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a b s t r a c t 

Fish oil has been used in conventional aquaculture for decades, despite the known links between increas- 

ing global demand for fish and depletion of natural resources and vital ecosystems (FAO, 2020, 2019). 

Alternative feed ingredients, including algae oil rich in docosahexaenoic acid (DHA), has therefore been 

increasingly used to substitute traditional fish oil. Heterotrophic algae cultivation in bioreactors can be 

supported by a primary carbon feedstock recovered from food waste, a solution that could reduce envi- 

ronmental impacts and support the transition towards circular food systems. This study used life cycle 

assessment to quantify environmental impact of DHA produced by the heterotrophic algae Cryptheco- 

dinium cohnii, using short-chain carboxylic acids derived from dark fermentation of food waste. The fu- 

ture potential of DHA from algae was evaluated by comparing the environmental impact to that of DHA 

from Peruvian anchovy oil. With respect to global warming, terrestrial acidification, freshwater eutrophi- 

cation and land use, algae oil inferred -52 ton CO 2 eq, 3.5 ton SO 2 eq, -94 kg Peq, 2700 m 

2 eq, respectively 

per ton DHA. In comparison, the impact per ton DHA from fish oil was -15 ton CO 2 eq, 3.9 ton SO 2 eq, 

-97 kg Peq and 3200 m 

2 eq. Furthermore, algae oil showed lower climate impact compared to canola 

and linseed oil. By including Ecosystem damage as indicator for ecosystem quality at endpoint level, the 

important aspect of biodiversity impact was accounted for. Although the method primarily accounts for 

indirect effects on biodiversity, DHA from algae oil showed lower Ecosystem damage compared to fish oil 

even when future energy development, optimized production, increased energy demand and effects on 

biotic resources were considered via sensitivity analyses. As the results suggest, algae oil holds a promis- 

ing potential for increased sustainability within aquaculture, provided that continued development and 

optimization of this emerging technology is enabled through active decision-making and purposeful in- 

vestments. 

© 2021 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Today, aquaculture is the fastest growing food-producing sec- 

or, originally developed to support an increasing global population 

ith nutritious food and essential Omega-3 fatty acids ( FAO, 2018 ). 

ish oil has been one of the most important ingredients in con- 

entionally produced aquaculture feed for decades, primarily since 

t contains bioavailable polyunsaturated fatty acids, including the 

-fold unsaturated fatty acid docosahexaenoic acid (DHA). The orig- 

nal aim in farming high-value fish was to preserve marine biodi- 

ersity while supporting an increased global demand for food fish 

 European Commission, 2019 ). However, current fish oil supply is 
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ighly dependent on fossil energy and marine raw materials, and 

esearch has shown that natural resources and ecosystems are be- 

ng depleted as the global demand for fish increases ( FAO, 2020 , 

019 ). 

In aquatic ecosystems, DHA is naturally produced by plank- 

onic microalgae and is accumulated in fish via the food web 

 Colombo et al., 2020 ; Sprague et al., 2017 ). As DHA cannot be syn-

hesised by animals, a sufficient intake must be obtained through 

he diet. Therefore, fish oil rich in DHA is often added in food 

nd feed production to enhance nutrition levels in dairy, meat and 

sh consumed by humans ( Silva et al., 2018 ; Toppe, 2013 ). Each

ear, around 1 million tons of fish oil is used to produce aquafeed 

 Beal et al., 2018 ), where Peruvian anchovy oil contains one of 

he highest concentrations of DHA ( IFFO, 2017 ). Conventional fish 

il production depends on marine raw materials, primarily for- 
emical Engineers. This is an open access article under the CC BY license 
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ge fish such as anchovy, and finite resources such as fossil en- 

rgy to power the conversion processes ( Rodríguez et al., 2019 ; 

yedmers et al., 2006 ). Fish oil production has also been shown 

o contribute to two of the most urgent threats to life on Earth: 

lobal warming and loss of biodiversity ( Center for Biological Di- 

ersity, 2020 ; Ghamkhar and Hicks, 2020 ; United Nations, 2019 ). 

oreover, due to global warming the natural DHA synthesis by 

arine microalgae is predicted to decrease by 58% until 2100 

 Colombo et al., 2020 ), which would reduce the natural DHA con- 

ent in fish oil. In addition, long-term monitoring of marine fish 

tocks by FAO ( 2020 ) showed that 34% of fish stocks were over-

shed in 2017. Thus, the dependency on fish oil for aquafeed must 

e reduced to ensure future food security ( Cottrell et al., 2020 ) and

o achieve sustainable market growth of aquaculture ( Hardy, 2010 ). 

New production methods with lower environmental impact are 

eeded to maintain vital ecosystems, increase resource efficiency 

nd support future sustainability within food supply chains. A po- 

ential solution to the impact associated with conventional fish oil 

roduction could be to gain DHA directly from the marine pri- 

ary producers, namely microalgae. Using microalgae as a novel 

quafeed could decrease the demand for forage fish in aquacul- 

ure, while still maintaining the required DHA profile for high- 

alue aquaculture fish feed ( Beal et al., 2018 ; Sprague et al., 2017 ,

015 ). Previous research has established that heterotrophic mi- 

roalgae can be cultivated in bioreactors using carbon sources de- 

ived from food waste as primary feedstock ( Chalima et al., 2020 , 

019 , 2017 ), thus enabling an alternative resource recovery solution 

ithin food waste management. 

Today, about 1.3 billion ton food is wasted globally each year, 

f which over 900 million ton origin from households, retail es- 

ablishments and the food service sector ( UNEP, 2021 ). Food waste 

ccounts for a considerable proportion of environmental burden 

or the current food supply chain, especially since current prac- 

ice are often based on a linear production process ( Laso et al., 

018 ). Increased resource recovery and nutrient recycling are con- 

idered key actions to achieve long-term sustainability, especially 

ithin the future food system and food waste management. Life 

ycle assessment (LCA) is a method commonly used to systemati- 

ally assess and quantify the environmental impact for a process or 

roduct. By considering resource use and emissions related to the 

hole production chain, LCA is a valuable tool for evaluating if a 

uggested solution can reduce the environmental impact compared 

ith a reference scenario. The aim of this study was to evaluate 

he future potential of DHA produced from algae with substrate 

riginating from DF using food waste, by assessing and compar- 

ng the environmental impact to that of DHA produced from Pe- 

uvian anchovy oil. A quantitative assessment of the environmen- 

al impact and the potential effects on biodiversity was included 

o provide a vital dimension of aquaculture and food waste valori- 

ation to policymakers, the research community and the industry. 

he long-term goal with this study was to support sustainable de- 

elopment, by assessing innovative solutions for food waste valori- 

ation within a circular economy approach. 

. Literature review 

The environmental impact of conventional fish oil produc- 

ion has been thoroughly studied by previous research ( Avadí

nd Fréon, 2013 ; Fréon et al., 2017 ; Silva et al., 2018 ). To in-

rease sustainability within aquaculture and reduce dependency 

n traditionally used marine raw material, alternative DHA sources 

n aquafeed has gained a lot of scientific attention ( Bélanger- 

amonde et al., 2018 ; Glencross et al., 2020 ). Vegetable sources, 

uch as canola or linseed oil, require conversion of alpha lipoic 

cid (ALA) via digestion to provide bioavailable DHA ( Kannan et al., 

021 ; Russo et al., 2021 ). Although often considered controversial, 
2003 
enetically modified crops has been shown to increase DHA poten- 

ial in plants to levels comparable with fish oil ( Petrie et al., 2020 ;

est et al., 2021 ; Zhou et al., 2019 ). An alternative source that pro-

ide bioavailable DHA are yeast oil and algae oil ( Parsons et al., 

019 ; Porcelli et al., 2020 ; Yarnold et al., 2019 ). Research suggest 

hat microbial oils from heterotrophic algae and yeast will likely 

e common within future food systems ( Parsons et al., 2018 ), but 

icroalgae oils are considered one of the most promising future 

sh oil substitutes ( Cottrell et al., 2020 ; Oliver et al., 2020 ). Both

otal and partial replacement of fish oil in aquafeed is currently 

ossible, but the nutritional composition of the substituting oil 

ust be considered to maintain the required nutritional value in 

ood fish ( Sarker et al., 2016 ; Schade et al., 2020 ; Sissener, 2018 ).

hamkhar and Hicks (2020) concluded that sole fish oil replace- 

ent can infer reduced stress on biotic resources, but they also 

ighlighted that technologies for producing substituting oils needs 

urther improvement to achieve more effective energy use and 

itigate potential burden shifts. Commercial algae derived prod- 

cts, including DHA for feed and food, are well established on the 

arket and will likely be further developed to improve effective- 

ess and reduce production costs ( Patel et al., 2020a ; Yarnold et al., 

019 ). 

Thraustochytriaceae and the dinoflagellate Cryptecodinium sp. are 

ukaryotic, planktonic heterotrophic marine microalgae that are 

nown to accumulate DHA to beyond 10% (w/w) of their cell 

eight ( Kumar et al., 2021 ; Mendes et al., 2009 ). The inten-

ively examined strain Cryptecodinium cohnii ( C. cohnii ) is culti- 

ated aerobically in bioreactors supported by a carbon source as 

rimary feedstock. Different feedstock has been frequently used, 

ncluding glucose ( Deprá et al., 2020 ), lignocellulosic biomass 

 Karnaouri et al., 2020 ) and olive pomace ( Paz et al., 2020 ). Acetic

cids and other short-chain fatty acids has been shown to greatly 

enefit microalgae DHA accumulation ( Hillig, 2014 ; Sijtsma et al., 

010 ), especially waste derived volatile fatty acids ( Oliver et al., 

020 ). Volatile fatty acids (VFA) are obtainable from anaerobic di- 

estion (AD), in particular dark fermentation (DF) ( Chalima et al., 

019 ; Fei et al., 2015 ; Patel et al., 2020a ). DF is a common food

aste (FW) valorisation process where the first two steps, hy- 

rolysis and acidogenesis of the typical AD, yield short-chain car- 

oxylic acids (mostly VFAs). VFAs extracted from AD or DF primar- 

ly consist of acetic acid (C 2 H 4 O 2 ) and smaller amounts of propi-

nic acid (C 3 H 6 O 2 ) and butyric acid (C 4 H 8 O 2 ), while the remain-

ng biomass can still be used to produce biogas ( Kim et al., 2019 ;

ampio et al., 2019 ). Previous studies by Paritosh et al. (2017) and 

ainaina et al. (2019) suggest that up to 20 g VFA/L FW can 

e produced in the hydrolytic/ acidogenesis stage of conventional 

wo-step AD, while up to 25 g VFA/L FW was suggested by 

errero Garcia et al. (2018) during optimised DF. Multiple stud- 

es have emphasised the prosperous potential for using VFA recov- 

red from fermented FW as a sustainable alternative to conven- 

ional carbon sources for bioproduction of DHA from microalgae. 

he synthesis of valuable by-products like squalene can increase 

he worth of heterotrophic algae biomass ( Patel et al., 2020b ). 

halima et al., (2017) reviewed how VFA could be reused in a 

icroalgae fermentation process, and a later study also included 

he VFA separation from DF and their use for the bioproduction 

o high added-value DHA by C. cohnii ( Chalima et al., 2020 , 2019 ).

atel et al. (2021) and Fei et al. (2015) both studied the effects on 

atty acid accumulation when using VFA as primary carbon feed- 

tock in heterotrophic algae cultivation. They found that a simi- 

ar fatty acid accumulation could be obtained with VFA as when 

sing traditional glucose, but the effect was largely affected by 

he amount and ratio of VFAs. Combining bioconversion of VFA 

o DHA through microalgae in combination with energy genera- 

ion from FW, can infer increased sustainability within aquacul- 

ure ( Oliver et al., 2020 ) and energy production ( Chalima et al., 
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019 ; Paritosh et al., 2017 ). This approach also enables a novel so-

ution for FW resource recovery, which has been widely recognised 

s an important component in sustainable development within 

he food system ( Brancoli et al., 2020 ; Scherhaufer et al., 2020 ;

eigiserova et al., 2020 ). As suggested by Woodhouse et al. (2018) , 

rimary production (including aquaculture and fishing) are gener- 

lly main environmental hotspots in the food supply chain. Using a 

ore circular flow of resources might reduce the burden from pri- 

ary production, especially when considering fish oil substitutes. 

urrent research suggest that microalgae will likely play an im- 

ortant role in maintained global food security by bridging a fu- 

ure gap between supply and demand for DHA ( Jovanovic et al., 

021 ; Russo et al., 2021 ; Tocher et al., 2019 ). To ensure global food

ecurity and maintain natures ability to provide resources in the 

uture, substantial efforts are required to develop new production 

ethods with lower environmental impact that also comply with 

he global Agenda 2030 and sustainable development goals (SDG) 

 Herrero et al., 2020 ; United Nations, 2020 , 2019). 

Identifying and understanding the environmental implications 

f new technologies is thus crucial to ensure that suggested 

ew solutions also support future sustainability. Multiple stud- 

es have assessed the environmental impact of algae oil intended 

or the food supply chain ( Beal et al., 2018 ; Porcelli et al., 2020 ;

chade et al., 2020 ). To date, previous LCA studies have mostly 

ocused on phototrophic algae processes ( Barr and Landis, 2018 ; 

eller et al., 2017 ), where required inputs and outputs differ sub- 

tantially from those in heterotrophic cultivation ( Smetana et al., 

017 ). Similarly, assessments of algae oil used for biofuel produc- 

ion is more common than algae oil intended for food or feed 

 Hosseinzadeh-Bandbafha et al., 2020 ; Shi et al., 2019 ). However, 

ösch et al. (2019) suggests that the inputs required for algae cul- 

ivation and harvest are often similar regardless of how the end 

roduct is used. In a recent study, Deprá et al. (2020) assessed en- 

ironmental impacts with respect to commercial microalgae-based 

roducts, including DHA produced from C. cohnii . They concluded 

hat microalgae as a source for DHA owns a high sustainable po- 

ential. Although commercialized in recent years, to our knowl- 

dge, no LCA study has yet assessed environmental impact of 

arge-scale heterotrophic algae oil production intended to substi- 

ute fish oil. 

Some of the most frequently included impact categories for 

eafood LCA are global warming, acidification and eutrophica- 

ion ( Ruiz-Salmón et al., 2021 ). Scherer et al. (2020) further sug- 

est to also include land and sea use impact when address- 

ng food security and biodiversity conservation, an aspect that 

longside removal of fish stocks also has been highlighted by 

anglois et al. (2015) and Hélias et al. (2018) . Climate change, nu- 

rient pollution, change in habitat, overexploitation and invasive 

pecies are so-called drivers of biodiversity loss that provide a 

easurable link between human actions and ecosystem damage 

 Watson et al., 2005 ). Even though frequently identified as espe- 

ially important for LCA with a marine food focus, few previous 

tudies have accounted for the impacts related to biotic resource 

se due to its complexity ( Marques et al., 2021 ; Scherer et al.,

020 ; Winter et al., 2017 ). Following the cause-effect-chain in LCA, 

mpact at midpoint infer damage to an area of protection at end- 

oint level. Impact at midpoint level causing loss of biodiversity 

nfer damage to ecosystem quality, which in turn lead to Ecosys- 

em damage. Biotic impact indicators are still under development 

nd are therefore currently not included in commercial LCA meth- 

ds ( Crenna et al., 2020 ; Marques et al., 2021 ; Ruiz-Salmón et al.,

021 ). As suggested by Asselin et al. (2020) , standardised LCA 

ethods currently only cover three of the five identified drivers 

or biodiversity loss, while overexploitation and invasive species 

till need to be further developed. However, climate change, pol- 

ution and change in habitat at midpoint level can all be linked 
2004 
o ecosystem quality and expressed in a common endpoint unit 

 Crenna et al., 2020 ; Huijbregts et al., 2016 ; Woods et al., 2016 ).

oreover, there is an urgent need improved life cycle inventory 

LCI) data to fully evaluate the sustainability of microalgae culti- 

ation ( Avadí et al., 2020 ; Lopes da Silva et al., 2019 ). 

. Material and method 

.1. Goal and scope 

The LCA method ( ISO, 20 06a , 20 06 b) was used to assess en-

ironmental impact of fish oil substitute produced by microalgae 

sing VFA derived from food waste as primary feedstock. By using 

n attributional (ALCA) approach, the aim was to identify resource- 

emanding flows and provide results via life cycle impact assess- 

ent (LCIA) that could support innovations within future DHA pro- 

uction and food waste management. The technology for large 

cale algae oil production using VFA from dark fermentation of 

ood waste is currently in the development phase. To assess the 

ystem, laboratory and full-scale input and output data from pre- 

ious studies was compiled and used to model a large scale DHA 

roduction. A physical functional unit (1 ton DHA) was selected 

o also reflect the nutritional function of the product, as proposed 

y McAuliffe et al. (2020) . Data from Ecoinvent 3.5 were used for 

he background system (see Table A.1 in Appendix A ), while sub- 

titution via system expansion was used in the foreground system 

o allocate the environmental burden between the two main by- 

roducts electricity and heat. System expansion was favoured to 

void economic or mass allocation, as suggested by the ISO 14040 

series ( ISO, 2006a ). 

.2. Description of scenarios 

The studied systems were modelled as two parallel scenarios 

o assess large-scale production of DHA: a conceptual Algae sce- 

ario , where DHA was produced from C. cohnii microalgae using 

FA from DF with food waste, and a conventional Fish scenario , 

here DHA was derived from Peruvian anchovy ( Fig. 1 ). Included 

n the system boundary were production and end-of - life for re- 

uired inputs, as well as construction of buildings and energy used 

or processing. Construction and maintenance of additional infras- 

ructure were outside the scope of this study. Transport was in- 

luded for inputs and outputs, while intermediate transport at the 

roduction site was excluded. NTMCalc Basic 4.0 was used to esti- 

ate transport distances for inputs, where a freight lorry of Euro 

lass VI was assumed for most road transport. 

The site location for algae oil and energy production was as- 

umed to be Berlin, Germany, while fish oil production was as- 

umed to be located in Lima, Peru. Site-specific data were primar- 

ly used, so the results are site dependent. The available food waste 

as considered a free resource and thereby did not contribute to 

he environmental impact, since production belongs to the preced- 

ng food system. The digestate was assumed to have a negligible 

arket value in comparison with biogas and biohydrogen, there- 

ore only transport from the AD plant was included, and not the 

nd-of-life for digestate. Since the energy source strongly affects 

CA results, a customised dataset for electricity and heat input and 

utput was created using data from 2020 for the German electric- 

ty and heat production mix (see Table B.1 in Appendix B ). Heat 

roduced in Energy DF and Energy AD was assumed to be re-used 

uring algae oil production, DF and AD. Avoided electricity due to 

iogas production was assumed to replace equal parts of the fossil 

nergy sources lignite, natural gas and coal, while residual avoided 

eat was assumed to replace natural gas. 
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Fig. 1. Illustration of the model set-up for (left) the Algae scenario and (right) the Fish scenario . The dashed line represents the system boundary and the dotted line illustrates 

by-products included via system expansion. AD: anaerobic digestion, DF: dark fermentation, VFA: volatile fatty acids. 

Fig. 2. Illustration of the model set-up for the Algae scenario . The dashed line represents the system boundary and the dotted line illustrates electricity and heat produced 

from biohydrogen and biogas, included via system expansion. Additional electricity, heat and transports are not included in this illustration. 
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a considerable fraction of water and residues are re-usable. There- 
.2.1. Algae scenario 

The Algae scenario ( Fig. 2 ) process comprised production of al- 

ae oil via heterotrophic cultivation of C. cohnii , using VFA ex- 

racted from DF as the primary feedstock, and Energy DF that repre- 

ent energy production using the remaining food waste and algae 

iomass to produce biohydrogen and biogas. 

C. cohnii are grown in a pre-cultivation process that requires an 

lgae biomass stock, nutrient substrate, water and electricity as in- 

uts. The substrate required in heterotrophic cultivation of C. cohnii 

ainly consist of a carbon source, a nitrogen source for the first 

roduction phase, and salts ( Mendes et al., 2009 ). The production 

rocess is usually divided into an initial phase of cell growth and a 

ubsequent phase of nitrogen limitation, during which DHA is ac- 

umulated inside the cell. Adding VFA can increase the DHA yield, 

specially if fed to the second cultivation phase. 4.2 ton of VFA 

as required to produce 1 ton of DHA during cultivation, which 

as considered the limiting factor in this study. Input data for pre- 
2005 
ultivation were assumed to be similar as heterotrophic cultivation 

n closed fermenters suggested by Smetana et al. (2017) , with a 

shing dataset representing wild C. cohnii biomass from the ocean. 

ll nutrient inputs were assumed to be transported by road to the 

ioreactor facility. 

The substrate input for the pre-culture, including yeast and salt, 

o heterotrophic cultivation was used according to data from previ- 

us research ( Deprá et al., 2020 ; Patel et al., 2021 ; Smetana et al.,

017 ). Less than 1% of initial C. cohnii biomass was used in the 

re-culture, which after harvest and dewatering was assumed to 

ake up 20% of the algae culture (200g/L DCW), which is consid- 

red the upper limit of reachable values. Since the carbon feed- 

tock was primarily used for biomass growth, the amount of CO 2 

mitted from heterotrophic algae cultivation was accounted for by 

ssuming 0.1 kg CO 2 emissions to air per kg algae ( Lopes da Silva

t al., 2019 ). As stated by Keller et al. (2017) and Beal et al. (2018) ,
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Table 1 

Process data for algae oil production, expressed per 1 ton DHA. 

Amount Unit Ecoinvent dataset E 

Pre-cultivation 

Input Wild C. cohnii 3.8 × 10 −1 kg 1 

N fertiliser 7.5 × 10 −2 kg 2 

P fertiliser 3.8 × 10 −2 kg 3 

Glucose 1.3 × 10 1 kg 4 

Water 3.8 × 10 −1 m 

3 5 

Natural gas 7.5 × 10 −2 kWh 6 

Steam 1.9 × 10 1 kg 7 

Electricity 6.8 × 10 0 kWh (1) 

Processing facility 4.7 × 10 −7 unit 8 

Transport (substrate) 4.0 × 10 −1 tkm 9 

Output C. cohnii 3.8 × 10 1 kg 

CO 2 to air 3.8 × 10 0 kg 10 

Pre-culture 

Input C. cohnii 3.8 × 10 −2 ton 

VFA from DF 4.2 × 10 0 ton 

Yeast 7.5 × 10 −2 ton 11 

Reef salt 9.4 × 10 −1 ton 12 

Molasses 3.4 × 10 −1 ton 13 

Water 2.4 × 10 1 m 

3 5 

Processing facility 9.3 × 10 −4 unit 8 

Transport (substrate) 5.6 × 10 3 tkm 14 

Output Algae culture 5.4 × 10 1 ton 

Cultivation & Harvest 

Input Algae culture 5.4 × 10 1 ton 

Electricity 6.6 × 10 0 MWh (1) 

Heat (re-used) 8.2 × 10 −1 MWh 

Processing facility 9.3 × 10 −4 unit 8 

Output CO 2 to air 1.1 × 10 0 ton 10 

Algae suspension 1.1 × 10 1 ton 

Wastewater 1.8 × 10 1 m 

3 15 

Oil separation 

Input Algae suspension 1.1 × 10 1 ton 

Electricity 5.5 × 10 0 MWh (1) 

Heat (re-used) 9.6 × 10 −3 MWh 

Processing facility 2.2 × 10 −6 unit 16 

Output Algae oil 2.5 × 10 0 ton 

Algae solids 8.0 × 10 0 ton 

Transport to Norway 

Input Transport (algae oil) 4.7 × 10 3 tkm 14 

Output DHA (algae oil) 1.0 × 10 0 ton 

E Ecoinvent datasets used in SimaPro, see Appendix A and B . 
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ore, a 50% recirculation of wastewater from cultivation and harvest 

as assumed in this study. Inputs for electricity and heat used for 

ultivation, harvest, dewatering and oil separation were based on 

revious studies ( Hosseinzadeh-Bandbafha et al., 2020 ; Shi et al., 

019 ; Smetana et al., 2017 ). The oil separation process involves 

ell disruption using an oil mill, while additional electricity is used 

or mechanical pressing and heat was used for pre-treatment, ex- 

raction and drying of biomass ( Passell et al., 2013 ). Mechanical 

ressing was favoured over chemical means to extract the DHA- 

ontaining oleaginous fraction from the biomass since the algae 

il was intended for food ( Lopes da Silva et al., 2019 ). To calculate

he amount of algae required per functional unit, a 40% DHA con- 

ent in algae oil were assumed alongside a biomass-specific DHA 

ontent of 10% in C. cohnii ( Hillig et al., 2014 ; Swaaf et al., 2001 ).

he lipid content in C. cohnii was set to a maximum of 24% (w/w),

s suggested in previous studies ( John, 2009 ; Mendes et al., 2009 ;

assell et al., 2013 ). The remaining solid algae biomass was re-used 

n AD to produce biogas. All inputs and outputs are presented in 

able 1 . 

Energy DF represents the energy production process via DF with 

FA extraction and anaerobic digestion ( Fig. 2 ), during which bio- 

as with 60% CH 4 content and biohydrogen was assumed to be 

roduced. The amount of extractable VFA from DF was set to 

8 g VFA/kg FW, which is similar to the AD output suggested 

y Paritosh et al. (2017) . Assuming 97% biodegradable content in 
2006 
ollected food waste, 240 ton were needed to produce 4.2 ton 

FA. The 3% of non-biodegradable material was sorted out at pre- 

reatment and assumed to be equal parts of plastic that was re- 

sed in municipal waste incineration and aluminium for recycling. 

he values applied for total solids (TS) and volatile solids (VS) 

n pre-treated food waste were 26% TS and 24% VS, as suggested 

y Yi et al. (2014) and Slorach et al. (2019) . Electricity require- 

ent in pre-treatment was set to 150 kWh/ton TS ( Carlsson, 2015 ; 

öschl et al., 2010 ). Construction of the waste preparation facility 

as included. The total amount of electricity and heat required to 

roduce biogas was similar to that in Opatokun et al. (2017) , but it

as assumed that 90% of total energy consumption was used dur- 

ng DF (mixing and pumping) and the remaining 10% in AD. Biohy- 

rogen production potential of 45 m 

3 /t VS during DF was assumed, 

hich is an average value based on previous studies ( Hou et al., 

020 ; Pu et al., 2019 ; Wainaina et al., 2020 ). The processing unit

sed for DF and AD was assumed to be an AD plant with methane 

ecovery. Data from a vegetable oil refinery were used to assess 

he VFA separation process, where 0.21 kWh electricity per kg ex- 

racted VFA was assumed ( Hosseinzadeh-Bandbafha et al., 2020 ). 

olids from algae production were re-used in AD and assumed to 

ave equivalent CH 4 potential to the food waste effluent from DF, 

lthough the true value might be higher. The energy production 

rocess included energy and processing facilities for 40% electricity 

nd 50% heat ( Hakawati et al., 2017 ) from biogas, when assuming 



L. Bartek, I. Strid, K. Henryson et al. Sustainable Production and Consumption 27 (2021) 2002–2021 

Table 2 

Process data for Energy DF production, expressed per 1 ton DHA. 

Amount Unit Ecoinvent dataset E 

Pre-treatment 

Input Food waste (FW) 2.4 × 10 2 ton 

Electricity 9.4 × 10 0 MWh (1) 

Waste prep. facility 4.8 × 10 −4 unit 17 

Transport (FW) 7.2 × 10 3 tkm 18 

Transport (reject) 2.2 × 10 2 tkm 14 

Output Pre-treated FW 2.3 × 10 2 ton 

Metal reject 3.6 × 10 0 ton 19 

Plastic reject 3.6 × 10 0 ton 20 

Dark fermentation 

Input Pre-treated FW 2.3 × 10 2 ton 

Water 1.2 × 10 2 m 

3 5 

Heat (re-used) 6.6 × 10 0 MWh 

Electricity 2.1 × 10 3 MWh (1) 

Processing facility 1.9 × 10 −3 unit 21 

Output Slurry from DF 4.7 × 10 2 ton 

Hydrogen (H 2 ) 2.5 × 10 3 m 

3 

VFA extraction 

Input Slurry from DF 4.7 × 10 2 ton 

Electricity 8.8 × 10 −1 MWh (1) 

Oil processing facility 4.6 × 10 −7 unit 22 

Output VFA 4.2 × 10 0 ton 

Effluent from DF 3.4 × 10 2 ton 

Anaerobic digestion 

Input Effluent from DF 3.4 × 10 2 ton 

Algae solids 8.0 × 10 0 ton 

Heat (re-used) 3.5 × 10 0 MWh 

Electricity 2.4 × 10 −1 MWh (1) 

Processing facility 1.0 × 10 −2 unit 21 

Transport (algae solids) 8.0 × 10 1 tkm 9 

Transport (digestate) 6.1 × 10 3 tkm 14 

Output Methane (CH 4 ) 2.2 × 10 4 m 

3 

Digestate 3.1 × 10 2 ton 

Energy production 

Input Hydrogen (H 2 ) 2.5 × 10 3 m 

3 

Methane (CH 4 ) 2.2 × 10 4 m 

3 

CHP facility 1.0 × 10 2 unit 23 

Output Electricity 1.0 × 10 2 MWh 

Heat 1.2 × 10 2 MWh 

Heat (internal use) 1.1 × 10 1 MWh 

System expansion 

Avoided electricity 1.0 × 10 2 MWh (2) 

Avoided heat 1.2 × 10 2 MWh 24 

E Ecoinvent datasets used in SimaPro, see Appendix A and B . 
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 90% overall efficiency rate in combined heat and power (CHP) 

roduction. The input was calculated based on the amount of elec- 

ricity generated. Standard values for the energy content in H 2 

nd CH 4 were used (2.99 and 9.97 kWh/m 

3 , respectively). Diges- 

ate production was calculated assuming 50% water re-circulation 

n AD. The main output was 1 ton DHA from algae oil, while the 

y-products electricity and heat from biohydrogen and biogas were 

ncluded via system expansion as avoided energy. Inputs and out- 

uts are presented in Table 2 . 

.2.2. Fish scenario 

The process for the Fish scenario ( Fig. 3 ) comprised production 

f fish oil in reduction fisheries using wild Peruvian anchovy, and 

nergy AD describing energy production using the same amount of 

ood waste as was available in the Algae scenario to produce bio- 

as in Germany. A 10% DHA content was assumed for Peruvian an- 

hovy oil ( Sissener, 2018 ). The amount of wild anchovy required to 

roduce 10 ton fish oil was based on data in Silva et al. (2018) .

ransport from Lima to Norway via the harbour in Venezuela was 

ncluded. Inputs and outputs are presented in Table 3 . 

Production of Energy AD assumed the same inputs and process- 

ng calculations as described for Energy DF , but without DF, VFA ex- 

raction and addition of algae solids. Table 4 illustrate the process 

ata used for Energy production. The main output from this sce- 
AD 

2007 
ario was 1 ton DHA from fish oil, while the by-product biogas 

subsequently used for electricity and heat) was included via sys- 

em expansion. 

.3. Life cycle impact assessment 

Life cycle impact assessment translates emissions and resource 

se to environmental impact at either midpoint or endpoint level 

or selected impact categories. The midpoint and endpoint ap- 

roaches are complementary, but the midpoint approach has lower 

odelling uncertainty and a stronger relation to the environmen- 

al impact, while the endpoint approach provides a better indi- 

ation of the environmental relevance ( Huijbregts et al., 2016 ). In 

eneral, characterisation at midpoint has lower uncertainty and a 

tronger relation to the elementary flows than endpoint character- 

zation, but characterization at endpoint can provide a better in- 

ication of the environmental relevance of the flows. The ReCiPe 

016 method includes 18 midpoint categories that can be directly 

ranslated into endpoint impact, using a constant characterisation 

actor (CF) for each impact category. This is done by assuming that 

ll stressors are identical after midpoint impact. The endpoint in- 

icators can be aggregated into a common unit to describe the im- 

act for an area of protection, e.g., Ecosystem damage that con- 

ists of 13 endpoint indicators expressed in the unit species per 
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Fig. 3. Illustration of the model set-up for the Fish scenario . The dashed line represents the system boundary and the dotted line illustrates the electricity and heat produced 

from biogas, included via system expansion. Additional electricity, heat and transport are not included. AD: anaerobic digestion, DHA: docosahexaenoic acid. 

Table 3 

Process data for fish oil production, expressed per 1 ton DHA. 

Amount Unit Ecoinvent dataset E 

Fishing 

Input Wild anchovy 2.2 × 10 2 ton 

Fishing process 2.1 × 10 2 ton 25 

Output Landed anchovy 2.1 × 10 2 ton 

Discarded fish 8.7 × 10 0 ton 

Reduction fishery 

Input Landed anchovy 2.1 × 10 2 ton 

Processing facility 1.0 × 10 1 ton 26 

Output Fish oil 1.0 × 10 1 ton 

Transport to Norway 

Input 

Transport (fish oil) 4.3 × 10 4 tkm 27 

8.1 × 10 4 tkm 28 

2.3 × 10 3 tkm 14 

Output DHA (fish oil) 1.0 × 10 0 ton 

E Ecoinvent datasets used in SimaPro, see Appendix A . 

Table 4 

Process data for Energy AD production, expressed per 1 ton DHA. 

Amount Unit Ecoinvent dataset E 

Pre-treatment 

Input Food waste (FW) 2.4 × 10 2 ton 

Electricity 9.4 × 10 0 MWh (1) 

Waste prep. facility 4.8 × 10 −4 unit 17 

Transport (FW) 7.2 × 10 3 tkm 18 

Transport (reject) 2.2 × 10 2 tkm 14 

Output Pre-treated FW 2.3 × 10 2 ton 

Metal reject 3.6 × 10 0 ton 19 

Plastic reject 3.6 × 10 0 ton 20 

Anaerobic digestion 

Input Pre-treated FW 2.3 × 10 2 ton 

Water 1.2 × 10 2 m 

3 5 

Heat (re-used) 3.7 × 10 1 MWh 

Electricity 2.3 × 10 0 MWh (1) 

Processing facility 1.1 × 10 −2 unit 21 

Transport (digestate) 6.2 × 10 3 tkm 14 

Output Methane (CH 4 ) 2.3 × 10 4 m 

3 

Digestate 3.1 × 10 2 ton 

Energy production 

Input Methane (CH 4 ) 2.3 × 10 4 m 

3 

CHP processing facility 1.0 × 10 2 unit 23 

Output Electricity 1.0 × 10 2 MWh 

Heat 9.0 × 10 1 MWh 

Heat (internal use) 3.7 × 10 1 MWh 

System expansion 

Avoided electricity 1.0 × 10 2 MWh (2) 

Avoided heat 9.0 × 10 1 MWh 24 

E Ecoinvent datasets used in SimaPro, see Appendix A and B . 

2008 
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ear (species.yr). This unit can be interpreted as the potential dis- 

ppeared fraction of species each year. Species in this method in- 

lude plants and microorganisms that support higher terrestrial 

nd aquatic tropic levels of the food chain ( Crenna et al., 2020 ).

oss of these species will affect the food chain, but the direct 

isappearance of higher organisms or the impact on endangered 

pecies are not included in the ReCiPe method. As concluded in a 

eview by Ruiz-Salmón et al. (2021) , the most frequently assessed 

mpact categories for seafood at midpoint are global warming, 

cidification and eutrophication, while Scherer et al. (2020) also 

mphasise the importance of including land use and sea use im- 

act when addressing food security and biodiversity conservation. 

hese indicators (climate change, pollution and change in habitat) 

as also been identified as key contributors to biodiversity loss and 

amage to ecosystem quality at endpoint level ( Díaz et al., 2019 ; 

arques et al., 2021 ; Scherer et al., 2020 ). Therefore, this study as-

esses global warming, terrestrial acidification, freshwater eutroph- 

cation and land use at midpoint level. To enable a more holistic 

ssessment, which is especially important for systems dependent 

n inputs from the biosphere, this study also consider damage to 

cosystem quality as an complementary assessment at endpoint 

evel ( Huijbregts et al., 2016 ). SimaPro 9 was used to model the

ystem and ReCiPe 2016 was used to assess impact at midpoint 

nd endpoint, which ensured compatibility with established LCIA 

ethods. 

.4. Sensitivity analysis 

Four sensitivity analyses were performed to identify the influ- 

nce of uncertainties on the results, focusing on future energy de- 

elopment, optimised VFA production, increased energy demand 

nd biotic resources. By changing one parameter at a time, the un- 

ertainty related to data and assumption could be quantified. The 

st sensitivity analysis reflected the estimated future energy de- 

elopment, aiming to reduce the dependency on fossil fuels and 

each the long-term goal of 100% renewable energy ( Bosell et al., 

017 ). Renewables including wind and solar power are projected to 

ominate future power generation ( Newell et al., 2020 ). If electric- 

ty and heat produced from biomass primarily replaced renewable 

nergy, some benefits attributed to biogas might shift. Therefore, 

uture energy development was simulated by substituting the en- 

rgy included via system expansion with a potential future German 

nergy mix ( Table B.1 in Appendix B ). According to the United Na-

ions (2019) , an optimised production process can promote sus- 

ainable use of resources and enhance energy efficiency. The sec- 

nd sensitivity analysis was based on the VFA efficiency assump- 

ions during DF of food waste. Previous research suggests that DF 

an be optimised to produce up to 25 g VFA/L household food 

aste, equalling about 5% VFA per unit food waste ( Herrero Gar- 

ia et al., 2018 ; Strazzera et al., 2018 ). Optimised VFA production 

as simulated by recalculating input and output data in Energy DF 

ssuming that 5 g VFA/kg FW could be extracted. The increased ef- 

ciency meant that 84 ton pre-treated food waste was required to 

roduce 4.2 ton VFA, which was also accounted for in Energy AD . 

Another important aspect to consider is the energy inputs in 

he Algae scenario , especially for algae oil production. This tech- 

ique is still under development, thus making assumptions regard- 

ng the actual energy demand in a large-scale production uncer- 

ain. To quantify this uncertainty, all electricity and heat inputs in 

able 1 , alongside electricity required for VFA separation in Table 2 , 

as increased with 20% to simulate a more energy intensive algae 

rocess. The final sensitivity analysis considered the uncertainty of 

iotic resource depletion in LCA. One aspect of the biodiversity im- 

act is biomass removal from aquatic ecosystems, which affects 

cosystems both in terms of resource impact due to the altered 

tock level of the species and impacts on life support functions . In a 
2009 
tudy on sea use impact, Langlois et al. (2015) developed CF for im- 

act on life support functions considering the amount of removed 

iomass of a certain species. A life support function scenario was 

imulated using the suggested CF for life support function, where 

he mass of wild algae removed from ocean in Table 1 was multi- 

lied by 1.4 and the mass of wild anchovy removed from ocean in 

able 3 by 13.4. 

.5. Product LCA 

Scenario analysis is a valuable tool for evaluating commercial 

nd conceptual system set-ups, while also enabling comparison 

etween the scenarios. However, to increase the applicability of 

he assessed results outside the modelled scenarios, a product LCA 

erspective can be applied. Product LCA considers an impact re- 

ated to a specific product, which facilitates comparison with simi- 

ar products and in turn can increase the benchmarking properties 

f the result. The product LCA approach used in this study was 

onducted by subtracting the environmental impact for Energy AD 

n both scenarios. Thereby, only the net environmental impact for 

roducing VFA and algae oil instead of fish oil and energy was as- 

essed. The product LCA assessed the climate impact (kg CO 2 eq) 

er ton DHA and per kg oil, to enable comparison with similar 

ommercial products. In recent studies, the potential to replace 

HA in fish feed with DHA from different vegetable sources has 

een investigated. The climate impact of DHA from the Algae sce- 

ario and the Fish scenario can be compared with similar prod- 

cts, such as Canola or linseed oil. The assessed impact can then 

e evaluated in comparison with Canola oil and linseed oil, two 

egetable oils with high DHA potential that could be used to re- 

lace DHA in fish feed ( Bélanger-Lamonde et al., 2018 ; Petrie et al.,

020 ; Zhou et al., 2019 ). A 13% bioavailable DHA content was as- 

umed for Canola oil ( Petrie et al., 2020 ), while an ALA content 

f 56% was assumed for linseed oil ( Burns-Whitmore et al., 2019 ; 

arapanagiotidis et al., 2007 ). Assuming 1% conversion of ALA to 

HA in fish, the potential DHA in linseed oil was calculated to be 

.6%. A maximum climate impact for canola rapeseed oil was set to 

.5 kg CO 2 eq per L oil ( Röös, 2012 ). Assuming 0.75 kg CO 2 eq per

g linseed ( Nemecek et al., 2012 ) and 40% oil content, the max- 

mum climate impact for linseed oil was calculated to be 1.9 kg 

O 2 eq per kg oil. 

. Results 

.1. Environmental impact 

The results showed that for every ton DHA produced in the Al- 

ae scenario , 14 of 18 midpoint impacts assessed had lower envi- 

onmental impact compared to the Fish scenario , including global 

arming, terrestrial acidification, and land use (see Table C.1 in 

ppendix C ). As illustrated in Table 5 , both scenarios had negative 

alues for global warming and freshwater eutrophication, which 

eans that for every ton DHA produced, the environmental impact 

as mitigated. 

Inclusion of by-products via system expansion was the main 

eason for the mitigated environmental impact in both the Algae 

cenario ( Fig. 4 ) and the Fish scenario ( Fig. 5 ). For global warming

nd freshwater eutrophication, the highest environmental impact 

n both scenarios occurred during the pre-treatment of food waste, 

hile the most contributing process for terrestrial acidification and 

and use was energy production and anaerobic digestion, respec- 

ively. Algae oil processing caused only about 5% of the total global 

arming impact for the Algae scenario , 10% of land use impact, 4% 

f terrestrial acidification and 6% of freshwater eutrophication im- 

act. The fish oil process caused about 22% of the global warming 

nd land use impact, while about 12% of terrestrial acidification 
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Table 5 

Environmental impact per 1 ton DHA. 

Global warming kg CO 2 eq Terrestrial acidification kg SO 2 eq Freshwater eutrophication kg Peq Land use m 

2 a crop eq 

Algae scenario -5.2 × 10 4 3.5 × 10 3 -9.4 × 10 1 2.7 × 10 3 

Fish scenario -1.5 × 10 4 3.9 × 10 3 -9.7 × 10 1 3.2 × 10 3 

Fig. 4. Environmental impact of the Algae scenario , illustrating the percentage of total impact for each production process 

Fig. 5. Environmental impact of the Fish scenario , illustraing the percentage of total impact for each production process. 
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nd 5% of freshwater eutrophication originated from it. The fishing 

rocess contributed less than 1% of the total land use impact in 

he Fish scenario ( Fig. 5 ). 

.2. Ecosystem damage 

The results showed a lower impact for the Algae scenario than 

he Fish scenario for nine of 12 endpoint categories assessed, in- 

luding global warming, terrestrial acidification and land use (see 

able C.2 in Appendix C ). Total Ecosystem damage per ton DHA 

roduced in the Algae scenario was 5.5 × 10 −4 species.yr, the Fish 

cenario inferred 8.1 × 10 −4 species.yr. The results also showed 

hat algae oil and fish oil caused Ecosystem damage of 5.1 × 10 −5 

nd 3.1 × 10 −4 species.yr, respectively, while the value for both 

nergy DF and Energy AD was 5.0 × 10 −4 species.yr. Similar to the 

esults at midpoint level, algae oil processing caused about 10% 

f the Ecosystem damage, while fish oil process caused about 18% 

 Fig. 6 ). This suggests that inclusion of by-products had a consider- 

ble effect on the total impact on ecosystem quality and effect on 

iodiversity. As the results illustrated in Fig. 7 illustrate, the largest 

mpact at endpoint level for both scenarios was terrestrial acidifi- 

ation, global warming, freshwater eutrophication and land use. A 

egative value for Ecosystem damage indicates mitigation of dis- 

ppeared species per year, whereas a higher positive value can be 

nterpreted as less favourable for biodiversity. 
2010 
.3. Sensitivity analysis and product LCA 

The results from the sensitivity analysis at midpoint level 

howed that the Algae scenario inferred lower terrestrial acidifica- 

ion impact in comparison to Fish scenario even when future en- 

rgy development, optimised VFA production, increased energy de- 

and and impact on life support function was simulated ( Table 6 ). 

he Algae scenario inferred lower global warming potential for fu- 

ure energy and life support function, but higher global warming 

otential than the Fish scenario for optimised VFA and increased 

nergy. Land use at midpoint was also higher for Algae scenario 

hen life support function was simulated. 

Even though the global warming potential and land use impact 

espectively increased for the Algae scenario when increased en- 

rgy and life support function was simulated, the Fish scenario still 

nferred a higher damage to ecosystem quality for all sensitivity 

nalyses preformed ( Fig. 8 ). Ecosystem damage for the Algae and 

ish scenarios increased when future energy production was sim- 

lated and decreased when optimised VFA content was assumed. 

hen effects on biotic resources were included via life support 

unctions, the impact for the Fish scenario increased markedly, 

hile the Ecosystem damage for the Algae scenario remained sim- 

lar to that in the base case. 

The product LCA results showed that the climate impact per ton 

il was higher for algae oil than for Canola and linseed oil, but 

ower than for fish oil ( Table 7 ). Algae oil had the lowest impact
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Fig. 6. Ecosystem damage for the Algae scenario and Fish scenario , illustrating the percentage of total impact for each process. 

Fig. 7. Ecosystem damage in (left) the Algae scenario and (right) the Fish scenario, illustrating the contribution from each endpoint indicator. 

Table 6 

Sensitivity analysis result at midpoint level, expressed per 1 ton DHA. 

Algae scenario Global warming kg CO 2 eq Terrestrial acidification kg SO 2 eq Freshwater eutrophication kg Peq Land use m 

2 a crop eq 

Future energy 2.9 × 10 4 3.1 × 10 3 -2.0 × 10 −5 -6.3 × 10 −5 

Optimised VFA -1.0 × 10 4 1.3 × 10 3 -3.0 × 10 1 1.4 × 10 3 

Increased energy 3.0 × 10 4 3.1 × 10 3 -9.8 × 10 1 1.2 × 10 3 

Life support func. -5.2 × 10 4 3.5 × 10 3 -9.4 × 10 1 2.7 × 10 3 

Fish scenario Global warming kg CO 2 eq Terrestrial acidification kg SO 2 eq Freshwater eutrophication kg Peq Land use m 

2 a crop eq 

Future energy 6.7 × 10 4 3.6 × 10 3 -2.1 × 10 −5 -4.8 × 10 −5 

Optimised VFA -1.5 × 10 4 1.7 × 10 3 -3.1 × 10 1 1.8 × 10 3 

Increased energy -1.5 × 10 4 3.9 × 10 3 -9.7 × 10 1 3.2 × 10 3 

Life support func. 2.3 × 10 5 7.2 × 10 3 -7.2 × 10 1 1.8 × 10 3 

Fig. 8. Results of sensitivity analysis for Ecosystem damage with respect to the Algae scenario and the Fish scenario. 

2011 
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Table 7 

Climate impact (product perspective), expressed per ton 

DHA and per kg oil. 

ton CO 2 eq/ton DHA kg CO 2 eq/kg oil 

Algae oil 1 7.6 3.0 

Fish oil 1 44 4.4 

Canola oil 2 23 2.3 

Linseed oil 2 330 1.9 

1 Bioavailable DHA 
2 ALA converted to DHA 
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er ton of DHA produced, while linseed oil and fish oil had the 

ighest impact in this regard. 

. Discussion 

.1. Environmental impact of DHA from algae oil and fish oil 

One of the most important findings in this study was that 

he environmental impact per ton DHA produced was lower in 

he Algae scenario than in the Fish scenario with respect to global 

arming, terrestrial acidification, land use and Ecosystem damage 

 Table 5 and Fig. 7 ). In addition, 20 MWh more electricity and

eat was produced in the Algae scenario . This, together with over- 

ll lower emissions from algae oil production compared with fish 

il production, was the main reason for the lower environmental 

mpact. Algae oil production was also less dependent on fossil fu- 

ls and electricity, which could explain the lower impact for global 

arming, terrestrial acidification and eutrophication. Use of a con- 

tant CF from midpoint to endpoint likely explains why the climate 

mpact, terrestrial acidification and freshwater eutrophication also 

ontributed most to the impact at endpoint level. As illustrated in 

able 5 , the impact on water consumption and terrestrial ozone 

ormation was more than 5-fold and 20-fold higher, respectively, in 

he Fish scenario . However, since water consumption and terrestrial 

zone formation made a low contribution to the endpoint level, 

heir impact was low when comparing products. The climate im- 

act for fish oil was about twice that reported by Silva et al. (2018) ,

wing to a higher contribution from fishing and reduction fishery 

rocessing in this study. The difference in climate impact might be 

xplained by different electricity inputs or the updated Ecoinvent 

atasets, where buildings and machinery are included, which were 

sed to assess impacts in this study. Moreover, most transport in 

his study was assumed to be of Euro class IV, which reduced the 

limate impact from transport. The dependency on fossil fuels used 

or fishing and reduction fishery processing has previously been 

dentified as a contributing factor for the environmental impact of 

sh oil ( Avadí and Fréon, 2013 ; Cashion et al., 2017 ; Pelletier and

yedmers, 2007 ). Therefore, the impact determined for fish oil can 

e considered consistent with previous findings. 

When evaluating the result from this study with previous re- 

earch it is important to emphasise that all LCA results are highly 

ependent on given assumptions and methodological choices. 

omparing numerical results should thus be done with this in 

ind, especially regarding impact for the Algae scenario since less 

ata and previous LCA research has covered this topic. However, 

ome previous studies have included similar processes as assessed 

n this study. In a study by Deprá et al. (2020) , the environmen- 

al impact of multiple algae species, including C. cohnii cultiva- 

ion using glucose as primary carbon feedstock, was assessed. They 

sed a similar method and process for algae cultivation and oil 

eparation as assumed in this study, while also including the im- 

act categories global warming, acidification potential, eutrophica- 

ion potential and land use. Their result showed an environmen- 

al impact of about 178 ton CO 2 eq, 0.9 ton SO 2 eq, 0.3 ton PO 4 eq

nd 900 m 

2 per ton DHA produced. If excluding the contribution 
2012 
rom avoided electricity and heat in the Algae scenario ( Table C.1 in 

ppendix C ), the values for global warming, acidification, eutroph- 

cation and land use correspond to 60 ton CO 2 eq, 3.6 ton SO 2 eq,

.02 ton PO 4 eq and 30 0 0 m 

2 per ton DHA. The main difference

etween the results presented by Deprá et al. (2020) and the re- 

ults in this study is primarily with respect to global warming and 

and use. The higher value for global warming is likely caused by 

he different inputs, such as glucose as primary carbon feedstock 

nd global average instead of the current German electricity mix, 

hile the higher land use is likely a consequence of inclusion of 

uildings in this study. Even though the numerical results are not 

erfectly comparable due to different assumptions, the method and 

verall results can be considered supportive of each other. 

Similarly, Schade et al. (2020) conducted a comparative LCA 

tudy on fatty acids and protein from microalgae and fish, also 

ncluding the same midpoint indicators as this study. Several al- 

ae species were studied for their potential to accumulate DHA 

nd EPA, including the algae Phaeodactylum tricornutum. By cal- 

ulating an average impact value from their published supplemen- 

ary material, result shows an impact of about 2.4 kg CO 2 eq, 7.2 g

O 2 eq, 8.8 g PO 4 eq and 0.17 m 

2 per kg dry algae biomass. If as-

uming a 4% DHA content in the dry biomass from Phaeodactylum 

ricornutum, the resulting midpoint impact with respect to climate 

mpact, acidification, eutrophication and land use was roughly 60 

on CO 2 eq, 0.18 ton SO 2 eq, 0.22 ton PO 4 eq and 4300 m 

2 per ton

HA respectively. The result suggested by Schade et al. (2020) are 

ery close to the environmental impact assessed at midpoint level 

n this study, when excluding the contribution from the avoided 

lectricity and heat in the Algae scenario , even though a different 

icroalgae species and thereby cultivation method was used. To 

ur knowledge, no previous study on algae cultivation has included 

ndpoint indicators for ecosystem quality. Therefore, a comparison 

ith previous studies was not possible even though this aspect is 

ighly requested. The results from this study can thus serve as a 

asis for future comparisons and enable an improved availability in 

he emerging field of industrial DHA and EPA production with mi- 

roalgae. By inclusion of biotic resources, this study also provides a 

asis for a more holistic future development analysis, where both 

idpoint and endpoint indications are included in the LCA assess- 

ent. 

.2. Environmental impact of energy production and product LCA 

Energy production, and the corresponding avoided environmen- 

al burden from using the biohydrogen and biogas produced to 

ubstitute the German electricity mix, had a considerably high in- 

uence on both midpoint and endpoint indicators for the Algae 

nd Fish scenario ( Figs. 4 –6 ). A strong influence of including by-

roducts was also identified in a study by Elginoz et al. (2020) , 

ho saw a similar trend when assessing innovative food waste 

anagement systems where VFA and methanol were produced. 

ur results suggested that energy processing was the main con- 

ributing factor to terrestrial acidification, while avoided use of 

ignite for electricity production was the main cause of miti- 

ated freshwater eutrophication, at both midpoint and endpoint 

evel. The main cause of terrestrial acidification during energy 

roduction was likely emissions of NOx, NH 3 or SO 2 to air 

 Huijbregts et al., 2016 ; Whiting and Azapagic, 2014 ), caused by 

he dataset used to describe CHP process of biogas. The avoided 

se of lignite as an electricity source likely mitigated freshwater 

utrophication by reducing phosphorus and nitrogen emissions to 

oil, air and water ( Wang et al., 2015 ). This is likely the cause for

he negative freshwater eutrophication ( Table 5 ). Even though the 

igh influence of terrestrial acidification and freshwater eutrophi- 

ation on the outcome was unexpected, the same dataset was used 
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n both Energy DF and Energy AD , and thereby the same uncertainty 

pplied to both scenarios. 

The results for product LCA, where only the net environmen- 

al burden of avoided energy was assigned to the Algae scenario , 

howed that algae oil had a lower climate impact per ton DHA pro- 

uced in comparison to fish oil, canola oil and linseed oil ( Table 7 ).

t is important to note, however, that both algae oil and fish oil 

ontain bioavailable DHA, while Canola and linseed oil require con- 

ersion of ALA to provide DHA. Conversion rate of ALA to DHA can 

ary greatly, so the actual DHA per ton oil for canola oil and lin-

eed oil shows a large range, meaning that direct comparisons with 

lgae oil and fish oil should be performed with caution. However, 

oth canola oil and algae oil have established potential to replace 

sh oil in fish feed ( Bélanger-Lamonde et al., 2018 ; Cottrell et al.,

020 ; Petrie et al., 2020 ). 

.3. Uncertainties 

According to Hetherington et al. (2014) , the parameter uncer- 

ainties are often higher for processes using emerging technolo- 

ies and early-stage LCAs, where production, inputs and outputs 

ave not yet been fully established. The Algae scenario can be con- 

idered an emerging technology, for which the accessibility of in- 

entory data was the main source of uncertainty. For instance, 

coinvent 3.5 contains data on fishing activities and Peruvian site 

ocations ( Avadí et al., 2020 ), but datasets for algae aquaculture, 

F and VFA separation are currently not available. Similar uncer- 

ainty was associated with the results for Ecosystem damage and 

otential loss of biodiversity, where the numerical results, espe- 

ially for the Fish scenario , were likely strongly underestimated. Al- 

hough, the removal of primary producers could cause damage to 

igher tropic levels, which should be considered in future assess- 

ents. Moreover, the LCI for Peruvian anchovy represents sustain- 

ble fishing, even though unsustainable fishing is an established 

roblem ( Fréon et al., 2017 ). If the anchovy used for fish oil were

ourced from unsustainable fishing, the Ecosystem damage for the 

ish scenario would be higher than reported in this study. A fi- 

al uncertainty aspect was the representation of species.yr in the 

eCiPe endpoint approach, where the same weight is assigned to 

ll species of plants and lower organisms, thus not accounting for 

ndangered or overexploited species. Due to the uncertainty, the 

mpact on biodiversity at endpoint level should primarily be used 

o identify hotspots for actions to reduce environmental burden. 

The results from the sensitivity analysis suggested that AD of 

ood waste to produce biogas for electricity and heat can be less 

avourable as a valorisation method including the material use in 

he future ( Fig. 8 ), since the energy can no longer replace fossil en-

rgy sources. This is an important finding for future developments 

ithin food waste management, especially since the method for 

e-use should be consistent with the most efficient option to op- 

imise resource recovery ( Teigiserova et al., 2020 ). Another impor- 

ant consideration is that the results show the impact primarily 

sing German energy mix and Euro IV road transport, which pro- 

ide a site-specific result and limited transport emissions. The de- 

reased environmental impact when less food waste was required 

o produce VFA was likely mainly due to the reduced amount of 

nergy and building required for processing. Based on previous re- 

earch ( Barr and Landis, 2018 ; Keller et al., 2017 ; Taelman et al.,

013 ), the Algae scenario could be improved by nutrient recycling 

e.g. recycled algae culture medium or re-using additional nutri- 

nts from VFA), by efficient energy use (e.g. using methane as fuel 

or transportation) or by upscaling the production process. In com- 

arison, the fishing and reduction fishery process has been op- 

imised and streamlined for decades, and therefore does not of- 

er the same development potential. Since algae cultivation can be 

ensitive to trace components, there is a considerable uncertainty 
2013 
elated to the inputs and outputs for this process. As the sensitiv- 

ty result for optimised VFA production and increased energy show 

 Table 6 ), the global warming potential increase for Algae scenario , 

hile the land use impact increase when life support function was 

ccounted for. The result indicates that depending on the required 

nergy input the result is uncertain. This highlights the importance 

f further research and development within algae cultivation for oil 

ccumulation to further increase the knowledge and data availabil- 

ty. 

The Fish scenario resulted in over 3-fold higher Ecosystem dam- 

ge in comparison with the base case when the life support func- 

ion was included. Since more biomass of Peruvian anchovy than 

ild-type C. cohnii was required per ton DHA and since anchovy 

ad a higher trophic level, the CF was higher for anchovy. Di- 

ect impact translation to species.yr is not yet possible using avail- 

ble LCIA methods, but this result provides a crucial indication of 

he magnitude of sensitivity related to Ecosystem damage and ef- 

ects on biodiversity within LCA. The impact of biotic resources 

ave been identified in previous studies ( Avadí and Fréon, 2013 ; 

inter et al., 2017 ; Woods et al., 2016 ), where the main conclusion 

as the importance of developing methods that include multiple 

spects of biotic resources in LCA. The results from the present 

tudy confirm this conclusion. Another important finding in this 

tudy was that even though the Algae scenario inferred higher im- 

act at midpoint for multiple sensitivity scenarios, the result for 

cosystem damage at endpoint level was consistently lower in 

omparison to the Fish scenario ( Fig. 8 ). Even though a higher un- 

ertainty is related to impact at endpoint level, alongside the rel- 

tive uncertainty related to impact on biotic resources in LCA, the 

esults provide an important indication of the environmental rele- 

ance which is vital for a more holistic assessment in the future. 

.4. Future outlook 

An important aspect of sustainable development is to ensure 

hat an increasing global population has access to nutritiously 

aluable food ( FAO, 2020 , 2019 ). Threats to food security due to in-

reased temperatures and changes in natural ecosystem functions 

re likely to emerge as tangible consequences of climate change 

nd loss of biodiversity. According to Avadí et al. (2020) and 

AO (2018) , the aquaculture sector will likely continue to grow, 

hile natural DHA synthesis by marine microalgae is estimated to 

ecrease due to global warming ( Colombo et al., 2020 ). Therefore, 

eveloping new production methods within the food supply chain, 

referably with increased resource recovery to reduce the environ- 

ental impact and damage to ecosystem quality, can be considered 

he most urgent global challenge of today. In the near future, it will 

lso become increasingly important to develop alternative ways to 

roduce DHA ( Beal et al., 2018 ; Cottrell et al., 2020 ; Russo et al.,

021 ). 

Algae oil production has the potential to expand and meet 

ultiple demands of the growing aquaculture sector, while 

lso lowering the burden on wild-caught fisheries and de- 

reasing the use of biotic resources ( Barr and Landis, 2018 ; 

hamkhar and Hicks, 2020 ) in comparison with traditional fish 

eed ( Taelman et al., 2013 ). Given the globality of the current sup- 

ly chain, using bioreactors for algae cultivation enables a local pri- 

ary production of DHA which likely will require a shorter trans- 

ort distance and opportunities for an increased degree of self- 

ufficiency. In a global context, this is especially relevant with re- 

pect to global food security and energy production. As suggested 

y Chalima et al. (2019) , the development of microalgae cultiva- 

ion processes for oil accumulation has so far been slow, primarily 

ue to the relatively high economic costs related to the emerging 

echnology for algae cultivation and harvest. At present, algae oil 

ould therefore likely result in higher economic costs than fish oil 
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 Sprague et al., 2017 ; Yarnold et al., 2019 ), since it requires further

evelopment to be implemented in large-scale production. How- 

ver, since sustainable development requires a shift from a linear 

o a circular bioeconomy, utilising available resources from other 

roduction systems will become increasingly important to meet 

he needs of future generations. DHA, as produced in the Algae sce- 

ario , can bridge a future gap between supply and demand, while 

hort-chain carboxylic acids produced alongside biohydrogen and 

iogas could be integrated into existing infrastructure for com- 

on food waste valorisation methods quite rapidly. To promote 

he evolution of future technologies with lower environmental im- 

act that also require fewer natural resources to produce products 

ith maintained quality and nutrient composition, companies and 

olicy makers must overcome the hurdle of uncertainty related to 

ew innovations. This is also concluded by Deprá et al. (2020) , who 

lso stress the importance of abandon current technology to enable 

 transition to more sustainable solutions. Previous studies indicate 

hat promoting circular resource use will become increasingly im- 

ortant in the future ( Jovanovic et al., 2021 ; Oliver et al., 2020 ;

usso et al., 2021 ). One could therefore argue that fish oil in fish

eed should be replaced with algae oil. Important to consider how- 

ver, is that alternative production methods should be carefully as- 

essed to prevent fish oil being replaced with another potentially 

nsustainable DHA source. The results in this study indicate that 

lgae are a more sustainable source of DHA than fish, but other 

ources of DHA should also be evaluated, for instance single cell 

ils derived from yeast or genetically modified vegetable sources. 

his is especially important given the uncertainty related to LCA 

or technologies and solutions that are still under development. 

Given that quantities required in the Algae scenario are 1:1 scal- 

ble, only about 2.7% of the globally available food waste gener- 

ted at households, retail or service sector is required to produce 

nough VFA via DF to substitute the yearly demand of about 100 

 0 0 tons of DHA from fish oil in aquafeed. Even though enough

ood waste is already available, it is important to consider poten- 

ial burden shifts when replacing fish oil with algae oil, such as an 

ncreased eutrophication potential ( Table 6 ). However, this also il- 

ustrate the importance of investing in further development of this 

echnology since it has a large potential to increase resource effi- 

iency and promote both sustainable aquaculture and improved re- 

ource recovery within food waste management. Technologies that 

avour circular flows, with resource recovery and nutrient recy- 

ling, could also contribute to several SDGs ( Herrero et al., 2020 ; 

eigiserova et al., 2020 ). To fully assess the impact on SDG fulfil- 

ent, new LCA frameworks are currently being developed ( Life Cy- 

le Initiative, 2021 ; Weidema et al., 2020 ). Although, the results 

n this study indicate that, compared with fish oil, DHA from the 

lgae scenario could contribute to multiple SDGs. For instance cli- 

ate action by reduced greenhouse gas emissions (SDG 13), respon- 

ible consumption and production by increased resource efficiency 

nd reduced waste (SDG 12), zero hunger by supporting sustainable 

ood production systems (SDG 2), affordable and clean energy by in- 

reasing the share of renewable energy in the global energy mix 

SDG 7), and ultimately mitigate loss of biodiversity and damage 

o ecosystem quality by reducing acidification, eutrophication and 

abitat degradation (SDGs 14 and 15). Given the estimated expan- 

ion of aquaculture and increased global demand for food rich in 

HA, algae-based aquafeeds thus represent an alternative produc- 

ion method using a carbon source derived from already available 

esources. 

.5. Recommendations for future studies 

As established by previous studies, these is an urgent need 

or life cycle assessments and more data to enable environmen- 

al assessments and sustainability evaluation of emerging food and 
2014 
quaculture technologies, including microalgae cultivation ( Avadí

t al., 2020 ; Lopes da Silva et al., 2019 ). In order to mimic the

omposition of fish oil better in biotechnologically derived cell sus- 

ensions, algae species, e.g. Schizochytrium sp., that produce EPA 

nd DHA in a ratio similar to that in fish oil, could be considered 

 Hart et al., 2021 ; Sprague et al., 2015 ). Alternatively, DHA from C.

ohnii could potentially replace fish oil supplements in human di- 

ts. Some hurdles need to be overcome, however. First, bioproduc- 

ion needs to be further optimised and made robust, e.g. through 

ntegration of suitable online monitoring that allows variable util- 

sation of feedstock while maintaining cell viability and produc- 

ion capacity, e.g. through technologies that capture the single cells 

 Delvigne et al., 2018 ). Under current EU animal by-product legis- 

ation, DHA from the Algae scenario can only be implemented if 

xclusively vegetable waste is used to produce VFA, which might 

ave an impact on the yield of DF ( Strazzera et al., 2018 ). This

equires further investigation and optimisation of such processes 

ased on cell physiology, as only cells with a certain metabolic 

urnover excrete VFAs ( Bockisch et al., 2018 ). The best option for 

ood waste valorisation should also be examined in more detail, in- 

luding both small- and large-scale case studies. This is especially 

mportant since we are still a long way from a harmonized assess- 

ent of food waste management, which makes it difficult to fully 

ssess the future potential for suggested solutions. 

When comparing certain production scenarios, direct effects 

n biodiversity cannot be assessed with established LCIA meth- 

ds, so future studies would benefit from including this aspect. 

ince resource depletion, overfishing and invasive species are some 

f the main threats to loss of marine biodiversity ( Woods et al., 

016 ), these aspects should be included in studies with a ma- 

ine biodiversity focus. This could potentially be accomplished 

y implementing CFs for biotic resource depletion ( Hélias et al., 

018 ), overfishing ( Emanuelsson et al., 2014 ) or invasive species 

 Hanafiah et al., 2013 ). To support sustainable development and 

aintain a rich biodiversity, there is an urgent need for robust and 

xtensive impact assessment methods to account for the full im- 

act on biotic resources ( Avadí et al., 2020 ; Asselin et al. 2020 ;

inter et al., 2017 ). One could therefore argue that the most im- 

ortant future research needs are to reduce knowledge gaps and 

o develop LCA methods that cover all five drivers of biodiversity 

oss. 

. Conclusions 

This study assessed the environmental impact of a conceptual 

lgae scenario with DHA produced via the microalgae C. cohnii 

rown in a bioreactor cultivation process using VFA extracted from 

ood waste as its main carbon feedstock. The utilization of VFA 

rom dark fermentation enables a combination of bioconversion 

or a high added-value DHA product via microalgae with renew- 

ble energy production. The impact was compared with that of 

 conventional Fish scenario with DHA derived from Peruvian an- 

hovy. Alongside the environmental impact at midpoint level, the 

mportant aspect of ecosystem quality at endpoint level was also 

ssessed using Ecosystem damage as indicator for biodiversity loss. 

he main by-product in both scenarios was electricity and heat, in- 

luded via system expansion. The global warming, terrestrial acid- 

fication, freshwater eutrophication and land use per ton DHA pro- 

uced in the Algae scenario was found to be -52 ton CO 2 eq, 3.5 ton

O 2 eq, -94 kg Peq, 2700 m 

2 eq, respectively. In comparison, the 

mpact per ton DHA in the Fish scenario was -15 ton CO 2 eq, 3.9

on SO 2 eq, -97 kg Peq and 3200 m 

2 eq. The Ecosystem damage for 

lgae scenario and Fish scenario was 5.5 × 10 −4 and 8.1 × 10 −4 

pecies per year respectively. Even though established LCIA meth- 

ds only assess indirect effects on biodiversity, the Algae scenario 

esulted in lower Ecosystem damage than the Fish scenario even 
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Table A.1 

Ecoinvent datasets used in SimaPro, using the allocation cut-off by classification 

setting. 

Dataset 

number Data generator Dataset name Location Used to model: 

1 Symeonidis, A. Market for 

marine fish 

GLO Wild C. cohnii 

2 System Market for 

nitrogen 

fertiliser, as N 

GLO N fertiliser 

3 System Market for 

phosphate 

fertiliser, as 

P2O5 

GLO P fertiliser 

4 System Market for 

glucose 

GLO Glucose 

5 System Market group 

for tap water 

RER Water 

6 Faist E., M. Market for 

natural gas, 

high pressure 

DE Natural gas 

7 System Market for 

steam, in 

chemical 

industry 

GLO Steam 

8 Dux, D. Liquid manure 

storage and 

processing 

facility 

construction 

CH Algae 

processing 

9 Valsasina, L. Market for 

transport, 

freight, lorry 

3.5-7.5 metric 

ton, EURO4 

RER Transport 

10 PRé Consultants Carbon dioxide, 

unspecified 

n.a. CO 2 to air 

11 System Market for 

fodder yeast 

GLO Yeast 

12 System Market for 

sodium 

chloride, brine 

solution 

GLO Reef salt 

13 System Market for 

molasses, from 

sugar beet 

GLO Molasses 

14 Valsasina, L. Market for 

transport, 

freight, lorry 

7.5-16 metric 

ton, EURO4 

RER Transport 

15 System Market for 

wastewater, 

average 

Europe 

without 

Switzerland 

Wastewater 

16 Gnansounou, E. Oil mill 

construction 

CH Oil separation 

17 Kägi, T. Waste 

preparation 

facility 

construction 

CH FW processing 

18 Doka, G. Market for 

municipal 

waste collection 

service, by 21 

metric ton lorry 

CH Transport 

19 PRé Consultants Recycling of 

aluminium 

GLO Metal reject 

20 Treyer, K. Treatment of 

municipal solid 

waste, 

incineration 

DE Plastic reject 

21 Schleiss, K. Anaerobic 

digestion plant 

construction, 

agriculture, 

with methane 

recovery 

CH DF and AD 

( continued on next page ) 
hen a future energy development, optimized VFA production, in- 

reased energy demand and effects on biotic resources were con- 

idered via sensitivity analyses. This study also showed that in- 

luded by-products and energy production had a high influence on 

he total environmental burden for both scenarios. From a product 

CA perspective, algae oil had the lowest climate impact per ton 

HA for all evaluated oils. 

At present, coupling DF and subsequent monocultivation for 

HA and EPA production is still under development and thus re- 

uire higher economic investments to enable a large-scale produc- 

ion similar to traditional fish oil processing. However, the produc- 

ion of valuable DHA with lower environmental impact arguably 

ustifies a higher production cost especially since it also provides 

n improved food waste valorisation solution and a source of re- 

ewable energy. The environmental aspect must be considered a 

ey component in both political decision making and company de- 

elopment to fully achieve a sustainable development, as well as 

nabling a shift from a linear to a circular bioeconomy where avail- 

ble resources are recovered and used in the most efficient way 

ossible. The result from this study emphasise that Algae oil holds 

 promising potential to increase sustainability within aquacul- 

ure, provided that continued development and optimization of the 

echnology and process is enabled through active decision-making, 

urposeful investments, and further research. 

This study showed that DHA produced by microalgae using VFA 

rom DF of food waste can reduce loss of biodiversity and support 

ustainable production while satisfying increased future demand 

or DHA within the food supply chain. This could support sus- 

ainable development by meeting current needs for DHA without 

ompromising nature’s ability to produce this essential fatty acid 

n the future. The Algae scenario approach also enabled increased 

esource efficiency by recovering nutrients and resources in food 

aste for value addition. By using agricultural and food industry 

y-products to produce DHA, overfishing, for example of Peruvian 

nchovy, could be counteracted and thereby increasing the overall 

ustainability of aquaculture while maintaining essential ecosystem 

uality. 
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coinvent 3.5 with the allocation cut-off by classification setting. 
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Table A.1 ( continued ) 

Dataset 

number 

Data generator Dataset name Location Used to model: 

22 System. Market for 

vegetable oil 

refinery 

GLO VFA processing 

23 Treyer, K. 

Ruiz, EM. 

Heat and power 

co-generation, 

biogas, gas 

engine 

Excluding 

contribution 

from: market 

for biogas 

DE 

RoW 

CHP plant 

24 Treyer, K. Heat and power 

co-generation, 

natural gas, 

combined cycle 

power plant, 

400MWelectri- 

cal 

DE Heat (fossil) 

25 Avadi, A. Anchovy, 

capture by steel 

purse seiner 

and landing 

whole, fresh 

PE Fishing 

anchovy 

26 Avadi, A. Fishmeal and 

fish oil 

production, 

63-65% protein 

PE Reduction 

fishery 

27 Simons, A. Transport, 

freight, lorry 

7.5-16 metric 

ton, EURO4 

RoW Transport 

28 System Market for 

transport, 

freight, sea, 

transoceanic 

ship with reefer, 

cooling 

GLO Transport 

A

r

w

T

w

e

t

e

n

f

i

t

c

1

m

h

g

t

Table B.1 

Datasets representing the share of energy source used to produce current, fos- 

sil, and future energy mix. Net electricity distribution was sourced from Energy- 

Charts (2020) on 18 December 2020. 

Data 

generator Dataset name Location % Used to model 

(1) Current electricity mix 

Treyer, K. Electricity 

production, lignite 

DE 16.9 Electricity mix 

Treyer, K. Electricity 

production, nuclear, 

pressure water 

reactor 

DE 12.4 Electricity mix 

System Electricity 

production, natural 

gas, 10MW 

DE 12.1 Electricity mix 

Treyer, K. Electricity 

production, wind, 

> 3MW turbine, 

onshore 

DE 26.6 Electricity mix 

Treyer, K. Electricity 

production, 

photovoltaic, 

570kWp open 

ground installation, 

multi-Si 

DE 10.7 Electricity mix 

Treyer, K. Heat and power 

co-generation, 

biogas, gas engine 

DE 9.4 Electricity mix 

Treyer, K. Electricity 

production, hard 

coal 

DE 7.3 Electricity mix 

Treyer, K. Electricity 

production, hydro, 

pumped storage 

DE 3.9 Electricity mix 

System Electricity, high 

voltage, production 

mix 

DE 0.7 Electricity mix 

(1) Fossil electricity mix 

Treyer, K. Electricity 

production, lignite 

DE 33 Electricity mix 

System Electricity 

production, natural 

gas, 10MW 

DE 33 Electricity mix 

Treyer, K. Electricity 

production, hard 

coal 

DE 33 Electricity mix 

(1) Future electricity mix 

Treyer, K. Electricity 

production, wind, 

> 3MW turbine, 

onshore 

DE 45 Electricity mix 

Treyer, K. Electricity 

production, 

photovoltaic, 

570kWp open 

ground installation, 

multi-Si 

DE 45 Electricity mix 

Treyer, K. Heat and power 

co-generation, 

biogas, gas engine 

DE 10 Electricity mix 

A

ppendix B 

In 2020, about 50% of German electricity was generated from 

enewable sources (Energy-Charts, 2020), while energy use for heat 

as dominated by fossil fuels (Euroheat & Power, 2019; IEA, 2020). 

o accurately represent the use of electricity, a custom energy mix 

as created in SimaPro 9 using Ecoinvent 3.5 datasets. Current 

lectricity mix represent the 2020 production mix, while the fu- 

ure electricity mix consist of entirely renewable energy. The fossil 

nergy dataset is used to assess the avoided energy in Algae sce- 

ario and Fish scenario, that is replaced with electricity and heat 

rom EnergyDF and EnergyAD respectively. 
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Table C.1 

Environmental impact for each process in the Algae scenario and the Fish scenario , expressed per 1 ton DHA. GWP = Global warming [kg CO2 eq], SOD = Stratospheric ozone depletion [kg CFC11 eq], IR = Ionizing 

radiation [kBq Co-60 eq], OF HH = Ozone formation Human health [kg NOx eq], FPMF = Fine particulate matter formation [kg PM2.5 eq], OF TE = Ozone formation - Terrestrial ecosystems [kg NOx eq], TA = Ter- 

restrial acidification [kg SO2 eq], FE = Freshwater eutrophication [kg Peq], ME = Marine eutrophication [kg N eq], TETox = Terrestrial ecotoxicity [kg 1,4-DCB], FETox = Freshwater ecotoxicity [kg 1,4-DCB], 

METox = Marine ecotoxicity [kg 1,4-DCB], HCTox = Human carcinogenic toxicity [kg 1,4-DCB], HNCTox = Human non-carcinogenic toxicity [kg 1,4-DCB], LU = Land use [m2a crop eq], MRS = Mineral resource 

scarcity [kg Cu eq], FRS = Fossil resource scarcity [kg oil eq], WC = Water consumption [m3]. 

GWP SOD IR OF HH FPMF OF TE TA FE ME TETox FETox METox HCTox HNCTox LU MRS FRS WC 

Algae oil 

Pre- 

cultivation 

3.4 × 10 1 1.5 × 10 −4 2.1 × 10 0 8.1 × 10 −2 5.4 × 10 −2 8.2 × 10 −2 1.8 × 10 −1 1.4 × 10 −2 4.1 × 10 −2 1.1 × 10 2 1.0 × 10 0 1.5 × 10 0 1.1 × 10 0 3.9 × 10 1 2.0 × 10 1 1.0 × 10 −1 7.7 × 10 0 9.8 × 10 −1 

Pre- 

culture 

1.6 × 10 3 2.2 × 10 −3 4.7 × 10 1 5.7 × 10 0 2.2 × 10 0 5.8 × 10 0 5.7 × 10 0 3.0 × 10 −1 3.2 × 10 −1 1.5 × 10 4 4.4 × 10 1 6.7 × 10 1 5.0 × 10 1 1.4 × 10 3 2.2 × 10 2 5.5 × 10 0 4.7 × 10 2 3.3 × 10 1 

Cultivation 

& harvest 

4.2 × 10 3 2.8 × 10 −3 5.9 × 10 2 4.0 × 10 0 4.4 × 10 0 4.0 × 10 0 2.7 × 10 1 4.1 × 10 0 3.7 × 10 −1 4.1 × 10 3 2.1 × 10 2 2.7 × 10 2 2.1 × 10 2 3.5 × 10 3 4.4 × 10 1 4.4 × 10 0 8.0 × 10 2 -4.4 × 10 0 

Oil 

separation 

2.6 × 10 3 2.3 × 10 −3 4.9 × 10 2 3.3 × 10 0 3.7 × 10 0 3.3 × 10 0 2.2 × 10 1 3.4 × 10 0 2.2 × 10 −1 3.5 × 10 3 1.7 × 10 2 2.3 × 10 2 1.8 × 10 2 2.9 × 10 3 3.8 × 10 1 3.8 × 10 0 6.7 × 10 2 9.9 × 10 0 

Transport 

to Norway 

9.9 × 10 2 4.3 × 10 −4 1.9 × 10 1 4.1 × 10 0 1.2 × 10 0 4.2 × 10 0 2.9 × 10 0 9.1 × 10 −2 6.9 × 10 −3 1.1 × 10 4 1.8 × 10 1 3.0 × 10 1 2.4 × 10 1 6.7 × 10 2 3.5 × 10 1 2.3 × 10 0 3.4 × 10 2 2.8 × 10 0 

Energy DF 

Pre- 

treatment 

1.6 × 10 4 1.2 × 10 −2 9.8 × 10 2 7.3 × 10 1 2.3 × 10 1 7.7 × 10 1 7.5 × 10 1 7.5 × 10 0 5.0 × 10 −1 4.5 × 10 4 1.5 × 10 3 2.0 × 10 3 7.7 × 10 2 3.1 × 10 4 9.1 × 10 2 4.8 × 10 1 4.1 × 10 3 4.5 × 10 1 

Dark fer- 

mentation 

1.2 × 10 3 1.0 × 10 −3 2.1 × 10 2 1.9 × 10 0 1.9 × 10 0 1.9 × 10 0 9.4 × 10 0 1.4 × 10 0 9.1 × 10 −2 3.1 × 10 3 8.1 × 10 1 1.1 × 10 2 1.1 × 10 2 1.6 × 10 3 2.2 × 10 2 5.7 × 10 0 3.0 × 10 2 1.3 × 10 2 

VFA 

separation 

4.2 × 10 2 3.7 × 10 −4 7.8 × 10 1 5.4 × 10 −1 6.1 × 10 −1 5.4 × 10 −1 3.6 × 10 0 5.5 × 10 −1 3.5 × 10 −2 6.3 × 10 2 2.8 × 10 1 3.7 × 10 1 2.8 × 10 1 4.8 × 10 2 6.6 × 10 0 7.3 × 10 −1 1.1 × 10 2 1.6 × 10 0 

Anaerobic 

digestion 

2.3 × 10 3 1.2 × 10 −3 1.0 × 10 2 8.6 × 10 0 3.8 × 10 0 8.8 × 10 0 8.5 × 10 0 7.7 × 10 −1 4.8 × 10 −2 2.4 × 10 4 1.0 × 10 2 1.5 × 10 2 1.8 × 10 2 3.2 × 10 3 1.1 × 10 3 2.4 × 10 1 7.0 × 10 2 1.6 × 10 1 

Energy 

produc- 

tion 

3.0 × 10 4 2.6 × 10 −1 2.6 × 10 2 2.4 × 10 1 4.4 × 10 2 2.4 × 10 1 3.5 × 10 3 3.2 × 10 0 2.0 × 10 −1 1.5 × 10 4 2.1 × 10 2 2.9 × 10 2 3.2 × 10 2 5.6 × 10 3 5.2 × 10 2 2.7 × 10 1 1.6 × 10 3 2.2 × 10 1 

Avoided 

energy 

-1.1 × 10 5 -4.2 × 10 −2 -5.2 × 10 2 -1.5 × 10 2 -5.1 × 10 1 -1.5 × 10 2 -1.5 × 10 2 -1.2 × 10 2 -7.1 × 10 0 -1.8 × 10 4 -2.9 × 10 3 -4.0 × 10 3 -5.6 × 10 3 -8.3 × 10 4 -3.8 × 10 2 -2.7 × 10 1 -3.2 × 10 4 -2.0 × 10 2 

Fish oil 

Fishing 1.3 × 10 4 3.2 × 10 −3 1.5 × 10 2 2.8 × 10 2 9.1 × 10 1 2.8 × 10 2 2.9 × 10 2 2.3 × 10 −1 3.0 × 10 −2 7.7 × 10 3 1.8 × 10 1 1.2 × 10 3 5.7 × 10 1 7.0 × 10 2 2.3 × 10 1 3.4 × 10 0 4.3 × 10 3 2.1 × 10 1 

Reduction 

fishery 

2.0 × 10 4 4.0 × 10 −3 1.7 × 10 2 1.2 × 10 2 5.9 × 10 1 1.2 × 10 2 1.7 × 10 2 4.8 × 10 0 3.3 × 10 −1 1.8 × 10 4 2.4 × 10 2 7.6 × 10 2 3.9 × 10 2 7.6 × 10 3 5.6 × 10 2 1.0 × 10 1 4.4 × 10 3 1.6 × 10 2 

Transport 

to Norway 

1.1 × 10 4 5.5 × 10 −3 2.2 × 10 2 6.6 × 10 1 2.0 × 10 1 6.7 × 10 1 5.0 × 10 1 1.1 × 10 0 8.5 × 10 −2 1.1 × 10 5 2.0 × 10 2 3.3 × 10 2 2.8 × 10 2 6.9 × 10 3 3.4 × 10 2 2.5 × 10 1 3.9 × 10 3 3.1 × 10 1 

Energy AD 

Pre- 

treatment 

1.6 × 10 4 1.2 × 10 −2 9.8 × 10 2 7.3 × 10 1 2.3 × 10 1 7.7 × 10 1 7.5 × 10 1 7.5 × 10 0 5.0 × 10 −1 4.5 × 10 4 1.5 × 10 3 2.0 × 10 3 7.7 × 10 2 3.1 × 10 4 9.1 × 10 2 4.8 × 10 1 4.1 × 10 3 4.5 × 10 1 

Anaerobic 

digestion 

3.4 × 10 3 2.2 × 10 −3 3.0 × 10 2 1.0 × 10 1 5.4 × 10 0 1.0 × 10 1 1.7 × 10 1 2.1 × 10 0 1.3 × 10 −1 2.6 × 10 4 1.8 × 10 2 2.5 × 10 2 2.7 × 10 2 4.5 × 10 3 1.2 × 10 3 2.7 × 10 1 9.7 × 10 2 1.4 × 10 2 

Energy 

produc- 

tion 

3.0 × 10 4 2.6 × 10 −1 2.6 × 10 2 2.4 × 10 1 4.4 × 10 2 2.4 × 10 1 3.5 × 10 3 3.2 × 10 0 2.0 × 10 −1 1.5 × 10 4 2.1 × 10 2 2.9 × 10 2 3.2 × 10 2 5.6 × 10 3 5.2 × 10 2 2.7 × 10 1 1.6 × 10 3 2.2 × 10 1 

Avoided 

energy 

-1.1 × 10 5 -4.2 × 10 −2 -5.1 × 10 2 -1.5 × 10 2 -5.0 × 10 1 -1.5 × 10 2 -1.5 × 10 2 -1.2 × 10 2 -7.1 × 10 0 -1.7 × 10 4 -2.9 × 10 3 -4.0 × 10 3 -5.6 × 10 3 -8.3 × 10 4 -3.8 × 10 2 -2.6 × 10 1 -3.1 × 10 4 -2.0 × 10 2 

2
0
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Table C.2 

Ecosystem damage [species.yr] for each process in the Algae scenario and the Fish scenario , expressed per 1 ton DHA. GWP TE = Global warming - Terrestrial ecosystems, GWP FE = Global warming - Freshwater 

ecosystems, OF TE = Ozone formation - Terrestrial ecosystems, TA = Terrestrial acidification, FE = Freshwater eutrophication, ME = Marine eutrophication, TETox = Terrestrial ecotoxicity, FETox = Freshwater 

ecotoxicity, METox = Marine ecotoxicity, LU = Land use, WC TE = Water consumption - Terrestrial ecosystems, WC AE = Water consumption - Aquatic ecosystems. 

GWP TE GWP FE 

OF TE 

TA FE ME TETox FETox METox LU WC TE WC AE 

Algae oil 

Pre- 

cultivation 

9.5 × 10 −8 2.6 × 10 −12 1.1 × 10 −8 3.8 × 10 −8 9.2 × 10 −9 7.0 × 10 −11 1.3 × 10 −9 7.1 × 10 −10 1.5 × 10 −10 1.8 × 10 −7 9.7 × 10 −9 4.5 × 10 −13 

Starting 

culture 

4.5 × 10 −6 1.2 × 10 −10 7.5 × 10 −7 1.2 × 10 −6 2.0 × 10 −7 5.5 × 10 −10 1.7 × 10 −7 3.0 × 10 −8 7.0 × 10 −9 2.0 × 10 −6 4.0 × 10 −7 2.9 × 10 −11 

Cultivation 

& harvest 

1.2 × 10 −5 3.2 × 10 −10 5.2 × 10 −7 5.7 × 10 −6 2.7 × 10 −6 6.2 × 10 −10 4.7 × 10 −8 1.4 × 10 −7 2.9 × 10 −8 3.9 × 10 −7 -9.0 × 10 −8 - 

3.9 × 10 −12 

Oil 

separation 

7.3 × 10 −6 2.0 × 10 −10 4.3 × 10 −7 4.7 × 10 −6 2.3 × 10 −6 3.7 × 10 −10 4.0 × 10 −8 1.2 × 10 −7 2.4 × 10 −8 3.4 × 10 −7 1.1 × 10 −7 4.9 × 10 −12 

Transport 

to Norway 

2.8 × 10 −6 7.5 × 10 −11 5.4 × 10 −7 6.1 × 10 −7 6.1 × 10 −8 1.2 × 10 −11 1.2 × 10 −7 1.3 × 10 −8 3.2 × 10 −9 3.1 × 10 −7 3.2 × 10 −8 1.6 × 10 −12 

Energy DF 

Pre- 

treatment 

4.5 × 10 −5 1.2 × 10 −9 9.9 × 10 −6 1.6 × 10 −5 5.0 × 10 −6 8.5 × 10 −10 5.1 × 10 −7 1.0 × 10 −6 2.1 × 10 −7 8.1 × 10 −6 3.8 × 10 −7 1.8 × 10 −11 

Dark fer- 

mentation 

3.3 × 10 −6 9.1 × 10 −11 2.5 × 10 −7 2.0 × 10 −6 9.5 × 10 −7 1.6 × 10 −10 3.6 × 10 −8 5.6 × 10 −8 1.1 × 10 −8 1.9 × 10 −6 1.7 × 10 −6 7.5 × 10 −11 

VFA 

separation 

1.2 × 10 −6 3.2 × 10 −11 7.0 × 10 −8 7.7 × 10 −7 3.7 × 10 −7 6.0 × 10 −11 7.2 × 10 −9 2.0 × 10 −8 3.9 × 10 −9 5.9 × 10 −8 1.7 × 10 −8 8.0 × 10 −13 

Anaerobic 

digestion 

6.5 × 10 −6 1.8 × 10 −10 1.1 × 10 −6 1.8 × 10 −6 5.1 × 10 −7 8.1 × 10 −11 2.7 × 10 −7 7.1 × 10 −8 1.6 × 10 −8 9.8 × 10 −6 1.5 × 10 −7 7.6 × 10 −12 

Energy 

production 

8.5 × 10 −5 2.3 × 10 −9 3.1 × 10 −6 7.4 × 10 −4 2.1 × 10 −6 3.4 × 10 −10 1.7 × 10 −7 1.5 × 10 −7 3.1 × 10 −8 4.6 × 10 −6 1.9 × 10 −7 1.8 × 10 −11 

Avoided 

energy 

-3.1 × 10 −4 -8.5 × 10 −9 -1.9 × 10 −5 -3.2 × 10 −5 -7.7 × 10 −5 -1.2 × 10 −8 -2.0 × 10 −7 -2.0 × 10 −6 -4.2 × 10 −7 -3.4 × 10 −6 -2.5 × 10 −6 - 

1.1 × 10 −10 

Fish oil 

Fishing 3.6 × 10 −5 9.9 × 10 −10 3.7 × 10 −5 6.1 × 10 −5 1.6 × 10 −7 5.1 × 10 −11 8.8 × 10 −8 1.3 × 10 −8 1.3 × 10 −7 2.0 × 10 −7 2.7 × 10 −7 1.3 × 10 −11 

Reduction 

fishery 

5.5 × 10 −5 1.5 × 10 −9 1.5 × 10 −5 3.6 × 10 −5 3.2 × 10 −6 5.6 × 10 −10 2.0 × 10 −7 1.7 × 10 −7 8.0 × 10 −8 5.0 × 10 −6 1.9 × 10 −6 1.4 × 10 −10 

Transport 

to Norway 

3.2 × 10 −5 8.8 × 10 −10 8.6 × 10 −6 1.1 × 10 −5 7.2 × 10 −7 1.4 × 10 −10 1.2 × 10 −6 1.4 × 10 −7 3.5 × 10 −8 3.1 × 10 −6 3.6 × 10 −7 1.9 × 10 −11 

Energy AD 

Pre- 

treatment 

4.5 × 10 −5 1.2 × 10 −9 9.9 × 10 −6 1.6 × 10 −5 5.0 × 10 −6 8.5 × 10 −10 5.1 × 10 −7 1.0 × 10 −6 2.1 × 10 −7 8.1 × 10 −6 3.8 × 10 −7 1.8 × 10 −11 

Anaerobic 

digestion 

9.5 × 10 −6 2.6 × 10 −10 1.3 × 10 −6 3.7 × 10 −6 1.4 × 10 −6 2.3 × 10 −10 2.9 × 10 −7 1.2 × 10 −7 2.6 × 10 −8 1.1 × 10 −5 1.8 × 10 −6 8.3 × 10 −11 

Energy 

production 

8.5 × 10 −5 2.3 × 10 −9 3.1 × 10 −6 7.4 × 10 −4 2.1 × 10 −6 3.4 × 10 −10 1.7 × 10 −7 1.5 × 10 −7 3.1 × 10 −8 4.6 × 10 −6 1.9 × 10 −7 1.8 × 10 −11 

Avoided 

energy 

-3.1 × 10 −4 -8.4 × 10 −9 -1.9 × 10 −5 -3.2 × 10 −5 -7.7 × 10 −5 -1.2 × 10 −8 -2.0 × 10 −7 -2.0 × 10 −6 -4.2 × 10 −7 -3.4 × 10 −6 -2.4 × 10 −6 - 

1.1 × 10 −10 

2
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