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Abstract
Key message We propose the utilisation of environmental covariates in random coefficient models to predict the 
genotype performances in new locations.
Abstract Multi-environment trials (MET) are conducted to assess the performance of a set of genotypes in a target popula-
tion of environments. From a grower’s perspective, MET results must provide high accuracy and precision for predictions of 
genotype performance in new locations, i.e. the grower’s locations, which hardly ever coincide with the locations at which 
the trials were conducted. Linear mixed modelling can provide predictions for new locations. Moreover, the precision of the 
predictions is of primary concern and should be assessed. Besides, the precision can be improved when auxiliary informa-
tion is available to characterize the targeted locations. Thus, in this study, we demonstrate the benefit of using environmental 
information (covariates) for predicting genotype performance in some new locations for Swedish winter wheat official tri-
als. Swedish MET locations can be stratified into zones, allowing borrowing information between zones when best linear 
unbiased prediction (BLUP) is used. To account for correlations between zones, as well as for intercepts and slopes for the 
regression on covariates, we fitted random coefficient (RC) models. The results showed that the RC model with appropriate 
covariate scaling and model for covariate terms improved the precision of predictions of genotypic performance for new 
locations. The prediction accuracy of the RC model was competitive compared to the model without covariates. The RC 
model reduced the standard errors of predictions for individual genotypes and standard errors of predictions of genotype 
differences in new locations by 30–38% and 12–40%, respectively.

Introduction

The main goal of a plant breeding programme is to develop 
well-adapted genotypes in a target population of environ-
ments (TPE). Multi-environment trials (MET) are con-
ducted to evaluate candidate genotypes in the TPE, and to 

understand and exploit the pattern of genotype × environ-
ment interactions (GEI) in the TPE. GEI is the differential 
response of genotypes across different environments (Kang 
and Gorman 1989). GEI in a TPE can be exploited to make 
more targeted predictions and recommendations on culti-
vars. This is of particular interest when there is crossover 
interaction, which poses a challenge when selecting geno-
types for broad adaptation.

Identification of environmental covariates that are respon-
sible for GEI is useful to enhance the predictive capability 
of MET analyses (Heslot et al. 2014) and evaluate the adapt-
ability of the genotypes to the new target environment. The 
most commonly used types of environmental covariates are 
soil and meteorological covariates (van Eeuwijk et al. 2016). 
Incorporating environmental covariates in the GEI analysis 
has been done by factorial regression (Denis 1988; Piepho 
et al. 1998; van Eeuwijk and Elgersma 1993). Furthermore, 
environmental covariates have been used in a linear mixed 
model framework, such as in quantitative trait loci (QTL) 
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biparental mapping to dissect the response of marker effects 
to the environmental covariates known as QTL × environ-
ment interactions (Boer et al. 2007; Crossa et al. 1999; 
Malosetti et al. 2004) or as eco-physiological QTL (van 
Eeuwijk et al. 2005). Environmental covariates have also 
been introduced in genomic selection (Gillberg et al. 2019; 
Heslot et al. 2014; van Eeuwijk et al. 2019).

The regression on environmental covariates is usually 
modelled by fixed effects. This type of modelling is appro-
priate when only studying the pattern of GEI at the tested 
locations. Such models are also appropriate for making pre-
dictions in an unstructured TPE. However, when the TPE is 
sub-divided into zones, it is necessary to model genotypic 
effects as random in order to borrow strength between zones 
(Buntaran et al. 2019, 2020). If such modelling is coupled 
with factorial regression approaches, genotype-specific 
regression coefficients must be modelled as random effects 
as well, giving rise to what are known as random coefficient 
(RC) models (Longford 1993; Milliken and Johnson 2002).

Although MET are usually designed to cover the whole 
TPE, none of the trials in an MET coincides exactly with 
a grower’s field or location. Thus, grower’s fields, the real 
target of breeding, must be seen as new locations in the TPE. 
In the same vein, it may be said that the MET analysis is 
usually used to produce predictions of tested genotypes for 
a new location, making use of the information from tested 
locations. Predicting genotype performance in a new loca-
tion is akin to predicting values that have no records at all. 
Henderson (1977) showed that best linear unbiased predic-
tion (BLUP) can be used to predict breeding values for the 
animals that had no records. BLUP, therefore, can also be 
used to obtain genotype predictions in a new location that 
has no records.

Since growers’ fields hardly ever coincide with the tri-
als’ location and, in practice, cultivar yield will never reach 
the exact same value as the predicted mean values from the 
MET, reporting the precision or precision measures as quan-
tified by standard errors and prediction intervals is highly 
desirable. Without this, growers are left with having no 
information regarding the precision in the predictions that 
are reported. The key challenge is that the standard errors 
of predictions of variety means obtained from the routine 
analysis of MET are only valid for the locations where the 
trials were carried out, but not for the untested locations or 
growers’ field. However, the precision of the predictions for 
the untested locations is crucial in order to assist growers in 
selecting a cultivar for their farm or field.

Accuracy refers to how close the value of the statistic is to 
a supposed ‘‘true value’’. In other words, accuracy measures 
how close an estimate ̂�  of a parameter � is to the ‘‘true value’’ 
of � (Kotz et al. 2006). Accuracy can be evaluated via a cross-
validation (CV) study by estimating prediction error (Hastie 
et al. 2009). From a CV study, accuracy can be measured in 

terms of mean squared error (MSE), which consists of vari-
ance and squared bias of �̂  . Conversely, the precision of an 
estimator �̂  , measures how narrow the distribution of �̂  clus-
ters about its expected value (Kotz et al. 2006). The precision 
of �̂  is the reciprocal of the variance of �̂ .

In this study, we explore the use of the RC models for 
improving the precision of yield predictions in some new 
locations, which represent growers’ fields, and evaluate the 
prediction accuracy. The precision of predictions is assessed 
with standard errors of predictions of genotypic values (SEPV) 
and standard errors of the predictions of pairwise differences 
of genotypic values (SEPD). The prediction accuracy was 
evaluated via a CV study.

Materials and methods

Dataset

In this study, a dataset from Swedish official cultivar testing in 
2016 was used. The dataset comprises 25 genotypes of winter 
wheat tested in 18 locations. In addition, the dataset includes 
information about four new locations. The 22 locations are 
stratified into three zones: South, Middle, and North (Buntaran 
et al. 2019). Two of the four new locations are located in the 
North zone, and two in the South zone. The new locations have 
no observations of yield for any of the genotypes but do have 
data on environmental covariates. The layout of the trials at 
each location was an α-design with two replicates. The avail-
able covariates were soil properties, i.e. pH, clay content, and 
humus content. The covariates are location-specific.

Statistical models

A two-stage fully-efficient stage-wise approach was used, 
which forwards the full variance–covariance matrix of 
adjusted means from stage I (Damesa et al. 2017; Piepho 
et al. 2012) to the final analysis in stage II of a stage-wise 
analysis. In stage I, each location was analysed individually 
using a linear mixed model (LMM). The general equation 
of an LMM is written as

where � is the vector of yield is the design matrix for fixed-
effects of vector � , � is the incidence matrix for random-
effects of vector � , and � is the vector residuals. The distribu-
tions of the random effects and the residuals are � ∼ N(�,�) 
and � ∼ N(�,�). Then, the distribution of the response is 
� ∼ N(��,�) , where � = ���

�

+ �.
In our case, in stage I, the fixed effects �� for the jm-th 

trial are

(1)� = �� + �� + �
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where the �jm is the intercept of the j-th location nested 
in the m-th zone, and �ijm is the effects of i-th genotype in 
the j-th location nested in the m-th zone, for i = 1, 2,… , I , 
j = 1, 2,… , Jm , and m = 1, 2,… ,M . The letter I  denotes 
the number of genotypes, M is the number of zones, Jm 
is the number of locations within the m-th zone, and 
J =

∑M

m=1
Jm is total number of locations. The random 

effects �� and e are

where rjkm ∼ N(0, �2
r
) is the random effect of the k-th 

replication in the j-th location nested in the m-th zone, 
bjklm ∼ N(0, �2

b
) is the random effect of the s-th incomplete 

block of the k-th replication in the j-th location nested in the 
m-th zone, and eijklm is the residual plot error associated with 
the observation yijklm in vector � . In a single-stage analysis, 
the replication effect is random with necessity because it is 
nested within location, which is a random factor. Thus, to 
mimic this approach in the fully efficient two-stage analysis, 
the replication effect is assigned to be random.

From stage I analysis, we obtained the adjusted means 
at the j-th location in the m-th zone, �̂ijm , which are esti-
mated by best linear unbiased estimation (BLUE), and 
eijm , the error associated with the adjusted means. The 

�ijm = �jm + �ijm

rjkm + bjklm + eijklm

adjusted means and the associated error were used for 
stage II analysis.

In stage II, the analysis was conducted using a model 
that comprises zone effects since the locations are strati-
fied into three zones. For the stage II model, the vector � 
consists of the means �̂ijm from stage I and the error vector � 
has sub-vectors �j with elements eijm , with var

(
�j
)
= �j . The 

variance–covariance matrix �j of adjusted means in the j-th 
location is obtained in stage I by using residual maximum 
likelihood (REML). The overall variance–covariance matrix 
of � is block diagonal, i.e.

In stage II, seven fixed-genotype-effect (FG) and seven 
random-genotype-effect (RG) statistical models were fitted. 
The entries in vectors �� and �� of the FG and RG models 
are presented in Tables 1, 2, respectively. In stage II, for 
all 14 models, the location effect nested in the m-th zone is 
random, whereas the effect of the zone, �m , is fixed. In the 
RG models, the genotype × zone interaction effect, (g� )im , is 
random because genotype is a random factor. The random 
genotype main effect and genotype × zone interaction effect 
allow exploiting information across zones when computing 

var(�) = � = ⊕J
j=1

�j =

⎛⎜⎜⎜⎝

�1 0 ⋯ 0

0 �2 0 0

⋮ 0 ⋱ ⋮

0 0 ⋯ �J

⎞⎟⎟⎟⎠

Table 1  The seven fixed-
genotype-effect (FG) models

*The index i refers to the i-th genotype, j refers to the j-th location, and m refers to the m-th zone

Model �� ��* Covariance structure

FG1 � + �m + �i + (��)im ljm + (�l)ijm �l = ⊕M
m=1

�lm
,�lm

= 𝜎2

lm
�

G𝜏l = ⊕M
m=1

G(𝜏l)m
,G(𝜏l)m

= 𝜎2

(𝜏l)m
I

FG2 � + �m + �i + (��)im ljm + (�l)ijm �l = �2

l
�

��l = σ2
�l
�

FGC � + �xjm + �m + �i + (��)im + �mxjm ljm + (�l)ijm �l = ⊕M
m=1

�lm
,�lm

= 𝜎2

lm
�

�𝜏l = ⊕M
m=1

�(𝜏l)m
,�(𝜏l)m

= 𝜎2

(𝜏l)m
�

FGCQ � + �xjm + �x2
jm
+ �m + �i + (��)im + �mxjm ljm + (�l)ijm �l = ⊕M

m=1
�lm

,�lm
= 𝜎2

lm
�

�𝜏l = ⊕M
m=1

�(𝜏l)m
,�(𝜏l)m

= 𝜎2

(𝜏l)m
�

FGI1 � + �1xjm + �x2
jm
+

�m + �mxjm+(
�i + �2ixjm + �3ix

2

jm

)
+

(
(��)im + �4im xjm + �5im x

2

jm

)

ljm + (�l)ijm �l = ⊕M
m=1

�lm
,�lm

= 𝜎2

lm
�

�𝜏l = ⊕M
m=1

�(𝜏l)m
,�(𝜏l)m

= 𝜎2

(𝜏l)m
�

FGI2 � + �xjm + �x2
jm
+ �m + �i + �mxjm

+
(
(�� )im + �4im xjm + �5im x

2

jm

)
ljm + (�l)ijm �l = ⊕M

m=1
�lm

,�lm
= 𝜎2

lm
�

�𝜏l = ⊕M
m=1

�(𝜏l)m
,�(𝜏l)m

= 𝜎2

(𝜏l)m
�

FGI3 � + �xjm+

�x2
jm
+ �m + (��)im + �mxjm

+

(
�i + �2ixjm + �3ix

2

jm

)

ljm + (�l)ijm �l = ⊕M
(m=1)

�(lm)
,�(lm)

= 𝜎2

(lm)
I

�𝜏l = ⊕M
m=1

�(𝜏l)m
,�(𝜏l)m

= 𝜎2

(𝜏l)m
�
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Table 2  The seven random-
genotype effect (RG) models

*The index i refers to the i-th genotype, j refers to the j-th location, and m refers to the m-th zone

Model �� ��* Covariance structure

RG1 � + �m ljm + gi + (g� )im + (gl)ijm �l = ⊕M
m=1

�lm
,�lm

= 𝜎2

lm
�

�g = σ2
g
�

�g� = σ2
g�
�

�gl = ⊕M
m=1

�(gl)m
,�(gl)m

= 𝜎2

(gl)m
�

RG2 � + �m ljm + gi + (g� )im + (gl)ijm �l = σ2
l
�

�g = σ2
g
�

�g� = σ2
g�
�

�gl = σ2
gl
�

RGC � + �xjm + �m + �mxjm ljm + gi + (g� )im + (gl)ijm �ljm
= ⊕M

m=1
�lm

,�lm
= 𝜎2

lm
�

�gi
= σ2

g
�

�g� = σ2
g�
�

�gl = ⊕M
m=1

�(gl)m
,�(gl)m

= 𝜎2

(gl)m
�

RGCQ � + �xjm + �x2
jm
+ �m + �mxjm ljm + gi + (g� )im + (gl)ijm �l = ⊕M

m=1
�lm

,�lm
= 𝜎2

lm
�

�g = σ2
g
�

�g� = σ2
g�
�

�gl = ⊕M
m=1

�(gl)m
,�(gl)m

= 𝜎2

(gl)m
�

RC1 � + �xjm + �x2
jm
+ �m + �mxjm ljm +

(
ai + bixjm + cix

2

jm

)

+
(
dim + himxjm + pimx

2

jm

)

+(gl)ijm

�l = ⊕M
m=1

�lm
,�lm

= 𝜎2

lm
�

⎡⎢⎢⎣

ai
bi
ci

⎤⎥⎥⎦
∼ iid N

�
�,�gi

�

�g =

⎡⎢⎢⎣

�2
a

�ab �ac
�ab �2

b
�bc

�ac �bc �2
c

⎤⎥⎥⎦
⎡⎢⎢⎣

dim
him
pim

⎤⎥⎥⎦
∼ iid N

�
�,�(g� )im

�

�g� =

⎡⎢⎢⎣

�2

d
�dh �dp

�dh �2

h
�hp

�dp �hp �2
p

⎤⎥⎥⎦
�gl = ⊕M

m=1
�(gl)m

,�(gl)m
= 𝜎2

(gl)m
�

RC2 � + �xjm + �x2
jm
+ �m + �mxjm ljm + gi

+
(
dim + himxjm + pimx

2

jm

)

+(gl)ijm

�l = ⊕M
m=1

�lm
,�lm

= 𝜎2

lm
�

�g = σ2
g
�

⎡⎢⎢⎣

dim
him
pim

⎤⎥⎥⎦
∼ iid N

�
�,�(g� )im

�

�(g� )im
=

⎡⎢⎢⎣

�2

d
�dh �dp

�dh �2

h
�hp

�dp �hp �2
p

⎤⎥⎥⎦
�gl = ⊕M

m=1
�(gl)m

,�(gl)m
= 𝜎2

(gl)m
�

RC3 � + �xjm + �x2
jm
+ �m + �mxjm ljm +

(
ai + bixjm + cix

2

jm

)

+(g� )im + (gl)ijm

�l = ⊕M
m=1

�lm
,�lm

= 𝜎2

lm
�

�g� = σ2
g�
�

⎡⎢⎢⎣

ai
bi
ci

⎤⎥⎥⎦
∼ iid N

�
�,�gi

�

�g =

⎡
⎢⎢⎢⎢⎣

�2
a
�ab �ac

�ab �2

b
�bc

�ac �bc �2
c

⎤
⎥⎥⎥⎥⎦
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zone-based prediction of genotypes (Buntaran et al. 2019; 
Kleinknecht et al. 2013; Piepho and Möhring 2005; Piepho 
et al. 2016).

In the seven FG models, two models are LMM without 
covariates but with different variance–covariance structure 
for location and genotype × location effects, two models are 
LMM with covariate modelled by fixed effects, and three 
models are LMM with covariate interactions terms. Below, 
we describe each model in Table 1:

1. FG1 is the baseline LMM without covariate. The ran-
dom-effect terms in this model are the effect of location 
nested in the m-th zone, ljm ∼ N(0, �2

lm
) , and the interac-

tion effect of genotype and location nested in the m-th 
zone (�l)ijm ∼ N(0, �2

(�l)m
) . The variance–covariance 

structure for the location effect, ljm , is a heterogeneous 
zone-specific covariance structure, �l = ⊕M

m=1
�lm

 , 
where �lm

= �2
lm
� with I a Jm-dimensional identity 

matrix. The structure for the genotype × location effect, 
(�l)ijm , is also a heterogeneous zone-specific covariance 
structure is �𝜏l = ⊕M

m=1
�(𝜏l)m

 , where �(�l)m
 is the JmI

-dimensional diagonal matrix �2
(�l)m

� , assuming that all 
genotypes were tested in all locations.

2. FG2 is the FG1 model but with homogeneous variance–
covariance structure for the location and genotype × loca-
tion effects. Thus, the location effect, ljm has the J-dimen-
sional structure �l = σ2

l
� , and for the genotype × location 

effect (�l)ijm , the JI-dimensional structure is σ2
�l
�.

3. FGC is a model with a covariate. The covariate values, 
xjm , are location-specific. In this model, the covariate is 
modelled by a linear trend. The notation for fixed regres-
sion terms involving the covariate is �xjm + �mxjm , where 
� is the fixed effect for the slope of the covariate and 
�m is the fixed effect for the zone-specific slope of the 
covariate for the m-th zone. The variance–covariance 
structures for genotype, location, genotype × zone, and 
genotype × location effects are the same as in the FG1 
model.

4. FGCQ is the FGC model with an additional quadratic 
term for the covariate, x2

jm
 . The slope for this quadratic 

term is denoted as � . Note that in this model, the zone-
specific interaction term of the quadratic covariate was 
not included because it was not significant. Thus, we 
decided to settle for the FGCQ model without the zone-
specific quadratic term.

5. FGI1 is a model with covariate interactions terms for 
genotype, �i , and genotype × zone, (��)im . Hence, this 
model has genotype and genotype × zone specific coef-
ficients for the intercepts and slopes. FGI1 is the most 
complex model because it has linear and quadratic terms 
for the covariate interacting with genotype and geno-
type × zone. The model for covariate interaction in the 

genotype term is 
(
�i + �2ixjm + �3i x

2
jm

)
 where �i is the 

genotype-specific intercept for the i-th genotype, �2i is 
the linear genotype-specific slope for the i-th genotype, 
and �3i is the quadratic genotype-specific slope for the i
-th genotype. The model for covariate interaction in the 
genotype × zone term is 

(
(��)im + �4imxjm + �5imx

2
jm

)
 , 

where (��)im is the genotype × zone-specific intercept for 
the i-th genotype in the m-th zone, �4im is the linear 
genotype × zone-specific slope for the i-th genotype in 
the m-th zone, and �5im is the quadratic genotype × zone-
specific slope for the i-th genotype in the m-th zone.

6. FGI2 is a reduced version of the FGI1 model. The 
regression coefficients for the linear and quadratic term 
in the genotype main effect are removed.

7. FGI3 is a reduced version of the FGI1 model. The 
regression coefficients for the linear and quadratic term 
in the genotype × zone term are removed.

For the seven RG models, the differences compared to the 
seven FG models is that the genotype effect was random and 
there were three RC models due to the interactions between 
the covariate and genotype and genotype × zone effects. In 
the seven RG models, two models are LMM without covari-
ates but with different variance–covariance structures for 
location and genotype × location effects, two models are 
LMM with covariate modelled by fixed effects, and three 
models are LMM with random coefficients for the regression 
on covariates. Below, we describe each model in Table 2:

1. RG1 is the baseline LMM without covariate and random 
coefficients. The random-effect terms in this model are 
the effect of genotype, gi ∼ N(0, �2

g
) , the effect of loca-

tion nested in the m-th zone, ljm ∼ N(0, �2
lm
) , the interac-

tion effect of genotype and zone, (g� )im ∼ N(0, �2
g�
) , and 

the interaction effect of genotype and location nested in 
the m-th zone, (gl)ijm ∼ N(0, �2

(gl)m
) . The variance–covar-

iance structure for the genotype effect, gi , is �g = σ2
g
� . 

The structure for the genotype × zone effect, (g� )im , is 
�g� = σ2

g�
� . For the location effect, ljm , the variance–

covariance structure is a heterogeneous zone-specific 
covariance structure, heterogeneous zone-specific covar-
iance structure, �l = ⊕M

m=1
�lm

 , where �lm
= �2

lm
� with I 

a Jm-dimensional identity matrix. The structure for the 
genotype × location effect, (gl)ijm , is also a heterogeneous 
zone-specific covariance structure is �gl = ⊗M

m=1
�(gl)m

 , 
where �(gl)m

 is the JmI-dimensional diagonal matrix 
�2

(gl)m
� , assuming that all genotypes were tested in all 

locations.
2. RG2 is the RG1 model but with homogeneous vari-

ance–covariance structure for the location and geno-
type × location effects. Thus, the location effect, ljm has 
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the J-dimensional structure �l = σ2
l
� , and for the geno-

type × location effect (gl)ijm , the JI-dimensional structure 
is σ2

gl
�.

3. RGC is a model with a covariate. The covariate values, 
xjm , are location-specific. In this model, the covariate is 
modelled by a linear trend. The notation for the fixed 
regression terms involving the covariate is �xjm + �mxjm , 
where � is the fixed effect for the slope of the covariate 
and �m is the fixed effect for the zone-specific slope of 
the covariate for the m-th zone. The variance–covariance 
structures for the genotype, location, genotype × zone, 
and genotype × location effects are the same as in the 
RG1 model. Thus, the random effects comprise no 
regression terms.

4. RGCQ is the RGC model with an additional quadratic 
term for the covariate, x2

jm
 . The slope for this quadratic 

term is denoted as � . As in the FGCQ model, the zone-
specific interaction term of the quadratic covariate was 
not included because it was not significant. Thus, we 
decided to settle for the RGCQ model without the zone-
specific quadratic term.

5. RC1 is a model with random coefficients. Since the 
covariate is location-specific, it was not possible to fit 
random coefficients for location. Thus, a RC model was 
fitted for the genotype term, gi , and the genotype × zone 
term, (g� )im . Hence, this model has genotype and geno-
type × zone-specific coefficients for the intercepts and 
slopes. RC1 is the most complex model because it has 
linear and quadratic terms for the covariate, and allows 
a covariance between intercept and slope effects, mean-
ing that �g and �g� are unstructured variance–covari-
ance matrices. It is essential to allow the covariance 
between intercept and slope to be a free parameter in 
order to ensure invariance with respect to translation and 
scale transformation of the covariates (Longford 1993; 
Piepho and Ogutu 2002). Note that when the covariance 
structure is diagonal, then the structure is only invariant 
to scale transformations but not to translations (Wolfin-
ger 1996). The model for random coefficients in the 
genotype term was gi = ai + bixjm + cix

2
jm

 , where ai is the 
random genotype-specific intercept for the i-th geno-
type, bi is the random linear genotype-specific slope for 
the i-th genotype, and ci is the random quadratic geno-
type-specific slope for the i-th genotype. The model for 
random coefficients in the genotype × zone term was 
(g� )im = dim + himxjm + pimx

2
jm

 , where dim is the random 
genotype × zone specific intercept for the i-th genotype 
in the m-th zone, him is the random linear geno-
type × zone-specific slope for the i-th genotype in the m
-th zone, and ci is the random quadratic genotype × zone-
specific slope for the i-th genotype in the m-th zone.

6. RC2 is a reduced version of model of RC1. The random 
regression coefficients for the linear and quadratic terms 
in the genotype main effect are dropped completely, so 
its covariance structure is �g = σ2

g
�.

7. In the RC3 model, only the random coefficients for the 
genotype × zone term is removed completely, so its 
covariance structure is �g� = σ2

g�
�.

Covariate selection and scaling

The covariate selection was done by extending the fixed-
effects part of the FG1 model with the covariates as 
follows:

Parameters �1 and �2 are the coefficients of linear and 
quadratic terms for the scaled clay covariate, respectively, 
�3 and �4 are the coefficients of linear and quadratic terms 
for the scaled pH covariate, respectively, and �5 and �6 
are the coefficients of linear and quadratic terms for the 
scaled humus covariate, respectively. The pH and humus 
covariates were standardised to mean 0 and standard devi-
ation 1. The clay covariate was scaled as (clay − 40)∕10 
since this scaling resulted in non-negative variance esti-
mates for the RC1 model. The fixed effect tests were 
adjusted with Kenward-Roger denominator degrees of 
freedom (Kenward and Roger 1997). If the F-test of a 
covariate effect was not significant at α = 5%, the covari-
ate was dropped. The quadratic terms were tested first. 
The linear terms were tested linear only if the quadratic 
had to be dropped.

Predictions of genotypes in new locations

All models in Tables 1 and 2, which are special cases of 
Eq. 1, were fitted using the mixed model equations (MME) 
in Eq. 2 (Henderson 1950). The information used to esti-
mate the G and R matrices in this MME are the records 
from the tested locations. Since the G and R matrices are 
unknown, they are estimated from the data via REML, 
producing estimates �̂ and �̂:

The solution for �̂ , which is the empirical BLUE 
(EBLUE), is obtained via generalised least-squares

� + �m + �i + (��)im + �1x1jm + �2x2jm

+ �3x3jm + �4x4jm + �5x5jm + �6x6jm

(2)

[
𝐗��̂�

−1
𝐗 𝐗��̂�

−1
𝐙

𝐙��̂�
−1
𝐗 𝐙��̂�

−1
𝐙 + �̂�−1

][
�̂�

�̂�

]
=

[
𝐗��̂�

−1
𝐲

𝐙��̂�
−1
𝐲

]

(3)
(
���̂−1�

)−1

���̂−1�
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and �̂ , the empirical best linear unbiased predictor 
(EBLUP) of � , is

McLean et al. (1991) discussed three types of inference 
space, i.e. the broad, narrow, and intermediate spaces. 
Estimates for these inference spaces are computed based 
on estimable functions �′

� , which are linear combinations 
of fixed effects only, and predictable functions ��

� +��� , 
which consist of linear combinations of fixed effects and 
random effects �′� . The matrix �′ consists of coeffi-
cients 1 and 0, where 1 indicates fixed effects needed in 
the estimable function, and covariate values for models 
that include covariates. The matrix �′ contains the coef-
ficients 1 and 0 according to the relevant random effects in 
the predictable function, and covariates for the RC mod-
els. The estimable function results in the BLUE, while the 
predictable function results in the BLUP. The differences 
between three types of inference space are explained in 
the Appendix.

In this study, the intermediate inference space (McLean 
et al 1991) is useful because it determines which genotype 
is the best in the particular environment. Hence, we focus 
on this inference space. The predictable functions for the 
EBLUPs in the new location can be expressed as

where �′� is the estimable function of fixed effects for zone. 
This term also includes fixed covariate terms for the models 
that use covariates. The matrix �′ selects the fixed effects 
for the targeted zone where the new location is located, and 
the covariates for models with covariate. The term �′� is 
the predictable function involving the genotype main effect 
and the genotype × zone interaction effects of the zone where 
the new location located, as well as any random covariate 
terms. The matrix �′ selects the relevant random effects that 
can be estimated from the tested location; thus, it comprises 
the main effects of genotype and the genotype × zone inter-
actions. For RC models, the matrix �′ includes intercept 
and slope for the random-effects terms that have interactions 
with covariates. The last term, �′

0
�0 , is the predictable func-

tion of the location main effect and genotype × location inter-
action for the new location, with var(�0) = �0 . The matrix 
�′ includes any covariate terms for the RC models. In the 
FG models, there is no �′� term because the genotype and 
zone effects are fixed, and their interactions effects are also 
fixed.

The prediction of �′

0
�0 is always zero because there 

is no information on these effects for the new location. 
Thus, the random effect �0 is not estimated as such, but its 
distribution is needed in order to obtain the standard errors 
of predictions of genotypic values (SEPV) and standard 

(4)�̂�
′

�̂−1(� − ��̂)

(5)w = ��� +��� +�
�

0
�0

errors of the predictions of pairwise differences of geno-
typic values (SEPD) for the genotypes in the new location. 
An important point to be observed here is that the random 
effects �0 for a new location are stochastically independ-
ent of the BLUP of ��� +��� , which can be regarded as 
the conditional expectation of w , given fixed and random 
effects of the model for the observed data. Thus, the esti-
mable effects can be expressed as a conditional mean as 
follows:

Furthermore, on account of the independence assumption, 
var(�) = � , var

(
�0
)
= �0 , and var

([
�, �0

])
= diag(�,�0) , 

the conditional variance of w is:

Precision measures: SEPV, SEPD, 
and prediction intervals

SEPV and SEPD in new locations

In the further derivation, it is key to observe that the estimate 
of � in (6) and the random effects u0 for the new locations 
are stochastically independent. Thus, the total variance of 
the prediction of w in (5) is simply the sum of the variance 
of the estimate of � in (6) and the variance in (7). Hence, the 
SEPV in the new locations are computed as follows:

where var
(
�̂
)
 is the square of standard errors of EBLUPs for 

zone-based genotype average, and for our models var(w|�, �) 
is the sum of the variance components of effects for loca-
tion and genotype × location. For the models with covariates, 
var(w|�, �) includes the variances and covariances for inter-
cepts and slopes of random coefficients. In the FG models, 
var

(
�̂
)
 is the square of the standard errors of the EBLUE of 

� for the zone-based genotype average.
For plant breeders and growers, the differences between 

genotypes are more informative than point estimates for indi-
vidual genotypes. Thus, the pairwise prediction of differences 
and the SEPD needs to be computed. The predictions of pair-
wise differences can be computed using coefficients 1 and -1 
in the � and � matrices according to the difference of interest 
genotypes.

The SEPD for the new locations are computed as:

(6)� = E(w|�, �) = �
�

� +�
�

�

(7)var(w|�, �) = var(�
�

0
�0) = �

�

0
�0�0

(8)SEPV =

√
var

(
�̂
)
+ var(w|�, �)

(9)SEPD =
√

VDIFF
(
�̂
)
+ 2 × �2

gl
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where VDIFF
(
�̂
)
 is the square of the standard error of a dif-

ference of EBLUPs or EBLUEs for zone-based genotype 
averages, and �2

gl
 is the variance component of geno-

type × location effects. In the FG models the �2

gl
 refers to �2

�l
 . 

In (9), the latter is assumed homogeneous between zones, as 
in models FG2 and RG2. Alternatively, the variance may be 
assumed zone-specific, as in the other models listed in 
Tables 1 and  2.

Prediction intervals for the genotypes in the new 
locations

Meeker et al. (2017) define a prediction interval for a single 
future observation is an interval that will, with a specified 
degree of confidence, cover a future randomly selected obser-
vation from a distribution with pre-specified coverage prob-
ability (1 − �) . Following this definition, the prediction inter-
vals for genotype performances are regarded as a prediction 
interval to contain a single future observation. The important 
assumption of this interval is that the previously sampled loca-
tions and the future one can be regarded as random samples 
from the same distribution. The genotype × location effects for 
the new location can be regarded as a random sample from 
the same distribution as that of the genotype × location effects 
for locations in the dataset. The prediction interval for w is 
centred at � and the approximate (1 − �) × 100% prediction 
interval is given by:

where z1−�∕2 is the (1 − �∕2) × 100% quantile of the stand-
ard normal distribution. The prediction interval for pairwise 
differences between the i-th and i′-th genotype is given by:

where DIFF(�̂) is the difference in predictions between two 
genotypes.

Accuracy measure

Cross‑validation for model selection

A CV study can measure the prediction errors of the model 
using the mean squared error of prediction (MSEP) of differ-
ence. We conducted a leave-one-out CV for model comparison 
and selection. To mimic the prediction for new locations, we 
left one location out at a time and assigned its data as the vali-
dation set, and the data from the remaining locations as the 
training set. For the models with covariate, the covariate in the 
validation set was used for predictions. The MSEP was com-
puted similarly to the MSEP proposed by Piepho (1998) for 
measuring the prediction accuracy of the models. The MSEP 
is a standard statistic for evaluating predictive accuracy. Let y 

(10)�̂ ± z1−�∕2SEPV

(11)DIFF(�̂�) ± z1−𝛼∕2SEPD

and z denote the observed and predicted values, respectively, 
and let I denote the total number of genotypes, and J the total 
number of locations. The assessment was measured based on 
the discrepancies between observed ( yij − yi� j ) and predicted 
( zij − zi� j) pairwise differences, since the main interest in cul-
tivar trials is in prediction of differences between genotypes 
rather than performance of individual genotype (Piepho, 
1998). The discrepancies between the observed and predicted 
pairwise differences from the 18 folds were accumulated and 
the MSEP was computed from this accumulation. The MSEP 
is computed as follows:

The model producing the smallest MSEP is preferable 
because it predicts the yield differences in the validation set 
most accurately.

Implementation of the models

All models were implemented in SAS 9.4 (SAS Institute 2013) 
and ASReml-R 4.1.0.130 (Butler et al. 2017). We briefly 
describe the implementation strategy and visualisations for 
each package in the Supplementary Material.

Visualisation

In this section, some visualisation methods are proposed. 
In SAS, a prediction intervals plot to present predic-
tions with prediction intervals can be generated using PROC 
SGPLOT. In this plot, the prediction intervals generated 
based on Eq. 10. A heatmap to present genotype pairwise 
differences can be generated using PROC TEMPLATE and 

MSEP =

∑J

j=1

∑I

i=1

∑I

i≠i
�

�
yij − yi� j −

�
zij − zi� j

��2
JI(I − 1)

.

Table 3  Fixed effect tests for covariate selection by the extended FG1 
model

* G, genotype; Z, zone; G × Z, genotype × zone
† Clay content was scaled to (clay − 40)∕10
‡ pH and humus were scaled to mean 0 and standard deviation 1

Effect* Numerator DF Denomi-
nator DF

F Value Pr > F

G 24 299 8.91  < .0001
Z 2 5.29 0.18 0.8394
G × Z 48 268 1.27 0.1212
†Clay 1 7.69 3.26 0.1100
†Clay squared 1 8.2 6.84 0.0303
‡pH 1 5.35 2.57 0.1656
‡pH squared 1 3.39 0.07 0.8094
‡Humus 1 6.87 0.01 0.9312
‡Humus squared 1 7.52 0.00 0.9993
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PROC SGRENDER. The heatmap comprises the p-values 
of the genotype pairwise differences. These p-values are 
based on the z-test. The significance level for the pairwise 
differences was at α = 5%. For Bonferroni adjustment, the 
significance level α has to be divided by the total number 
of pairs or the p-values multiplied with the number of pairs 
(Hochberg and Tamhane 1987). In this case, the α was 
divided with 300 since there were 300 pairs. The z score 
was obtained by division of each predicted pairwise differ-
ence by its corresponding SEPD. Another way to present 
genotype pairwise differences is by generating a table com-
prising a letter representation of all-pairwise differences can 
be constructed with the insert-and-absorb algorithm (Pie-
pho 2004). This algorithm is implemented in a SAS macro 
(Piepho 2012) and can be obtained from https:// biost atist 
ik. uni- hohen heim. de/ filea dmin/ einri chtun gen/ biost atist ik/ 
Tools_ und_ Macros/ SAS- Macros/ mult. sas. The basis of sig-
nificance for this table is the same as the significance in the 
heatmap. In R, the prediction intervals plot and a heatmap 
can be generated using the ggplot2 (Wickham 2016) and 
corrplot (Wei and Simko 2017) packages, respectively.

Results

The fixed-effects test results of the extended FG1 model 
for covariate selection are given in Table 3. Based on the 
F-test, the only significant covariate was the squared scaled 
clay content. Thus, in this study, we decided to use only the 
scaled linear and quadratic clay content as covariates for all 
14 models.

In this section, we present the results of all models fitted 
by SAS. The results from ASReml-R are available as the 
Supplementary Materials. The fit statistics report including 
the deviance, information criterion, ∆Deviance and ∆AIC 
of the seven FG models and the seven RG models are given 
in Tables S8 and S9, respectively, in the Supplementary 

Materials. The fit statistics from ASReml-R are given in 
Tables S3 and S4 for the seven FG models and seven RG 
models, respectively.

The covariance parameter estimates of the seven FG mod-
els are presented in Table 4. The corresponding ASReml-R 
outputs are presented in Table S1. The variance estimates 
for location and genotype × location effects in each zone 
were highly heterogeneous, as shown for the FG1 model. 
Compared to the FG2 model, the homogeneous variance 
structure for the location effect seems not appropriate 
because the homogeneous variance estimate for location 
was far larger than the heterogeneous variance estimate for 
location in the North and South zones, and far smaller for 
location in the Middle zone. For the genotype × location 
effect, the homogeneous variance estimate was larger than 
the heterogeneous genotype × location variance estimate for 
the North zone, but smaller than for the Middle and South 
zones. Thus, again, the FG2 model might be less appropriate 
than the FG1 model. The use of both a linear and a quadratic 
covariate term (the FGCQ model) decreased the estimate 
of the inter-location variance compared to the use of only 
a linear term (the FGC model). However, the estimate of 
the genotype × location variance did not change much com-
pared to the estimate of the inter-location variance. When 
the covariates interacted with genotype and genotype × zone, 
as in the FGI1 model, the estimates of the inter-location 
variance were larger than the FGCQ model, but the estimate 
of the variance for the South zone in the genotype × loca-
tion dropped considerably. There was no difference in any 
variance component estimates in the FGI1 and FGI2 mod-
els. Thus, unexpectedly, when the model comprised fixed 
effects of genotype × zone and covariates interactions, drop-
ping the covariate interactions with the genotype main effect, 
variance component estimates did not change. In the FGI3 
model, only the genotype main effect interacted with the 
covariates. Here, the heterogeneous variance component 

Table 4  Covariance parameter estimates of seven fixed-genotype-effect (FG) models

*Covariance parameters were estimated by REML
† L, location; G × L, genotype × location

Covariance Subject† Group Estimate*

parameter FG1 FG2 FGC FGCQ FCI1 FCI2 FCI3

Intercept L North 24,606.00 29,725.00 8596.23 11,052.00 11,052.00 8595.45
Middle 82,207.00 33,466.00 30,888.00 38,357.00 38,357.00 30,893.00
South 16,142.00 17,068.00 5625.77 6414.33 6414.33 5710.33

45,118.00
Intercept G × L North 598.57 598.60 598.59 206.18 206.18 534.64

Middle 1182.36 1182.38 1182.38 1173.21 1173.21 1148.01
South 1032.08 1032.28 1033.13 117.76 117.76 265.19

952.72

https://biostatistik.uni-hohenheim.de/fileadmin/einrichtungen/biostatistik/Tools_und_Macros/SAS-Macros/mult.sas
https://biostatistik.uni-hohenheim.de/fileadmin/einrichtungen/biostatistik/Tools_und_Macros/SAS-Macros/mult.sas
https://biostatistik.uni-hohenheim.de/fileadmin/einrichtungen/biostatistik/Tools_und_Macros/SAS-Macros/mult.sas
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Table 5  Covariance parameter estimates of seven random-genotype-effect (RG) models

*Covariance parameters were estimated by REML
† G, genotype; L, location; G × L, genotype × location; G × Z, genotype × zone

Covariance parameter Subject† Group Estimate*

RG1 RG2 RGC RGCQ RC1 RC2 RC3

Intercept L North 24,613.00 29,729.00 8598.12 8608.21 8601.49 8601.40
Middle 82,195.00 33,452.00 30,874.00 30,887.00 30,872.00 30,817.00
South 16,120.00 17,048.00 5618.09 5717.27 5715.54 5704.45
– – 45,148.00 – – – – –

Intercept G 613.46 638.70 613.48 613.55 – 609.96 -
Intercept G × Z 65.30 60.61 65.28 65.21 – – 98.88
Intercept G × L North 584.45 584.48 584.48 261.99 257.87 551.31

Middle 1157.63 1157.64 1157.61 1058.87 1060.31 1134.55
South 1057.85 1058.05 1058.91 309.83 299.28 321.24
– – 941.55 – – – – –

Intercept (1) G – – – – – 460.48 – 527.32
Covariance (2,1) G – – – – – −121.12 – −46.90
Linear term slope (2) G – – – – – 61.25 – 415.82
Covariance (3,1) G – – – – – −9.45 – −0.43
Covariance (3,2) G – – – – – 30.38 – 207.89
Quadratic term slope (3) G – – – – – 2.53 – 111.97
Intercept (1) G × Z – – – – – 216.39 175.72 –
Covariance (2,1) G × Z – – – – – 113.50 102.30 –
Linear term slope (2) G × Z – – – – – 363.11 453.44 –
Covariance (3,1) G × Z – – – – – −39.53 −19.84 –
Covariance (3,2) G × Z – – – – – 123.37 169.48 –
Quadratic term slope (3) G × Z – – – – – 98.35 107.75 –

Table 6  Averages of SEPV over 25 genotypes of each new location 
of all 14 models

SEPV Model Location

N01 N02 S01 S02

–––––––––– g ×  m−2 ––––––––––

RC2 113.13 121.42 88.10 89.38
RC3 114.23 122.10 88.14 89.20
RC1 113.18 121.46 88.16 89.45
FGI3 114.98 122.89 88.19 89.20
RGCQ 114.24 122.06 91.65 92.57
FGCQ 114.73 122.52 92.51 93.42
FGI1 127.76 142.03 92.88 97.02
FGI2 127.76 142.03 92.88 97.02
RG1 174.11 174.11 141.55 141.55
FG1 174.42 174.42 142.17 142.17
RGC 207.01 215.71 150.87 147.69
FGC 207.27 215.96 151.45 148.28
RG2 235.22 235.22 231.91 231.91
FG2 235.50 235.50 232.21 232.21

Table 7  Averages of SEPD over 25 genotypes of each new location 
of all 14 models

SEPD Model Location

N01 N02 S01 S02

–––––––––– g ×  m−2 ––––––––––

RC2 29.49 32.54 28.92 30.98
RC1 29.52 32.50 29.22 31.26
FGI1 31.36 37.77 24.74 33.16
FGI2 31.36 37.77 24.74 33.16
RC3 36.85 37.03 29.61 30.30
RG1 36.97 36.97 48.39 48.39
RGCQ 36.97 36.97 48.41 48.41
RGC 36.97 36.97 48.39 48.39
FG1 40.03 40.03 51.53 51.53
FGCQ 40.03 40.03 51.55 51.55
FGC 40.03 40.03 51.53 51.53
FGI3 41.62 42.37 29.79 30.16
RG2 45.84 45.84 45.85 45.85
FG2 49.55 49.55 49.66 49.66
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estimates for location and genotype × location effects were 
similar to the estimates in the FGCQ model.

Table 5 presents the covariance parameter estimates of 
the seven RG models. The ASReml-R results for these mod-
els are given in Table S2. Unlike the FG models, the RG 
models included genotype and genotype × zone variance 
components. The pattern of estimates for inter-location and 
genotype × location variances were similar to the FG1, FG2, 
FGC, and FGCQ models. Interestingly, for the RC1, RC2, 
and RC3 models, the estimate of the genotype × location 
variance for the South zone dropped substantially compared 
to the other RG models. However, the estimate of the inter-
location variance for the North zone was higher for the RC3 
model than for the other RC models.

The average SEPV and SEPD, over 25 genotypes by 
location and by all 14 models, are presented in Tables 6 
and 7, respectively. The results from ASReml-R are given 
in Table S5 and S6, respectively. The highest SEPV were 
observed using the RG2 and FG2 models. These two models 
had no covariate and used a homogeneous variance structure 
for the location and genotype × location terms. The RC2 and 
RC3 models were the two models with the smallest SEPV. 
The RC2 model had the smallest SEPV in the locations N01, 
N02, and S01, while the RC3 model had the smallest SEPV 
only in the location S02. However, the difference between 
the RC2 and the RC3 models for location S02 was subtle. 
The FGI3 model, with covariate interaction only with the 
genotype main effect, also had a small SEPV compared with 
other FG models and even compared with the RG models 
without any covariate terms. It is also apparent that mod-
elling a heterogeneous variance structure for location and 
genotype × location terms improved the SEPV compared to 

the homogeneous variance structure because the RG and FG 
models had smaller SEPV than the RG2 and FG2. Compared 
to the FG and RG model, the SEPV in the RC2 model was 
improved by 37–38% for the untested locations in the South 
zone, and by 30–35% for the untested locations in the North 
zone.

The SEPD values were smaller than the SEPV values 
because the computation in Eq. 9 was only based on the 
terms involving genotype effects. In general, the RC2 model 
had the smallest SEPD except in location N02. However, 
again, the difference in SEPD between models RC1 and RC2 
was small at this location. The FGI1 and FGI2 model had the 
same and the smallest SEPD among the FG models. In the 
FGI1 model, both genotype and genotype × zone terms had 
interactions with the covariates, while in the FGI2 model, 
only the genotype × zone term interacted with the covariate.

The heterogeneous variance structure for location and 
genotype × location was beneficial since the SEPD in the 
FG1 and RG1 models were smaller than in the FG2 and 
RG2 models. The SEPD depended on the covariate as well. 
For the untested locations in the South zone, the SEPD were 
smaller in the model where the covariate interacted with 
genotype and genotype × zone terms. Concomitantly, when 
the covariate had no interactions with genotype and geno-
type × zone terms, the SEPD of the untested locations in the 
South zone were higher than in the North zone. The SEPD 
in the RC2 model decreased by 36–40% for the untested 
locations in the South zone and by 12–20% for the untested 
locations in the North zone, which implies that the geno-
type × location variance estimate in the North zone is much 
higher than in the South zone. This is also shown in Table 5.

Table 8 presents variance and correlations estimates of 
the RC2 model, since this was a promising model based on 

Table 8  Covariance parameter estimates of RC2 model with correla-
tion between slope and intercept

*G, genotype; L, location; G × S, genotype × location; G × Z, geno-
type × zone

Covariance parameter Subject* Group Estimate

Intercept L North 8601.49
Middle 30,882.00
South 5715.53

Intercept G 609.93
Intercept G × L North 257.83

Middle 1060.30
South 299.35

Intercept G × Z 175.42
Linear term slope (2) G × Z 453.35
Quadratic term slope (3) G × Z 107.72
Corr(2,1) G × Z 0.36
Corr(3,1) G × Z −0.14
Corr(3,2) G × Z 0.77

Table 9  The means squared error of prediction differences of 14 
models

Ranking Model MSEP  (g2 ×  m−4)

1 RGCQ 3681
2 RG1 3681
3 RGC 3681
4 RG2 3688
5 RC2 3797
6 RC3 3839
7 RC1 3848
8 FG2 4000
9 FGCQ 4008
10 FG1 4008
11 FGC 4008
12 FGI3 4393
13 FGI1 7217
14 FGI2 7217
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the averages of SEPV and SEPD. The correlation between 
the linear slope term and the intercept was 0.36, which is 
low. However, the correlation between the quadratic term 
and the intercept was -0.14, which is very low as well. The 
correlation between quadratic slope and the linear slope was 
quite high, i.e. 0.76. Thus, there was no problem with col-
linearity between these two terms. The results of ASReml-R 
are given in Table S7.

The MSEP of the 14 models are listed in Table 9. The 
model with the smallest MSEP predicted yield differences 
in the validation set most accurately. The RG models out-
performed the FG models because their MSEP were smaller 
than the FG models. Hence, although both the FGI1 and 
FGI2 models had the exact same SEPD, and their SEPD 
were fairly competitive to the SEPD in the RC models, these 

two models were the least performant since their MSEP were 
the highest. The RG1, RGC, and RGCQ models had the 
smallest MSEP, and their values were the same when they 
were rounded. The RC model with the random coefficients 
for the genotype × zone term (RC2) ranked fifth but consid-
ering that the three smallest MSEP were equal, the MSEP 
of the RC2 model can be considered as the third smallest. 
Clearly, the pattern shows that the models with covariate 
interaction in the genotype or genotype × zone terms were 
less performant than the models without such interactions. 
Based on the MSEP, the best models were RGCQ, RGC, 
RG1, RG2, and RC2.

We demonstrate how the proposed visualisations of 
the results can be implemented in SAS and R. Predicted 
values of the genotypes and the 95% prediction intervals 

Fig. 1  Predictions and 95% prediction intervals for each genotype in location S01 by the RC2 model by PROC SGPLOT
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for location S01 based on the RC2 model are depicted 
in Fig. 1. Figure from R is given in Figure S4. Figure 1 
presents the upper and lower prediction limits, which 
were obtained from Eq. 10. For the prediction of pair-
wise differences of genotypes in location S01 by the RC2 
model, a heatmap containing p-values is given in Fig. 2. 
The heatmap produced by R is presented in Figure S5. 
The heatmap can be useful for data with a large number 
of genotypes and can provide an easy way to detect, by 
colour coding, which pairwise comparisons of genotypes 
are significant. The red shading indicates significant dif-
ferences of pairwise genotypes predictions at α = 5% with 
Bonferroni adjustment. The SAS and R codes for this 
purpose are available in the electronic Supplementary 
Material.

The pairwise differences displayed by a letter-based 
representation using the insert-and-absorb algorithm (Pie-
pho 2004) are given in Table 10. The drawback of present-
ing letter-based representation of multiple comparisons is 
the limitation of the alphabet numbers and the clutter when 
many letters are required. When the needed number of let-
ters exceeds 26, then this method will not work with the 
Latin alphabet, which can occur for a very large number 

of genotypes. The SAS code to generate Table 10 in the 
electronic Supplementary Materials.

Discussion

In this study, it is shown that using clay in the quadratic 
term as a covariate and employing RC models reduced the 
SEPV averages for all new locations by 30–38%, and the 
SEPD averages by 12–40%. This shows that the RC mod-
els can improve the precision of predictions of genotypes 
performance and the precision of genotypes comparisons. 
By using the covariates in the random coefficients term, the 
SEPV is evaluated at specific values of the covariates (Mil-
liken and Johnson 2002), which can substantially decrease 
the SEPV of the RC models compared to the models with-
out any random coefficients. Between the 14 models, RC2 
was the model with the smallest average SEPV for three 
new locations, except in location S02, the SEPV of the RC2 
model was 0.18 higher than the RC3 model. Thus, it was 
minor. For the average SEPD, the RC2 model had only a 
marginally larger average SEPD in location N02 than the 
RC1 model.

Fig. 2  Heatmap of p-value of the genotype pairwise differences in location S01 by the RC2 model by PROC TEMPLATE and PROC SGREN-
DER. The significance level was adjusted using Bonferroni adjustment
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Nevertheless, the difference in average SEPD between the 
RC1 and RC2 models was small. The RC2 model utilised 
the linear and quadratic term in the genotype × zone interac-
tion effects, but not in the genotype main effects. Figure S1 
presents the quadratic regression per genotype and shows 
that the variation between genotypes is not that large, as the 
lines of genotypes are close to each other.

For this reason, the inclusion of random coefficients in the 
genotype term may not be worthwhile. The random coeffi-
cients in the genotype × zone term were more beneficial than 
in the genotype main-effect term, since the SEPD was higher 
when using the RC3 model than when using the RC2 model. 
Also, Figure S2 shows that the variation between geno-
types × zone effects is large, as the lines of genotypes × zone 
are more widely spread out compared to Figure S1.

The model selection can be made by jointly considering 
SEPV and SEPD with MSEP from the CV study. In terms 
of MSEP, the FG models are clearly not favourable since 
their MSEP were higher than those of the RG models. This 
poor performance is expected because in difference to the 

RG models, the FG models cannot borrow strength across 
zones. Among the RG models, there was no clear winner 
when jointly considering the SEPV, SEPD, and MSEP. The 
precision was certainly improved via the RC2 model, but its 
MSEP was not the smallest. The models with the smallest 
MSEP were RGCQ, RGC, and RG. Nevertheless, the differ-
ence of the MSEP between the RC2 and the RG, RGC, 
RGCQ model was 116  g2 ×  m−4. Thus, the RC2 model pre-
dictions were less accurate 

�√
MSEP = 10.73 g ×m−2

�
 

compared to those three models. With the RG1 model, the 
prediction accuracy was slightly better, but the intervals and 
the uncertainty were larger compared to the RC2 model. 
Thus, the RC2 model is preferred based on the SEPV, SEPD, 
and the MSEP. The RC2 model minimised the uncertainty 
as indicated by lower SEPV and SEPD, although its MSEP 
was not the smallest.

Our study is similar to Jarquin et al. (2014) in that both 
use RC models to improve prediction accuracy. The major 
difference is that Jarquin et al. (2014) used an extensive 
number of environmental covariates with marker data and 
utilised this information by computing an environmental 
kinship matrix, for which a single variance component was 
fitted. Thus, implicitly, the model used by Jarquin et al. 
(2014) assumes that the slopes for the different covari-
ates have the same variance and that there is no correla-
tion between them. By contrast, in our study, a vast number 
of covariates and marker data were not available, but we 
allowed for heterogeneity in variance between slopes, and 
for covariance between slopes and intercepts to maintain the 
invariance feature of RC models (Longford 1993; Piepho 
and Ogutu 2002; Wolfinger 1996). It is acknowledged that 
we can afford to do so because we do not have a vast num-
ber of covariates. With an increasing number of covariates, 
fitting such RC models becomes more challenging, and it 
is not obvious how this can best be done. One option to 
circumvent numerical problems is to fit a low-rank approxi-
mation to the unstructured variance–covariance matrix for 
intercepts and slopes, i.e. a factor-analytic model (Jennrich 
and Schuchter 1986). Fitting a factor-analytic model guaran-
tees that the variance–covariance matrix is positive definite. 
If the order of the factor-analytic model equals the number 
of slope terms plus the intercept, the model is equivalent to 
the unstructured model, whereas lower-rank approximations 
are obtained by reducing the order. Moreover, with a large 
number of covariates, covariate selection will be beneficial. 
R-square  (R2) for mixed models (Piepho 2019) is an option 
for covariate selection, as demonstrated in Hadasch et al. 
(2020). The best approach to accommodating a larger num-
ber of covariates certainly deserves further research.

The BLUPs for the untested locations are the predictions 
obtained from the observed locations, and these values are 
reported to growers. However, these BLUPs do not equal 

Table 10  The letter representation of all-pairwise differences by the 
insert-and-absorb algorithm (Piepho 2004)

*Means not sharing any letter are significantly different at the 5% 
level of significance with Bonferroni adjustment (Piepho, 2018)

Genotype Yield (g/ha)* Letters

28,949 1026.60 a
28,128 996.76 a b
27,125 989.99 a c
27,599 983.73 a c
24,521 978.76 a c
27,130 975.71 a c
27,110 975.25 a c
28,209 975.22 a c
27,600 972.55 a c
27,593 972.15 a c
24,984 971.35 a c
26,742 968.44 a c
27,590 963.94 a c
27,543 963.28 a c
28,954 953.59 a c
27,592 953.07 a c
25,512 950.29 a c
27,669 945.45 a c
25,965 943.17 a c
27,546 941.97 a c
27,605 939.75 a c
23,286 939.53 a c
27,548 936.91 a c
23,524 919.65 b c
22,455 889.03 c
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the yield that the growers will get in practice. Furthermore, 
the standard errors of the predictions based on the observed 
locations cannot be applied to the grower’s fields since the 
trials hardly ever coincide with these. Hence, the prediction 
intervals for the untested locations need to be computed and 
presented so that the growers have a view of how precise 
each cultivar’s prediction is for their fields. To compute 
valid standard errors for the untested locations, the location 
effect needs to be modelled as random to account for the 
uncertainty of effects for the untested locations. Note that the 
random location main effect, as well as the random cultivar-
location interaction effects, are part of the deviations from 
the regression curves. Prediction intervals are passed on the 
random variation around the curves. Hence, only if these 
effects are indeed present and modelled as random, can we 
compute valid prediction intervals for new locations. If the 
location effect is fixed, which is known as factorial regres-
sion, then the untested locations’ uncertainty cannot be 
obtained since there is no variance component estimate for 
a fixed effect and the effect itself is unobservable. Besides, 
when the location effect is fixed, the standard errors are only 
valid for the locations where the trials are carried out. The 
next step, after having developed the uncertainty measure of 
the untested locations, could be to apply the RC model for 
a whole country to present maps of yield predictions using 
environmental covariates based on the available GIS data in 
the Swedish official cultivar trials.

When the covariate was modelled using the quadratic 
term, the averages of SEPV dropped considerably. Further-
more, using RC models, the reduction of the averages SEPV 
and SEPD depends on the covariate value in the new loca-
tions; Table 8 shows that the reduction of SEPV and SEPD 
varied between the four new locations. Gozdowski et al. 
(2017) reported that the relationships between the fine soil 
fractions for the 0–60 cm layers and yield are curvilinear, 
which also was the case in this study. The clay content used 
in this study was measured for the 0–25 cm layer. The SEPV 
depends on the variance estimates of location and geno-
type × location. The SEPV will decrease when the variance 
of location or genotype × location decrease. For the SEPD, 
however, using a covariate did not decrease SEPD because 
the SEPD only depends on the terms associated with geno-
type. Moreover, all variance estimates of effects for geno-
type, genotype × zone, and genotype × location, are similar 
for the RG1, RG2, RGC, and RGCQ models, while for the 
RC models these three terms have different variance esti-
mates compared to the RG1, RG2, RGC, and RGCQ models 
(Table 5). For the FG models, the same pattern occurred in 
that the genotype × location variance estimates of FG1, FG2, 
FGC, and FGCQ models were similar.

The covariate scale is crucial when implementing RC 
models. We found this covariate scale issue when we fit-
ted the RC1 model. This scaling issue occurred when the 

random coefficients were fitted to both genotype and geno-
type × zone effects:

1. When the value subtracted from the covariate was lower 
than the covariate’s mean, and the result was divided 
by 10, the variance component of the linear term of the 
random coefficients of the genotype main effect was 0.

2. The same results were obtained when the covariate was 
standardised to mean 0 and standard deviation 1 and 
when the value subtracted from the covariate was the 
covariate’s mean, and the result was divided by 10.

The genotype main effect had a lower variance than the 
genotype × zone interaction effect, as shown in Figures S1 
and S2. Thus, there was likely competition between geno-
type main effects and genotype × zone interaction effects 
in absorbing the variance because in the RC2 model, in 
which the random coefficients were only fitted for the gen-
otype × zone interaction effect, the scaling of (1) and (2) 
caused no issue in the variance component estimates and the 
convergence. Besides, using the scaling of (1) and (2) in the 
RC2 model did not change the SEPV and SEPD for all new 
locations due to the invariance property ensured by allow-
ing a covariance among random coefficients (unstructured 
variance–covariance). Other scalings such as subtraction-of-
the-minimum and covariate-centring were also attempted. 
When these scalings were used, the RC models did not con-
verge. Thus, the covariate scaling is essential for model con-
vergence and to obtain the appropriate variance parameter 
estimates. The clay covariate was scaled for all fitted models 
by (clay − 40)∕10 . We used this scaling because it yielded 
a positive definite variance–covariance matrix. The choice 
of covariates is important in the fixed-effects and random-
coefficients parts since they contribute to the improvement 
or worsening of the prediction precision. Furthermore, the 
scaling and linear transformations of the covariate are also 
essential since it can affect convergence and the estimates 
of covariance parameters.

Zone stratification improved precision because informa-
tion can be borrowed between zones. However, it should be 
emphasized that a clear agro-ecological division is needed 
in order to improve precision for each zone. In this study, the 
North zone had slightly higher uncertainty than the South 
zone, which shows that in the North zone, geographical and 
environmental conditions might be more varied and predic-
tions more uncertain. The SEPV of a zone can be improved 
by conducting more trials within a zone.

The RC models are useful for MET analysis because the 
covariate information, which is changing from one to the 
other trials, can be exploited in the random effects. This fea-
ture is useful to measure the adaptability of the genotypes in 
new environments, given the covariates of the new environ-
ment are available. In fact, the benefit of using a covariate in 
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the RC models depends on choosing the appropriate covari-
ate. Covariates can initially be selected based on the bio-
logical considerations. Still, it is necessary to check whether 
these covariate candidates improve the model fit.

The computational approach for predictions in the new 
locations is different from Henderson (1977), who consid-
ered predictions for animals that were not in the records. The 
main difference is that in our models the location-specific 
random effects are independent between the observed data-
set and the new location, whereas with the Henderson (1977) 
approach the random effects for animals with records are 
correlated by pedigree with the animals having no records. 
Moreover, if there is no zone stratification, the predictions 
of genotypes in the new locations are merely the summation 
of genotype BLUPs and the grand mean.

In our study, the precision of these predictions was addi-
tionally improved by incorporating covariates using RC 
models in terms of decreasing standard errors of predic-
tions and standard error of pairwise differences of genotype 
predictions. Using RC models requires that covariates are 
available at each location. When the dataset is augmented 
with data of the new location, the computing strategy needs 
to be adjusted due to fact that there are no observations on 
the response in the new locations. For SAS, the augmented 
dataset could be used to conduct the analysis. However, for 
ASReml-R, the augmented dataset could not be used due to 
a different functionality of the package. Thus, the computing 
strategy needed to be adjusted by excluding the new loca-
tions from the dataset to conduct the analysis. The SEPV 
and SEPD of the new locations had to be computed after the 
analysis was completed in ASReml-R (see Supplementary 
Materials).

We demonstrated that predicting genotype yield for 
some new locations can be enhanced by inclusion of envi-
ronmental covariates by borrowing information from other 
zones. A recent paper by Neyhart et al. (2021) followed the 
same spirit of predicting genotype performance in unob-
served environments. Neyhart et al. (2021) assessed the 
genome-wide predictions in the unobserved environments 
for both between and within breeding generations. Resende 
et al. (2020) recently proposed the geospatial (geographic 
information system) genotype–environment interaction 
(GIS–GEI) method within an enviromics framework. This 
framework involves the joint analysis of MET data account-
ing for phenotypic, genotypic and envirotypic sources of 
information. It is anchored into a geoprocessing environ-
ment that employs enviromic markers, e.g. time-trend cli-
mate data, landscape or and management treatment informa-
tion, obtained by means of modern envirotyping techniques. 
Our proposed RC modelling approach is ideally suited for 
integration in an enviromics-driven GIS–GEI framework. 
Moreover, the RC modelling can be used in the Bayesian 
framework as proposed by Theobald et al. (2002), who used 

a Bayesian method for making predictions with incorporat-
ing environmental covariates.

Conclusion

This study showed that the RC models can be used to improve 
the precision of the yield predictions of winter wheat geno-
types in some new locations. The RC model RC2 was com-
petitive, with regards to MSEP, compared to the RG, RGC, 
and RGCQ models. The RC2 model, with random coefficients 
of linear and quadratic terms in the genotype × zone effect, can 
be recommended based on joint consideration of precision in 
predictions and accuracy. The RC models improved the preci-
sion of the predictions for a new location by utilising covariate 
information in the new location in the random effects part, and 
by borrowing information from other zones via genetic corre-
lation between zones. The crucial keys for improving the pre-
cision of the predictions in the RC models are the selection of 
suitable covariates, suitably scaling the covariate, modelling 
the appropriate trend for the covariate in the fixed-effects part, 
and using an unstructured variance–covariance for the random 
coefficients. The scale of the covariate is essential to obtain 
reliable variance component estimates and avoid convergence 
issues. Failing to select suitable covariates and to model the 
trend for the covariate also in the fixed-effects part may lead 
to larger SEPV and SEPD for new locations. Breeders can use 
RC models to determine the adaptability of tested genotypes 
in new environments. Agronomists and growers can use RC 
models to identify the best locally adapted genotypes.

Appendix

The differences between three types of inference space in 
McLean et al. (1991) are explained as follows:

1. The broad inference space refers to inference based 
exclusively on fixed effects and estimable func-
tions, �′

� . For example, the estimable function for 
the adjusted mean of the Middle zone is obtained by 
choosing �′ accordingly, i.e. ��

= [1,1, 0,… , 0] gives 
�

�

� = � + �1 , where the first coefficient of 1 refers to 
the grand mean, � , and the second to the fixed effect of 
the Middle zone, �1 . This is so, because the levels of the 
zone effect are ordered alphabetically such that the effect 
of the Middle zone comes first.

2. The narrow inference space refers to predictable func-
tions, but is not subject-specific. In the example for the 
broad inference space, the average of the Middle zone is 
determined by � + �1 . There are no random effects 
involved. Alternatively, we may consider the average of 
the Middle zone conditionally on the random genotype 
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effects, which corresponds to the narrow inference 
space. The predictable function then is 𝜇 + 𝜁1 + ḡ +

(
g𝜁

)
1

 , 
where ḡ is the average of the main random genotype 
effect, I−1

∑
gi , and 

(
g�

)
1
 is the genotype average in the 

random genotype × zone interaction effect in the Middle 
zone, I−1

∑∑
(�g)i1.

3. The intermediate inference space also involves ran-
dom effects, but in difference to the narrow inference 
space, the intermediate inference space is subject-
specific. For example, the performance of i-th geno-
type in the j-th location of the Middle zone is given by 
� + �1 + sj1 + gi + (g� )i1 + (gs)ij1 . The estimable func-
tion �′� is � + �1 and the predictable function �′� is 
sj1 + gi + (g� )i1 + (gs)ij1.
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