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Abstract
Mast cells (MCs) are versatile effector cells of the immune 
system, characterized by a large content of secretory gran-
ules containing a variety of inflammatory mediators. They 
are implicated in the host protection toward various external 
insults, but are mostly well known for their detrimental im-
pact on a variety of pathological conditions, including aller-
gic disorders such as asthma and a range of additional dis-
ease settings. Based on this, there is currently a large de-
mand for therapeutic regimens that can dampen the 
detrimental impact of MCs in these respective pathological 
conditions. This can be accomplished by several strategies, 
including targeting of individual mediators released by MCs, 
blockade of receptors for MC-released compounds, inhibi-
tion of MC activation, limiting mast cell growth or by induc-
ing mast cell apoptosis. Here, we review the currently avail-
able and emerging regimens to interfere with harmful mast 
cell activities in asthma and other pathological settings and 
discuss the advantages and limitations of such strategies.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Mast cells (MCs) are multifaceted effector cells of the 
immune system [1–5]. They are widely distributed in the 
body but are particularly abundant in tissues that are por-
tals of entry for external insults. MCs are equipped with 
a broad range of sensors that enable the recognition of 
various stimuli, and they respond to such stimuli by re-
leasing a panel of inflammatory compounds. This enables 
MCs to play a key role in orchestrating inflammation, 
which can be utilized in the host defence against infec-
tious agents [6–9]. On the other hand, dysregulated MC 
activation can contribute to the pathogenesis of allergic 
conditions, including asthma and atopic dermatitis, and 
also to other pathological settings such as cutaneous mas-
tocytosis, fibrosis, cancer, and psoriasis [2–4, 10–12]. 
Thus, strategies that target MCs can potentially be ad-
opted for treatment of such diseases. Here, we briefly de-
scribe the basic properties of MCs, with a particular em-
phasis on their role in asthma and then discuss available 
MC-directed therapies for treatment of asthma and other 
pathological conditions.

This is an Open Access article licensed under the Creative Commons 
Attribution-NonCommercial-4.0 International License (CC BY-NC) 
(http://www.karger.com/Services/OpenAccessLicense), applicable to 
the online version of the article only. Usage and distribution for com-
mercial purposes requires written permission.
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MCs: General Properties and Role in Asthma

MCs are long-lived tissue-resident cells that originate 
from hematopoietic pluripotent progenitors in the bone 
marrow [13–17], but can also be derived from the yolk sac 
[18]. As MCs mature, they acquire an abundance of secre-

tory granules [19]. The secretory granules are densely 
packed with large quantities of various preformed media-
tors, including biogenic amines, MC-specific proteases, 
lysosomal enzymes, certain cytokines, chemokines, 
growth factors, and serglycin proteoglycans [16, 19]. 
These preformed mediators are released into the extracel-
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Fig. 1. MC activation and mediator release. 
MCs become activated when IgE molecules 
bound to surface FcεRI are cross-linked by 
antigens (e.g., allergen). Such activating 
signals lead to the release of preformed me-
diators through degranulation as well as de 
novo production and release of several oth-
er mediators. MC, mast cell.

Table 1. Examples of MC-derived mediators

Mediator class Mediators

Preformed (immediate release)
Lysosomal enzymes Cathepsins (B, C, D, E, L) and β-hexosaminidase
Non-MC-specific proteases Cathepsin G, Granzyme B,1 and Active caspase-3
MC-specific proteases Tryptases,1 chymases,1 and CPA31

Proteoglycans Serglycin (heparin and chondroitin sulphate)
Biogenic amines Histamine1 and serotonin1

Cytokines and chemokines TNF, IL-4, CCL5, and CXCL8
Growth factors SCF, VEGF, FGF, NGF, and TGF-β

De novo synthesized (delayed release)
Lipid mediators PGD2, PGE2, LTB4, LTC4, and PAF
Cytokines TNF, IFNγ, IL-1, -2, -3, -4, -5, -6, -9, -10, -13, and -33
Chemokines CCL1, 2, 3, 4, 5, 7, 11, 17, 20, and 22; CXCL2, 8, and 10
Growth factors SCF, VEGF, FGF, NGF, TGF-β, PDGF, and GM-CSF

CPA3, carboxypeptidase A3; FGF, fibroblast growth factor; LTC4, leukotriene C4; GM-CSF, granulocyte 
macrophage colony-stimulating factor; IFN, interferon; LT, leukotriene; MC, mast cell; NGF, nerve growth 
factor; PAF, platelet activating factor; PDGF, platelet-derived growth factor; PG, prostaglandin; SCF, stem cell 
factor; TGF-β, transforming growth factor-β; TNF, tumour necrosis factor; VEGF, vascular endothelial growth 
factor. 1 Examples of mediators that are dependent on serglycin for their storage. Data retrieved from [16, 19, 20].
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lular environment when MCs are activated to degranu-
late, a process that can be accomplished by IgE-mediated 
and a range of other mechanisms [2]. In addition to the 
release of preformed granule constituents, MC activation 
leads to de novo synthesis and release of a diverse array 
of additional bioactive mediators [16, 19, 20] (Fig. 1; Ta-
ble 1).

MCs are present in virtually all vascularized tissues but 
are particularly abundant at junction points of the body 
and external environment (e.g., skin, gastrointestinal 
tract, and airways) [1, 16]. Mature MCs can express a 
large panel of sensory receptors, enabling them to re-
spond to a wide variety of stimuli (Table  2) [2, 6, 16]. 
These features enable MCs to serve as immune sentinel 
cells acting in the first-line defence following encounter 

Table 2. Activating and inhibitory receptors expressed by MCs.

Ligands Activating receptors Ref.

Microbial products (PAMPs)
Bacterial lipopeptides, PGN, dsRNA, LPS, flagellin, LTA, ssRNA, CpG-DNA TLR1–9[m/h] 1

C-type lectin receptors (Dectin-1)[m/h]

RIG-like receptors (RIG-I)[m/h]

[186–193]

FimH, S. aureus CD48[m/h] [194, 195]

Endogenous products (DAMPs or alarmins)
IL-33, TSLP IL-33R (ST2)[m/h], TSLPR[m/h] [196–199]

Products of the innate immune system
Cytokines and growth factors (GFs) Cytokine/GF receptors (IL-3R[m/h], c-Kit[m/h]) [200–203]

Chemokines Chemokine receptors (CCR1[m/h], CCR3[m/h], CCR4[h], 
CCR5[m/h], CXCR1[h], 2[h], 3[h], 4[h], CX3CR1[m/h])

[204–207]

Complement components Complement receptors (C3aR[m/h], C5aR[m/h]) [208–210]

Products of the adaptive immune system
IgE FcεRI[m/h] [211]

IgG FcγRs (FcγRI[h], FcγRIII[m]) [212]

Endogenous and exogenous peptides/compounds

Endogenous: Neuropeptides (Substance P, VIP) and antimicrobial peptides 
(β-defensin)
Exogenous: Insect toxins (mastoparan), compound 48/80, and icatibant

MRGPRX2[h]/MRGPRB2[m] [213, 214]

Endogenous: Bioactive peptides (Endothelin-1)
Exogenous: Animal toxins (Sarafotoxin-B)

ETA
[m] [215]

Inhibitory receptors

Products of the adaptive immune system
IgG FcγRIIb[m/h] [212, 216]

Anti-inflammatory/immunomodulatory cytokines
IL-10, TGF-β IL-10R[h], TGF-βR[m/h] [217–219]

Other ligands
Sialic acid Siglec-6[h] [220, 221]

MC-stabilizing drugs (SCG, nedocromil sodium) GPR35[h] [117]

DAMP, damage-associated molecular pattern; dsRNA, double-stranded RNA; GPR35, G-protein-coupled receptor 35; LPS, lipopolysaccharide; LTA, 
lipoteichoic acid; MC, mast cell; MRGPR, MAS-related G protein-coupled receptor; PAMP, pathogen-associated molecular pattern; PGN, peptidoglycan; 
SCF, stem cell factor; SCG, sodium cromoglycate; Siglec-8, sialic acid binding Ig-like lectin-8; ssRNA, single-stranded RNA; TGF-β, transforming growth 
factor-β; TNF, tumour necrosis factor; TSLP, thymic stromal lymphopoietin; VIP, vasoactive intestinal polypeptide. Data retrieved from [117, 222–229].  
1 m, expressed in mouse MCs; h, expressed in human MCs.
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with a tissue insult. MCs can also communicate with oth-
er immune cells to promote their recruitment to the af-
fected tissues [2, 16]. Altogether, MCs thereby play an 
important role in initiating inflammation, in modulating 
both innate and adaptive immune responses, and in tis-
sue repair and homeostatic maintenance [16, 21]. How-
ever, if the tissue insult is repeated or persistent, such as 
in chronic inflammatory conditions, sustained MC acti-
vation can have potentially harmful consequences [16, 22, 
23]. MCs can thereby play both beneficial and detrimen-
tal roles for the organism. Examples of beneficial roles of 
MCs include their involvement in protection against cer-
tain animal venoms [24–26] and various types of infec-
tions [6–9, 27, 28]. However, MCs are undoubtedly best 
known for their detrimental roles in allergies and related 
diseases, such as asthma, allergic rhinitis, and atopic der-
matitis [10, 29]. Moreover, a growing body of evidence is 
implicating MCs as detrimental players in several other 
human diseases, including various autoimmune disor-
ders [30, 31], cancers [16, 32], mastocytosis [33, 34], 
chronic obstructive pulmonary disease [35, 36], and ath-
erosclerosis [16, 37].

The central role of MCs in the pathogenesis of allergic 
diseases, for example, asthma, is supported by several 
lines of evidence. For example, asthmatic patients have 
increased numbers of lung MCs, especially in locations 
such as the airway smooth muscle layer, lung epithelium, 
and alveolar parenchyma [38–40]. Moreover, a higher 
number of MCs has been found in the distal airways of 
individuals with non-fatal and fatal asthma compared to 
non-asthmatic controls [41]. Of note, the abnormal ac-
cumulation of MCs in these lung compartments has been 
associated with enhanced asthma symptoms [38, 40, 42, 
43]. In line with these observations, an increased percent-
age of degranulated MCs has been found in the mucous 
glands in cases of fatal asthma compared to non-fatal 
asthma and controls [44]. The extensive MC degranula-
tion in fatal asthma suggests that MCs are highly activat-
ed in severe asthma [44, 45]. Importantly, a role for MCs 
in asthma is also supported by a number of studies con-
ducted on mice [46–48]. In mouse models of allergic asth-
ma, elevated numbers of airway MCs are found and MCs 
have been demonstrated to contribute in a major way to 
several symptoms associated with experimentally in-
duced allergic airway inflammation, including eosino-
philic airway inflammation, enhanced airway hyperre-
sponsiveness (AHR) to methacholine or antigen, goblet 
cell hyperplasia, and enhanced mucus production [47].

MCs are recognized as effector cells in all phases of 
asthma, that is, the early, late, and chronic phases [23, 29]. 

Although MCs are thought to be of particular importance 
in allergic asthma, they can also have an impact on asth-
ma caused by non-allergic mechanisms such as those seen 
in non-atopic, occupational, and exercise-induced asth-
ma [23]. In the early phase, MCs release mediators such 
as histamine, prostaglandin D2 (PGD2), and leukotriene 
C4 (LTC4), hence contributing to the bronchoconstric-
tion, respiratory mucosal oedema, and mucus secretion 
[16, 23, 49–56]. The central role of these MC mediators is 
supported by observations indicating that potent and se-
lective receptor antagonists of histamine [57, 58], LTC4 
[59, 60], and to a lesser degree PGD2 [61], can markedly 
attenuate early-phase asthmatic reactions. In late-phase 
asthmatic reactions, proinflammatory mediators released 
by MCs, including cytokines and chemokines, contribute 
to the recruitment of inflammatory cells such as eosino-
phils, basophils, CD4+ T cells, and macrophages to the 
airways, leading to airway obstruction and AHR [23]. No-
tably, it has been found that anti-IgE therapy markedly 
attenuates the late-phase asthmatic reactions [62], indi-
cating that MC (and/or basophil) activation during the 
early phase initiates events leading to the late-phase reac-
tions [23]. Lastly, when allergen exposure is continuous 
or repetitive, early- and late-phase reactions develop into 
a chronic phase that is associated with persistent inflam-
mation, tissue remodelling, and fibrosis [29]. In chronic 
allergic asthma, ongoing MC activation and degranula-
tion is observed [23]. In line with this, increased levels of 
MC products, such as histamine and tryptase, have been 
found in bronchoalveolar lavage (BAL) fluid from asth-
matics compared to healthy controls [52, 63–66]. Addi-
tionally, MCs within the bronchial mucosa of asthmatics 
produce various cytokines, including IL-4, IL-5, IL-6, IL-
13, TNF-α, and TSLP [67–72].

Therapeutic Approaches to Target MCs in Disease

Given the well-recognized harmful role of MCs in al-
lergic and other disorders, there is an urgent need to iden-
tify efficient strategies that can limit the detrimental ef-
fects of MCs in such settings. Currently, there are several 
therapeutic approaches available for this purpose. In gen-
eral, the aims of these approaches are to either (i) inhibit 
MC-derived mediators or their effects, (ii) inhibit MC ac-
tivation, or (iii) reduce MC numbers. Below, some of the 
therapeutic anti-MC options that are currently used in 
the clinic or are being considered for future use are dis-
cussed (Fig. 2).
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Approaches Aimed at Inhibiting MC-Derived 
Mediators or Their Effects

Given that MCs are capable of releasing a large array 
of diverse biologically active mediators, one possible ther-
apeutic option is to target individual MC mediators. For 
example, several MC mediators such as histamine, leu-
kotrienes, prostaglandins, and cytokines are currently 
targeted effectively by available drugs [4] (Fig. 2). More-
over, multiple MC-specific proteases, for example, chy-
mase and tryptase can be selectively inhibited [73–76]. 
Targeting any given MC mediator can be achieved either 
by direct inhibition of the mediator, for example, when 
the enzymatic activities of MC proteases are blocked by 
active site-directed inhibitors, or when neutralizing anti-
bodies are used. Alternatively, downstream effects of 
MC-released compounds can be targeted by employing 

antagonists of receptors for compounds released by acti-
vated MCs.

Drugs that target histamine (e.g., ketotifen), leukotri-
enes (e.g., montelukast), and PGD2 (e.g., fevipiprant) 
represent receptor antagonists (Fig. 2), and these drugs 
are known to reduce symptoms of allergies and related 
disorders such as asthma in clinical settings [77–80]. Fur-
ther, MC-produced proinflammatory cytokines and 
growth factors, such as TNF-α, IL-4, IL-13, IL-17, and 
VEGF, can be targeted by neutralizing antibodies. Al-
though the latter proinflammatory cytokines/growth fac-
tors are not exclusively produced by MCs, MCs are known 
to be a dominant source of these compounds in several 
pathological settings [81]. For example, it has been pro-
posed that MCs are the predominant source of IL-17 in 
patients with inflammatory skin and joint diseases in-
cluding psoriasis [82], rheumatoid arthritis [83], and 
spondyloarthritis [84, 85]. Notably, monoclonal antibod-
ies directed to IL-17 (Fig. 2) are currently being evaluated 
for efficacy in such conditions [86], and it is thus conceiv-
able that anti-IL-17 therapy, at least to some extent, acts 
at the level of neutralizing IL-17 released from MCs.

Other MC-derived cytokines that constitute therapeu-
tic targets include IL-4 and IL-13. These two cytokines 
play key roles in promoting several hallmark features of 
Th2 inflammation, including IgE production, smooth 
muscle contractility, mucus production, and inflamma-
tory cell recruitment to the inflammation site [87–89]. In 
asthma patients, MCs were found to produce IL-4 [67], 
and IL-4 is also found as a preformed meditator stored in 
MC granules [90]. Furthermore, IL-4- and IL-13-express-
ing MCs accumulate within the airway smooth muscle 
layer of asthmatics, suggesting a role for these cytokines 
in MC:airway smooth muscle interactions [91]. MCs also 
produce IL-13 in response to various stimuli including 
IgE/antigen, IL-1β, IL-4, IL-33, LPS, and peptidoglycan 
[92–97]. Dupilumab is a monoclonal antibody directed 
against the α subunit of the IL-4 receptor (IL-4Rα) that 
blocks signal transduction pathways activated by IL-4 
and IL-13 (Fig. 2). Of note, dupilumab has shown striking 
beneficial effects in improving several disease features in 
patients suffering from MC-associated allergic condi-
tions such as asthma [98, 99] and atopic dermatitis [100–
102].

Although targeting of individual MC mediators can 
have anti-inflammatory effects, the beneficial therapeutic 
effects of such treatments are often limited [81]. One ma-
jor reason for this could be that the overall impact of MCs 
in a pathological setting is most likely a result of com-
bined effects from several MC mediators, rather than due 
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to a single mediator acting on a single target [4]. Thus, 
targeting a single MC mediator will only partly interfere 
with detrimental MC effects. As an example, targeting 
only IL-13 by lebrikizumab or tralokinumab in asthma 
has shown a very limited beneficial effect, whereas target-
ing both IL-4 and IL-13 by dupilumab effectively im-
proved lung function and symptoms [103]. Similarly, 
therapeutic regimens that include using a combination of 
leukotrienes and histamine antagonists were found to 
have greater beneficial effects on improving allergen-in-
duced airway obstruction in asthmatics compared to 
those achieved by each drug alone [104–106]. Altogether, 
based on these clinical observations, in order to achieve 
efficient therapeutic effects, this class of anti-MC drugs 
(i.e., MC mediator targeting drugs) are required to be 
used in combination and often recommended as add-on 
therapy to inhaled corticosteroids [79, 107].

Approaches Aimed at Inhibiting MC Activation

Considering that MCs express a large number of acti-
vating and inhibitory receptors (Table 2), one option is to 
block MC activation by using drugs that interfere with 
such receptors. One approach to accomplish this is to use 
monoclonal antibodies to target IgE, thereby blocking the 
interaction of IgE with its high-affinity receptor (FcεRI) 
(Fig. 2). One such monoclonal antibody is omalizumab, 
a humanized IgG1 antibody against IgE. Omalizumab is 
approved for clinical use and was found to reduce asthma 
symptoms in adults and children [81, 108, 109]. More-
over, beneficial therapeutic effects of omalizumab have 
been observed in persistent allergic rhinitis [110], atopic 
dermatitis [111], urticaria [112, 113], and food allergies 
[114].

Although anti-IgE therapy represents a successful ap-
proach to inhibit MC activation, there are several disad-
vantages that limit its use. For example, anti-IgE therapy 
is beneficial in treatment of allergic disorders but has very 
limited efficacy, if any, in the treatment of non-allergic 
MC-driven diseases, in which MCs are activated by IgE-
independent pathways [4]. Another limitation is its un-
predictable efficacy, that is, some asthmatic patients show 
considerable improvement, whereas most patients expe-
rience little or no signs of clinical improvement [115]. 
Additionally, similar to other treatments that involve the 
use of humanized monoclonal antibodies, anti-IgE ther-
apy is associated with high economic costs [81].

Another group of compounds that display inhibitory 
effects on MC activation are the MC stabilizers, which 

have the ability to inhibit MC degranulation and media-
tor release in response to various stimuli [116]. Sodium 
cromoglycate (SCG) and nedocromil sodium are the 
most common MC stabilizers used for treating asthma 
and other diseases that involve MC activation, including 
allergic rhinitis, allergic conjunctivitis, atopic dermatitis, 
and mastocytosis [31]. Despite being in clinical use for 
decades, the mechanisms by which these drugs inhibit 
MC activation and degranulation are still not well-de-
fined [4]. However, it has become more evident during 
the recent years that the effects of SCG and nedocromil 
sodium are mediated via GPR35, an inhibitory MC recep-
tor [117] (Fig. 2).

Although MC stabilizers are generally well-tolerated, 
their inhibitory effects are moderate or negligible [4]. In 
fact, comparative studies suggest that the beneficial effect 
of SCG in controlling asthma symptoms is rather small in 
both children and adults [118, 119]. One possible reason 
for this could be that MC stabilizers do not inhibit human 
lung MCs effectively. In support of this notion, SCG has 
been found to be a weak inhibitor of histamine release 
from freshly isolated human lung MCs in response to 
IgE-mediated activation, even when high concentrations 
of SCG were used [120]. Another disadvantage of the MC 
stabilizers is that, due to their low potency and short half-
life, high concentrations of the drugs need to be given at 
frequent intervals to have an effective inhibitory impact. 
Moreover, local administrations are preferred to maxi-
mize the concentration of the drug in the target tissue 
[116].

An alternative approach to inhibit MC activation is to 
interfere with the intracellular signalling pathways that 
are essential for MC degranulation and mediator release 
[4, 81, 121]. This can be achieved, for example, by using 
pharmacologic inhibitors to block the function of key cy-
toplasmic signalling proteins such as spleen tyrosine ki-
nase (SYK), phosphatidylinositol 3-kinases, and Bruton’s 
tyrosine kinase. Since these proteins are involved in early 
signalling events induced by IgE:FcεRI interaction, their 
inhibition could theoretically result in effective suppres-
sion of antigen-induced degranulation and mediator re-
lease [4]. In line with this, several inhibitors of the afore-
mentioned signalling proteins exhibited beneficial effects 
when tested in preclinical in vivo models. For example, 
IC87114, a selective inhibitor of phosphatidylinositol 
3-kinase-δ, was found to have a therapeutic potential for 
the treatment of allergic asthma and rheumatoid arthritis 
in the relevant disease models [122, 123] (Fig. 2). Further-
more, a number of different inhibitors are being tested in 
clinical trials for diseases such as allergic rhinitis, asthma, 
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urticaria, and rheumatoid arthritis [4, 81]. Although some 
of these inhibitors have been able to reduce certain disease 
symptoms in patients during initial phases of clinical tri-
als, so far none of them have been approved for routine 
treatment of MC-related diseases [4]. For example, the 
SYK inhibitors, R112 and R343, both failed in clinical 
phase II studies for treatment of allergic rhinitis or asthma 
[81]. Another potential strategy for inhibition of MC ac-
tivation is to target various ion channels involved in the 
signalling pathways leading to MC activation/degranula-
tion, as exemplified by the Orai channels [124].

One major problem with approaches targeting signal-
ling pathways is that they are not exclusive to MCs. In-
deed, the fact that the signalling proteins are widely ex-
pressed by many different cell types gives rise to an in-
creased risk of adverse effects when inhibitors of signalling 
protein are used [4]. Moreover, the majority of inhibitors 
that are available or being considered for clinical develop-
ment, are directed against signalling pathways that oper-
ate downstream of classical IgE-mediated MC activation 
[23]. Thus, they predominantly suppress MC activation 
in allergic settings where MCs are activated by IgE-medi-
ated stimulation, but have limited effectiveness in situa-
tions in which MCs are activated through other mecha-
nisms [23].

Approaches Aimed at Reducing MC Numbers

The overall impact of MCs on any pathological set-
ting is most likely multifaceted, that is, mediated by 
multiple activating mechanisms and a large number of 
secreted mediators. Thus, targeting individual media-
tors or single activation pathways in MCs, for example 
the IgE-mediated pathway, may not be sufficient to pre-
vent the full panel of MC-driven pathological effects. 
Theoretically, a more effective strategy for global inhi-
bition of harmful MC activities might therefore be to 
reduce MC numbers, for example, by blocking MC sur-
vival or inducing their apoptosis [81, 125, 126]. How-
ever, in order to avoid harmful side effects that may 
arise from off-targeting of other cell populations, it is 
essential to develop strategies that are selective for MCs. 
In the following section, the major strategies that can be 
employed for reducing MC survival or inducing MC 
apoptosis are discussed.

Strategies to Reduce MC Survival
Mature MCs depend on stem cell factor (SCF) for their 

survival [16], and targeting of SCF signalling thereby rep-

resents an attractive strategy for limiting MC survival. 
The interaction between SCF and its receptor, c-kit 
(CD117), which has tyrosine kinase activity [127], induc-
es intracellular signalling that promotes MC differentia-
tion, proliferation, chemotaxis, and maturation [16]. The 
pivotal role of SCF for MC survival and development is 
highlighted by the finding that mice deficient in SCF or 
c-kit essentially lack MCs [14, 128, 129]. Moreover, glu-
cocorticoid-induced reduction of local SCF levels results 
in decreased numbers of tissue MCs in mice [130], and 
corticosteroids can also reduce the MC numbers in hu-
mans [131, 132]. Additionally, administration of SCF to 
humans, baboons, cynomolgus monkeys, mice, and rats 
promotes in vivo expansion of tissue MCs [133–135]. The 
ability of the SCF:c-kit axis to induce MC survival appears 
to be mediated, at least partly, through downregulation of 
pro-apoptotic proteins such as Bim [136].

It is thought that SCF and c-kit contribute to the MC 
accumulation and survival in MC-driven disorders. For 
example, in humans, gain-of-function mutations in c-kit 
lead to mastocytosis, a disorder characterized by an ex-
pansion of MC populations, due to constitutive SCF-in-
dependent activation of c-kit [137]. Furthermore, in in-
dividuals with various allergic diseases including asthma, 
allergic rhinitis, and atopic dermatitis, an increased pro-
duction of SCF [138–142] and elevated MC numbers are 
commonly seen [143]. It is also known that increased SCF 
levels correlate with disease severity in patients with asth-
ma or atopic dermatitis [139, 142].

Based on these findings, blockade of MC survival and 
development through inhibition of the SCF:c-kit axis has 
been considered as a potential treatment option to de-
crease MC numbers in certain pathological conditions [4] 
(Fig. 2). Imatinib is an inhibitor that is known to target 
c-kit and other tyrosine kinases. It was initially developed 
for targeting BCR-ABL (breakpoint cluster region-Abel-
son murine leukaemia viral oncogene homologue 1) in 
patients with chronic myeloid leukaemia but has also 
been shown to reduce MC numbers in endobronchial bi-
opsy samples and to reduce serum tryptase levels and 
AHR in patients with severe asthma [144]. Moreover, 
imatinib is now approved for the treatment of adult pa-
tients with aggressive systemic mastocytosis in cases lack-
ing the KitD816V mutation [145]; notably, in a phase IV 
clinical trial, imatinib caused a reduction of MC numbers 
in mastocytosis patients that had Kit mutations other 
than KitD816V [146]. In addition to imatinib, several 
other tyrosine kinase inhibitors including nilotinib, da-
satinib, midostaurin, and masitinib are being evaluated 
for efficacy in several MC-driven diseases [81]. However, 
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none of these inhibitors are specific for c-kit, that is, they 
are capable of inhibiting multiple other tyrosine kinases 
[81]. Thus, the effects of available tyrosine kinase inhibi-
tors extend far beyond MCs, resulting in a high risk of 
off-target effects on non-MC populations.

Strategies to Induce MC Apoptosis
Historically, cell death has been classified into two ma-

jor forms: apoptosis and necrosis [147]. Apoptosis is a 
highly regulated mode of cell death and plays an essential 
role in development, morphogenesis, and maintaining 
homoeostasis through the removal of damaged, aged, and 
potentially dangerous cells [148]. Apoptosis is initiated 
by the activation of caspases, leading to cell shrinking, 
chromatin condensation, DNA fragmentation, plasma 
membrane blebbing, and formation of apoptotic bodies 
[149–151]. In contrast, necrosis is a less controlled cell 
death mode characterized by loss of cell membrane integ-
rity and release of numerous cellular contents, such as 
danger signals, into the extracellular environment. There-
fore, unlike apoptosis, necrosis can potentially induce an 
inflammatory response [147]. Apoptotic cell death can be 
induced via two major classical pathways: the intrinsic 
and extrinsic pathways [151]. The intrinsic pathway is 
initiated in response to cell stress stimuli such as DNA 
damage, oxidative stress, growth factor deprivation, and 
cytotoxic substances through activating pro-apoptotic 
proteins (e.g., BH3-only proteins) [152–154]. Once acti-
vated, these proteins inhibit anti-apoptotic proteins (e.g., 
Bcl-2 and Bcl-XL) leading to mitochondrial outer mem-
brane permeabilization. This results in release of apopto-
genic factors such as cytochrome c and apoptosis-induc-
ing factor that can execute apoptotic cell death through 
caspase-dependent and/or caspase-independent mecha-
nisms [151, 155]. The extrinsic pathway of apoptosis is 
triggered when cell surface death receptors bind to their 
ligands [156]. The death receptors include tumour necro-
sis factor receptor (TNFR), Fas, and TNF-related apopto-
sis-inducing ligand receptor (TRAIL-R), which all belong 
to the TNFR superfamily [157]. Interaction of the death 
receptors with their cognate ligands, that is, TNF, FasL, 
and TRAIL, provokes the intracellular assembly of a mul-
tiprotein complex known as death-inducing signalling 
complex and recruitment of adaptor proteins. This, in 
turn, leads to caspase activation and apoptosis [154, 156].

In addition to these classical pathways for initiating 
apoptotic cell death, it has been revealed that apoptosis 
can be caused by lysosome membrane permeabilization, 
which can occur in response to various triggers, including 
chemical compounds with lysosome membrane-permea-

bilizing properties (“lysosomotropic agents”). In this pro-
cess, lysosomal enzymes such as various cysteine cathep-
sins escape from the lysosomes to the cytosolic compart-
ment, where they cause apoptosis by proteolytic activation 
of pro-apoptotic compounds and/or degradation of anti-
apoptotic proteins [154, 158–161].

The concept of selectively inducing MC apoptosis as 
a means to intervene with MC-driven diseases is emerg-
ing as an attractive therapeutic approach [125]. To 
achieve MC apoptosis, one strategy could be to activate 
pro-apoptotic pathways, for example, by using agonists 
of surface death receptors (e.g., TRAIL-R). Currently, 
several TRAIL-R agonists are being tested in preclinical 
and clinical studies for their therapeutic beneficial effects 
in different cancers [162]. However, although human 
MCs express TRAIL-R and were found to undergo apop-
tosis through engagement by TRAIL [163], the selectiv-
ity of TRAIL-mediated apoptosis for MCs is question-
able. This is due to the fact TRAIL-R is widely expressed 
among many human tissues and cell types [162, 164, 
165].

Another approach to induce MC apoptosis would be 
to interfere with the function of anti-apoptotic proteins. 
In line with this scenario, small molecule compounds 
known as BH3 mimetics were found to induce apoptosis 
in MCs through inhibiting the effect of anti-apoptotic 
proteins such as Bcl-2, Bcl-XL, and Mcl-1 [166–168]. 
However, due to the ubiquitous expression of these anti-
apoptotic proteins, such compounds are not likely to act 
selectively on MCs. In line with this notion, the BH3 mi-
metic ABT-737 was shown to induce apoptosis in MCs 
(Fig. 2) but also in a variety of other cell types, including 
B lymphocytes, neuronal cells, and transformed cells of 
various origin [166, 169, 170]. Due to differences in their 
chemical structures and properties, various BH3 mimetic 
compounds can target individual anti-apoptotic proteins 
[168]. On the other hand, different MC types were found 
to express distinct levels of individual anti-apoptotic pro-
teins, which results in differential sensitivities toward a 
certain BH3 mimetic compound [166]. For example, 
MCs with lower expression of Mcl-1 and higher expres-
sion of Bcl-2 are more sensitive to apoptosis induced by 
ABT-737, whereas MCs with an opposite expression pro-
file of Mcl-1 and Bcl-2 were more resistant [166]. These 
findings suggest that in order to execute efficient MC 
apoptosis by BH3 mimetic compounds, a combination of 
several different compounds is likely required. This, in 
turn, increases the risk of causing apoptosis in cell types 
other than MCs, potentially resulting in adverse side ef-
fects.
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Induction of MC Death by Granule Permeabilization
Given that most pro-apoptotic pathways are ubiqui-

tously present among different cell types, it has been chal-
lenging to identify a cell death pathway that is selective to 
MCs. If a pro-apoptotic strategy is to be selective for MCs, 
it must be established based on their unique properties. 
This could potentially be accomplished by targeting MC-
specific cell surface receptors, a strategy that was recently 
utilized by inducing MC death via the MRGPRX2 recep-
tor [171]. Targeting MCs via c-kit (receptor for SCF) 
could also be an option (see “Strategies to reduce MC sur-
vival”). Another unique feature of MCs is their abundant 
cytoplasmic secretory granules. The granules contain ex-
ceptionally large amounts of various bioactive com-
pounds, including proteases [19, 75, 76]. Conceptually, 
the escape of such proteases into the cytosolic compart-
ment could cause apoptosis by proteolytic activation of 
pro-apoptotic compounds and/or degradation of anti-
apoptotic proteins.

Interestingly, MC granules have striking similarities 
with lysosomes and are therefore also denoted “secretory 
lysosomes” [172]. For example, both compartments have 
an acidic pH, similar membrane composition and con-
tain typical lysosomal enzymes such as cysteine- and as-
partic acid cathepsins, arylsulfatase A, β-glucuronidase, 
and β-hexosaminidase [19, 172, 173]. Based on such sim-
ilarities, it is reasonable to assume that compounds ca-
pable of inducing lysosome permeabilization, that is, “ly-
sosomotropic agents” (see under “Strategies to induce MC 
apoptosis”), also cause granule permeabilization in MCs. 
This would cause the release of potent granule enzymes, 
for example, proteases, into the cytosol where they poten-
tially may induce apoptosis. Moreover, since MCs have a 
much higher content of protease-rich granules than any 
other cell type in the body, it is conceivable that strategies 
to induce apoptosis through granule permeabilization 
could be selectively cytotoxic for MCs. In support of this 
notion, it was shown that the prototype lysosomotropic 
agent L-leucyl-L-leucine methyl ester (LLME) induces 
apoptosis in murine cultured MCs by causing permeabi-
lization of the granule membrane (Fig. 2) [174]. More-
over, it was demonstrated that LLME showed selectivity 
for MCs versus several other cell types [175, 176].

Interestingly, mouse MCs lacking serglycin were con-
siderably less sensitive to LLME than were wild-type 
(WT) cells [174]. Since serglycin is restricted to the secre-
tory granules of MCs [177], this finding thus provides 
strong support for an involvement of the secretory gran-
ules in the cell death responses towards LLME. It was also 
noted that the type of cell death differed dramatically in 

WT versus serglycin-/- MCs, with WT cells undergoing 
apoptosis whereas the serglycin-/- cells died preferentially 
by necrosis [178]. Since serglycin acts as a scaffold for the 
storage of several potent proteases [177], a likely explana-
tion for these findings might be that the apoptosis-pro-
moting effect of serglycin is due to downstream effects of 
any of the proteases that are dependent on serglycin for 
storage, rather than through direct apoptosis-promoting 
functions of serglycin. Indeed, it was shown that the ab-
sence of Mcpt6 (a serglycin-dependent protease [177]) 
phenocopied the effects of serglycin-deficiency in terms 
of effects on apoptosis/necrosis [178].

These findings suggest that MCs are highly sensitive to 
cell death induced by granule permeabilization caused by 
lysosomotropic agents, introducing the possibility of 
evaluating lysosomotropic agents as potential therapeu-
tics to selectively deplete harmful MC populations. How-
ever, LLME is not approved for usage in vivo in humans, 
and it has therefore been important to identify lysosomo-
tropic agents that are more readily adaptable for clinical 
purposes. One such candidate is siramesine. Siramesine 
was originally developed as a sigma-2 agonist for treat-
ment of anxiety [179]. It was reported to be safe for use in 
humans but was inefficient for the intended purpose. On 
the other hand, it was later shown that it possessed lyso-
somotropic activity on certain cancer cell types [180], and 
it was therefore reasoned that it could have the ability to 
induce secretory granule permeabilization and cell death 
also in MCs. Indeed, it was shown that siramesine po-
tently induced apoptotic cell death in MCs [181]. More-
over, it was shown that siramesine selectively depleted 
MC populations, both in vivo in mouse models and in 
human ex vivo settings [176, 181, 182].

In further attempts to identify lysosomotropic agents 
with optimal cytotoxic effects on MCs, it was shown that 
mefloquine, an approved anti-malaria drug, was strongly 
cytotoxic for both mouse and human MCs, causing apop-
totic cell death [183]. As for LLME and siramesine, me-
floquine was shown to cause membrane permeabilization 
in various types of MCs, leading to apoptotic cell death. 
Further, it was shown that mefloquine-induced cell death 
was dependent on ROS [183]. It was also demonstrated 
that mefloquine, similar to siramesine, shows selective 
cytotoxic effects on MCs [183, 184]. In attempts to further 
clarify the mechanism by which mefloquine induces MC 
death, it was revealed that the ROS production in re-
sponse to mefloquine occurs in the secretory granules, 
and that the ROS production was dependent on iron 
bound to serglycin present in granules. ROS production 
was also partially dependent on granzyme B, and it was 
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shown that the cytotoxic effects of mefloquine on MCs 
were strictly dependent on an acidic pH in the granules 
[185]. A proposed model for how lysosomotropic agents 
can promote MC apoptosis is depicted in Figure 3. Im-
portantly, since mefloquine is an approved drug for usage 
in humans, it may be relatively feasible to adapt it for clin-
ical purposes under circumstances where selective deple-
tion of MCs may have a therapeutic potential.

Concluding Remarks and Future Perspectives

The current consensus is that MCs contribute impor-
tantly to the manifestations of many debilitating human 
diseases including asthma, and there is therefore a cur-
rent demand for strategies to block or dampen their 
harmful effects. As described here, multiple regimes to 
accomplish this have been developed or are under devel-
opment, and many such strategies are currently being ex-
ploited in the clinic. However, it is important to empha-

Mefloquine

Mefloquine

2

3

3

4

1

Plasma membrane

H+

H+
HN

HO

NCF3

CF3

H
H+

H+

Gnz B
ROS

ROS

Tryptase

5

6
Apoptosis

DNA
degradation

Gnz B

ROS

ROS

ROS

ROS

Fenton

Free iron

DFO Granule

H2O2 H2O2

Ferritin

Fe
Fe

Fe
Fe Fe

reaction
Fe2++ H2O2 Fe3++ OH• + OH–

V-ATPase
H+

BAF

pH~7

pH~4.5

Phosphatidylserine

NAC

Fig. 3. Suggested mechanism by which lysosomotropic agents 
(here exemplified by mefloquine) induce granule membrane per-
meabilization and apoptosis in MCs. (1) Accumulation of meflo-
quine inside the granules. Mefloquine, a weakly basic compound, 
can in its unprotonated form passively diffuse through the MC 
plasma and granule membranes. In the acidic interior of granules, 
mefloquine becomes protonated and can no longer pass through 
the membrane, thus accumulating inside the granules. (2) Granule 
membrane permeabilization. When the mefloquine concentration 
reaches a certain threshold, mefloquine acquires detergent-like 
properties and induces granule membrane damage and permeabi-
lization. (3) Induction of oxidative stress within granules. Hydro-
gen peroxide (H2O2) freely diffuses into the granules. In the gran-
ules, the acidic pH and the presence of free iron promote the oxi-
dation of iron and the generation of ROS such as hydroxyl radicals 
(HO•) via Fenton-type reactions. The electrostatic interaction be-
tween negatively charged serglycin and cationic iron likely par-

ticipates in maintaining the iron pool within MC granules, thus 
contributing to the generation of ROS. The generated ROS cause 
further destabilization of granule membranes leading to the release 
of many granule components into the cytosol. Granzyme B also 
participates in induction of ROS production upon exposure to me-
floquine. (4) Release of granule contents into the cytosol. Due to 
the granule permeabilization, granule contents (e.g., fully active 
proteases in complex with serglycin, ROS and iron) enter the cy-
tosol. (5, 6) Induction of apoptosis. Mefloquine-induced granule 
permeabilization and the subsequent translocation of the granule 
contents to the cytosol induce apoptosis manifested by phosphati-
dylserine externalization and DNA degradation. The MC prote-
ases, such as tryptase and granzyme B, may participate in apopto-
sis in response to mefloquine. BAF, bafilomycin-A1; DFO, defer-
oxamine mesylate; Gnz B, granzyme B; NAC, N-acetylcysteine; 
ROS, reactive oxygen species.
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size that MCs from different species and from different 
tissues show considerable heterogeneity in terms of gene 
expression profile, granular content and morphological 
criteria. Thereby, an important consideration is that MCs 
of different phenotype can be differently sensitive to in-
dividual treatment options. This issue certainly warrants 
further investigations to firmly establish the applicability 
of the various available anti-MC therapies. Another gen-
eral consideration is that most of the currently available 
strategies to limit MC activities are not MC-selective. For 
example, the pathogenic cytokines secreted by MCs are 
also expressed by multiple other cell types, and their tar-
geting will thus not selectively interfere with MC-depen-
dent effects of the corresponding cytokines/chemokines. 
Further, compounds known as “MC stabilizers” show 
only moderate selectivity for MCs, and anti-IgE therapy 
will target, not only MCs, but also other cells expressing 
FcεRI (e.g., basophils). Hence, effects seen for such thera-
peutic regimens may not be exclusively due to effects on 
the MC niche, which may affect the interpretation of the 
data as to whether MCs play a prominent role in the re-
spective condition. In other strategies, MCs are targeted 
with a higher extent of selectivity, as exemplified by strat-
egies targeting MC-restricted mediators such as chymase 
and tryptase. In addition, an emerging concept is to selec-
tively induce MC apoptosis, at least locally. As described 
herein, there are multiple emerging strategies for the lat-
ter purpose, although these efforts are still at the pre-clin-
ical stage. We foresee that such strategies will be devel-

oped in the future, and will aid in our attempts to thera-
peutically intervene with the detrimental impact of MCs 
in human diseases.
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