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Abstract
In the face of a changing climate, yield stability is becoming increasingly important for farmers and breeders. Long-term field
experiments (LTEs) generate data sets that allow the quantification of stability for different agronomic treatments. However, there
are no commonly accepted guidelines for assessing yield stability in LTEs. The large diversity of options impedes comparability
of results and reduces confidence in conclusions. Here, we review and provide guidance for the most commonly encountered
methodological issues when analysing yield stability in LTEs. Themajor points we recommend and discuss in individual sections
are the following: researchers should (1) make data quality and methodological approaches in the analysis of yield stability from
LTEs as transparent as possible; (2) test for and deal with outliers; (3) investigate and include, if present, potentially confounding
factors in the statistical model; (4) explore the need for detrending of yield data; (5) account for temporal autocorrelation if
necessary; (6) make explicit choice for the stability measures and consider the correlation between some of the measures; (7)
consider and account for dependence of stability measures on the mean yield; (8) explore temporal trends of stability; and (9)
report standard errors and statistical inference of stability measures where possible. For these issues, we discuss the pros and cons
of the various methodological approaches and provide solutions and examples for illustration.We conclude to make ample use of
linking up data sets, and to publish data, so that different approaches can be compared by other authors and, finally, consider the
impacts of the choice of methods on the results when interpreting results of yield stability analyses. Consistent use of the
suggested guidelines and recommendations may provide a basis for robust analyses of yield stability in LTEs and to subsequently
design stable cropping systems that are better adapted to a changing climate.
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1 Introduction

Stability can be conceptualized in various ways, with specific
meanings including invariability, resistance, and resilience
(Lehmann et al. 2013). In the context of agriculture, the con-
cept of stability is mostly used as a criterion to measure the
temporal or spatial invariability of specific features. Here, sta-
bility can thus be understood as constancy of agricultural out-
puts, especially of yield, over long periods of time or across
various spatial environments (Urruty et al. 2016). The stability
of agricultural systems is key in adapting to climate change
(Olesen et al. 2011) and is an important goal when diversify-
ing agricultural systems (Hufnagel et al. 2020). Analyses of
yield stability have become more important in recent years
since the increased variability of climate is also associated
with a decreased stability of crop yields (Müller et al. 2018;
Najafi et al. 2018; Ray et al. 2015; Tigchelaar et al. 2018). For
farmers, temporal yield stability is relevant because it deter-
mines economic predictability and reduces risk. Yield stability
is especially important related to grain legume cultivation, as
these crops are perceived to be less stable than others (Watson
et al. 2017; Reckling et al. 2020) and in the context of
cropping system diversification that is often assumed to in-
crease yield stability (Reckling et al. 2019; St-Martin et al.
2017; Marini et al. 2020). Stability is also highly relevant for
plant breeders developing genotypes adapted to a wide range
of environmental conditions (Mühleisen et al. 2014). Finally,
yield stability has a national and global dimension in the con-
text of food security (Kalkuhl et al. 2016). Large variations of
yield from year to year or from location to location are prob-
lematic as times of dearth and hunger cannot always and fully
be compensated by higher yields in other (previous) years, or
other locations (Abbo et al. 2010), thereby leading to potential
conflicts over resources.

Because of the increasing importance of yield stability, it is
essential to quantify it in an objective and meaningful way.
Only then is it possible to answer fundamental questions, e.g.:
How does the agronomic system (fertilizer, rotation, tillage,
etc.) affect stability? Has yield stability changed over time for
specific species or genotypes? What environmental factors
(e.g. climate and soil properties) affect temporal stability at a
given location?

Yield stability cannot directly be measured in a single field
experiment in a single year—it must be assessed based on
measurements of yield over years and locations; yield stability
is therefore estimated using various statistical approaches that
model variability across environments.

For the analysis of long-term field experiments (LTEs),
defined as “large-scale field experiments more than 20 years
old that study crop production, nutrient cycling, and environ-
mental impacts of agriculture” (Rasmussen et al. 1998), how-
ever, there is currently little knowledge on the robustness and
validity of the various yield stability indices that have been
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developed. The selection of particular stability measures is
often based on personal or disciplinary preferences rather than
systematic knowledge about the properties and suitability of
particular indices. Knowing and using information on the ad-
vantages and disadvantages of the different measures of sta-
bility are essential for identifying differential effects of agro-
nomic systems or other factors on stability. Ultimately, such
improved knowledge is also a prerequisite to manipulate sta-
bility and design cropping systems that are better adapted to a
changing climate.

A huge potential to contribute to a better understanding of
yield stability lies in LTEs (Reckling et al. 2018b; St-Martin
et al. 2017; Macholdt et al. 2020b). Typically, treatments
within LTEs are kept constant depending on the research
questions, i.e. the decision rules or technical operations on a
given plot over long time periods (Cochran 1939), so that
cumulative effects and processes taking several years to be-
come evident can be studied and separated from weather ef-
fects and climate trends. The importance of LTEs for studying
the sustainability of crop management and the effects of cli-
mate change on agriculture have long been recognized, and
LTEs are therefore used in agronomy and ecology world-wide
(Debreczeni and Körschens 2003; Johnston and Poulton
2018; Richter et al. 2017).

LTEs offer yield data under relatively comparable condi-
tions where crops are grown on the same soil, over long pe-
riods of time (Ahrends et al. 2018; Figure 1). While these
properties of LTEs make them ideal for quantifying temporal
variation, LTEs are only now beginning to be used more ex-
tensively to assess yield stability. However, there are several
hundreds of experiments available; 620 are listed in a global
assessment by Debreczeni and Körschens (2003) alone. In
Germany, a total of 205 LTEs were identified by Grosse
et al. (2020) with a minimum duration of 20 years, and 140
of these are still ongoing in 2020. Therefore, this tremendous
resource could be exploited more effectively in the future. In
addition, methods for analysis of long-term data series from

field experiments can also be applied to sets of variety trials,
which are not measuring cumulative effects on the same field
but ensure long-term comparability of measurements through
other rigorous rules (Hadasch et al. 2020; Laidig et al. 2017).

For quantifying stability, different disciplines (especially
plant breeding but also agronomy and ecology) have devel-
oped a wide range of yield stability measures. There are two
main contrasting concepts of stability as commonly used in a
plant breeding context: (1) the static and (2) the dynamic con-
cepts (Becker and Léon 1988). In the static concept, the most
stable genotype maintains a constant yield across environ-
ments, while the dynamic concept for a stable genotype im-
plies a yield response having a constant difference to the mean
response of all tested genotypes in each environment
(Annicchiarico 2002). While stability analysis was originally
used to assess the stability of crop genotypes across environ-
ments (Becker and Léon 1988), the analysis of yield stability
has been widened to various systems, comparing (i) crop pro-
duction systems, e.g. organic and conventional (Knapp and
van der Heijden 2018); (ii) cropping systems (Macholdt
et al. 2020b; St-Martin et al. 2017; Marini et al. 2020); and
(iii) crop species (Reckling et al. 2018b) and mixtures
(Raseduzzaman and Jensen 2017) and (iv) to assess changes
of yield stability over time (Reckling et al. 2018a; Döring and
Reckling 2018; Singh and Byerlee 1990; Schauberger et al.
2018; Macholdt et al. 2021). Yield stability has especially
gained importance in research on impacts of climate change
(Tigchelaar et al. 2018; Lobell et al. 2011; Webber et al.
2020).

Over the past decades, many different regression- and
variance-basedmeasures of yield stability have been proposed
(Becker 1981; Becker and Léon 1988; Dehghani et al. 2008;
Eberhart and Russell 1966; Eghball and Power 1995; Huehn
1990; Hussein et al. 2000; Lin et al. 1986; Piepho 1998;
Francis and Kannenberg 1978; Lin and Binns 1988; Plaisted
and Peterson 1959; Sneller et al. 1997; Tai 1971; Plaisted
1960; Jensen 1976; Wanjari et al. 2004; Kang 1988;

Fig. 1 a The Rengen grassland LTE was established in 1941 in the Eifel
Mountains of Germany on soils of low fertility and compares different
fertilization treatments (Picture: Thomas F. Döring/University of Bonn).
b The Broadbalk Wheat Experiment was established in 1843 at

Rothamsted Research in the UK to compare various combinations of
inorganic fertilizers and organic manures on the yield of winter wheat
(Picture: Janna Macholdt/JLU Gießen)
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Kataoka 1963; Eskridge 1990; Fox and Rosielle 1982; Abou-
El-Fittouh et al. 1969; Cotes et al. 2006; Perkins and Jinks
1968; Freeman and Perkins 1971; Hernandez et al. 1993;
Sadras and Bongiovanni 2004; Heath 2006; Fernández-
Martínez et al. 2018; Bacsi and Hollósy 2019). There is also
the GGE (genotype plus genotype-by-environment) biplot
analysis available, e.g. Farshadfar et al. (2012), or the
AMMI (additive main effects and multiplicative interactions)
analysis–based stability indexes, e.g. Farshadfar (2008),
Fikere et al. (2014), Fikere et al. (2008), and Purchase et al.
(2000). Further, an extensive literature deals with the compar-
ison of various stability indices (Becker and Léon 1988;
Crossa 1988; Ferreira et al. 2006; Mohammadi et al. 2012;
Mut et al. 2010; Temesgen et al. 2015). As a result, it is known
that some indices, though independently developed, are in fact
mathematically equivalent, such as Shukla’s stability variance
and Grubbs’ measurement error for calibration studies (Lin
et al. 1986), while other pairs of indices seem to correlate
strongly, such as the variance and the coefficient of regression
(Becker 1981). Still, interpretation of the results of stability
analyses is often difficult because different stability indices
may lead to contrasting conclusions, partly because they re-
flect different concepts of stability (Dehghani et al. 2008;
Piepho 1998).

While there already exists deep knowledge on correlations
among individual stability measures especially in plant breed-
ing research, relevant disciplines (i.e. plant breeding, agrono-
my, and ecology) have remained fragmented so far with little
interaction bridging the different research cultures and tradi-
tions. Because data sets are often relatively small and different
data sources have not been linked up, the current diversity in
methodological approaches hinders synthesis to gain more
general insights. Moreover, many approaches for stability
analysis developed in plant breeding have so far not been
applied to agronomy and related disciplines. An extreme ex-
ample is (agro-)ecological research, where experimenters
have often just applied one index, e.g. the inverse of the coef-
ficient of variation, to quantify stability (Isbell et al. 2009;
Roscher et al. 2011; Tilman et al. 2006).

The fact that over the past decades, numerous measures
of yield stability have been suggested indicates that there
is no single, unambiguous, and “intuitive” meaning of
stability. The question which indices are appropriate for
LTEs, however, is only one of many. In fact, LTEs are
characterized by a number of typical issues that affect
stability analyses in specific ways, which distinguish them
from shorter-term data sets. For example, as already ob-
served by Cochran (1939), with the length of the experi-
ment, the potential for errors and unintended changes in-
creases as well; resulting data gaps need to be dealt with
appropriately in the statistical analyses. Further examples
of typical issues affecting stability analyses in LTEs in-
clude changes in management or genotype during the

course of the experiment, temporal autocorrelation, or
strong temporal trends of the response variable (especially
yield).

We therefore conclude that for assessing yield stability
in LTEs, it is currently not primarily a question of lack of
data (although data sets are often relatively small and
difficult to access) but a question of conceptual gaps.
There is currently no broad consensus on how to proceed
when analysing stability in LTEs, so that synthesis and
comparability are hampered. Little consideration of meth-
odology jeopardizes trust and wider use of yield stability
assessments in agriculture. Thus, increased reliability and
robustness of results are needed. While we focus on ag-
ronomic settings, the methods presented here are also ap-
plicable in long-term experiments studying primary pro-
duction, e.g. in grasslands (Isbell et al. 2009; Roscher
et al. 2011; Tilman et al. 2006) or forests (del Río et al.
2017; Morin et al. 2014).

To facilitate interpretation and understanding, this paper
presents a methodological guide and consistent terminology
that aims to help with the assessment of yield stability in
agricultural LTEs. The objectives are to provide guidance on
the following topics: (1) quality of data and meta-data, (2)
outliers, (3) confounding factors, (4) detrending, (5) temporal
autocorrelation, (6) choice of stability measure, (7) depen-
dence of stability measures on the mean, (8) temporal trends
of stability, and (9) standard errors and statistical inference of
stability measures.

2 Materials and methods

In a workshop on “Methods for analyzing yield stability in
long-term field experiments” at the University of Bonn in
2019, nine topics were identified that are of particular rele-
vance for analysing yield stability in LTEs and other long-
term data sets. These topics are the basis for the methodolog-
ical guidelines (Sect. 3). Examples are used to illustrate each
topic.

The examples pertain to data sets from LTEs and other
long-term variety trial data sets (Table 1), representing differ-
ent biophysical conditions and cropping systems in a temper-
ate climate. The analyses were performed with the statistical
packages R and SAS. Details about the statistical methods
employed are explained for each example separately.

3 Methodological guidelines for assessing
yield stability in LTEs

In the following sections, we will systematically discuss sev-
eral issues associated with stability analyses in LTEs. For each
of the specific topics (except Sect. 3.1) we first define and
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explain the problem; describe some potential solutions, each
with its pros and cons; and provide examples illustrating the
application with data from available LTEs. To reduce com-
plexity, and for didactical reasons, we present the individual
data examples with solutions to one problem at a time, rather
than discussing solutions to all potential problems that might
be pertinent to that example; e.g., we deal with autocorrelation
in one example, but we ignore this issue in another one, where
we discuss the problem of the dependence of the variance
from the mean, even if autocorrelation might be relevant there,
too. While this necessarily implies some degree of simplifica-
tion, we hope that this approach helps to concentrate on the
main issues at hand. The notation used differs slightly be-
tween sections which is unavoidable because of the different
approaches and sources.

3.1 General considerations on quality of data from
LTEs

The quality of LTE data sets can vary widely depending on
data gaps, restrictions in the experimental design, and/or lack
of meta-data. An in-depth check of data quality and availabil-
ity is thus an important step before the actual analysis can
begin. Data gaps might arise in certain years due to harvest
failures, for example, caused by hail, storm, and pests. In other
cases, data are unavailable because of technical problems or
staff changes; or plot-specific yield records are not available,
because only means over replicates were kept. Some of the
very early experiments are characterized by a restricted exper-
imental design such as the lack of replications or missing or
insufficient randomization. Stability analyses need to take this
into account as shown, e.g. by Macholdt et al. (2020a).

In unreplicated experiments, i.e. when each plot has a dif-
ferent treatment, plot errors and treatment × year interactions
(residuals) cannot be separated. A serial correlation can still be
fitted for such data, when the interaction is modeled as ran-
dom. So the repeated measures nature of data can still be

accounted for (see Sect. 3.4). This does not, however, solve
the problem of lacking replication. The treatment and plot
effects are still confounded (see Sect. 3.3), and there is no
way this confounding can be resolved, even if serial correla-
tion is modeled. Consequently, the robustness of the results
from such LTEs is limited when comparing the treatments or
when analysing if cropping systems achieve a set of objec-
tives. This needs to be kept in mind while interpreting and
discussing the results. For the analysis of temporal stability
over time, the lack of replications is less problematic (see Sect.
3.8).

All these restrictions are typical for LTEs and might not be
remedied. Instead, they should be made transparent and con-
sidered during the statistical analysis. Further, the collection of
additional information about the experiment is essential. For
example, sometimes notes on harvesting problems or bird
damage are available. Here, we suggest adding these notes
to the data sheet for the analysis in order to check if observed
outliers in the analysis were due to such problems or if they
were the result of extreme but “natural” conditions such as
drought, crop diseases, etc. These notes can be useful when
deciding whether or not outliers should be removed (see Sect.
3.2).

Most stability parameters are based on treatment × environ-
ment values. In a typical LTE, environments are equivalent to
years as there is only one constant location. In unreplicated
LTEs, observed plot yields correspond to treatment × year
values. In replicated trials, simple means over replicates for
each year can be used to calculate treatment × year values.
However, simple means can lead to biased estimates if obser-
vations are missing and will not correct for LTE-specific prop-
erties like autocorrelated residuals due the repeated measure
design (Richter and Kroschewski 2006; Piepho et al. 2004). In
these cases, the use of mixed models and restricted maximum
likelihood estimation (REML) is recommended for LTE sta-
bility analysis because they can accommodate LTE-specific
properties, including the autocorrelation of residuals over

Table 1 Characterization of LTEs and long-term variety trial data sets used in this article

Data set Chapter Country Experiment Rotation
length

No. of
blocks

First
year1

Last
year

Duration
(years)

No. of
treatments

Crops2

Data set 1 3.4, 3.5 Germany Dikopshof 5 1 1955 2008 53 24 WW; PO

Data set 2 3.5, 3.6, 3.9 Sweden Borgeby, R4-0002 8 4 1960 2015 55 3 OR, FP, SB,
SW, SU, WW

Data set 3 3.2, 3.6, 3.7, 3.9 Germany Rengen - 10 1991 2014 24 5 PG

Data set 4 3.3, 3.8 Germany Variety trials - - 1983 2016 33 - WW, WR

Data set 5 3.6 United Kingdom Broadbalk - 1 1968 2013 45 5 WW

1First year refers to initial year in data set; this may be different from the start year of the LTE
2Crop abbreviations: WW, winter wheat; PO, potatoes; OR, oil seed rape; FP, field pea; SB, spring barley; SW, spring wheat; SU sugar beet; PG
permanent grassland; WR, winter rye
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time, non-orthogonal designs, and appropriate variance-
covariance structures (Onofri et al. 2016; see Section 3.5). In
most LTEs, the variance is not constant over years, and cor-
relation structures and/or variance heterogeneity between
years must be considered in models to ensure statistical accu-
racy (Littell et al. 2006; Onofri et al. 2016).

Such mixed models can be fitted either in a one-stage ap-
proach by taking account of the repeated measure design and
calculating the desired stability parameter directly or in a two-
stage approach by first calculating treatment × year means
with their standard errors and then using these means and their
standard errors to calculate the stability parameters in a second
stage (Macholdt et al. 2019; Piepho 1999). However, the em-
ployment of such mixed model approaches is limited to cer-
tain stability parameters (Piepho 1999), and models can get
very complex resulting in long computation time or non-con-
vergence. In such cases and for a greater set of stability pa-
rameters, calculating stability parameters on simple treatment
× year means might be necessary.

In the case of LTEs where crop rotations of different length
are to be compared and different plots might have been mea-
sured in different sets of years, mixed models provide a valid
analytical approach. Models can be fitted that take account of
the sampling structure and allow heterogeneous error vari-
ances between the environments (Payne 2015; Machado
et al. 2008; Littell et al. 2006; Singh and Jones 2002).

3.2 How to deal with outliers?

3.2.1 Problem description

An outlier can be defined as “an observation (or subset of
observations) which appears to be inconsistent with the re-
mainder of that set of data” (Barnett and Lewis 1994). If out-
liers are dealt with in the wrong way, this can be a serious
reason of distrust in the robustness of a study and affect the
analysis of yield stability. It is clearly not appropriate to accept
outliers if they comply with the hypothesis, but to argue for
exclusion of outliers if they do not comply with the hypothe-
sis. In LTE data, outliers can range from extreme large values
to extremely low and even no yield at all due to crop failure.

There are two potentially valid explanations at hand for the
interpretation of outliers: (1) it is really an outlier due to some
errors in the workflow from the experimental design in LTEs,
e.g. technological errors, wrong labeling, confusion with
digits in yield data until data arrive on one’s computer (non-
natural outlier), and thus the outlier should be removed from
the data set; (2) the outlier is real, e.g. bird damage leading to
poor crop establishment or winterkill due to heavy frost (nat-
ural outlier). The latter can indicate that the period covered by
measurements is too short to have a statistically robust basis
for critically checking the validity of the outlier’s value. This
is well known in hydrology: if a 100-year flood event is

observed within a 20-year measurement period, it looks like
an outlier, but since its effect is so obvious (flooded areas), it is
clear that it should not be removed from the data set. Outlier
detection is therefore one of the biggest challenges with short
time series and small data sets. Hence, using concepts from
extreme value distribution and statistics could also benefit
yield stability assessments. In that case, it is however not the
large positive outliers that are of interest, but the strongly
negative ones, since crop yield failures pose a serious problem
to farmers, whereas above-average yields tend to be less dra-
matic (except, maybe, for logistical issues to bring in the
yield).

3.2.2 Possible solutions

We suggest options how to deal with outliers and to explore
the impact of including or not including outliers in yield sta-
bility analysis in LTEs. The first option to deal with outliers is
to keep them in the data set because they are meaningful, in
particular in the context of stability analysis (natural outlier,
e.g. due to biotic or abiotic stress). The second option is to
exclude outliers, e.g. due to methodological and technical is-
sues, which might be desirable because it can dramatically
reduce the CV (see example in Sect. 3.2.3). To identify out-
liers in LTEs with replicates, an analysis within each year
using a model with the factors block and treatment can be
used to assess the residual variation of treatment effects. If
observations from one or several treatments within a given
year are missing, appropriate statistical methods such as
mixed models can handle this case. However, if a method
requires an orthogonal structure of the data set, then all the
data of the given year must be removed, to test each treatment
with the same set of years. There are other outlier detection
methods that can be used also for LTE data, which were
described in detail by Hodge and Austin (2004) and Bernal-
Vasquez et al. (2016).

Irrespective of the particular case, best practice is to show
the data and carry out the analysis with all data and then
openly show the result when outliers are removed. We recom-
mend to calculate yield stability measures with and without
including the outliers. In the end, the key will be that re-
searchers publish their data along with their papers, to foster
fruitful scientific discussions.

3.2.3 Example: impact of including or excluding outliers
in yield stability analysis

An example shows the impact of including or excluding out-
liers in the calculation of the coefficient of variation (CV in%)
as a stability measure (Fig. 2). Because the position of the
outlier is of no importance for the CV—the time series is
treated like a random sample—the effect can be estimated
via a simple modeling exercise. The effect of removing a
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single positive outlier (e.g. a very large observation in the data
set) from a 50-year time series, notably if it is still within the
realistic range of normally distributed variations (“as is” and
thin black line in Fig. 2), is rather marginal; for a CV up to 1.5
(or 150%), the CV changes by ± 5% (or up to 7.5% difference
to 150% CV) or less if such an outlier is removed from the
calculation. However, if the smallest value is removed from
the same time series, then the CV decreases by more than 5%
and up to –15% for a CV of 2.0. If CV is expressed as 200%,
then the decreased CV ends up being in the 170 to 190%
range. As expected, this effect becomes more severe if an
outlier is 2× or 5× further away from the mean than what is
expected in a normally distributed data set. Removing the
largest or smallest observation has the same effect if the CV
is close to zero. For realistic values, removing the lowest value
by considering it an outlier further reduces the recalculated
CV in comparison to the original CV. Removing the largest
observation brings back the recalculated CV towards the orig-
inal CV for larger values and can even lead to an increase in
CV if the original CV was already high (solid lines extending
above the green area in Fig. 2).

In summary, removing an outlier may reduce the CV quite
dramatically, except for some special constellations with high
original CV and short time series (10 years) and when the
outlier represents an exceptionally high yield in the data set.
While the effect that a single outlier has on the calculation of
the CV is rather simple and obvious, outliers are more chal-
lenging in trend analyses because the position of the outlier in
the time series is of relevance.

3.3 Confounding factors

3.3.1 Problem description

Confounding factors, which typically appear in LTE data sets,
are mostly experimental modifications over time like changes
of genotypes, treatments, agronomic management, or plot
size. The adaptation of treatment factors (such as increased
fertilizer levels or introduction of new cultivars) after some
time is seen as inevitable by many researchers managing
LTEs. These changes, although they violate the principle of
constancy of the LTE, are implemented to maintain relevance
and transferability of results to contemporary agronomic prac-
tices. Furthermore, the technical implementation may have
changed during the experimental period, with, for example,
mechanical weeding or larger plot sizes due to technical rea-
sons in former years (1950s, 1960s) switching to possible
chemical weed control as well as smaller plot sizes (usage of
plot combines) during the last decades. Typically, such chang-
es, whether referring to selected treatments or to the whole
trial management, are rare and abrupt because researchers
running LTEs will try to maintain integrity of the trial over
time. With increasing age of the LTE, however, changes will
accumulate—and anyone who has thoroughly looked at an
LTE will confirm that they make data analysis difficult.

In this context, the biggest problems in LTE analyses are (i)
that potentially confounding factors are often not well or im-
precisely recorded in the original documents, (ii) that these
factors are not made completely transparent in publications,

Fig. 2 Illustration of the effect that the elimination of a single outlier has
on the calculation of the CV in a study with 10, 25, or 50 years of
observation, showing the data a with outliers > mean (largest outlier
removed) and b with outliers < mean (smallest outlier removed). The
relative change in CV (in %) is shown as a function of the following
assumptions: (1) the largest negative or positive deviation from the group
mean is considered an outlier, although it is well within the expectation of
normally distributed variation (“as is”, black colour); (2) the observation

with the largest positive or negative deviation is 2× larger than what
would be expected if observations were normally distributed (blue col-
our); and (3) the same with a 5× larger deviation from the mean (extreme
outlier; red colour). Green circles indicate the first cut of yield data from
the Rengen LTE (data set 3), and orange circles the yield data from the
second cut. Lines quantify the effect of one single outlier that is greater or
smaller than the group mean. The hashed band shows the ± 5% range
around the original CV
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and (iii) that they are not sufficiently considered in the statis-
tical model, despite having a possible impact on the results of
stability parameter estimations. For that reason, it is crucial to
search for and document all potentially confounding factors
conscientiously before starting the data analysis. Below, we
deal with the third problem, showing how confounding factors
may be included in the statistical modeling, once all the infor-
mation about these factors is incorporated into the data set.

3.3.2 Possible solutions

The effect of cultivar is often ignored or considered to be
relatively minor in LTEs. If possible, changes of cultivars
should be considered in the statistical model, e.g. Macholdt
et al. (2020b) fitted their model across years so that the serial
correlation of the observations of the same main plot and the
different cultivars used could be accounted for. If several cul-
tivars were grown simultaneously in the experiment, a sepa-
rate factor “cultivar” should be added to the model. If cultivars
changed frequently and not constantly, considering the culti-
var in the model is difficult.

To account for abrupt experimental changes from one year
to another in the statistical model, like the usage of different
N-fertilizer levels (or cultivars), a categorical variable P with
effects (fixed or random) for the respective time period of a
certain N-fertilizer level can be fitted. Constantly changing
experimental effects (e.g. related to soil conditions), which
are not considered as factors in the model, can be taken into
account as a covariate term.

3.3.3 Example: change in fertilizer level

An official long-term variety trial data set (data set 4), which
comprises yield of several winter wheat genotypes and fertil-
ization levels in a period from 1983 to 2016, was used to
demonstrate confounding factors and how to handle them sta-
tistically. The variety trial data allows generating subsets for
several locations, to investigate interactions of treatments (N-
fertilizer level) with the location, which also may cause con-
founding effects in LTEs.

To illustrate the data structure of an LTE with a confound-
ing factor, subsets of the variety trial data are considered for
two cases of confounding factors, namely (i) a change in fer-
tilizer amount and (ii) confounding due to ageing of the geno-
type. For each example, a statistical analysis accounting for
the confounding factors is presented and compared to an anal-
ysis that ignores confounding factors. The analysis is based on
linear mixed models, which allow estimating treatment means
as well as yield stability parameters in terms of treatment
specific error variances according to the concept of Shukla’s
stability variances (Shukla 1972). The mixed model analyses
were done using ASReml-R, Version 4 (Butler et al. 2017).

For winter rye, the variety trial data (data set 4) comprise two
levels (low/high) of N-fertilization until 2005. From 2006 and
further, the data only contains the high level of N-fertilization.
This structure allows generating a data set comprising the low
N-fertilization until 2005 and the highN-fertilization from 2006
on for a given location and reference varieties. Such a data set is
very similar to an LTEwith a change in the management factor.
Figure 3 shows the yield of several reference varieties for low
and high N-fertilizations in two locations.

If the change in management is not taken into account, the
model for analysis of a single location is written as

yikl ¼ μþ Y k þ eikl ð1Þ
where yikl is the yield of the i-th N-fertilizer level in the k-th
year and the l-th replicate, μ is the overall mean, Yk is a ran-
dom effect of the k-th year, and eikl is a random error. Random
effects are treated as normally distributed with zero mean and
variances σ2

Y and σ2. To account for the change in the N-
fertilizer level, a fixed effect for the N-fertilizer level is added
to (1). Further, to allow for different yield stabilities of the N-
fertilizer level, the error variances are genotype specific. In
this case, the model is

yikl ¼ μþ Y k þ Pi þ eikl ð2Þ
where Pi is the effect of the i-th N-fertilizer level and eikl is the
random error with N-fertilizer level specific variances σ2

i .
To illustrate the effect of a management change on yield

and yield stability, the data were analysed according to the
models (1) and (2) where in (2), the fixed term Pi represents
the fertilizer effect. The inference for fertilizer means is only
valid if there is no genotype-fertilizer interaction. Estimated
mean yield (dt/ha) and yield stability ignoring the change in
N-fertilization (model 1) and taking it into account (model 2)
for different locations are shown in Table 2. In this table, the

values of bμ and bμþ bPi represent estimates of mean yield,

while bσ2 and bσ2
i represent estimates for yield stability (small

values indicate high stability). Indices “1” and “2” represent
the N-fertilization level (1, before 2006; 2, from 2006
onward).

3.3.4 Example: ageing of genotype(s)

The effect of variety ageing represents another confounding
factor that is illustrated in the variety trial data (data set 4).
Such ageing effects can be caused by an increased suscepti-
bility of the varieties towards diseases or by a decreasing
efficacy of plant protection products. Therefore, either in the
presence or absence of plant protection, the yield development
of a variety with time indicates if ageing effects exist. In Fig.
4, the yield development over time is shown for two varieties
in three locations treated with plant protection in each year.

27    Page 8 of 28 Agron. Sustain. Dev. (2021) 41: 27



The scatter plot indicates that the mean performance as well
as the variability changes with time or, in other words, with
the age (obtained as difference between testing year and first
year of testing) of a genotype. The change in mean perfor-
mance can be modeled by a regression on age, while changes
in variability can be taken into account by modeling random
regression coefficients for the two genotypes. Ignoring ageing
affects the data of a single location which can be analysed
according to the model

yikl ¼ μþ Y k þ Gi þ GYð Þik þ eikl ð3Þ

where yikl is the yield in the l-th replicate of the i-th geno-
type and the k-th year. The effects μ and Gi are fixed effects
for the overall mean and genotypes. Year effects Yk, interac-
tions of genotypes and years (GY)ik, and the errors eikl are
random effects with variances σ2

Y; σ
2
YG, and σ2, respectively.

A model that takes ageing effects into account is

yikl ¼ μþ Y k þ Gi þ biaik þ GYð Þik þ uikl
ffiffiffiffiffiffi
aik

p þ eikl ð4Þ

where aik is the age of the i-th variety in the k-th year and bi is
a genotype-specific regression slope. The coefficient uikl is a
random effect with genotype-specific variances σ2

ui . The

variances of eikl are also genotype specific and denoted by
σ2
i . In this model, the error variance of a genotype, i.e. the

stability of a genotype, is a linear function of age. Therefore,
this model describes trends in the stability variance.

Here we estimated the mean yield and yield stability ignor-
ing ageing of genotypes (model 3) and taking it into account
(model 4) for different locations of the variety trial data (data

set 4). For model (3), bμþ bGi represents estimates of mean

yield, while bσ2 represents an estimate for yield stability (small

values indicate high stability). For model (4), bμþ bGi repre-

sents the mean yield without ageing effect, bbi is a slope caus-
ing the decrease or increase of mean yield, and bσ2

ui indicates

the magnitude and direction of the change in yield stability
(Table 3).

For model (3), bμþ bGi represents estimates of mean yield

(dt/ha), while bσ2 represents an estimate for yield stability (dt2/
ha2). For model (4), it represents the mean yield without age-
ing effect, bi is a slope (dt/ha/year) causing decrease/increase

of mean yield, and bσ2
ui indicates the magnitude and direction

of the change in yield stability (dt2/ha2). Negative values of bσui
represent an increase in stability with age, while positive

Fig. 3 Example for a change in
the N-fertilization (data set 4).
The plots show the yield of dif-
ferent genotypes for low N-
fertilization (before 2006) and
high N-fertilization (after 2006) in
two different locations. The col-
ours of the dots represent different
genotypes

Table 2 Estimated mean yield
(dt/ha) and yield stability (dt2/ha2)
ignoring the change in N-
fertilization (model 1) and taking
it into account (model 2) for dif-
ferent locations (data set 4)

Model Parameter Site

Bad Salzungen Baruth

1 bμ 71.2 67.7bσ2 86.8 36.9

2 bμþ bP1 64.0 67.1bμþ bP2 77.0 68.3bσ21 60.4 37.5bσ22 117.6 36.3

The values of bμ and bμþ bPi represent estimates of mean yield, whilebσ2 and bσ2i represent variance estimates for
yield stability. Indices “1” and “2” represent the N-fertilization level (1, before 2006; 2, from 2006 onward)
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values represent a decrease in stability. The indices “black and
“red” relate to the colour code of two genotypes in Fig. 4

3.4 Accounting for long-term trend of yield data

3.4.1 Problem description

LTEs often exhibit marked trends of yield over time. This is
mostly because effects on crops and soils accumulate and
become stronger over time. In very long LTEs, temporal
trends of yield can also reflect management changes over
time that are not part of the treatments (e.g. changes in
cultivars, pesticides, equipment), irrespective of the main
treatment effects, e.g. with and without tillage or organic
vs. mineral fertilization. Yield trends in LTEs can be posi-
tive (e.g. as soil fertility increases) or negative (e.g. in un-
fertilized controls). Ignoring such trends is likely to compro-
mise yield stability measures. A simple example is the yield
variance across years; not taking into account a positive
trend in the yield across years would unjustly penalize a
treatment by a seemingly high variance, i.e. low stability,

simply because variance would be inflated by the general
increase of yield over time. Dealing with trends becomes a
more complex issue of yield stability analyses for compari-
sons across sites and crops and when analysing the devel-
opment of temporal stability over time.

From a theoretical point of view, with the ordering of the
data through time being important for stability analyses in
LTEs, time series methods are appropriate. Most methods of
time series analysis require so-called stationarity of the data
(no changes of statistical properties over time), but crop yield
time series are often non-linear and not stationary. A typical
violation of stationarity is the presence of a deterministic or
stochastic trend in the mean (Fig. 5a). This trend does not need
to be linear; it can also be a non-linear trend as shown in the
example in Fig. 5a. Generally, the presence of trends in the
data sets would lead to a strong over- or underestimation of
stability when using measures based on the mean and the
standard deviation of the data. Contrasting to trend analyses,
in stability analyses, yield fluctuations (short-term variability)
around the trend (long-term change) are the critical character-
istics of interest.

Fig. 4 Example for ageing of genotypes (data set 4). The plots show the yield of two genotypes (red and black dots) in several years for different
locations

Table 3 Estimated mean yield
(dt/ha) and yield stability (dt2/ha2)
ignoring ageing of genotypes
(model 3) and taking it into
account (model 4) for different
locations (data set 4)

Model Mean/stability estimate Koefering Rethmar Futterkamp

3 bμþ bGblack 95.2 83.2 98.0bμþ bGred 105.9 92.7 108.5bσ2 13.9 12.7 7.8

4 bμþ bGblack 97.2 83.2 93.5bμþ bGred 107.1 91.2 104.0bbblack -0.2 0.0 0.3bbred -0.1 0.1 0.4bσ2ublack 0.4 -1.3 -0.3bσ2ured 0.2 3.4 0.1bσ2black 10.3 14.2 13.6bσ2red 9.4 0.0 4.9
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3.4.2 Possible solutions

One solution is the stratification of the data, i.e. splitting the
time series in several subsets, and the subsequent restriction of
data analysis to these subsets (see, e.g. Reckling et al. 2018a). If

this is not an option, suitable data detrending techniques can be
applied (Singh and Byerlee 1990). The type of trend model to
which the data are fitted will, in turn, affect the stability mea-
sures (Massell 1970; Valle 1979) and, consequently, the quan-
tification of changes in stability over time (see Sect. 3.8). So far,
these effects have rarely been quantified (Lu et al. 2017).

The simplest approaches to remove trends in crop yield
data include data transformations (see also Sect. 3.4), e.g.
the computation of relative yields based on the range of yields
for a given year, site, experimental block, and treatment or the
use of mathematical operators, such as differencing.
Differencing is conducted by subtracting the previous obser-
vation from the current observation. Techniques such as
differencing (or lagged differencing if data show autocorrela-
tion), however, are based on the assumption that these trans-
formations can convert nonstationary to stationary data.

Classical detrending techniques that have been applied to
crop yield data can be grouped into two main categories: (1)
approaches that use time and (2) approaches that use time and
one or more additional variables to separate trends from var-
iability in the time series. An example for the latter approach is
the study by Bönecke et al. (2020) who separated climatic
from genetic and agronomic yield effects using linear mixed
effect models and estimated the climatic influence based on a
coefficient of determination. Mathematically related to both
approaches, though often a rather technical consideration, is
the transformation of the data (e.g. log transformation).

Approach (1) encompasses a variety of methods that can be
broadly differentiated into (1.1) global regression methods,
e.g. linear, polynomial, and weighted regression; (1.2) local
(adaptive) smoothing or regression methods that are time-de-
pendent, e.g. moving averages, kernel smoothing, and other
filtering functions, piecewise or local (polynomial) regression;
and (1.3) more complex signal analyses that decompose time
series into different components and operate either in the time
or in the time-frequency domain, e.g. empirical mode decom-
position (Wu et al. 2007), singular spectrum analyses
(Broomhead and King 1986), and wavelet analysis
(Adamowski et al. 2009). Since the methods mentioned for
(1.3) are rather suitable for time series of high-frequency data
and/or time series characterized by oscillations and cycles,
such as climatological or hydrological data, they are not
discussed here. Global regression methods assume that a sin-
gle trend model, e.g. linear, quadratic, and cubic, can be ap-
plied globally to describe the trend, whereas trends derived by
local smoothing and regression methods strongly depend on
the definition of the time window used for filtering/
smoothing.

After separating the trend from the variability, detrending
can be basically either additive (trend is subtracted from the
data points; yield)

YAabs ¼ Yield−Trend

Fig. 5 a Yield data of sugar beet observed at the LTE Dikopshof,
Germany (data set 1), and trends estimated using the LOESS smoothing
(red line) and linear regression (LM, black dotted line) for the treatment
omission of potassium fertilizer. bAbsolute yield anomalies after additive
detrending and c relative yield anomalies after multiplicative detrending.
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or multiplicative (using the ratio between data value and
corresponding trend value)

YArel ¼ Yield
Trend

This processing step directly translates into the use of either
absolute values (YAabs, absolute deviations from the trends) or rel-
ative values (YArel, percentage deviations from the trend value in
each year) and influences statistical properties on the resulting data
set and corresponding stability analyses (Fig. 5b and c).
Alternatively, a post hoc analysis can be applied to test whether
there is any correlation of the stability parameterswith a linear trend.

Approach (2) can be used to improve trend models if fac-
tors that are relevant for the change in crop yield over time do
not only have a time component but strongly interact among
each other. Corresponding statistical approaches, such as
mixed effect models, allow for explicitly assessing the contri-
bution of factors, such as crop genotype, fertilizer amount and
type, and site characteristics (environment) to the overall var-
iability (see, e.g. Bönecke et al. 2020).

3.4.3 Example: impacts of different detrending methods

To illustrate three different methods for detrending, the (i) local
polynomial regression smoothing (LOESS) and (ii) linear re-
gression (LM) were applied to the sugar beet yield data and one
fertilization treatment (omission of potassium) at the LTE
Dikopshof for the period 1955–2008 (data set 1). The overall
variance of the detrended yield data (“residuals”) is only slight-
ly affected (Fig. 5). However, the probability distribution is
modulated by the detrending technique. Fitting a global trend
model with lower flexibility (LM) leads to a larger range of
residuals. In general, detrending might lead to a deviation of
resulting data from the Gaussian distribution and, thus, com-
promise subsequent statistical analyses. For the application of
stability measures which are based on the probability distribu-
tion, e.g. risk-based approaches, careful detrending is required.
This is especially true for rather short time series, for the com-
parison of temporal data subsets (see Sect. 3.8), and for com-
paring the temporal stability between sites and crops.

3.5 Temporal autocorrelation

3.5.1 Problem description

Carry-over effects of management activities performed in one
year can have an effect also on yields in the following year and
possibly even up to a few years later (Gulden et al. 2015;
Jernigan et al. 2020; Rui et al. 2020). Although this is the best
scientific representation of a farmer’s perspective focusing on
a specific plot with the goal to improve or maximize the yield
from that plot in the long term, it poses some challenging

statistical problems to be aware of. In an LTE, repeated mea-
surements are made on the same plots year after year (Onofri
et al. 2016). Serial correlation means that a measurement, e.g.
of yield, in year t+1 is not statistically independent from the
measurement in the previous year t.

This temporal autocorrelation needs to be accounted for
when estimating the plot error term. In simple words, if a
statistical test (e.g. for differences in yields) is carried out in
the standard way that assumes that the data are random sam-
ples without serial correlation, then inference about parameter
estimates is biased, and significance tests may be invalid as
they do not appropriately control type I error rates. This is
because the data generating mechanism involves a process
causing the correlation which is not accounted for in the mod-
el. In other words, due to (constant) plot effects on measured
yields, residuals can be correlated between years, and thus the
assumption of independence of residuals is violated if this
correlation is not incorporated in the model.

As there may be many causes of autocorrelation in LTE, it
is crucial to incorporate this prior knowledge into the model.
An advantageous feature of mixed models for the analysis of
LTE lies in the fact that they allow to include random effects
for factors which are not the major scope of the LTE, e.g.
years, implying that inference of parameter estimates takes
into account the variation caused by years such that inference
of estimates holds not only for the observed years but also for
other years. Taking such effects as random may cause stan-
dard errors to increase compared to analysis with fixed year
effects and/or ignoring correlation but will provide inferences
that are more realistic and practically relevant. Furthermore,
treatment effects in LTE like different fertilizer regimes may
be correlated as well, which can be taken into account in a
mixed model analysis.

3.5.2 Possible solutions

Temporal autocorrelation could be accounted for by allowing
for serial correlation among year main effects and among plot
and block effects in linear mixed effect models. In simple
statistical comparisons, e.g. using the t-test for testing signif-
icance in difference of yields among treatments, repetitions in
time are easiest to treat when measurements are made at fixed
intervals (time series, e.g. yield measured every year without
gaps). This allows to compute the lag 1 autocorrelation coef-
ficient ρ1, which is Pearson’s product-moment correlation co-
efficient of pairs of observations one step apart in the same
time series (the lag 0 autocorrelation coefficient is ρ0 = 1.0 by
definition). If ρ1 is significantly different from zero (ρ1 ≠ 0),
then a correction for serial correlation is required in any sta-
tistical test. If, however, ρ1 is not significantly different from
zero, then the time series can be treated in the standard way as
if it were a random sample without serial correlation and does
not need special attention. This is assuming that higher lags
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are uncorrelated. However, higher lags may be relevant as
well; in particular, in the case of LTEs, higher lags may be
justified in an agronomic view as they are able to take legacy
effects into account.

If ρ1 > 0, then all statistical tests made with time series data
that assume randomness of the variables under consideration
lead to an overestimation of significance (too low p values)
because of oversampling. Oversampling describes the same
statistical artefact as autocorrelation in the time series. A sim-
ple approach to treat this problem in statistical tests was pre-
sented by Wilks (2006). The key is to reduce the number of
samples n in a statistical test to the number of independent
samples n′ in the time series and then determine the test sta-
tistic with n′ instead of n to define the degrees of freedom of
that test, with (Wilks 2006).

n0≃n
1−ρ1
1þ ρ1

: ð5Þ

Here, the serial correlation is assumed to be positive. For
example, a LTE time series with n = 20 years of data in which
ρ1was found to be 0.6 has a statistical information content that
corresponds with n’ = 5 random samples. We first present an
example where taking into account temporal autocorrelation
changes the significance of differences between mean yields
in an LTE; the second example deals with a more complex
case where we test the effect of taking into account autocor-
relation on yield stability estimates.

3.5.3 Example: time series of yields with its autocorrelation

We show an example of the comparison of two treatments
from a LTE in Dikopshof (Fig. 6), Germany, with data
from 1955 to 2005 (data set 1). During this time period,
the yield difference is significantly different from zero (t
= 2.0623, df = 50, p = 0.044) if no correction is made for
serial autocorrelation in the time series. The correction
reduces the degrees of freedom from 50 to 23.8 (using
Eq. (5) with ρ1 = 0.3456 as shown in Fig. 6b), and thus
the t-test yields p = 0.050 with this correction. Although
minor, such effects can be important when trying to ex-
tract the maximum of information from available data.
Alternatively, this analysis could be done using a mixed
model package, fitting a model for autocorrelation and
approximating the degrees of freedom using the
Kenward-Roger method.

3.5.4 Example: effect of correction for autocorrelation
on stability

In order to check if any autocorrelation of plot residuals is
present and to assess any effect on estimates of environ-
mental variance, we fit models without any correlation

structure (NC), with compound symmetry (CS), and with
a power correlation structure (POW). If sampling intervals
are constant, the latter will be equivalent to an
autoregressive structure (AR1, where 1 indicates that only
a time lag of 1 is considered in the analysis), but it also
allows for non-constant sampling intervals. We further-
more compare a one-step approach, where the environ-
mental variances and the correlation structure are estimat-
ed in one single model, to a two-step approach, where in a
first model treatment × year means and their covariance
matrix are estimated taking into account different correla-
tions structures, and then in a second model, environmen-
tal variances are estimated using the previously estimated
T×Y means (Piepho 1999; Piepho et al. 2004). The model
for the one-step approach, stated in symbolic notation
akin to that used in linear model packages, was:

yijk ¼ μþ T i þ TYð Þik þ B j þ BYð Þjk þ eijk ð6Þ

where Ti is the i-th fixed treatment effect, (TY)ik is the
random effect of the k-th year within the i-th treatment,
Bj is the j-th random block effect, (BY)ik is the random
effect of the k-th year within the j-th block, and eijk is the
residual plot error. The correlation structure is modeled
with the respective covariance structure for eijk, and envi-
ronmental variances are modeled through an unstructured
covariance matrix on (TY)ik (UN in SAS) with the diago-
nal representing the environmental variance estimates. In
the two-step approach, the model to estimate the treatment
× year means is the same as (6), but with (TY)ik as fixed to
get LS-means, and correlation structures are similarly im-
plemented for eijk. Using the estimated LS-means yik for
the i-th treatment in the k-th year as response, the model
to estimate environmental variances is:

yik ¼ μþ T i þ TYð Þik þ eik ð7Þ

with residual variance-covariance matrix for eik being
fixed at the variance-covariance matrix of the LS-means
from the first stage. Environmental variances are again
estimated from an unstructured matrix on the (TY)ik effect
as in the one-step approach. Additionally, an analysis
using simple treatment × year means is compared, where
the variance of each treatment is calculated, and SEs are
calculated by multiplying this variance by √(2/(t-1)),
where t is the number of years (Piepho 1998).

As an example, we illustrate the method by computing the
environmental variance estimates and their standard errors
(SE) for spring wheat in the Borgeby trial (data set 2).

Three different models to deal with a possible autocorrela-
tion are compared using plot values in a one-step and two-step
approach. A lower Akaike information criterion (AIC) indicates
better model fit. Additionally, an analysis using simple
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treatment × yearmeans is compared, where the variance of each
treatment is calculated, and SEs are calculated. P(LL) is the
significance of a likelihood-ratio test of the given model against
the respective NC model, testing if the given model shows a
significantly better fit. ρ is the estimated correlation coefficient,
and r is correlation coefficient of the estimated environmental
variances with the given correlation structure against the calcu-
lated variances from simple treatment × year means (Table 4).

In springwheat in the Borgeby trial (data set 2), AIC and the p
value from a likelihood-ratio test suggest that no correlation
structure seems to be indicated and that the NC model is to be
preferred (Table 4). For other experimental data, e.g. data set 3,
there is no convergence with this method, and this method sug-
gests that taking into account possible autocorrelation due to
repeated measurement might have only minor effects on estimat-
ed stability measures and their standard errors. This could be the
case because yield variances react strongly on the weather con-
ditions (Richter and Kroschewski 2006). E.g. for soil organic
carbon, Richter and Kroschewski (2006) found that correlations
were relatively high and should be included into scientific inter-
pretations of long-term experiments.

3.6 Choice of stability measure

3.6.1 Problem description

With the large number of stability indices that have been pro-
posed over the years (Hussein et al. 2000), it is important to
make an informed decision onwhich indices should be chosen
to evaluate stability in a given LTE, for a given research ques-
tion. This is because (a) not all stability measures are equally
suited for LTEs; (b) some indices may be mathematically
equivalent to others; and (c) indices represent different con-
cepts of stability. Here we show what criteria can be used to
make an initial selection of measures and also how to deal

with the potential multiplicity of selected measures in the sub-
sequent data analysis. We note that the values of the regres-
sion parameter depend on the units of measurement of the
response, but otherwise our inference would be unaffected
by a change of units of measurement.

3.6.2 Possible solutions

In the path leading to a choice of indices, it first needs to be
recognized that there is no “right” or “true” index. So the
question which one of the indices is the best one to represent
“true” stability cannot be answered. Different indices simply
express and describe different properties of the same data set.

Second, it is necessary to define the research question as
precisely as possible. Does the research question focus on
fluctuations around a given treatment’s mean across years or
on the deviation from the mean of all treatments in each year?
A static index should be chosen in the former, and a dynamic
one in the latter case. Should negative deviations from the
mean be assessed in a different way from positive deviations?
In that case, risk-based approaches should be preferred
(Macholdt et al. 2020b); otherwise, i.e. if positive and nega-
tive deviations are equivalent, variance-based stability mea-
sures are fine to be selected.

Third, it needs to be recognized that some stability indices
may not be suited to LTEs. Many stability indices have been
developed in plant breeding and cultivar evaluation, where a
large number of genotypes are tested in many environments.
The treatments of LTEs, however, which correspond to the
genotypes, may not be as numerous. In fact, some LTEs con-
tain only four different treatments. This becomes an issue with
those indices for which the stability of one treatment is depen-
dent on the yields of the other treatments—this is the case with
Finlay-Wilkinson’s regression parameter b, for example, but
also for the other dynamic stability measures and for some

Fig. 6 Example of two time series
of potato yields a measured in a
long-term trial at Dikopshof,
Germany, from 1955 to 2005
(data set 1) and the difference in
yields in a pairwise comparison
with b its autocorrelation at dif-
ferent lags. Lag 1 (ρ1) is used to
correct statistical tests for the
presence of serial correlation.
Horizontal dashed lines in b indi-
cate the band of non-significant
autocorrelation coefficients. With
random samples, ρ1 is found be-
tween these thresholds with 95%
confidence, whereas in time se-
ries, ρ1 is often (but not always)
significantly different from zero

27    Page 14 of 28 Agron. Sustain. Dev. (2021) 41: 27



variance-based ones, e.g. Shukla’s stability.Whenmany treat-
ments are included in the LTE, this dependence is diluted, but
it becomes problematic when fewer treatments enter into the
stability analysis. In the extreme case, with only two treat-
ments, there is no information in the b-value of one treatment
that is not already contained in the other. Here we provide a
list of 42 yield stability indices and categorize them by their
concept and whether they depend on other treatments
(Table S1, DOI 10.4228/ZALF.DK.148). A possible ap-
proach to help with the decision whether or not to use stability
measures that are dependent on other treatments is to
(randomly) drop individual treatments from the data set and
test in which way the stability of the remaining treatments is
affected.

Fourth, understanding the mathematical properties of the
different indices (e.g. the dimension and unit of the indices)
might help researchers to decide which index to be used. This
also includes the unit of an index, which is often not men-
tioned, but which may be useful for data interpretation. For
example, the units of genotypic superiority measure (Lin and
Binns 1988) and ecovalence (Wricke 1962) are the square of
units for the target trait (e.g. kg2/ha2 for yield). This means that
the square roots of these two indices are on the same scale as
the mean, and using this information may facilitate data
interpretation.

Fifth, an important generally desired property of a stability
index is a low correlation with the mean. This is because the
aim is a combination of high yield and high stability, but if

correlation of a stability measure with mean yield is generally
high, i.e. principally and more or less irrespective of the treat-
ment, then this stability measure does not contain any useful
information that goes beyond the mean (also see Sect. 3.7).
Comparisons between 11 stability indices and mean yield of
six crop species in combination with three treatments
using the data set from Borgeby (data set 2) show that in this
data set, mean yield of a crop correlates highly with the
coefficient of regression (Finlay and Wilkinson 1963) and
the genotypic superiority measure (Lin and Binns 1988);
see example below). However, in our experience, the
correlation of a stability measure with mean yield varies large-
ly between sampled populations. A simulation data set shows
that the number of levels (e.g. number of crop species or
agronomic systems to be compared) and the range of the mean
value between levels in the sample population can determine
the strength of the correlation of a stability measure with the
mean. If the means between levels in the sample population
are less different, the coefficient of regression becomes
less correlated with the mean of the level. In most cases, the
square root of genotypic superiority measure has the highest
correlation with the mean yield. While there are several
studies on the correlations between mean yields with yield
stability measures from variety trial data, e.g. Dehghani et al.
(2008) and Cheshkova et al. (2020), little is known about
correlations with long-term yield data from LTEs. Further
research is therefore needed to elucidate any consistent
relationships.

Table 4 Environmental variance estimates (bσ2; dt2/ha2), standard errors (SE; dt2/ha2), and different models to deal with autocorrelation using plot
values in a one-step and two-step approach from spring wheat in three different cropping systems in the LTE Borgeby (data set 2)

Statistical criterion Treatment/comparison Simple T×Y means Analysis on plot values

One step Two step

NC CS POW NC CS POW

bσ2 (SE) A 94.9 (18.1) 84.6 (18.2) 84.6 (18.2) 84.9 (18.2) 84.6 (18.1) 84.6 (18.1) 85.4 (18.3)

B 92.9 (17.7) 82.5 (17.8) 82.5 (17.8) 82.5 (17.8) 82.5 (17.7) 82.5 (17.7) 82.4 (17.7)

C 165.8 (31.6) 155.4 (31.7) 155.5 (31.7) 155.3 (31.6) 155.4 (31.6) 155.6 (31.6) 155.0 (31.6)

β(T1,T2)* T1=A,T2=B 8.84 8.90 8.86 7.66 8.87 8.70 6.11

T1=B,T2=C 0.24 0.24 0.24 0.24 0.24 0.24 0.24

T1=C,T2=B 0.43 0.43 0.43 0.43 0.43 0.43 0.43

r >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

AIC 621.2 623.2 623.0 285.2 286.9 286.0

P(LL) 1.000 0.655 0.584 0.273

ρ 0.006 0.038 0.027 0.114

NC, without any correlation structure; CS, compound symmetry; and POW, a power correlation structure

r, correlation of estimated bσ2 to the model using simple treatment × year (T×Y) means; AIC, Akaike information criterion; P(LL), p value of likelihood
ratio test against the NC model; ρ estimated auto-correlation parameter

*As a measure to compare the effect of the different models on the standard errors (SE) in relation to the estimated variances, in pairwise comparison of
two treatments, we calculated the ratio of the SE of one treatment to the absolute difference of the variances of both treatments: beta(T1,T2)=(SE(T1)/
abs(V(T1))-V(T2)), where SE(T1) is the SE of treatment 1 and V(T1) and V(T2) the variances of treatment 1 and 2, respectively
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Sixth, whenever possible, more than one stability measure
should be calculated, and differences need to be made trans-
parent and be discussed. If multiple indices are derived from
the data, good practice is to run a correlation analysis among
them (Cheshkova et al. 2020) or a multivariate analysis, e.g.
using principal component analysis (PCA; Dehghani et al.
2008). This will help to quantify which indices are similar to
each other; but it only makes sense if the general properties of
the indices are understood beforehand (e.g. dependence on the
mean; see Sect. 3.7).

Finally, a possible (and radical) solution to the task of
choosing among the many available stability indicators is to
calculate none at all, but instead to consider the entire distri-
bution of the response across varying environments (Fig. 7),
rather than to try to summarize stability in one single number
representing a certain property of the distribution. The advan-
tage of this (risk-based) approach is that it considers both
variability and mean in a very direct and meaningful way at
the same time. In addition, other properties of the distribution
such as skewness can also be seen. However, with this option,
it becomes more difficult to rank different treatments. Dealing
with two or three treatments, the decision may be easy which
distribution is superior in terms of stability. When dealing
with as many as 24 different treatments (Ahrends et al.
2018), the ranking can be based on the probability of a treat-
ment to outperform all other treatments in a given environ-
ment (Piepho and van Eeuwijk 2002).

3.6.3 Example: comparison and correlation between stability
measures

In this example, we illustrate differences and similarities be-
tween 11 different stability measures and the mean yield of the
six crop species in combination with three treatments from the
LTE Borgeby (data set 2).

We used the R package toolStability (Wang et al. 2019) to
compute the stability measures: (1) safety-first index
(Eskridge 1990), (2) coefficient of determination (Pinthus
1973), (3) coefficient of regression (Finlay and Wilkinson
1963), (4) deviation mean squares (Eberhart and Russell
1966), (5) environmental variance (Roemer 1917), (6) geno-
typic stability (Hanson 1970), (7) genotypic superiority mea-
sure (Lin and Binns 1988), (8) variance of rank (Nassar and
Huehn 1987), (9) stability variance (Shukla 1972), (10) ad-
justed coefficient of variation (Döring and Reckling 2018),
and (11) ecovalence (Wricke 1962).

The average yield stability value is computed from all the
six crop species showing positive and negative relationships
between stability measures and between the mean yield and
these measures (Fig. 7). Here we emphasize that the absolute
coefficients of correlation between stability measures depend
strongly on the characteristics of the data set, so the coefficient
matrix shown in Fig. 7 is rather an example than a generali-
zation. A multivariate analysis using a PCA plot is another
option to illustrate the correlation of different stability

Fig. 7 Correlation matrix
showing comparisons between
mean dry yield and 11 stability
measures of six crop species in
combinationwith three treatments
(n = 18) using the R package
toolStability (Wang et al. 2019)
and the data set from Borgeby
(data set 2). Correlations are
scaled by the colour gradient of
the corresponding cell, from
highly positive correlation (dark
blue) and no correlation (white) to
negative correlation (red).
Stability measures are represented
in the same order on the x- and y-
axes
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measures. These relationships should be considered when
selecting and interpreting results from yield stability
measures.

3.6.4 Example: interpreting stability from the entire yield
distribution

Here, we illustrate the option to look at the entire (non-
transformed) yield distribution to compare different cropping
systems. The example in Fig. 8 shows the cumulative yield
distribution for different treatments with winter wheat in two
different LTEs, i.e. with different fertilization levels
(Broadbalk, data set 5) and with more diverse and less diverse
cropping systems (Borgeby, data set 2). While there is only a
minor difference in the winter wheat yield distribution be-
tween the cropping systems in Borgeby, these differ strongly
in the Broadbalk LTE where the systems with fertilization
have a lower distribution than the systems with higher fertili-
zation (Fig. 8). The distribution as such gives however only
limited information about stability and more about the proba-
bility of achieving certain yields.

Further, as another way to consider the entire distribution
of yield values in relation to stability, we explore an approach
often used in hydrology to assess probabilities and return pe-
riods of extreme values (Loaiciga and Leipnik 1999) using the
Rengen grassland LTE (data set 3). This approach is based on
the Gumbel distribution (Eugster et al. 2010; Gumbel 1958).
For each time series of yield values, this simply determines the
frequency f with which the yield is lower than or equal to a
given reference yield value Yr. For example, for a given plot i
(i.e. combination of treatment and replication), the year with
the maximum yield Ymax generates the highest frequency of f
= 1, because all other years have lower yields than Ymax; con-
versely, the minimum yield in that time series of plot i would
generate the lowest value of f = 1/n where n is the number of
years in the time series. With the frequency f(Y ≤ Yr), we can
also determine the return interval of a given reference yield

value as T=1/f years. With a double-logarithmic transforma-
tion z = −log(−log( f )) of the frequency, the data is then
displayed against the threshold yield Yr (Fig. 9). To allow
calculating the double logarithm, f is determined for each plot
as f = (n-m+1)/(n+1), where n is again the number of years in
the time series andm is the rank of yield within the time series.

As smaller threshold yields are chosen, the occurrence of
yields lower than that threshold yield becomes rarer, but for a
given threshold yield, the frequency of lower yields strongly
depends on the treatment. Interestingly, none of the curves
intersects with each other. This means that the risks are con-
sistent across the entire distribution. In this data set, whatever
the chosen threshold yield, the order of treatments remains the
same with regard to the (transformed) frequency of being low-
er than that threshold.

3.7 Dependence of stability measures on the mean

3.7.1 Problem description

In a data set generating variances σ2 and means μ, such as an
LTE, variances may depend on the means in a systematic way.
The British ecologist Lionel Roy Taylor found that numerous
insect populations could well be described by the equation
log(σ2) = log(a) + b log(μ), or expressed differently, σ2 =
aμb (Taylor, 1961). Later research demonstrated that
this power relationship between variance and mean, termed
Taylor’s power law (TPL), or Taylor’s law, is extremely
widespread (Ramsayer et al. 2012; Taylor et al. 1998; Xiao
et al. 2015), and Döring et al. (2015) showed that this
dependence can also be found to hold in crop yield data
(also see Fig. 10).

However, if such dependence is so widespread, i.e. if it is
generally observed, no matter what data set, this may be seen
to be problematic for yield stability analysis. For example, it
can be shown that if TPL holds and b<2, the coefficient of
variation (CV) generally decreases in a non-linear way with

Fig. 8 Empirical cumulative
distribution function of the
different treatments (in colour) for
the different experiment
combinations for winter wheat in
the LTEs Broadbalk (a, data set 5)
and Borgeby (b, data set 2).
Treatments are not identified as
the figure shall simply represent
the different distributions
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increasing mean μ (Döring and Reckling 2018). If this is
principally the case, it is not convincing to interpret a low
CV value of a particular treatment as high stability when in
fact the main reason is a high mean value of this treatment. In
other words, if TPL holds, and regularly so, there may not be
any genuine information on stability in the data that is not
already contained in the mean. As has been shown previously
(Döring and Reckling 2018), the problem of significant TPL
dependence occurs when the range over which μ varies is
large. This is often the case in LTEs, e.g. when full fertiliza-
tion and an unfertilized control are included in the set of treat-
ments or when different crop species are compared (Reckling
et al. 2018b). However, while it is relatively straightforward to
test whether or not TPL holds in the data set to be analysed, it
is less easy to decide how to deal with the result of that test.
Currently, there is no generally accepted or generally applica-
ble tool to deal with TPL in stability analysis.

3.7.2 Possible solutions

Here, we look at three different options to deal with TPL in
LTE data analysis. The first option is simply the a posteriori
analysis of the data for the presence of TPL. It can be done
after conducting the main stability analysis, by plotting
log(σ2) against log(μ) and statistically testing the (linear) de-
pendence between these two variables (see Fig. 10 as an
example). The stability results can then be discussed in the
light of the potential TPL dependence and the slope b of the
relationship between log(σ2) against log (μ). This option is
relatively easy to implement and has the advantage over pre-
vious research tradition that it makes the dependency visible.
However, this a posteriori approach does not solve the prob-
lem but merely describes it, which may not suffice when the
task is to rank treatments by stability and especially if the TPL
relationship is strong.

Fig. 9 Gumbel plot of the Rengen
grassland LTE (data set 3) yield
data to investigate low yield
extremes. Blue symbols, first cut;
red symbols, second cut. Only
three out of five treatments are
shown, Ca (squares), CaN
(triangles), and CaNP (circles).
The frequencies are calculated
from the mean of 10 field
replications. In the case of a
perfect Gumbel distribution, the
individual lines would be linear.
The most frequent occurrence
would be every year; the rarest
occurrence would be once every
24 years

Fig. 10 Example for the
relationship between log (σ2) and
log (μ) of dry matter yield from
the Rengen grassland experiment
(data set 3; Hejcman et al. 2007).
Each point represents a single plot
and encompasses means and var-
iances from data over 24 years
from 1991 to 2014; each of the 50
plots (from 5 treatments in 10
replications) was cut twice, with
the first cut in summer (blue cir-
cles and blue dotted line, log(σ2)
= – 0.758 + 1.311 log(μ), Adj. R2

= 0.620, df = 48) and the second
cut in autumn (red diamonds, red
solid line, log(σ2) = – 0.503 +
1.090 log(μ), Adj. R2 = 0.803, df
= 48). Original units are t ha−1
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The second option is an attempt to correct the data, basi-
cally removing the dependence of the variance from the mean.
This idea is the basis for the POLAR stability index (Döring
et al. 2015) and for the adjusted coefficient of variation (aCV;
Döring and Reckling 2018). Both measures can be used as
stability indices, with the advantage of the aCV being
expressed unitless when computed as ratios and %when com-
puted as percentages equivalent to the standard coefficient of
variation (CV; also called relative standard deviation, RSD).
The aCV can therefore be easily used in agronomic studies
that aim to provide guidance for farmers and advisors (an
example calculation and R code for computing the aCV can
be obtained from the corresponding author).

For POLAR and aCV, the slope b is determined before the
correction is applied according to Döring and Reckling
(2018). If the data is not sufficient to generate a robust value
of b, it may be possible to estimate it from other data sets.
However, currently, there is no sufficient knowledge about
typical values of b generated by yields from LTEs. A meta-
analysis is therefore required, to come up with reliable (and
maybe more generally applicable) values for b. So far, there
are several studies that can be used to estimate b values under
various conditions for annual crops (Döring et al. 2015;
Döring and Reckling 2018; Knapp and van der Heijden
2018; Reckling et al. 2018b) and from Fig. 10 for grassland.
While this option is relatively easy to implement, it needs to be
put into the broader context of modeling approaches for
variance-mean dependence, of which there are many
(Carroll and Ruppert 1988). These approaches also allow ac-
counting for variance-mean dependence in a mixed modeling
framework (Damesa et al. 2018).

The third option is to look at the whole distribution of data
points, rather than extracting only variance and mean (see Fig.
8).

3.7.3 Example: adjusting the coefficient of variation (aCV)
for assessing yield stability

The Rengen grassland LTE (data set 3) was established in
1941 in the Eifel Mountains of Germany on low productive
grassland and compares five different fertilization treatments,
(1) only Ca (as lime); (2) Ca and N; (3) Ca, N, and P; (4) Ca,
N, P, and KCl; and (5) Ca, N, P, and K2SO4 (Hejcman et al.
2007). We tested for TPL by subjecting the dry matter yield
data to regression analysis based on log(σ2) = log(a) + b
log(μ). In the yield data from the Rengen grassland LTE, there
is a (near-)linear relationship between log(σ2) and log(μ) as
shown in Fig. 10, with a slope of 1 < b < 2 for both the
summer cut and the autumn cut. This means we would expect
those treatments with a low mean yield also to have a high
coefficient of variation. As Table 5 shows, this is indeed the
case, with the treatment receiving Ca only showing the highest
CV. However, once TPL is taken into account, i.e. when

applying the aCV, the significant differences between the
treatments disappear. True stability effects of the fertilizer
treatments may therefore be doubtful, and differences among
the unadjusted CVs may need to be interpreted with caution.

Data is shown over 24 years, n=10 replications, the first
(cut 1) and second cut (cut 2) in the growing season.
Treatments with no letter in common are significantly differ-
ent following Tukey’s HSD test

3.8 Development of stability over time

3.8.1 Problem description

Yield observations from each year over several decades
allow for studying changes in yield stability over time.
While an assessment of these changes is critical for studies
on food security (especially in relation to climate change),
differences in the methods applied challenge attempts to
perform meta-analyses across crops, locations, and treat-
ments. Exemplarily, for major food crops, some studies
suggest a decrease in yield stability over time (e.g.
Macholdt et al. 2021; Döring and Reckling 2018;
Reckling et al. 2018a), while others suggest no change or
an increase in stability over time (Calderini and Slafer
1998; Schauberger et al. 2018; Xu et al. 2020). Assessing
changes over time further requires considering that the
farmers’ (economic) vulnerability and perception of yield
losses or gains change with crop- and location-specific
yield levels and yield potentials.

3.8.2 Possible solutions

Most often time series are split into subsets of equal length
based on either numeric, e.g. decades (Renard and Tilman
2019; Döring and Reckling 2018), or scientific, e.g. major
changes in environmental or management conditions such as
rotations (Reckling et al. 2018b). This approach can lead to an
indirect detrending (of data subsets; see Sect. 3.4); otherwise
data have to be detrended to compute absolute or relative
anomalies for each time period. Differences between statisti-
cal properties of these subsets can be tested for their signifi-
cance (e.g. t-test, Wilcoxon tests) or assessed by comparing
corresponding changes in stability metrics. An advantage of
this method is its high flexibility, especially with respect to the
observation periods covered by data subsets. On the other
hand, due to the decreasing sample size, results can be mod-
ulated by outliers, and the use of statistical tests is often re-
stricted. A generalization of findings is restricted to the select-
ed time windows. If mean yield levels changed over time, the
use of relative (e.g. deviations from the trend) vs. absolute
yield anomalies will greatly affect findings. With changing
yield levels or yield potentials, the significance of absolute
yield losses for the farmers’ income and, thus, farmers’
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understanding of (absolute) yield stability will change accord-
ingly. Optimal would be the analysis of both absolute and
relative yield anomalies with results from the latter further
facilitating the comparison across crops and treatments.

A rather data-driven but less flexible approach is testing for
breakpoints or “change point” (see, e.g. Killick et al. (2012))
and for linear or non-linear trends in relative or absolute yield
anomalies over time and quantifying their position and direc-
tion and magnitude, respectively. For the breakpoint analyses
according to Piepho and Ogutu (2003), the effect of outliers
and differences between algorithms applied has to be tested
and documented. Stability metrics based on both the complete
observation data and outlier-corrected data should be reported.

The development of yield stability over time can be de-
scribed by linear mixed models which allow to model trends
in mean yield and yield variance as a function of time. Yield
variance of such models can be interpreted in terms of yield
stability (Shukla 1972), and therefore, the development of
yield stability with time can be described by mixed models
(Macholdt et al. 2021). Based on the mixed model, a coeffi-
cient of variation can be computed for each year which can be
seen as a measure for relative yield stability. Furthermore,
these models allow to compute the probability of exceeding
a threshold value which represents another measure for yield
stability.

3.8.3 Example: development of yield stability over time

To illustrate time-dependent trends in stability, the yield of
two winter wheat genotypes tested over a period of time is
shown in Fig. 11 for two different locations (data set 4).

A model taking time-dependent trends in the mean yield
and in yield variance into account is

yikl ¼ μþ Y k þ Gi þ bitk þ YGð Þik þ uikl
ffiffiffiffi
tk

p þ eikl

where Yk is a random effect for the k-th year with variance σ2
Y,

Gi is a fixed effect for the i-th genotype, tk is the calendar year,
bi is a genotype-specific regression slope, and (YG)ik is a ran-
dom effect for year-genotype interaction with variance σ2

YG.
The coefficient uikl is a random effect with genotype-specific

variances σ2
ui
. The variances of eikl are also genotype specific

and denoted by σ2
i . In this model, the error variance of a

genotype, i.e. the stability of a genotype, is a linear function
of time. Therefore, this model describes time-dependent
trends in the stability variance. The estimated parameters of
this model are shown in Table 6.

Estimated mean yield of the genotypes is given by bμþ bGi

(dt/ha), and bi represents the regression slopes (dt/ha/year)

associated with time. The values of bσ2
ui
indicate the magnitude

and direction of the time-dependent change in error variance
(dt2/ha2) which can be seen as the development in yield sta-
bility with time. The indices “black and “red” relate to the
colour code of genotypes in Fig. 11

The mixed model allows calculating a coefficient of varia-
tion (CV) for each year which can be considered as the devel-
opment of relative yield stability with time. As the variances in
the model above are genotype specific, the development of the
CV can be investigated for each genotype. For the i-th geno-
type in the k-th year, the coefficient of variation based on the
mixed model is

CV ik ¼ σik

μik
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
Y þ σ2

YG þ σ2
ui tk þ σ2

i

q
μþ Gi þ bitk

The development of the CV for the two genotypes is shown
in Fig. 12.

In Fig. 12, the increase in the CV for the site “Rethmar” can
be attributed to the negative trends in the mean (negative

values of bbblack and bbred ), while the trends in the stability
variance is positive, causing the CV to increase. For the site
“Bad Salzung”, the situation is opposite, i.e. stability vari-

ances decrease (negative values of bσ2
ublack

and bσ2
ured

in

Table 6), while the trends in the mean are positive which
causes a decrease in the CV. While an increase in yield vari-
ability has been observed frequently (Döring and Reckling
2018), there are also studies showing the opposite (Calderini
and Slafer 1998). Changes in yield stability can be explained
by the interaction of genotype × environment × management
at a given site including general changes in climate (Ray et al.
2015). For the given examples, the reasons for the contrasting

Table 5 Rengen grassland
experiment (data set 3),
comparing coefficient of variation
(CV) and adjusted coefficient of
variation (aCV) for assessing
temporal dry matter yield stability

Treatment Cut 1 Cut 2

Mean (t/ha) CV (%) aCV (%) Mean (t/ha) CV (%) aCV (%)

Ca 2.55 31.7 a 26.7 a 0.67 72.3 a 48.0 a

CaN 3.34 27.7 ab 25.8 a 1.18 49.3 b 42.1 a

CaNP 4.40 23.3 b 23.8 a 2.09 40.4 bc 45.1 a

CaNPKCl 5.62 24.1 b 26.7 a 2.77 37.0 c 46.8 a

CaNPKS 5.71 24.1 b 27.0 a 2.72 34.8 c 43.7 a
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responses could only be identified when taking the environ-
mental conditions into account which is beyond the scope of
this paper.

For a risk analysis based in the mixed model, the probabil-
ity of a genotype’s yield to fall below a threshold value x in a
given year is given by

P yield < xð Þ ¼ F
x−bμikbσik

 !

where F is the distribution function of the standard normal
distribution.

Evaluating P yield < xð Þ ¼ F x−bμikbσik� �
for a range of

threshold values results in Fig. 13.

3.9 Standard errors and statistical inference of
stability measures

3.9.1 Problem description

Stability measures can often be defined as functions of vari-
ance parameters of a linear mixed model, which can be esti-
mated by REML. As such, asymptotic variance-covariance
matrices are readily available based on the maximized residual

likelihood, and from this, the standard error of stability mea-
sures can be obtained using the delta method (Johnson et al.
2005; Piepho and Edmondson 2018).

In order to be able to compare treatments regarding their
stability, it is necessary to have some measure of precision of
the estimated values and some measure to test if the estimates
differ significantly between treatments. However, while the
calculation and reporting of such measures are mostly
straight forward and common practice for means, this is still
not the case for many stability parameters. In most stability
analyses, simply the estimated values are reported without any
measure of precision and not testing if estimates differ signif-
icantly. E.g., some analyses have tested if estimated stability
or environmental variances differ significantly from zero and
categorize genotypes or treatments which variance is signifi-
cantly indifferent from zero as stable, e.g. Fernandez (1991).
While such tests of estimated variances may serve model se-
lection, we believe they are not legitimate to identify stable
and unstable treatments, as stability is rather a relative mea-
sure. Furthermore, if all variances are, e.g., different from
zero, it would be not informative to classify all treatments as
“unstable”. Thus, statistical tests need to be explored for in-
ferences on the differences between treatments. Such tests
need to consider the complexity of some stability parameters,
like standard errors or tests for pairwise differences.

Fig. 11 Example for the
development of winter wheat
yield stability with time (data set
4). The plots show the yield of
two genotypes (red and black
dots) in several years for two
different locations

Fig. 12 Development of relative
yield stability with time,
measured by the coefficient of
variation (CV) using data set 4
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3.9.2 Possible solutions

We discuss different approaches on how to calculate standard
errors and tests for comparing treatments regarding their sta-
bility and recommend some procedures.

1) If the experiment has complete replicate blocks, stability
parameters are sometimes calculated for each plot, yield-
ing one value for each plot. Subsequently, an analysis

using these values as response values as they would be,
e.g. observed plot yields, can be conducted taking into
account the experimental design (Cochran 1939).
However, estimates of environmental variance in two
LTEs using this approach differ substantially from an
analysis using treatment × year means (Table 7). We rec-
ommend calculating stability measures from treatment
means in different environments as the “standard
procedure”.

Table 6 Estimated model parameters for two different locations (data set 4)

Parameter Rethmar Bad
Salzungen

bμþ bGblack 418.53 −244.29bμþ bGred 376.56 −386.99
bblack −0.16 0.17

bred −0.14 0.25bσ2Y 75.70 120.14bσ2YG 11.15 8.77bσ2ublack 0.42 −0.87bσ2ured 0.17 −0.01bσ2black 10.28 26.86bσ2red 8.69 11.16

Fig. 13 Probabilities of not
exceeding a yield threshold value
x [dt/ha] for the two genotypes in
each location (data set 4), a
genotype 1 at the site “Rethmar”,
b genotype 1 at the site
“Magdeburg Boerde”, c genotype
2 at the site “Rethmar”, and d
genotype 2 at the site
“Magdeburg Boerde”. The
different colours within one plot
represent the probabilities for
different years. The colours get
darker with the year, i.e. for
genotype 1, the grey lines
represent an early year while the
black lines represent a more
recent year. For genotype 2, the
colours range from red (early
year) to dark red (late year)
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2) When performing an analysis on treatment × yearmeans over
replicates or in an unreplicated design, SEs can be calculated
based on the number of years of observations, if such equa-
tions are available for the respective stability parameter, e.g.
for the variance andCV (Ahn andFessler 2003). For the slope
in Finlay-Wilkinson regression, standard errors are produced
in most statistical packages. We therefore recommend to dis-
play SE and p values to show significant pairwise differences
(Table 7). The p values can be represented graphically as
suggested by Piepho et al. (2004).

3) Mixed model approaches can be used effectively to cal-
culate stability estimates by residual maximum likelihood
(REML). Some mixed model packages provide SE of the
estimates (e.g. SAS, SPSS, ASREML, sommer), but not
all (e.g. lme4, nlme). However, only few stability param-
eters, e.g. Shukla’s stability variance, can be calculated
based on mixed model approaches (Piepho 1999) which
limits the application. Pairwise comparisons between var-
iance estimates can be conducted through linear contrasts
in proc glimmix in SAS and turned into a letter display. If
the calculation of the stability measure allows it, we rec-
ommend to use mixed model approaches.

4) Conducting bootstrap or jackknife approaches to get SEs.
Bootstrap assumes that the n observations are indepen-
dent and identically distributed samples from a parent
distribution. For an application in a slightly different con-
text, see Slaets et al. (2017). That assumption must be put
into question for LTE data with serial correlation and
therefore limits application of the bootstrap method.
While bootstrapping is based on randomly sampling n
observations (with replacement) from all n observations,
for jackknife observations are removed randomly before
calculating stability measures. After the random drawing

has been repeated r times, distribution of estimates can be
investigated, and SEs (if normally distributed) or confi-
dence intervals can be derived. However, we found that
SEs for environmental variance based on bootstrapping
differ substantially from calculated SEs (Table 7). Such
application violates the assumption of independent and
identically distribution and cannot be recommended un-
der these conditions.

3.9.3 Example: different options to quantify standard errors

In this example, two LTEs are used to illustrate comparisons
between different approaches to calculate standard errors of
environmental variances (Table 7): (1) variances per plot, cal-
culating the variance for each plot and then analyse plot values
with a linear model taking into account the design; (2) vari-
ances on treatment × year means, calculating the variance on
treatment × year means and SE bymultiplying the variance by
sqrt(2/(n-1)), where n is the number of years (Ahn and Fessler
2003); and (3) bootstrap, bootstrapping per treatment with r =
50 000 and taking the standard deviation of the distribution
from bootstrapping, referring to variances calculated on T×Y
means (Table 7). In the LTE Borgeby (data set 2), three
cropping systems with spring wheat were compared, cropping
system A simulates an animal-based production system with
manure and 2-year ley, B simulates an arable system without
ley, and C simulates a more sustainable arable system with a
1-year ley (Bergkvist and Öborn 2011). In the LTE Rengen
(data set 3), five fertilization levels for grassland were com-
pared (Hejcman et al. 2007).

Table 7 Comparison of different approaches to calculate standard errors (SE; dt2/ha2) of environmental variances (bσ2; dt2/ha2) for spring wheat in three
different cropping systems (data set 2) and for grassland with different fertilization treatments (data set 3)

Data set Treatment bσ2 per plot bσ2 on T×Y means Bootstrap

Estimate SE Group* Estimate SE Group* SE

Borgeby—spring wheat (data set 2) A 103.5 18.8 a 94.9 18.1 a 14.6

B 102.0 18.8 a 92.9 17.7 a 15.9

C 180.3 18.8 b 165.8 31.6 b 25.4

Rengen—grassland (data set 3) Ca 85.4 23.7 a 40.6 10.9 a 10.8

CaN 163.7 23.7 a 117.0 31.3 b 34.6

CaNP 307.8 23.7 b 203.0 54.2 bc 74.9

CaNPKCl 502.9 23.7 c 362.8 97.0 c 143.3

CaNPKS 480.8 23.7 c 362.2 96.8 c 150.2

*Grouping within experiment based on pairwise comparison with Tukey’s test for variances per plot and a pairwise F-test for variances on T×Ymeans at
a significance level of 5%. The SE of the bootstrap refers to variances calculated on T×Y means, i.e. for each treatment, it was bootstrapped over years,
and the SEwas calculated as the sd of the vector of variances. The SEs for variances per plot were calculated using a linear model in the same way as the
variances per plot would be yield observations per plot. As the number of plots is the same per treatment, the SE is the same for each treatment.
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4 Conclusion

We conclude that several methodological problems exist when
analysing yield stability in LTE and that there are no silver bullet
approaches to solve these. We therefore recommend (1) to make
data quality and methodological approaches in the analysis of
yield stability from LTEs as transparent as possible; (2) to test
and deal with yield outliers; (3) to investigate and include con-
founding factors in the statistical model; (4) to explore the need
for detrending of yield data; (5) to account for temporal autocor-
relation if necessary; (6) to make explicit choice for the stability
measure and consider the correlation between some of the mea-
sures; (7) to consider and resolve dependence of stability mea-
sures on the mean yield; (8) to explore, if possible, temporal
trends of stability; and (9) to report standard errors and statistical
inference of stabilitymeasures.We suggest tomake ample use of
linking up data sets, and to publish data, so that different ap-
proaches can be tried by other authors and, finally, to be cautious
when interpreting results of yield stability analyses from LTEs
without strong explanation of the methods and the possible im-
pacts on the results.

As in any research, results need to be robust against slight
variations in methods. If differences in yield stability are only
revealed by the most elaborate of statistical approaches, but re-
main hidden when using cruder methods, such subtle differences
are unlikely to convince farmers to change their crop manage-
ment. At the same time, there are some fundamental differences
in yield stability concepts (static vs. dynamic, relative vs. abso-
lute) that cannot be ignored when analysing yield data from
LTEs. As climate change and the increasing weather fluctuations
force us with mounting urgency to identify more stable cropping
systems, data sets from long-term field experiments provide an
invaluable resource. Analysing yield stability in these data sets
with an open mind to multiple approaches, and with the neces-
sary transparency, will help to make better use of this resource in
the quest to stabilize yields across the planet.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s13593-021-00681-4.
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