5 2186 67.3

Total MB‑VIOP ≥ 1.0 683 71.6

Metabolite Original 281 58.3

Total MB‑VIOP ≥ 0.5 232 65.5

Total MB‑VIOP ≥ 1.0 81 76.2
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unique) targeted to be improved. In order to show possible sensitivity differences among 
MB-VIOP profiles due to threshold choice (i.e., MB-VIOP ≥ 1 or MB-VIOP ≥ 0.5), the 
number of selected variables is shown in Additional file  1: Table  S1 in the Support-
ing Information and as bar plots in Fig.  4 for each type of variation and each thresh-
old choice. From Fig. 4, it does not seem to exist significant differences between total 
and global profiles in relation to the number of selected variables. However, the number 
of variables selected when using the threshold MB-VIOP ≥ 1 (blue bars in Fig.  4) was 
clearly lower than when using the threshold MB-VIOP ≥ 0.5 (green bars in Fig. 4). For 
the unique variance, the reduction of number of selected variables using MB-VIOP ≥ 0.5 
was substantially more significant than for the joint variation types.

The blocks of the original OnPLS model contained 14,738 microarray elements (vari-
ables of the transcriptomics data block) that explained the 75.0% of total variation, 3132 
extracted chromatographic peaks (variables of the proteomics data block) that explained 
the 55.0% of total variation, and 281 extracted chromatographic peaks (variables of the 
metabolomics data block) that explained the 58.3% of total variation. After performing a 
conservative (i.e., with threshold at 0.5 a.u.) MB-VIOP selection of variables, a subset of 
variables was used for building a new multiblock model obtaining an increase of model 
interpretability; as shown in Table  4, 13,127 variables from the transcriptomics data 
explained the 80.1% of total variation, 2186 variables from the proteomics data explained 
the 67.3%, and 232 variables from the metabolomics data explained the 65.5%. The sec-
ond new multiblock model with reduced dimensions (using MB-VIOP ≥ 1 as criterion 
for selecting the subset of variables) had substantially less variables (approximately, 1/3 
of the original ones) and, at the same time, increased the interpretability (measured as 
percentage of explained total variation in Table  4); more specifically, only 4452 tran-
script variables were needed to explain the 85.2% of total variation, 683 protein variables 
explained the 71.6%, and 81 metabolite variables the 76.2%. Due to the latter improve-
ment, a deep exploration of the forty most important variables of each block, for inter-
preting the total multiblock model, was carried out. The identification of these variables 
is provided in Additional file 1: Table S2 for each block.

The variables with global MB-VIOP values above the threshold (Additional file  1: 
Table S3) are important for explaining the variation related to common characteristics 
of the growth processes of the plants, as well as both the genotype and the internode 
effects (common to all data blocks). Some of the most important variables to explain this 

Fig. 4 Three plots corresponding to each Hybrid Aspen dataset grouped by type of variation. The number of 
variables before variable selection is represented in red, the number of variables after MB‑VIOP ≥ 0.5 selection 
is represented in green, and the number of variables after MB‑VIOP ≥ 1 selection is represented in blue
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latent information were PU07944 from the transcript data, the protein variables 966 and 
1071, and Win022_C04 from the metabolite data.

MB-VIOP determined that the PU06931 was the most important microarray element 
for explaining the locally joint information, related to lignin biosynthesis, between the 
transcript and the protein data, with a local MB-VIOP value of 8.05 a.u. (Additional 
file  1: Table  S4), followed by PU07326 and PU06434; whilst for explaining the locally 
shared information with the metabolite data, the most important microarray elements 
were PU00630 (4.50 a.u.), PU03044 and PU22639. Connecting to, variable 966 (local 
MB-VIOP value equal to 9.76 a.u.), followed by variables 2121 and 1115, were the most 
important protein variables for explaining the variation locally shared with the tran-
scriptomics block. In the metabolite space, variable Win031_C01 (5.39 a.u.), followed by 
Win021_C05 and Win034_C06, were selected as the most relevant metabolite variables 
for explaining the local variation shared with the transcript data.

The housekeeping-like events, and the differences between the instrumentation used 
to characterize the data in the three different platforms, were uncovered by the vari-
ables listed in Additional file 1: Table S5 (i.e., the variables with higher values of unique 
MB-VIOP).

In order to explore the possibility of finding variables that could explain more than 
one type of variation (i.e., the special cases illustrated in Fig. 1), it is worth comparing 
the tables and plots for the unique, local and global MB-VIOP values. For example, in 
this biological case, the variable Win021_C05 of the metabolomics data block helps to 
explain variation that is globally shared by all the data blocks, and also contributes to 
explain variation that is locally shared only between the metabolomics and the tran-
scriptomics data blocks. Therefore, one variable can contain information related to more 
than one type of variation, and MB-VIOP is able to detect and distinguish this feature.

Comparison of MB‑VIOP to MOFA and block‑sPLS

Two unsupervised variable selection methods, i.e. block sparse partial least squares 
(block-sPLS) and multi-omics factor analysis (MOFA), have been compared to multi-
block variable influence on orthogonal projections (MB-VIOP). All three methods have 
been run in symmetric mode, i.e. giving the same importance to all data blocks and con-
sidering all of them as descriptor matrices. The results have been evaluated and we pre-
sent the highlighted remarks of the comparison in this section. Further details about the 
procedures and calculations are described in section "Determination of variable impor-
tance in block-sPLS and MOFA for comparison to MB-VIOP variable selection".

MB‑VIOP and MOFA comparison for synthetic data and real omics data

In order to compare the performance of MB-VIOP and MOFA, an 8-component MOFA 
model was generated yielding a percentage of total explained variation of 54.5% for 
D1, 100% for D2, 100% for D3 and 80% for D4; i.e., similar to the percentage of total 
explained variation obtained by MB-VIOP (85.8% for D1, 100% for D2, 100% for D3 and 
80% for D4). The distribution of the model components had similarities and differences 
in relation to the one obtained by MB-VIOP. Whilst MB-VIOP found two global com-
ponents and three local components as expected from the design of the synthetic data, 
MOFA found 3 global components and three local components (see Additional file  1: 
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Figure S1). For the local variation, both methods found the local components shared by 
D2-D3-D4 and D1-D2, but yielded different local assessments for the other latent vari-
ables. There were also differences in the discovering of the unique components; however, 
both methods found a unique component for D1. In general, it seems that MB-VIOP 
assessed better the explained variation per model component than MOFA.

Interestingly, the results of the variable selection performed by MOFA shared many 
similarities with MB-VIOP. When looking at the absolute MOFA loadings for the first 
global component, most of the variables selected by MOFA for the four data blocks 
were the same variables selected by MB-VIOP (marked in purple in Fig.  2). The sec-
ond and third components of MOFA contained a mix in the selection of the variables 
that seemed to partially match the variables selected by MB-VIOP for the second global 
component (marked in grey in Fig. 2). There was also similarity in the selected variables 
from both methods when looking at the explained local variation, e.g. the same vari-
ables were selected as important in the absolute loadings assessment for the fourth com-
ponent of MOFA and the local D1-D2 component of MB-VIOP (marked in orange in 
Fig. 2). The evaluation of the variable selection for the unique components found by both 
methods, i.e. for the unique components of D1 (in pink in Fig. 2), also showed a similar 
variable importance assessment; however, MOFA did not highlight variable 13 that helps 
to explain two unique components (as explained in section  "Evidence of the reliability 
and the efficiency of MB-VIOP using synthetic data") over the variables that were only 
helping to interpret one unique component. As an example of how the assessment has 
been visualized in MOFA, the absolute loading plot from MOFA for the latter example 
has been included as Additional file 1: Figure S2.

For the Hybrid Aspen case, MOFA yielded 8 model components (see Additional file 1: 
Figure S3). The total variation explained by the model was 24.6% for metabolomics, 
29.5% for proteomics and 69.2% for transcriptomics. The MOFA algorithm found two 
global components and two unique components for the transcriptomics and the pro-
teomics data. It also uncovered local variation shared by the transcriptomics and the 
metabolomics data. However, the components distribution seems difficult to assess by 
looking at Additional file 1: Figure S3 due to the low values of the R2 parameter for some 
cases.

The variable importance assessment performed using MOFA shared some simi-
larities with the one performed using MB-VIOP. For instance, the metabolites ranked 
as the most important ones in the MOFA model (e.g. Win022_C04, Win020_C03, 
Win009_C09, Win034_C06, Win031_C01 or Win021_C05) were selected as important 
top variables to explain global variation in both MB-VIOP (Additional file 1: Table S3 
and section  "Selection of the most relevant variables in systems biology multiblock 
analysis for enhanced model interpretation and dimensionality reduction") and MOFA 
(Additional file 1: Figures S4–S5). The variable selection for the transcripts and the pro-
teins was also consistent for both MB-VIOP and MOFA; e.g. top selected transcripts for 
explaining the unique variation in MB-VIOP (such as PU27903 or PU28218) were also 
determined as important by MOFA, and proteins such as 847 or 270 were also selected 
in both methods. For the total models, the same 2239 transcripts, 175 proteins and 32 
metabolites were selected as important features by both methods.
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MB‑VIOP and block‑sPLS comparison for the Hybrid Aspen data

For the comparison between the MB-VIOP and the block-sPLS methods, the number of 
variables used in the original and reduced models and the total explained variation are 
summarized in Tables 4–5. Both methods, as specified in section "Determination of var-
iable importance in block-sPLS and MOFA for comparison to MB-VIOP variable selec-
tion", used similar specifications (such as the number of components for explaining the 
predictive variation or the constraint/penalization degree). The percentages of explained 
variation obtained by the block-sPLS algorithm were inferior to the ones obtained by 
MB-VIOP. MB-VIOP was able to explain more total variance than block-sPLS. Fur-
thermore, when generating the models with a reduced number of variables, MB-VIOP 
improved the percentage of explained variation by using only the subset of MB-VIOP 
selected variables for the new models instead of all original variables. On the contrary, 
the reduced models generated by block-sPLS explained less variance than the original 
block-sPLS model.

The overlap between the selected variables by MB-VIOP and block-sPLS was assessed. 
For the moderately constrained (threshold of 0.5 a.u.) reduced MB-VIOP and block-
sPLS models, the same 4257 transcripts, 559 proteins, and 75 metabolites, were selected 
by both methods as important. For the normally constrained (threshold of 1.0 a.u.) 
reduced MB-VIOP and block-sPLS models, the same 2053 transcripts, 207 proteins, 
and 33 metabolites, were selected by both methods as important. Considering the total 
number of variables selected by both methods (see Tables 4–5), this seems a good over-
lap for the variable selection performed using MB-VIOP and block-sPLS. Besides, some 
variables mentioned in section Selection of the most relevant variables in systems biol-
ogy multiblock analysis for enhanced model interpretation and dimensionality reduc-
tion were selected by both methods as important for interpreting the joint variation. For 
example, both MB-VIOP and block-sPLS selected Win022_C04 as the most important 
variable in the metabolomics data, and proteins such as 1071, or transcripts such as 
PU07944, we selected for the proteomics and the transcriptomics data respectively.

Table 5 Summary of the number of variables used for the block‑sPLS models (the original and the 
two reduced models) and the percentages of explained total variation for the Hybrid Aspen data

The information has been distributed in three areas according to data block (transcriptomics, proteomics and 
metabolomics), and each area is divided in three rows: one for the original model, one for the reduced model using a 
constraint degree similar to the total MB‑VIOP ≥ 0.5, and one for the reduced model using a constraint degree similar to the 
total MB‑VIOP ≥ 1

Data Block‑sPLS models Number of 
variables used

Explained total 
variation (%)

Transcript Original block‑sPLS 14,738 68.0

Block‑sPLS comparable to MB‑VIOPtot ≥ 0.5 model 13,151 68.0

Block‑sPLS comparable to MB‑VIOPtot ≥ 1.0 model 4483 66.0

Protein Original block‑sPLS 3132 50.0

Block‑sPLS comparable to MB‑VIOPtot ≥ 0.5 model 2201 50.0

Block‑sPLS comparable to MB‑VIOPtot ≥ 1.0 model 685 48.0

Metabolite Original block‑sPLS 281 54.0

Block‑sPLS comparable to MB‑VIOPtot ≥ 0.5 model 236 54.0

Block‑sPLS comparable to MB‑VIOPtot ≥ 1.0 model 77 52.0
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Conclusions
A novel multiblock variable selection method, called multiblock variable influence on 
orthogonal projections (MB-VIOP), has been tested and validated here. Evidence of its 
reliability, efficiency and usefulness have been shown. MB-VIOP can assess in a reliable 
and efficient way the importance of both isolated and ranges of variables in any type of 
data. Furthermore, MB-VIOP can deal with strong overlapping of types of variation, as 
well as with many data blocks with very different dimensionality. In addition, MB-VIOP 
connects the variables of different data matrices according to their relevance for the data 
interpretation of each latent variable (component) of an OnPLS model.

MB-VIOP also takes advantage of the full symmetry of the OnPLS model, which 
points at some advantages over the combination of sequential multiblock modelling 
techniques and variable selection methods. In sequential multiblock regression, even if 
the parameters keep the information of all parts of the sequence (i.e., other blocks of the 
multiblock dataset), the sequential approach only allows the weighting of the variables in 
a unique path (sequence) previously established, without any symmetry. Thus, the pos-
sibility of taking into account shared influences of the variables in other combinations, 
not considered by the pre-established path, is missing. MB-VIOP uses the symmetry 
of OnPLS for establishing fairer relationships/influences between variables of different 
blocks iterating over all components and all blocks, i.e. considering all combinations. In 
addition, it is worth emphasizing the ability of  VIPOPLS [39],  VIPO2PLS [48] and MB-VIOP 
to uncover the variables that are important for the uncorrelated (orthogonal) variation. 
However, for enhanced model interpretability, the synthetic example (section Evidence 
of the reliability and the efficiency of MB-VIOP using synthetic data) has shown how 
MB-VIOP surpasses any try of variable importance assessment done by means of OnPLS 
p loadings. More specifically, MB-VIOP provides a correctly proportionated importance 
assessment of the variables, even when the profiles are affected by high overlapping or 
when there is an outsizing number of variables related to a specific type of variation, 
assessment that cannot be achieved by the normalized OnPLS loadings.

MB-VIOP has been compared to block-sPLS and MOFA multiblock methods. Even 
if the comparisons are limited by the component distribution assessed by each method, 
the modelling and variable selection performed led to interesting conclusions. In rela-
tion to the modelling, MB-VIOP explained a higher percentage of total variation than 
MOFA and block-sPLS. For the feature selection, when using synthetic data, the vari-
ables selected by MB-VIOP and MOFA seemed to be consistent; however, when using 
real omics data, even if some of the most important variables were selected in both 
methods, differences in the final sorting seemed to rise when the values of the weights 
of the ranked variables were too adjusted. The overlapping of selected variables between 
block-sPLS and MB-VIOP, and MOFA and MB-VIOP, were both significant, consistent, 
and similar in number of variables. It is also worth mentioning, that MB-VIOP was able 
to keep the proportionality in the variable importance assessment (e.g., showed as a peak 
variable 13 of the synthetic data because of explaining more variation than the other 
variables); however, MOFA did not keep this proportionality as explained in the Results 
section.

Nevertheless, it is interesting to compare the results for the Marzipan example 
obtained here with the ones obtained in 2017 [48], for the NIRS2 and the IR data blocks, 
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using an O2PLS model and the  VIPO2PLS variable selection method. As expected, the 
importance assessments are very similar. However, the absence of the other four data 
blocks in the  VIPO2PLS variable selection [48] made the establishment of a clear rela-
tionship between the variables of the two present blocks and the variables of the four 
absent blocks totally impossible, which led to classify those variables as containers of 
orthogonal variation; however, when the variable assessment was performed in a six-
block multiblock analysis with MB-VIOP, the same variables were selected as relevant 
for explaining variation shared between NIRS2 and the other data blocks (e.g., variables 
around 1200  nm, 1400  nm and 1800  nm). Hereby, when using all the blocks in a full 
multiblock system, the assessment was improved in relation to the two-block combina-
tion analysis.

MB-VIOP was able to reduce the number of variables of an OnPLS model (in a third 
for the Hybrid Aspen example) and, at the same time, increase the model interpret-
ability. Besides, it has been shown that MB-VIOP is a variable selection method à la 
carte for OnPLS models that allows to target a concrete type of variation (global, local or 
unique), or, if desired, target the total model, for afterwards building a stronger reduced 
OnPLS model with better interpretability than the original model.

The above achievements entail valuable advantages for industry and research groups 
(e.g., time optimization, fast and reliable variable selection, or enhanced interpretation 
in multiblock analysis). We envisage the use of MB-VIOP in fields like chemistry, biol-
ogy, medicine, psychology, economy, physics, cybernetics, and engineering, inter alia. 
Since  VIPOPLS [39] can be applied to both OPLS® and PLS models, it is expected by the 
authors that MB-VIOP could be successfully applied not only to OnPLS models but also 
to multiblock PLS (e.g., MBPLS and HPLS models). This should lead to a more reliable 
and accurate variable sorting/selection in the MBPLS analysis than using other meth-
ods because of the more efficient and detailed weighting of the variables (especially due 
to the further connectivity ability, and the use of not only the amount of variation in Y 
explained by the model -SSY- but also the explained amount of variation in X -SSX-) of 
MB-VIOP compared to PLS-VIP  (VIPPLS) method applied to multiblock analysis. The 
verification of the latter hypotheses is part of future work.

Methods
General notation

Scalars are written using italic characters (e.g. h, and H), vectors are typed in bold lower-
case characters (e.g. h), and matrices are defined as bold upper-case characters (e.g. 
H). When necessary, the dimensions of the matrices are specified by the subscript r x 
c, where r is the number of rows and c is the number of columns. Transposed matri-
ces are marked with the superscript T. The symbol ○ indicates a Hadamard power or 
product. Matrix elements are represented by the corresponding matrix italic lower-case 
character adding as subscripts the row and the column where they are located (e.g., for 
an H matrix, an element located in row i and column k would be indicated as hik). Model 
components are represented by a. Subscripts g, l and u stand for global, local and unique 
respectively. The units a.u. stand for arbitrary units for the MB-VIOP values. Notation 
referring to specific cases is explained insitu.
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Determination of the variable importance in OnPLS models

MB-VIOP is a model based variable selection method that uses a number n of pre-
processed data matrices (D), and the scores (t) and the normalized loadings (p) from 
an OnPLS model. The Hadamard products of the normalized loadings (denoted as p○2, 
i.e. p ○ p) are computed, and afterwards, they are multiplied by the ratio between the 
variation explained by the corresponding model component and the cumulated varia-
tion. The latter sum of squares (SS) ratio helps to assess the variable importance focus-
ing on interpretability, i.e. the SS ratio helps to know which variables are more helpful to 
explain the maximum amount of variation. The scores are used for the calculation of the 
residuals prior to computation of the sum of squares. The MB-VIOP values, which will 
conform the MB-VIOP vectors, are obtained by iterative calculations among both the 
components (latent variables) and the data matrices, with specific combinations accord-
ing to the type of variation. As final step, the square root is taken, and a normalization is 
performed by applying the Euclidean norm (2-norm) and multiplying by the number of 
manifest variables raised to the ½ power. The latter explanation is the general procedure 
for all types of variation (see Fig. 1), details and specifications are provided below. We 
also describe the calculations, equations (for the unique, the local, the global, and the 
total variations), and how to interpret the results provided by the MB-VIOP algorithm, 
in the subsequent sections.

Threshold of MB‑VIOP values for importance assessment

The threshold for importance assessment according to the MB-VIOP values is simi-
lar to  VIPOPLS [39] and  VIPO2PLS [48] cases. Generally, variables with MB-VIOP values 
higher than 1 are considered important for the model interpretation, whereas variables 
with MB-VIOP values below 1 could be considered irrelevant. Since the sum of squares 
of all MB-VIOP values is equal to the number of manifest variables of the respective 
data matrix, the average MB-VIOP is equal to 1; therefore, if all variables would have 
the same contribution to the OnPLS model, they would have MB-VIOP values equal to 
1. The threshold is represented in all plots by a red horizontal line at MB-VIOP = 1 for 
fast visual assessment. However, since this is a data-driven methodology, there can be 
special cases that justify the use of other threshold values according to either the goal of 
the variable selection or the demand level of dimensionality reduction, as shown in sec-
tion "Selection of the most relevant variables in systems biology multiblock analysis for 
enhanced model interpretation and dimensionality reduction.

Calculation of MB‑VIOP for the unique components

The first computation performed in the algorithm is the unique MB-VIOP (Eq. 1), which 
allows to assess the importance of the variables related to the unique information con-
tained in each data block. It is worth noting that the unique information contained in 
the unique variation (exclusive of one block, i.e. not shared with other blocks) can be 
elucidated focusing on a reduced subset of important variables selected by MB-VIOP 
without need to inspect all variables. This subset of important variables is found using 
Eq. 1.
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In Eq. 1, di indicates which data block we are referring to, K is the number of manifest 
(input) variables of the data block, Au represents the total number of unique compo-
nents (unique latent variables), au indicates a specific unique component, p corresponds 
to the normalized loadings extracted from the OnPLS model, SSDau,di stands for sum of 
squares of a data block for an au

th component, SSDcum,di stands for the cumulated sum of 
squares of a data block, and the Euclidean normalization is indicated using the subscript 
2 and enclosing the normalized expression between double-line brackets.

Calculation of MB‑VIOP for the local components

MB-VIOPLocal gives values higher than 1 to those input variables that are important 
for explaining the variation (information) of a specific local component in an OnPLS 
model. The local MB-VIOP (Eq.  2) is calculated iterating among all the local compo-
nents, selecting the blocks that have variables locally connected (see Fig. 1), and leaving 
out any data block that is related to either global variation or local variation linked to 
a different local component. Furthermore, the local part of the MB-VIOP algorithm is 
constrained to ignore the connection of a data block with itself, since this would increase 
the importance of the locally connected variables in relation to the whole model variable 
influence, making the weighting system unfairly favorable to the variables with locally 
shared information.

In Eq. 2, the local MB-VIOP calculation is summarized. The calculation iterates among 
all the local components Al, and the local MB-VIOP values for each local component are 
calculated considering all the combinations (direct and reverse) of the locally connected 
blocks, here denoted DLC. It should be mentioned that DLC includes the data block di 
and also the blocks connected to it (dLC) in Eq. 2. For instance, in a multiblock analysis 
involving four or more data blocks, if the variation of a local component is shared by 
three blocks, the corresponding local MB-VIOP values will be calculated using exclu-
sively these three blocks in an iterative and exchangeable way either to provide the 
normalized loading (p) or to provide the sum of squares values (SSD). In the end, all 
three connected blocks will have contributed as both di and dLC according to the specific 
ongoing calculation.

The iterative computation of the local MB-VIOP is condensed in Eq. 2, where Al rep-
resents the total number of local components, al stands for a specific local component, β 
(beta) represents the connectivity degree, SSDal,dLC stands for sum of squares explained 
by an al

th component for a data block dLC, SSDcum,dLC is the cumulated sum of squares of 
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the data block dLC. The rest of nomenclature is analogous to section “Calculation of MB-
VIOP for the unique components”.

The connectivity degree β is based on the number of local connections, which makes 
MB-VIOP different from  VIPO2PLS, since the latter uses the number of local compo-
nents. It is worth noting that in  VIPO2PLS the number of local components will always be 
equal to the number of local connections among blocks since there are only two-block 
connections (since O2PLS cannot handle more than two blocks). However, in MB-VIOP, 
there can be connections among more than two blocks related to the same local compo-
nent, which implies that the number of local components will not match the number of 
connections. Hereby, the connectivity degree is different in MB-VIOP.

Calculation of MB‑VIOP for the global components

MB-VIOPGlobal pinpoints the variables that are relevant for explaining the variation 
(information) that is shared by all the data blocks related to a specific global component 
(these variables would be the ones filled in white inside the grey zone of Fig. 1), e.g., a 
common biological effect present in all data matrices. The global MB-VIOP (Eq.  3) is 
calculated by iterating over all the data block combinations (direct and reverse modes) 
and all the global components. In Eq. 3, for a more intuitive explanation, di is used as the 
data block to which the normalized loading of an iteration belongs, and dj as the data 
block to which the SSD values of an iteration belong. The blocks exchange these roles 
on the spot (i.e., at the exact iteration corresponding to a specific calculation); thus, all D 
data blocks are used as both di and dj, but in different moments of the global MB-VIOP 
computation.

In Eq. 3, Ag represents the total number of global components (global latent variables), 
ag indicates a specific global component, SSDag,dj stands for sum of squares of an ag

th 
component related to a data block dj, and SSDcum,dj stands for the cumulated sum of 
squares of the data block dj, and the rest of nomenclature is analogous to Eqs. 1 and 2.

Calculation for the total variable influence for interpreting the whole model

The overview of which variables are more relevant for the total model interpretation (i.e., 
considering the global, the local and the unique variations involved in the OnPLS model) 
is highly appreciated in industrial environments; this is achieved by MB-VIOPTotal. In the 
total MB-VIOP the contributions of the global, local and unique MB-VIOP vectors are 
joined achieving a proper weighting of all variables for the total variable influence on all 
projections. Equation 4 summarizes its computation.
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The nomenclature of Eq. 4 is analogous to the nomenclature mentioned in the previ-
ous sections. As in the other cases, MB-VIOP leads to a vector which contains the MB-
VIOP values for the variables of each data block (but the calculations take all blocks into 
consideration). As it will be explained in section “Graphical representation of the MB-
VIOP results for variable importance assessment”, the visualization by plotting the MB-
VIOP vectors for each block is one of the various options.

Graphical representation of the MB‑VIOP results for variable importance assessment

Equations 1–4 lead to four MB-VIOP vectors (i.e., MB-VIOPUnique, MB-VIOPLocal, MB-
VIOPGlobal, MB-VIOPTotal). It is always possible to look at the numerical values of MB-
VIOP for each variable of the OnPLS model to assess their importance for the data 
interpretation. However, this can become a very time-consuming and painstaking task. 
Hence, a reduced table containing only target variables and its MB-VIOP values, or a 
graphical representation of these MB-VIOP vectors, seem a more convenient way to 
present the results. The MATLAB code created for MB-VIOP allows several ways to plot 
the results; for this paper, block-wise plots have been chosen (even though the calcula-
tion of each MB-VIOP has involved all the data blocks because of being a multiblock 
variable sorting). Other graphical representations could be possible; in a case where all 
data blocks of the OnPLS model would contain the same manifest variables, it would be 
possible to make a 3D (cube) plot locating the manifest variables on the X-axis, labeling 
the data blocks on the Y-axis, and inserting the MB-VIOP values on the Z-axis (the ver-
tical one); this visualization becomes ideal for matrices with the same variables (e.g., in 
some comparison studies), but it is not recommended when the data blocks have differ-
ent variables (which is frequently the case).

In section “Results and discussion”, the results were represented visualizing the MB-
VIOP values for each data block (by rows in the figures), and for type of variation inter-
preted by the variables (by columns); thus, each column of plots separately represents 
the unique, the local, the global and the total MB-VIOP results (Fig. 2 can be used as 
an example). As mentioned in section  “Threshold of MB-VIOP values for importance 
assessment”, a threshold at MB-VIOP = 1 (represented by a red horizontal line) is 
included in each plot; variables with values above the red line are relevant for the inter-
pretation of the type of variation corresponding to the plotted MB-VIOP. The variables 
of different blocks that contribute to explain the same variation (e.g., a common biologi-
cal effect among data blocks, or a common feature of several instruments) are marked 
with the same color in all block-wise plots (see Fig. 2).

Determination of variable importance in block‑sPLS and MOFA for comparison to MB‑VIOP 

variable selection.

Variable importance assessment using MOFA on the SD16‑365GLU and the Hybrid Aspen data

MOFA [33] performs unsupervised data integration aiming to uncover the principal 
sources of variation in multi-omics datasets, and, in some aspects, it can be seen as a 
statistical generalization of principal component analysis for omics data. MOFA infers a 
set of factors (model components) that contain biological or technical variation that can 
be either shared by multiple data matrices or unique of a specific data matrix. MOFA 
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achieves factor-wise sparsity by identifying factors (model components), but also fea-
ture-wise sparsity by means of the variable weights.

For the synthetic data, a MOFA model was generated yielding 8 latent factors (model 
components). The weights were plot as shown in Additional file  1: Figure S2 and the 
explained variation was calculated. For the Hybrid Aspen data, an 8-component MOFA 
model was generated. Due to MOFA characteristics, 314 protein variables needed to 
be removed because of having nearly zero variance, and the model was built with the 
remaining 2818 protein variables. The absolute loadings were plotted, and the explained 
variation of the model calculated.

Variable importance assessment using block‑sPLS

Block-sPLS [31, 32] is a one-step method that combines data integration and variable 
selection by using partial least squares (PLS). Sparsity is achieved by applying a LASSO 
penalization of the PLS loading vectors when computing a singular value decomposition. 
The Q2 parameter is used to select the number of model components, and the root mean 
square error of prediction serves as criterion to evaluate the predictive power of the varia-
bles between the original (non-penalized) PLS model and the sparse PLS model. Therefore, 
the resulting selected variables are appropriate for prediction purposes.

In order to compare the feature selection results of MB-VIOP and block-sPLS, three 
6-component block-sPLS models were generated using different constraint degrees for the 
Hybrid Aspen data (see Table 5). Both canonical and regression modes were tested, lead-
ing to better results when the canonical approach was used. The model was built using 
the canonical mode available from the mixOmics R-package that is appropriate to ensure 
that all data matrices are considered descriptors in a symmetric framework similar to the 
one used in MB-VIOP. A design matrix was set to maximize correlations among the data 
blocks. The resulting selected variables and the percentage of total explained variation were 
compared to MB-VIOP.

Materials and software

The code of the MB-VIOP algorithm was developed using MATLAB version R2019b (The 
MathWorks Inc., Natick, MA, USA). The four-block synthetic data set (SD16_235GLU), 
the block-scaling preprocesses, the OnPLS models, and the MB-VIOP results (values and 
plots) were also done using MATLAB (The MathWorks Inc., Natick, MA, USA). The Mar-
zipan dataset [53] was provided by the University of Copenhagen through the website www.
model s.life.ku.dk/Marzi pan, and preprocessed using PLS-toolbox version 8.1.1 (Eigenvec-
tor Research, Inc.). The block-sPLS analysis was performed using the mixOmics R-package 
version 6.8.5. The MOFA analysis was performed using the MOFA R-package version 1.6.1.

Synthetic dataset (four blocks)

The synthetic dataset, named SD16_235GLU, was created by the authors for testing and 
validating the MB-VIOP MATLAB code. The name of the dataset, SD16_235GLU, stands 
for synthetic data (SD) designed in 2016 for having 2 global components (G), 3 local com-
ponents (L), and 5 unique components (U). The dataset is conformed of four data blocks 
(D1, D2, D3, D4) and 50 observations (samples) common to all blocks. The first block (D1) 
contains 61 manifest variables, the second block (D2) contains 79, and the third and 

http://www.models.life.ku.dk/Marzipan
http://www.models.life.ku.dk/Marzipan
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fourth blocks (D3 and D4) contain 96 manifest variables each one. The joint (predictive) 
normalized loadings (pg, pl) were created using Gaussian pure profiles, which are visual-
ized as a bell shape in the plots; whereas the unique (orthogonal) normalized loadings 
(pu) were created using unit pulse pure profiles, visualized as a rectangular step in the 
plots. The scores, both predictive (tg, tl) and orthogonal (tu), were randomly generated, 
mean-centered, scaled to unit norm, and orthogonalized among themselves. The latent 
variables (components) were calculated as the individual products of scores and trans-
posed normalized loadings (ta*pa

T). Finally, the four data blocks were created as the sum 
of global, local and unique components plus the residual matrices R. The noise was ran-
domized, and its level was set to 0.1%. A generic D-block is described in Eq. 5; where 
Ag stands for the total number of global components, Al represents the total number of 
local components, and Au the total number of unique components. All blocks follow the 
pattern of Eq. 5.

Equations 6 – 9 show the combination of components for each data matrix. To sim-
ulate a global component, the corresponding score vector (tag) was shared among all 
blocks; for the local components, the corresponding score vector (tal) was shared among 
the locally connected blocks for that specific local component; and for the unique com-
ponents individual scores (tau) were used.

The SD16_235GLU was designed (i) to be exigent/difficult in relation to the five 
unique components when modelling, (ii) to have one local component shared by three 
data blocks (D2, D3, D4), (iii) to have a local component shared by D1 and D4, (iv) to have 
a local component shared by D1 and D2, and (v) to have two global components shared 
by all data blocks. The percentage of variation per component is: 14.3% in D1, 25% in D2, 
25% in D3, and 20% in D4 (thus, D1 has a total of seven components, D2 has four, D3 also 
four, and D4 has five).

Marzipan dataset (six blocks).

The Marzipan dataset consists of six data blocks obtained from the analysis of thirty-two 
marzipan samples, of nine different recipes, performed using six different spectrometers 
set-ups. The marzipan samples contained different amounts of almonds, apricot kernels, 
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∑
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T
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water, sucrose, invert sugar, glucose syrup, and minor contributions of additives; cocoa 
was added in some of the marzipan samples, giving them a distinctive brown color. The 
six spectrometers (including optical principles, spectral range, and other details) were 
described by Christensen et al. [53] in 2004. An additional set of measurements using an 
InfraAlyzer 260 spectrometer was originally considered as a seventh data block [53], but 
it has been excluded from this work because of not using exactly the same samples than 
the other six instrumental analyses.

The first data block (NIRS1) contained 1000 variables (400—2500 nm), and the second 
data block (NIRS2) had 600 variables (800—2100 nm); both NIRS1 and NIRS2 datasets 
were obtained using a NIRSystems 6500 spectrometer. The third (from an Infraprover II 
instrument) contained 406 variables, the fourth (from a Bomem MB 160 Diffusir) con-
sisted of 664 variables, the fifth (from an Infratec 1255) had 100 variables, and the sixth 
(from a PerkinElmer System 2000) had 950 variables. Thus, the dimensions of the differ-
ent data blocks varied from 100 to 1000 variables (i.e., a ten times difference between the 
smallest and the largest). NIRS1, Infraprover II and Bomem data blocks were preproc-
essed by extended multiplicative signal correction (EMSC) [54]; whilst NIRS2, Infratec 
and PerkinElmer data blocks were preprocessed by Savitsky-Golay differentiation (2nd 
derivative, 3rd order, 15 points window) [55]. In addition, all data blocks were mean-
centered and normalized to equal sum of squares before building the OnPLS model.

Metabolomics, proteomics and transcriptomics data of hybrid aspen (three blocks)

The Hybrid Aspen dataset used here, previously pretreated and analyzed in Bylesjö et al. 
[56] in 2009 and in Löfstedt et al. [57] in 2013, contains thirty-three samples of hybrid 
aspen (Populus tremula x Populus tremuloides) labeled according to the plant internode 
from where they were sampled (categories A, B, and C) and according to three differ-
ent genotypes of hybrid aspen (WT, G5, and G3). The wild type (WT) played the role of 
reference sample. The G5 and G3 genotypes were related to the PttMYB21a gene, which 
is known to primarily affect lignin biosynthesis and plant growth characteristics. The G5 
genotype contained several antisense constructs of the PttMYB21a gene, affecting plant 
growth; thus, this genotype displays a distinct phenotype with slower growth compare 
to the WT samples. The G3 genotype contained only one antisense construct of the Ptt-
MYB21a gene, displaying a similar but less distinct phenotype compared to the G5 sam-
ples. Further details are described by Bylesjö et al. [56].

All thirty-three samples were measured for transcript (cDNA), protein (UPLC/MS) 
and metabolite (GC/TOFMS) quantities [57]. As result, three data blocks were obtained: 
a transcript data block containing 14,738 variables (microarray elements), a protein data 
block containing 3132 variables (extracted chromatographic peaks), and a metabolite 
data block containing 281 variables (extracted chromatographic peaks).



Page 25 of 27Galindo‑Prieto et al. BMC Bioinformatics          (2021) 22:176  

Abbreviations
block‑sPLS: Multiblock sparse partial least squares; CPCA: Consensus principal component analysis; GSVD: Generalized 
singular value decomposition; HPCA: Hierarchical principal component analysis; HPLS: Hierarchical partial least squares; 
JIVE: Joint and individual variation explained; MBPLS: Multiblock partial least squares; MB‑VIOP: Multiblock variable 
influence on orthogonal projections; MOFA: Multi‑omics factor analysis; msPLS: Multiset sparse partial least squares; 
OPLS: Orthogonal projections to latent structures; O2PLS: 2‑Block orthogonal projections to latent structures; OnPLS: 
N‑block orthogonal projections to latent structures; PCA: Principal component analysis; PLS: Partial least squares to latent 
structures; RGCCA : Regularized generalized canonical correlation analysis; RMSEP: Root mean square error of prediction; 
SGCCA : Sparse generalized canonical correlation analysis; sPLS: Sparse partial least squares; SSX: Sum of squares of X; SSY: 
Sum of squares of Y; VIP: Variable influence on projection.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9‑021‑04015 ‑9.

Additional file 1: Supporting information that contains Tables S1–S5 and Figures S1–S5.

Acknowledgements
The authors want to thank the anonymous reviewers for helping to improve this paper, the Chemistry Department of 
Umeå University where MB‑VIOP was developed as part of the PhD thesis of BGP, and the University of Copenhagen for 
providing the Marzipan dataset via the website www.model s.life.ku.dk/Marzi pan.

Authors’ contributions
For the MB‑VIOP algorithm, BGP generated the theory, equations, MATLAB code, results and figures for the three datasets 
during her PhD under the supervision of JT and PG. BGP also generated the R codes and results for the comparisons 
using the MOFA and the block‑sPLS methods. JT provided the OnPLS models generated using the OnPLS algorithm/
code. PG advised on the theory and equations of MB‑VIOP, method validation and spectroscopy interpretation. BGP 
wrote the manuscript draft, and PG checked it and improved it. The manuscript was revised and approved by all authors. 
All authors read and approved the final manuscript.

Funding
The authors are grateful for the financial support given by MKS Instruments AB (BGP), eSSENCE (JT), and Industrial Doc‑
toral School (BGP), Umeå University, Sweden. In addition, part of this work was carried out during the tenure of an ERCIM 
“Alain Bensoussan” Fellowship Programme (BGP). The funding body did not play any roles in the design of the study and 
collection, the analysis, the data interpretation, or the manuscript writing.

Availability of data and materials
The Marzipan dataset analyzed in the current study is available through the website www.model s.life.ku.dk/Marzi pan 
of the University of Copenhagen. The Hybrid Aspen and the SD16_235GLU datasets are available from the authors on 
reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden. 2 Industrial 
Doctoral School (IDS), Umeå, Sweden. 3 Department of Engineering Cybernetics (ITK), Norwegian University of Science 
and Technology (NTNU), Trondheim, Norway. 4 Helen and Robert Appel Alzheimer’s Disease Research Institute, Feil 
Family Brain and Mind Research Institute, Weill Cornell Medicine (WCM), Cornell University, New York, NY, USA. 5 Forest 
Biomaterials and Technology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden. 6 Sartorius Corporate 
Research, Umeå, Sweden. 

Received: 16 July 2020   Accepted: 10 February 2021

https://doi.org/10.1186/s12859-021-04015-9
http://www.models.life.ku.dk/Marzipan
http://www.models.life.ku.dk/Marzipan


Page 26 of 27Galindo‑Prieto et al. BMC Bioinformatics          (2021) 22:176 

References
 1. Horst P. Relations among m sets of measures. Psychometrika. 1961;26:129–49.
 2. Levin J. Simultaneous factor analysis of several Gramian matrices. Psychometrika. 1966;31:413–9.
 3. Curran PJ, Hussong AM. Integrative data analysis: The simultaneous analysis of multiple data sets. Psychol Methods. 

2009;14:81–100.
 4. Kourti T, Nomikos P, MacGregor JF. Analysis, monitoring and fault diagnosis of batch processes using multiblock and 

multiway PLS. J Process Control. 1995;5:277–84.
 5. Westerhuis JA, Kourti T, MacGregor JF. Analysis of multiblock and hierarchical PCA and PLS models. J Chemom. 

1998;12:301–21.
 6. Frank I, Feikema J, Constantine N, Kowalski B. Prediction of product quality from spectral data using the partial least‑

squares method. J Chem Inf Comput Sci. 1984;24:20–4.
 7. Mazerolles G, Boccard J, Hanafi M, Rudaz S. Analysis of experimental design with multivariate response: a contribu‑

tion using multiblock techniques. Chemom Intell Lab Syst. 2011;106:65–72.
 8. Conesa A, Prats‑Montalbán JM, Tarazona S, Nueda MJ, Ferrer A. A multiway approach to data integration in systems 

biology based on Tucker3 and N‑PLS. Chemom Intell Lab Syst. 2010;104:101–11.
 9. Reinke SN, Galindo‑Prieto B, Skotare T, Broadhurst DI, Singhania A, Horowitz D, Djukanović R, Hinks TSC, Geladi P, 

Trygg J, Wheelock CE. OnPLS‑based multi‑block data integration: a multivariate approach to interrogating biological 
interactions in asthma. Anal Chem. 2018;90:13400–8.

 10. Qannari EM, Wakeling I, Courcoux P, MacFie HJH. Defining the underlying sensory dimensions. Food Qual Prefer. 
2000;11:151–4.

 11. Tenenhaus M, Pagès J, Ambroisine L, Guinot C. PLS methodology to study relationships between hedonic judge‑
ments and product characteristics. Food Qual Prefer. 2005;16:315–25.

 12. Geladi P, Kowalski BR. Partial least‑squares regression: a tutorial. Anal Chim Acta. 1986;185:1–17.
 13. Wold S, Martens H, Wold H. The multivariate calibration‑problem in chemistry solved by the PLS method. Lecture 

Notes Math. 1983;973:286–93.
 14. Wold, S., Hellberg, S., Lundstedt, T., Sjöström, M. & Wold, H. PLS modeling with latent variables in two or more dimen‑

sions. in Symposium on PLS model building: theory and application. (1987).
 15. Geladi, P., Martens, H., Martens, M., Kalvenes, S. & Esbensen, K. Multivariate comparison of laboratory measurements. 

in Proc. Symposium on Applied Statistics 49–61 (1988).
 16. Wold S, Kettaneh N, Tjessem K. Hierarchical multiblock PLS and PC models for easier model interpretation and as an 

alternative to variable selection. J Chemom. 1996;10:463–82.
 17. Wangen LE, Kowalski BR. A multiblock partial least squares algorithm for investigating complex chemical systems. J 

Chemom. 1988;3:3–20.
 18. Wise BM, Gallagher NB. The process chemometrics approach to process monitoring and fault detection. J Process 

Control. 1996;6:329–48.
 19. Tenenhaus A, Tenenhaus M. Regularized generalized canonical correlation analysis. Psychometrika. 2011;76:257–84.
 20. Qin SJ, Valle S, Piovoso MJ. On unifying multiblock analysis with application to decentralized process monitoring. J 

Chemom. 2001;15:715–42.
 21. el Bouhaddani S, Uh HW, Jongbloed G, Hayward C, Klarić L, Kiełbasa SM, Houwing‑Duistermaat J. Integrating omics 

datasets with the OmicsPLS package. BMC Bioinform. 2018;19:371.
 22. Trygg J. O2‑PLS for qualitative and quantitative analysis in multivariate calibration. J Chemom. 2002;16:283–93.
 23. Smilde AK, Westerhuis JA, de Jong S. A framework for sequential multiblock component methods. J Chemom. 

2003;17:323–37.
 24. Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J. The OPLS methodology for analysis of multi‑block 

batch process data. J Chemom. 2006;20:362–9.
 25. Höskuldsson A. Multi‑block and path modelling procedures. J Chemom. 2008;22:571–9.
 26. Hanafi M, Kohler A, Qannari EM. Shedding new light on hierarchical principal component analysis. J Chemom. 

2010;24:703–9.
 27. Mazerolles G, Preys S, Bouchut C, Meudec E, Fulcrand H, Souquet JM, Cheynier V. Combination of several mass 

spectrometry ionization modes: a multiblock analysis for a rapid characterization of the red wine polyphenolic 
composition. Anal Chim Acta. 2010;678:195–202.

 28. El Ghaziri A, Cariou V, Rutledge DN, Qannari EM. Analysis of multiblock datasets using ComDim: overview and exten‑
sion to the analysis of (K + 1) datasets. J Chemom. 2016;30:420–9.

 29. Jourdren S, Saint‑Eve A, Panouillé M, Lejeune P, Déléris I, Souchon I. Respective impact of bread structure and oral 
processing on dynamic texture perceptions through statistical multiblock analysis. Food Res Int. 2016;87:142–51.

 30. Smilde, A., Bro, R. & Geladi, P. Multi‑way analysis: applications in the chemical sciences. in 1‑18221‑349 (John Wiley 
and Sons, 2004).

 31. Lê Cao KA, Rossouw D, Robert‑Granié C, Besse P. A sparse PLS for variable selection when integrating omics data. 
Stat Appl Genet Mol Biol. 2008;7:35.

 32. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.‑A. mixOmics: An R package for ‘omics feature selection and multiple data 
integration. PLOS Computational Biology 13, e1005752 (2017).

 33. Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C., Buettner, F., Huber, W. & Stegle, O. Multi‐omics 
factor analysis—a framework for unsupervised integration of multi‐omics data sets. Mol Syst Biol. 14, (2018).

 34. Löfstedt T, Trygg J. OnPLS‑a novel multiblock method for the modelling of predictive and orthogonal variation. J 
Chemom. 2011;25:441–55.

 35. Lock EF, Hoadley KA, Marron JS, Nobel AB. Joint and individual variation explained (JIVE) for integrated analysis of 
multiple data types. Ann Appl Stat. 2013;7:523–42.

 36. Van Loan CF. Generalizing the Singular Value Decomposition. SIAM J Numer Anal. 1976;13:76–83.
 37. Csala A, Zwinderman AH, Hof MH. Multiset sparse partial least squares path modeling for high dimensional omics 

data analysis. BMC Bioinform. 2020;21:9.
 38. Andersen CM, Bro R. Variable selection in regression‑a tutorial. J Chemom. 2010;24:728–37.



Page 27 of 27Galindo‑Prieto et al. BMC Bioinformatics          (2021) 22:176  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 39. Galindo‑Prieto B, Eriksson L, Trygg J. Variable influence on projection (VIP) for orthogonal projections to latent struc‑
tures (OPLS). J Chemom. 2014;28:623–32.

 40. Kvalheim OM, Arneberg R, Bleie O, Rajalahti T, Smilde AK, Westerhuis JA. Variable importance in latent variable 
regression models. J Chemom. 2014;28:615–22.

 41. Leardi R. Genetic algorithms in chemometrics and chemistry: a review. J Chemom. 2001;15:559–69.
 42. Lindgren, F., Geladi, P., Rännar, S. & Wold, S. Interactive variable selection (IVS) for PLS. Part 1: Theory and algorithms. J 

Chemom. 8, 349–363 (1994).
 43. Lindgren, F., Geladi, P., Berglund, A., Sjöström, M. & Wold, S. Interactive variable selection (IVS) for PLS. Part II: Chemi‑

cal applications. J. Chemom. 9, 331–342 (1995).
 44. Galindo‑Prieto B, Eriksson L, Trygg J. Variable influence on projection (VIP) for OPLS models and its applicability in 

multivariate time series analysis. Chemom Intell Lab Syst . 2015;146:297–304.
 45. Farrokhnia M, Karimi S. Variable selection in multivariate calibration based on clustering of variable concept. Anal 

Chim Acta. 2016;902:70–81.
 46. Nørgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB. Interval partial least‑squares regression (iPLS): A 

comparative chemometric study with an example from near‑infrared spectroscopy. Appl Spectrosc. 2000;54:413–9.
 47. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc. Ser B (Methodological) 58, 267–288 

(1996).
 48. Galindo‑Prieto B, Trygg J, Geladi P. A new approach for variable influence on projection (VIP) in O2PLS models. 

Chemom Intell Lab Syst . 2017;160:110–24.
 49. Tenenhaus A, Philippe C, Guillemot V, Le Cao KA, Grill J, Frouin V. Variable selection for generalized canonical correla‑

tion analysis. Biostatistics. 2014;15:569–83.
 50. Wold, S., Johansson, E. & Cocchi, M. PLS ‑ partial least‑squares projections to latent structures. 3D QSAR Drug Design 

(Ed. Kubinyi H.), Theory Methods and Applications, ESCOM Science Publishers, Leiden 523–550 (1993).
 51. Galindo‑Prieto, B. Novel variable influence on projection (VIP) methods in OPLS, O2PLS, and OnPLS models for 

single‑and multi‑block variable selection: VIPOPLS, VIPO2PLS, and MB‑VIOP methods. (Umeå University, 2017).
 52. Sunoj S, Igathinathane C, Visvanathan R. Nondestructive determination of cocoa bean quality using FT‑NIR spectros‑

copy. Comput Electron Agric. 2016;124:234–42.
 53. Christensen J, Nørgaard L, Heimdal H, Pedersen J, Engelsen S. Rapid spectroscopic analysis of marzipan—compara‑

tive instrumentation. J Near Infrared Spectrosc. 2004;12:63–75.
 54. Martens H, Stark E. Extended multiplicative signal correction and spectral interference subtraction: new preprocess‑

ing methods for near infrared spectroscopy. J Pharm Biomed Anal. 1991;9:625–35.
 55. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 

1964;36:1627–39.
 56. Bylesjö M, Nilsson R, Srivastava V, Grönlund A, Johansson AI, Jansson S, Karlsson J, Moritz T, Wingsle G, Trygg J. Inte‑

grated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. J Proteome 
Res. 2009;8:199–210.

 57. Löfstedt T, Hoffman D, Trygg J. Global, local and unique decompositions in OnPLS for multiblock data analysis. Anal 
Chim Acta. 2013;791:13–24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Multiblock variable influence on orthogonal projections (MB-VIOP) for enhanced interpretation of total, global, local and unique variations in OnPLS models
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results and discussion
	Description of the OnPLS models
	Evidence of the reliability and the efficiency of MB-VIOP using synthetic data
	Enhancement of the interpretability in an OnPLS model for the Marzipan case by using MB-VIOP
	Selection of the most relevant variables in systems biology multiblock analysis for enhanced model interpretation and dimensionality reduction
	Comparison of MB-VIOP to MOFA and block-sPLS
	MB-VIOP and MOFA comparison for synthetic data and real omics data
	MB-VIOP and block-sPLS comparison for the Hybrid Aspen data


	Conclusions
	Methods
	General notation
	Determination of the variable importance in OnPLS models
	Threshold of MB-VIOP values for importance assessment
	Calculation of MB-VIOP for the unique components
	Calculation of MB-VIOP for the local components
	Calculation of MB-VIOP for the global components
	Calculation for the total variable influence for interpreting the whole model
	Graphical representation of the MB-VIOP results for variable importance assessment

	Determination of variable importance in block-sPLS and MOFA for comparison to MB-VIOP variable selection.
	Variable importance assessment using MOFA on the SD16-365GLU and the Hybrid Aspen data
	Variable importance assessment using block-sPLS

	Materials and software
	Synthetic dataset (four blocks)
	Marzipan dataset (six blocks).
	Metabolomics, proteomics and transcriptomics data of hybrid aspen (three blocks)


	Acknowledgements
	References


