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Abstract
The increased demand for wood to replace oil-based products with renewable products has lifted focus to the Baltic Sea region
where the environment is favorable for woody biomass growth. The aim of this study was to estimate broad-sense heritabilities
and genotype-by-environment (G×E) interactions in growth and phenology traits in six climatically different regions in Sweden
and the Baltics. We tested the hypothesis that both bud burst and bud set have a significant effect on the early growth of selected
poplar clones in Northern Europe. Provenance hybrids of Populus trichocarpa adapted to the Northern European climate were
compared to reference clones with adaptation to the Central European climate. The volume index of stemwood was under low to
medium genetic control with heritabilities from 0.22 to 0.75. Heritabilities for phenology traits varied between 0.31 and 0.91.
Locally chosen elite clones were identified. G×E interactions were analyzed using pairwise comparisons of the trials. Three
different breeding zones for poplars between the latitudes of 55° N and 60° N in the Baltic Sea Region were outlined. The studied
provenance hybrids with origin from North America offer a great possibility to broaden the area with commercial poplar
plantations in Northern Europe and further improve the collection of commercial clones to match local climates. We conclude
that phenology is an important selection criterion after growth.
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Introduction

Medium Rotation Forests with fast-growing Populus species
offer a significant complementary source of renewable raw
materials for various industries worldwide [1]. Woody crops

with fast-growing deciduous species create an opportunity for
efficient land use while providing a number of ecosystem
services [2]. In recent years, the interest in poplars and the
establishment of new plantations has been steadily increasing
in the whole Nordic-Baltic region [3]. This trend has been
promoted by the success of Swedish poplar plantations
established at the beginning of the 1990s using a Populus
maximowiczii Henry × P. trichocarpa Torr. & Gray hybrid
“OP42.” The mean annual biomass production in these plan-
tations regularly reaches 10 Mg DW ha−1 year−1 (25 to 30 m3

ha−1 year−1 stemwood) within a rotation period of ca. 20 years
[3–5].

However, further expansion of the area of poplar planta-
tions in the region needs to be facilitated through an increased
genetic variation of commercially deployable planting stock.
This is particularly important as poplars are becoming of in-
terest for planting at higher latitudes in Sweden or in conti-
nental climate conditions in the Baltic region. In a search for
productive and climate-adapted poplar material for central
Swedish conditions, Ilstedt [6] repeatedly tested more than
100 clones of intra- and interspecific hybrids of
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P. trichocarpa and P. deltoidesW. Bartram ex Marshall × P.
trichocarpa hybrids originating below 50°N, bred and select-
ed in Geraardsbergen, Belgium. In spite of initially fast
growth, many clones were eventually damaged by early au-
tumn frosts and low winter temperatures owing to the late and
insufficient bud set. Later on, Christersson tested the same
material in southernmost Sweden at 55° 39′ N [7]. He also
pointed out the vulnerability of the material to early autumn
frosts, particularly of the P. deltoides hybrids, while evaluat-
ing a number of intraspecific P. trichocarpa hybrids as poten-
tially usable in southern Sweden.

In another study of 54 poplar clones imported via Holland
and grown at two sites in southern Sweden at 56° N, the
authors noticed a better growth of “balsam type” poplars
(i.e., belonging to species and hybrids of the Tacamahaca
section) compared to pure species and hybrids with P. nigra
L. and P. deltoides [8]. Later on, this material was extended
with clones from the IUFRO collection selected in Finland for
winter hardiness, and also with a number of commercial
clones [9, 10]. Besides a strong influence of genotype on
growth in terms of high broad-sense heritability, there was
also a generally stable clonal performance over different sites
and a positive correlation between the late autumn foliage
coloration and growth, suggesting that clones having green
canopy late in the autumn generally perform better. The pos-
itive relationship between lifetime growth, measured as in-
crease in height or weight, and late cessation of growth in
autumn, i.e., the length of the growth period, is well-
documented in common garden studies and clone trials of
several Populus species [11–14]. Savage and Cavender-
Bares [15] showed that northern species of Populus and
Salix exhibited slower growth rates than southern species only
when grown under shorter summer day lengths than expected
in their native range. Rather, the apparent trade-off between
growth and freezing tolerance was related to the adaptive phe-
nology strategy. The conclusion was that Salix and Populus
species should grow better under conditions more similar to
those in their native environments. A similar conclusion was
drawn by Evans et al. [16] from a common garden study of
P. angustifolia, where the transfer of provenances both south-
wards and northwards resulted in poor growth due to either
too early bud set or too late leaf senescence leading to autumn
and winter frost damage. Consequently, we would expect that
the adaptation of non-native poplar species in the Nordic-
Baltic region would require the selection of clones with phe-
nology that optimally match the local climate conditions in
terms of timing of bud burst and bud set. In practice, this
means that different clones will tend to be optimal for deploy-
ment at latitudes of 55° N, 60° N, or 64° N.

In an attempt to select commercially deployable material,
the Swedish clone testing program was eventually broadened
to include a wider range of latitudes, from 56° N to 65° N,
using additional material from northern provenances of

P. trichocarpa in Canada and Italian P. deltoides × P. nigra
hybrids [17]. The most important lessons from an early eval-
uation of these trials, which included pairs of forest and set-
aside agricultural sites, as well as a population of hybrid aspen
(P. tremuloidesMichx. × P. tremula L.), was that poplars had
low survival and growth on the northern sites and were
underperforming on forest sites compared to hybrid aspen.
Despite poor genotypic correlations between growth and phe-
nology for poplars in the above-mentioned study, the results
indicated a tendency for positive correlation between growth
and a combination of an early flushing and late leaf coloring,
which can be interpreted as a positive effect of a longer green
canopy duration on growth. Pliura et al. [18] also found the
P. maximowiczii × P. trichocarpa hybrids to be most suitable
for the climate conditions in Lithuania when they compared
growth and adaptive traits of 105 clones at two sites. The
authors found that most adaptive traits were under strong ge-
netic control with significant genotype-by-environment
(G×E) interactions for many growth traits. Furthermore, neg-
ative correlations between tree condition and autumn leaf shed
phenology in their study indicated that trees with late growth
cessation appear to suffer from adaptation problems.
Consequently, the strong genetic control of growth and phe-
nology traits allows for significant improvement of clonal per-
formance through selection for adaptation to varying environ-
mental conditions. Such a selection among hybrids and native
individuals is oriented towards optimization of the transition
between dormancy and growth at both ends of the growing
season, prolonging it as much as possible while keeping the
risk of frost damage at a reasonably low level [6, 19, 20].

In the 1990s, in an attempt to adapt P. trichocarpa to the
climate in central Sweden, Ilstedt [21] made a large number of
crossings between 13 female and 11 male P. trichocarpa par-
ents of different geographic origins in North America
resulting in approximately 7000 progenies. Since 2003,
around 100 clones were selected for testing in a number of
clonal trials in Sweden, Latvia, and Lithuania. This material is
a subject of the present study in which we explore phenotypic
variation, broad-sense heritability, and genotype-by-
environment (G×E) interaction for a number of phenology
and growth traits as well as survival. Our main hypothesis is
that both bud burst and bud set have significant effects on
early growth of poplars in the Baltic Sea Region. The specific
aims are to (i) estimate the genotypic components of clonal
variance of growth and phenology traits within each trial, (ii)
to investigate if the observed early growth performance of
poplar clones is correlated with their phenology within each
trial, and (iii) to evaluate trait correlations between pairs of
trials to identify G×E interaction. Finally, we aimed to (iv)
outline major breeding zones for poplar in the Baltic Sea
Region. This study will improve our knowledge about the
genetic background in variation of growth and phenology
traits in Northern Europe and advance our understanding of
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the possibilities to select commercially deployable clones after
short-term testing by including phenology as an additional
selection criterion after growth.

Materials and methods

Field trials and poplar material

We studied six clonal trials with poplars located in re-
gions with variable climatic conditions around the Baltic
Sea (Fig. 1). Two of the northernmost trials were located
in central Sweden at 60° 37′ N and 59° 83′ N degrees of
latitude (Tierp, Bodarna; Table 1). These two trials be-
long to different climatic zones according to Redalen
[22]. Two clonal trials were located in Arlösa, southwest-
ern Sweden, at 56° 42′ N; 12° 56′ E and in Ludza, eastern
Latvia, at 56° 43′ N; 27° 41′ E representing one maritime
and one more continental site at this latitude. Similarly,
with two Lithuanian trials, Anykščiai and Šašaičiai at 55°
22′ N; 25° 04′ E and 56° 01′ N; 22° 20′ E, the first was
located easterly in a more continental climate and the
second westerly in a somewhat more maritime climate.
A complete randomized block design with four blocks
and five trees per clone and block was applied in Tierp
and Ludza. A randomized block design with four blocks
and one line plot of five trees per clone and block was
applied in Bodarna and Arlösa, while single-tree plots in
16 replications were planted at Šašaičiai and Anykčiai
(Table 1).

All six trials were established on productive former
agricultural fields with diverse climatic [23–25] and
edaphic conditions (Table 1; S1). Before planting, all the
trials were fenced, ground vegetation was treated with the
herbicide Round-up and the soil was plowed and
harrowed. The two Lithuanian trials were planted with
30-cm-long cuttings whereas the other four trials were
established using containerized plants with shoot lengths
of 40 to 100 cm. The plants were pre-grown from 5- to
10-cm-long cuttings 1 year before planting except for
clone “OP42” in Ludza which was planted as 20 cm root-
ed cuttings pre-grown in a greenhouse 2 months before
the trial was established. The green shoots of “OP42”
were ca. 20 cm long at planting.

The tested poplar material belonged to four different
groups: (1) provenance hybrids of P. trichocarpa bred at the
Swedish University of Agricultural Sciences; (2) clones de-
rived from selected individuals from natural populations of
P. trichocarpa; (3) P. balsamifera in British Columbia,
Canada, and (4) 24 reference clones, which are hybrids be-
tween different Populus species from diverse breeding pro-
grams (Table 2).

Measurements and observations

Measurements of tree diameter at breast height (dbh) and tree
height (h), as well as survival inventories (s), were conducted
after 4 growing seasons between 2010 and 2017, in Arlösa,
Tierp, Ludza, Šašaičiai, and Anykčiai, and after 7 growing
seasons at Bodarna. The clonal performance was assessed
on the basis of volume index vi = d2h. In addition, an assess-
ment of spring phenology in all trials and an assessment of
autumn phenology in the Baltic trials were conducted accord-
ing to the scale described in Table 3. Spring and autumn phe-
nology were examined, to determine if growth of poplar
clones in different climatic regions was correlated with their
phenology.

We made the following assumptions prior to the analyses
of our data to facilitate the comparability of our trials. (1) At
Anykčiai, we used growth data after the 3rd growing season to
avoid the effect of fertilization applied in this particular trial at
the beginning of the 4th growing season. However, we still
used the phenology screened at age 4 assuming the positive
correlation of the same phenology variables between different
years [26, 27]. (2) At Tierp, the measurements and observa-
tions from the blocks 3 and 4 were used for statistical analyses
of growth and phenology. The trees in blocks 1 and 2 were
heavily damaged by extensive vole populations (Microtus
agrestis and Arvicola terrestris), which significantly affected
growth of the trees in these two blocks and were therefore
excluded from the statistical analyses. (3) At Bodarna, we
used 7th year growth for statistical analysis, as the mean size
of the trees on this clayey site was comparable to the 4th year
growth at the other five sites on sandy loam, indicating that
competition between the trees in all trials was similar
(Table 4). (4) At Bodarna, bud burst was scored in the begin-
ning of the 10th growing season, assuming it to be positively
correlated with the bud burst in earlier years [26, 27].

Statistical analyses

We used a quantitative genetic analysis to describe the varia-
tion in heritable traits. The analyses of the trials at Tierp,
Ludza, Šašaičiai, and Anykščiai were based on single-tree
plots, while at Bodarna and Arlösa, we analyzed the means
of line plots. Means of the line plots were calculated to obtain
a single value per block and genotype, which enabled us to
compare Arlösa and Bodarna trials with single-tree plots in the
other trials in this investigation. Variance components were
derived using a restricted maximum likelihood procedure
(REML) in a linear mixed model in SYSTAT Version 13.
The analyses were undertaken separately for each trait and
trial assuming that the genotypes were unrelated, with
CLONE as random effect and BLOCK as the fixed categorical
effect. The spatial variation in microenvironment was
accounted for by the random effects of ROW and within
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row POSITION of a tree or line plot both nested within
BLOCK. The values for volume index (vi) were logarithmi-
cally transformed prior to analysis. The clonal values for spe-
cific traits were calculated as the sum of mean trait value and
the random effect predictions for individual clones (BLUPs
(best linear unbiased predictions)) from the linear mixed
model.

The broad-sense heritabilities of clonal values (H2
c ) were

calculated as a proportion of genotypic (clonal) variance com-
ponent of total random variance:

H2
c ¼ σ2

G

� �
= σ2

G þ σ2
en

� � ð1Þ

where σ2G is the variance component for the random effect

CLONE and σ2
en is the environment-related variance compo-

nent calculated as the sum of spatial variance and residual
variance as

σen
2 ¼ σspatial

2 þ σe
2 ð2Þ

The repeatability of predicted clonal mean values (R2
GÞwas

calculated as

R2
G ¼ σ2

G

� �
= σ2

G þ σ2
en=k

� � ð3Þ

where σ2
G and σ2

en denote the genotypic and environmental
component of variance as in equation 1 and k is the harmonic
mean number of replications per clone. The standard errors for
repeatability estimates were calculated based on the formula
for unequal number of observations [28]:

SE R2
G

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n−1ð Þ 1−R2

G

� �2
1þ k−1ð ÞR2

G

� �2

k2 n−Nð Þ N−1ð Þ

s

ð4Þ

where N is the number of clones tested and n is the total
number of individual values. The coefficients of genotypic,
environmental, and phenotypic variances were calculated as

CVG ¼ σG � 100=μ ð5Þ
CVen ¼ σen � 100=μ ð6Þ
CVph ¼ σph � 100=μ ð7Þ

where σG, σen, and σph denote genotypic, environmental, and
phenotypic standard deviation and μ is the phenotypic mean
of the trait.

60°

10° 20° 30°

LUDZA

BODARNA

TIERP

ANYKŠČIAI

ŠAŠAIČIAI

ARLÖSA

Fig. 1 Location of clonal trials with poplars in the Baltic Sea Region in Northern Europe between 55° and 61° of northern latitude and 12º and 25° of
eastern longitude
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Genotypic correlations between the different traits within
the same trials were estimated using Spearman rank correla-
tion analysis.

The genotype × environment (G×E) interactions were an-
alyzed through type B genotypic correlations [29, 30] of the
same trait between pairs of trials. New genotypic values
(BLUPs) were calculated for each pair of trials including only
common clones in these pairs. The type B genotypic correla-
tions were estimated as [31]:

rGxy ¼ rxy= rTPx � rTPy
� � ð8Þ

where rxy is the product-moment correlation between best linear

unbiased predictor (BLUP) values for a specific trait in a pair of
trials x and y. The estimated relation between true and predicted
genotypic values for a trait, rTPx and rTPy respectively, were cal-
culated as (H2k)/(1+H2(k−1)), where H2 is the broad-sense heri-
tability of a trait in an individual trial and k is the harmonic mean
number of replications per clone. Thus, the term rTPx × rTPy takes
into account different heritabilities of traits and different harmon-
ic means of replications per clone in pairs of trials. Several pairs
of trials were not compared as they had only five common clones
(Arlösa-Anykščiai, Arlösa- Šašaičiai, Bodarna-Anykščiai,
Bodarna-Šašaičiai, Tierp-Anykščiai, Tierp-Šašaičiai).

Table 2 Number of tested Populus clones per trial and species/hybrid in
current study. The provenance hybrids of P. trichocarpa bred at Swedish
University of Agricultural Sciences are denoted as T×TSLU. Clones de-
rived from selected individuals from natural populations of
P. trichocarpa and P. balsamifera in British Columbia, are indicated as
T and B, respectively. Among reference clones from Central Europe are
several commercial hybrids of P. maximowiczii × P. trichocarpa (M×T),

P. nigra × P. maximowiczii (N×M), P. nigra × P. deltoides (N×D). The
P. trichocarpa × P. deltoides (T×D) and P. trichocarpa × P. trichocarpa
(T×TREF) hybrids are originally from a poplar breeding program at INBO
in Belgium. The reference clones ofP. trichocarpa are of unknown origin
(TREF). The P. tremula × P. tremuloides hybrids are from a breeding
program at Latvian Forest Research Institute SILAVA

Species groups Trials

Tierp Bodarna Arlösa Ludza Šašaičiai Anykščiai

1. P. trichocarpa × P. trichocarpa clones bred for northern latitudes, T×TSLU 8 8 6 74 11 11

2. P. trichocarpa, T 16 20 17 22

3. P. balsamifera, B 1 2 2

4. Reference clones

M×T (OP42. Hybrid 275. OP41, Matrix24; Matrix49) 2 2 2 2 4 4

N×M (Max1; Max3; Max4) 3 3

N×D (AF3; AF6; AF7; AF13; AF34) 5 5

T×D (70.045/1; 69.037/2; 78.026/12) 2 2 1 1

T×TREF (S.192−5*V24/12; 70.038/20; 70.038/67; 240) 1 3 4 1 1

TREF (1559; Spirit) 2

P. tremula × P. tremuloides 2

Table 3 Description of the measurements and observed characteristics of the poplar trees. yr, the age of the trees at the time of inventory. The stem
characteristics were described for the main stem over bark up to the current year increment

Measurements/characteristics Abbreviation Description

Survival syr Survival of the trees. proportion. scale 0–1

Tree diameter at breast height dbhyr Diameter at breast height (mm)

Tree height hyr Total height (dm)

Stage of bud break BBRyr 6 classes: 0—dormant buds; 1—bud swollen,
no leaf initials visible; 2—breakage of the
buds, tips of the leaves visible (1–2 mm);
3—leaves partially unfolded; 4—leaves
completely unfolded; 5—leaves completely
unfolded, shoot increment ≥ 1 cm

Stage of bud set BSetyr 5 classes: 0—bud set; 0.5—closed apical bud;
1—apical bud visible but still open; 2—internode
elongation ceased, no bud visible; 3—apical shoot fully growing
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Results

Mean height h of the trees varied between 3 and 4.4 m, mean
dbh had values between 23 and 36mm, andmean viwas 2.3 to
7.8 dm3. Bud burst had mean values between 1.52 in Tierp

and 4.88 in Arlösa. Mean score for bud set was between 0.16
and 0.74 in the three Baltic trials (Table 4). It is important to
note here that all clonal trials in this study, except the two
Lithuanian trials, had different compositions of poplar clones
(Table 2), which is the reason why we test our main

Table 4 The phenotypic mean of
tree growth traits of all Populus
clones at six trials in Northern
Europe (μ), range of variation and
coefficient of phenotypic variance
(CVph; %) of the measured and
observed characteristics. s,
survival; dbh, diameter at breast
height (mm); h, tree height (dm);
BBR, bud burst; vi volume index;
BSet, bud set; n, number of ob-
servations (trees). The number
after the abbreviations denotes
age of the trees at the time of
inventory

Trait Site n Mean (μ) ±
SE

Range (min–
max)

CVph

(%)

Survival, s Tierp, s4 405 0.75 ± 0.02 0.0–1.0 55.5

Bodarna, s5 128 0.73 ± 0.03 0.0–1.0 41.8

Arlösa, s3 128 0.94 ± 0.01 0.2–1.0 15.8

Ludza, s4 2088 0.99 ± 0.003 0.0–1.0 12.0

Šašaičiai, s4 374 0.84 ± 0.02 0.0–1.0 43.5

Anykščiai, s4 373 0.88 ± 0.02 0.0–1.0 34.0

Diameter, dbh (mm) Tierp, dbh4 136 29.51 ± 0.86 7.5–56.0 33.2

Bodarna, dbh7 126 24.63 ± 1.29 3.0–80.0 54.1

Arlösa, dbh4 124 36.43 ± 1.23 7.9–73.5 37.8

Ludza, dbh4 2038 28.63 ± 0.24 3.0–68.0 38.0

Šašaičiai, dbh4 311 23.09 ± 0.53 3.0–61.0 40.9

Anykščiai, dbh3 263 24.73 ± 0.63 5.0–55.0 35.1

Height, h (dm) Tierp, h4 135 32.47 ± 0.85 7.0–61.0 29.9

Bodarna, h7 126 34.30 ± 1.16 13.5–88.2 35.0

Arlösa, h4 124 43.77 ± 1.04 17.6–69.0 26.0

Ludza, h4 2037 42.93 ± 0.22 9.2–72.8 22.7

Šašaičiai, h4 315 31.10 ± 0.47 10.0–55.4 25.4

Anykščiai, h3 263 29.78 ± 0.48 14.0–53.0 22.2

Volume index, vi
(dm3)

Tierp, vi4 135 3.72 ± 0.30 0.04–19.13 92.3

Bodarna, vi7 126 4.07 ± 0.71 0.01–48.90 69.7

Arlösa, vi4 124 7.78 ± 0.67 0.11–35.52 98.7

Ludza, vi4 2037 4.63 ± 0.10 0.01–29.41 61.1

Šašaičiai, vi4 311 2.25 ± 0.13 0.01–20.61 97.5

Anykščiai, vi3 263 2.53 ± 0.17 0.04–14.82 91.5

Bud burst (score) Tierp (BBR2—date 10/04/15) 129 1.52 ± 0.04 1.0–2.0 33.6

Bodarna (BBR10—date
19/04/26)

120 4.10 ± 0.08 2.0–5.0 22.6

Arlösa (BBR4—date
10/04/16)

124 3.73 ± 0.06 2.0–5.0 17.4

Arlösa (BBR4—date
10/04/27)

124 4.88 ± 0.03 3.3–5.0 6.6

Ludza (BBR3—date
15/04/22)

2038 2.41 ± 0.01 0.0–5.0 25.1

Šašaičiai (BBR4—date
17/04/27)

312 2.51 ± 0.04 1.0–3.5 30.2

Anykščiai (BBR4—date
17/04/28)

263 3.04 ± 0.05 1.5–4.0 30.3

Anykščiai (BBR4—date
17/04/14)

263 2.28 ± 0.04 1.0–3.0 29.7

Bud set (score) Ludza (BSet4—date
16/09/15)

1003 0.16 ± 0.01 0.0–4.0 192.5

Šašaičiai (BSet4—date
17/09/16)

315 0.59 ± 0.04 0.0–2.0 113.7

Anykščiai (BSet4—date
17/09/15)

247 0.74 ± 0.05 0.0–3.0 102.4
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hypothesis within each trial separately. Using only common
clones for pairwise comparison of trials allowed identification
of genotype-by-environment interactions (G×E).

Substantial clonal variation and significant
correlations between phenology and growth at early
ages

Plant survival varied from 73% at Bodarna to 99% at Ludza, and
there were no clonal differences in survival in the four northern-
most trials (S2–S5). In contrast, significantly lower survival was
recorded for several P. nigra × P. deltoides (N×D) hybrids com-
pared to the mean survival in the Lithuanian trials, which was
84–88% (S6–S7). These N×D hybrids were included among the
tested clones only in the Lithuanian trials.

The broad-sense heritability estimates (H2
c ) for growth

variables (dbh, h, vi), which were expressed as the ratio of
genotypic to total variance, varied from 0.22 to 0.79

(Table 5). The highest H2
c estimates were at Arlösa (between

0.75 and 0.79), while in the rest of the trialsH2
c varied between

0.22 and 0.43. In all other trials, the heritabilities, i.e., variance
related to clone, explained between 22.2 and 42.9% of the
total variance in volume index vi, with corresponding herita-
bilities from 0.22 to 0.43 (Table 5).

The broad-sense heritability (H2
cÞ of bud burst had high

values in all the trials (from 0.88 to 0.90), except at Tierp
(0.42, Table 5). Bud set, which was scored only in Baltic

trials, occurred earlier at Ludza (Latvia, H2
c = 0.31) than at

both Lithuanian trials (H2
c = 0.76−0.83, Table 5; S5–S7).

The coefficient of genotypic variance (CVG) wasmoderate for
bud burst and growth, ranging from 6.2 to 31.0 for bud burst,
12.5 to 23.0 for h, 16.8 to 33.7 for dbh, and 4.6 to 8.7 for vi
(Table 5). The CVG of bud set ranged from 89.4 to 107.6, indi-
cating a large genetic variance among the tested clones (Table 5).
Bud burst was positively correlated with growth in both
Lithuanian trials, where clones with earlier bud burst had better
growth in terms of volume index or height, respectively (r =
0.46 at p < 0.05 at Šašaičiai; r = 0.42–0.51 at p < 0.05 at
Anykščiai and Šašaičiai; Table 6; Fig. 2). In contrast, clones with
late spring phenology in relation to the trial mean, had better
growth in diameter, dbh, at Bodarna (Table 6; Fig. 2). A positive
correlation between late bud set and growth was found at Ludza
for all the observed growth variables and at Anykščiai for height
(r= 0.42–0.50 at p< 0.05; Table 6; Fig. 3). Bud burst and bud set
within the trials where both spring and autumn phenology were
inventoried, were not correlated (Table 6).

Genotype-by-environment interaction as a base for
delineation of breeding zones

Pairwise comparison of common clones revealed that their
ranking according to volume index vi did not change

significantly between the Swedish trials, Arlösa and Bodarna
(rGxy = 0.80 at p < 0.0001; Table 7) and between Arlösa and
Tierp (rGxy = 0.66 at p < 0.005; Table 7). Note that significant
positive correlations between ranks indicate no G×E interac-
tion in terms of early growth. In contrast, rankings of clones
according to their bud burst were different at Tierp compared
to Arlösa (rGxy = 0.36, p = ns) and Bodarna (rGxy = 0.50, p =
ns), which indicates a G×E interaction (Table 7). Moreover,
the ranking shifts occurred both in volume index vi and bud
burst in the Bodarna-Tierp pair indicating a G×E interaction
(Table 7). These interactions reveal that top-performing clones
at Tierp are different from those at Bodarna and Arlösa. The
relative rankings of clones according to vi and spring phenol-
ogy in the pairs Bodarna-Ludza and Arlösa-Ludza did not
change, indicating a common breeding zone for central and
southern Sweden as well as for Latvia.

The relative ranking of clones according to their phenology
did not change at Šašaičiai-Ludza and Anykščiai-Šašaičiai
(significant correlations rGxy = 0.82 at p < 0.05 and rGxy =
0.98 at p < 0.0001 for BBR and rGxy = 0.87 at p < 0.05 and
rGxy = 0.92 at p < 0.0001 for BSet, respectively), while ranking
of clones according to their volume index viwas not correlated
(Table 7). As the rankings of common clones in the pair
Anykščiai-Ludza changed in terms of both growth and phe-
nology (Table 7), the Anykščiai region (eastern Lithuania)
outlines as a separate breeding zone for poplars in the studied
region. Moreover, the correlation coefficient for volume index
vi in this pair of trials was negative, meaning that top clones at
Ludza, eastern Latvia, had modest growth performance at
Anykščiai in eastern Lithuania (Table 7).

Early selection of poplar clones for commercial
deployment in Northern Europe

We used volume index vi after 3–4 years’ growth of poplars
on sandy loam soils for ranking of examined clones, while the
clones at the Bodarna trial on silty clay were ranked after 7
years’ growth (Figs. 4 and 5). The provenance hybrids of
P. trichocarpa had significantly higher clonal values for vi
compared to the trial mean (i.e., were top-ranked) in the north-
ernmost trial, at Tierp, where the sum of growing degree days
was lowest, 1471, in the current study (Table 1, Figs. 4 and 5,
S2). The top-ranked clones had late or intermediate bud burst
(S2) in relation to the trial mean (Table 4).

Both provenance hybrids of P. trichocarpa (T×TSLU) and
the hybrids between P. maximowiczii and P. trichocarpa
(M×T) were among the top-ranked clones in southern and
central Sweden, Latvia, and western Lithuania, where the
sum of growing degree days was above 1562–1787
(Table 1, Figs. 4 and 5, S3–S6).

In contrast, hybrids with a P. nigra parent or a
P. maximowiczii parent were among the best performing
clones in the southernmost site at Anykščiai (eastern
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Lithuania) in terms of their vi (Table 1, Figs. 4 and 5, S7).
Most of the top-ranked clones had early spring phenology and
late or intermediate autumn phenology (S7) in relation to the
trial mean (Table 4). The exception was a P. nigra ×
P. deltoides hybrid (AF34) with late spring and autumn phe-
nology (S7).

Comparison of growth (vi) of the 5 common clones in all
six trials (S2–S7) revealed that growth of poplars as an early-
successional alluvial species was significantly correlated with

precipitation during the actual growing seasons (Table 1, the
Pearson correlation coefficient r = 0.67 at p < 0.0001).

Discussion

Improved growth of commercial woody crops requires that
the trees use effectively a short growing season at northern
latitudes. The northward transfer of poplar clones with

Table 5 Results from the mixed linear model analysis of growth and
adaptive traits of poplar clones at age of 3–4 years at five sites around the
Baltic Sea and at age 7 years in Bodarna. σG

2, clonal variance component,
which corresponds to broad-sense heritability as a percent of the total

random variance; σspatial
2, spatial variance component; σe

2, residual var-
iance component; RG

2, repeatability of clonal means; CVG, coefficient of
genotypic variation; CVen, coefficient of environmental variation

Trait Site H2
c σG

2 (%) σspatial
2 (%) σe

2 (%) RG
2 ± SE CVG (%) CVen (%)

dbh4 Tierp 0.43 42.9 22.1 35.0 0.57 ± 0.09 21.8 25.1

h4 Tierp 0.42 42.2 17.0 40.8 0.59 ± 0.09 19.4 22.8

vi4 Tierp 0.43 42.9 17.2 39.9 0.60 ± 0.09 6.1 9.3

BBR2—date 20100415 Tierp 0.42 41.5 4.6 53.9 0.68 ± 0.08 21.6 25.7

s4 Tierp 0.02 1.7 9.8 88.4 0.08 ± 0.05 7.3 55.0

dbh7 Bodarna 0.35 35.1 37.1 27.8 0.44 ± 0.10 32.0 43.6

h7 Bodarna 0.37 37.2 38.0 24.8 0.46 ± 0.09 21.3 27.7

vi7 Bodarna 0.35 35.3 25.6 39.1 0.50 ± 0.09 9.2 12.5

BBR10—date 20190426 Bodarna 0.88 88.0 0.9 11.1 0.97 ± 0.01 31.0 11.5

s5 Bodarna 0.12 11.8 32.3 55.9 0.20 ± 0.09 14.4 39.2

dbh4 Arlösa 0.79 79.3 9.1 11.6 0.94 ± 0.02 33.7 17.2

h4 Arlösa 0.78 78.0 11.5 10.5 0.93 ± 0.02 23.0 12.2

vi4 Arlösa 0.75 75.2 9.9 14.9 0.92 ± 0.02 8.7 5.0

BBR4—date 20100416 Arlösa 0.91 91.0 0.2 9.0 0.97 ± 0.01 16.6 5.3

BBR4—date 20100427 Arlösa 0.88 88.4 1.9 11.4 0.96 ± 0.01 6.2 2.4

s3 Arlösa 0 0.00 32.8 68.2 0.00 ± 0.07 0.0 15.8

dbh4 Ludza 0.28 27.6 15.7 56.7 0.60 ± 0.04 20.0 32.3

h4 Ludza 0.30 30.2 15.9 53.8 0.62 ± 0.03 12.5 19.0

vi4 Ludza 0.27 27.1 14.6 58.3 0.60 ± 0.03 5.8 9.5

BBR3—date 20150422 Ludza 0.68 67.7 0.6 31.8 0.97 ± 0.001 20.6 14.3

BSet4—date 20160915 Ludza 0.31 31.3 9.4 59.4 0.66 ± 0.03 107.6 159.6

s4 Ludza 0 0.00 0.0 100.0 0.00 ± 0.01 0.0 12.0

dbh4 Šašaičiai 0.28 27.5 13.0 59.6 0.60 ± 0.08 21.4 34.9

h4 Šašaičiai 0.32 32.0 18.8 49.3 0.58 ± 0.08 15.2 22.1

vi4 Šašaičiai 0.35 35.2 9.7 55.2 0.70 ± 0.07 8.02 10.9

BBR4—date 20170427 Šašaičiai 0.91 91.3 0.9 7.8 0.98 ± 0.01 28.9 8.9

BSet4—date 20170916 Šašaičiai 0.83 83.1 2.0 14.9 0.96 ± 0.01 103.6 46.7

s4 Šašaičiai 0.28 27.6 3.0 69.4 0.78 ± 0.05 22.5 43.5

dbh3 Anykščiai 0.23 22.9 15.3 61.9 0.51 ± 0.08 16.8 30.8

h3 Anykščiai 0.32 32.2 11.3 56.6 0.65 ± 0.07 12.6 18.3

vi3 Anykščiai 0.22 22.2 120 65.9 0.54 ± 0.08 4.6 8.7

BBR4—date 20170414 Anykščiai 0.86 86.0 1.3 12.7 0.97 ± 0.01 27.5 11.1

BBR4—date 20170428 Anykščiai 0.90 89.9 1.7 8.5 0.97 ± 0.01 28.7 9.6

BSet4—date 20170915 Anykščiai 0.76 76.3 2.8 20.9 0.94 ± 0.02 89.4 49.9

s4 Anykščiai 0.14 13.5 7.7 78.9 0.51 ± 0.08 13.4 34.0
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southern origin results in a relatively late bud set in relation to
the place of origin and subsequently longer canopy duration
[12, 16, 32]. The commercial deployment of southern clones
at northern latitudes is an attractive strategy among land-
owners but is coupled with the risk for frost damage in the
autumn as photoperiod-dependent bud set occurs in the north
at daylengths when ambient temperatures are occasionally
below zero. Similarly, spring leaf flush of southern clones at
northern latitudes is likely to be delayed as temperature sums

needed for bud burst occur several weeks after the growing
season begins at northern latitudes. Genetic improvement of
poplars for different climatic regions in Northern Europe
would offer a possibility to increase the pool of renewable
raw materials for circular economies and sustainable environ-
ments. A considerable genetic variation in growth and phenol-
ogy traits is a prerequisite for genetic improvement by breed-
ing. Here we studied phenotypic variation of growth and phe-
nology of poplar clones with different origin to estimate the

Table 6 Genotypic correlations among growth and adaptive traits of
hybrid poplar clones at individual trials after 3–4 years of growth at Tierp,
Arlösa, Ludza, Šašaičiai, and Anykščiai (sandy loam) and after 7 years of
growth at Bodarna (silty clay). The number after the abbreviations

denotes the age of the trees at the time of inventory, e.g., h4 = height at
4 years. Correlations are significant at p < 0.05 (*), p < 0.005 (**), or p <
0.0001 (***)

Trait Tree height, h Stem volume index, vi Bud burst, BBR Bud set, BSet Survival, s

Tierp. central Sweden

dbh4 0.86*** 0.95*** −0.10 0.09

h4 0.89*** −0.15 0.07

vi4 −0.12 0.1

BBR2—date 2010/04/15 −0.25
Bodarna. central Sweden

dbh7 0.97*** 0.88*** −0.40* 0.68***

h7 0.88*** −0.35* 0.70***

vi7 −0.32 0.55*

BBR10—date 20190426 −0.05
Arlösa. south-west Sweden Date 2010/04/16 Date 2010/04/27

dbh4 0.97*** 0.98*** −0.17 −0.03 0.97***

h4 0.96*** −0.20 −0.08 1.00***

vi4 −0.23 −0.07 0.96***

BBR4—date 2010/04/27 0.69*** −0.08
BBR4—date 2010/04/16 −0.20

Ludza. eastern Latvia

dbh4 0.95*** 0.99*** −0.12 0.57*** 0.03

h4 0.97*** −0.13 0.53*** −0.02
vi4 −0.14 0.56*** 0.00

BBR3—date 2015/04/22 −0.18 −0.03
BSet4—date 2016/09/15 0.03

Šašaičiai. western Lithuania
dbh4 0.90*** 0.96*** 0.46* −0.26 0.59**

h4 0.93*** 0.51* −0.26 0.54**

vi4 0.46* −0.23 0.58**

BBR4—date 2017/04/27 −0.22 0.28

BSet4—date 2017/09/16 −0.43*
Anykščiai. eastern Lithuania Date 2010/04/14 Date 2010/04/07

dbh3 0.89*** 0.98*** 0.30 0.36 0.31 0.07

h3 0.93*** 0.42* 0.50* 0.42* −0.09
vi3 0.38 0.44* 0.34 −0.006
BBR4—date 2017/04/14 0.96*** −0.09 −0.05
BBR4—date 2017/04/28 0.95*** 0.93*** −0.19 0.03

BSet4—date 2017/09/15 −0.09 −0.17 −0.23
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genotypic component of clonal variation in boreo-nemoral
climates in Northern Europe [33–35]. We have shown that
both bud burst and bud set have a significant effect on early
growth of poplars in the Baltic Sea Region. The high herita-
bility of phenology traits enables an early selection of locally
adapted poplar clones with sufficient growth. We suggest
three major breeding zones for poplar clones according to
the pattern of the genotype-by-environment interactions of
volume index and phenology in the Baltic Sea Region.

Phenotypic and genotypic variations

Considerable phenotypic and genotypic variation in growth
and adaptive traits characterized the tested poplar material.
We found that tree growth correlated significantly with spring
or autumn phenology in all Baltic trials and in one trial in
central Sweden at Bodarna. Significant negative correlation
between early spring phenology and growth, measured as life-
time increment of stem diameter at breast height, was also
reported by Richards et al. [36] who studied variation in the
timing of leaf phenology at both ends of two growing seasons
in a 14–15 years old poplar trial close to Bodarna in central
Sweden. Although observations of bud set were not available
for our Swedish trials, the significant effect of other leaf phe-
nology traits on tree growth, such as leaf senescence and au-
tumn leaf coloring, indicate that bud set may also have a
significant effect on poplar growth in Swedish climates [37].

Clones with their origin from breeding programs for
Central Europe, which were tested only in Šašaičiai and
Anykščiai, showed mismatch to local growing conditions in
the Lithuanian climate. For example, many of the P. nigra ×
P. deltoides (N×D) hybrids with poor growth had late bud
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burst and late bud set compared to the trial means (Fig. 4).
These observations are in accordance with Olson et al. [38]
who showed that trees adapted to southern latitudes needed a
greater temperature sum accumulation before bud flush than
trees adapted to northern latitudes. The hybrids between
P. maximowiczii × P. trichocarpa (M×T) showed better ad-
aptation to the climate in our southernmost trials in the Baltic
Sea Region. The M×T hybrids were characterized by earlier
bud burst and a few days later bud set compared to the trial
mean, which resulted in sufficient growth of these hybrids in
southernmost trials (Anykščiai, Šašaičiai, Arlösa) in the cur-
rent study. Our results are in concordance with a study from a
geographically close location in northern Poland (N 54° 4′
26″, E 20° 30′ 4″), where “OP42” planted at similar spatial
density as in our study, had significantly higher 6th-year bio-
mass than N×D hybrids from southern and central Europe
[39].

However, different strategies for growth rhythmmay result
in sufficient growth. For example, at Ludza, the clones with

intermediate bud set (i.e., the clonal values not significantly
different from the trial mean), such as the provenance hybrids
within P. trichocarpa (T×TSLU), “26.1” and “23.4”, were
among the top-performing clones as well as those with rela-
tively late bud set ( e.g., T×D hybrids; S5). However, the short
testing period (4 years) without early autumn frosts might
have been favorable for the hybrids with late bud set (M×T,
T×TREF, T×D, and P. tremula × P. tremuloides; S5). In addi-
tion, we might have missed out some portion of variability in
bud set as the majority of clones had reached final stages of
growth cessation at the time of inventory. This, however,
would not significantly affect the main conclusions from this
work. Despite relatively late inventories of bud set in the
Baltic trials, the genotypic variation in bud set between clones
was considerably higher than the genotypic variation in bud
burst and growth. Furthermore, the relatively high residual
variance component σe

2 = 59.4% for bud set reflects the large
effect of environmental cues, e.g., autumn temperatures, on
this phenology trait in Ludza (Table 5). Therefore, clones with

Table 7 Type B genotypic
correlations (rGxy) of BLUPs for
growth and adaptive traits
between pairs of locations. Non-
significant correlations indicate a
genotype-by-environment inter-
action. The number after the ab-
breviations denotes age of the
trees at the time of inventory

Trial 1 Trial 2 Number of common
clones, N

rGxy p

Volume index, vi
Arlösa, vi4 Bodarna, vi7 27 0.80 <0.0001

Arlösa, vi4 Tierp, vi4 27 0.66 <0.005

Bodarna, vi7 Tierp, vi4 28 0.51 Ns

Arlösa, vi4 Ludza, vi4 18 0.43 Ns

Bodarna, vi7 Ludza, vi4 14 0.68 Ns

Anykščiai, vi3 Ludza, vi4 11 −0.46 Ns

Šašaičiai, vi4 Ludza, vi4 11 0.25 Ns

Anykščiai, vi3 Šašaičiai, vi3 25 0.40 Ns

Bud burst (date)

Arlösa, BBR4 (2010/04/27) Bodarna, BBR10
(2019/04/26)

27 0.68 <0.001

Arlösa, BBR4 (2010/04/27) Tierp, BBR2 (2010/04/15) 25 0.36 Ns

Bodarna, BBR10
(2019/04/26)

Tierp, BBR2 (2010/04/15) 28 0.50 Ns

Arlösa, BBR4 (2010/04/27) Ludza, BBR3 (2015/04/22) 18 0.61 Ns

Bodarna, BBR10
(2019/04/26)

Ludza, BBR3 (2015/04/22) 14 0.59 Ns

Anykščiai, BBR4

(2017/04/28)
Ludza, BBR3 (2015/04/22) 11 0.82 Ns

Šašaičiai, BBR4

(2017/04/27)
Ludza, BBR3 (2015/04/22) 11 0.82 <0.05

Anykščiai, BBR4

(2017/04/28)
Šašaičiai, BBR4

(2017/04/27)
25 0.98 <0.0001

Bud set (date)

Anykščiai, BSet4
(2017/09/15)

Ludza, BSet4 (2016/09/15) 11 0.82 Ns

Šašaičiai, BSet4
(2017/09/16)

Ludza, BSet4 (2016/09/15) 11 0.87 <0.05

Anykščiai, BSet4
(2017/09/15)

Šašaičiai, BSet4
(2017/09/16)

25 0.92 <0.0001
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too late bud set in relation to the trial mean do not have im-
proved growth compared to the clones with intermediate bud
set and should not be planted in commercial plantations.

Provenance hybrids of P. trichocarpa (T×TSLU), such as
clones “23.4” and “26.1,” which were characterized by inter-
mediate bud burst and intermediate bud set compared to the
trial means and reference clones (S2–S7), had superior growth
in the northernmost trials at Tierp and Bodarna, central

Sweden and at Ludza in eastern Latvia. These provenance
hybrids show optimal adaptation to a relatively short growing
season at latitudes around 60° N by an optimal use of growing
season that is 177–210 days long with a sum of growing
degree days between 1471 and 1787 at the base temperature
of 5°C.

The adaptability of clones to grow in different environ-
ments is not necessarily defined only by their phenology
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[40] but also by their physiological and morphological param-
eters [41], which were not examined here. For example, the
T×D hybrid “69.037/2,” a clone with relatively late bud burst
and bud set, allocated relatively more biomass to roots than
wild P. trichocarpa clones from continental parts of Canada
in Prince George in an outdoors pot experiment in Central
Sweden, where plant responses to water and nutrient stress were
studied [42]. The authors predicted the suitability of this partic-
ular clone for sandy soils, as was the case at our Ludza trial in
eastern Latvia and at Arlösa in southern Sweden (Table 1; S1).

The heritability estimates and coefficient of genotypic var-
iation are used in breeding for comparison of genetic variation
in traits and to evaluate the possibility for selection in different
environments [43]. The heritability estimates for bud burst
and bud set in the current study were higher than those for
growth traits, which is in accordance with earlier studies on
growth and adaptation of poplar hybrids [18, 26, 36, 37, 44].
The importance of spring phenology for the fitness of the trees
in the Lithuanian climate is reported also by Pliura et al. [18]
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with higher broad-sense heritabilities for spring phenology
than for autumn leaf senescence.

Genotype-by-environment interactions

Evaluation of clonal trials with poplars and selection of clones
that are adapted to local climates is a prerequisite for commer-
cial deployment [41, 45–48], which aims to support local
markets with woody biomass [49]. Genotype-by-
environment interactions in biomass growth and phenology
of poplar clones [16, 17, 48, 50–52] are important information
for optimal development of adapted clonal material to specific
growth environments. Our trials had variable climatic and
edaphic conditions, indicating, as in earlier studies, that in
addition to proper adaptation to local climate, rainfall during
the actual growing season and soil type have significant im-
pact on growth of poplars [53, 54].

Pairwise comparison of the six trials in different climates in
the Baltic Sea region identified significant G×E interactions.
These interactions were illustrated here as change in rankings
of poplar clones that were common to pairs of trials (Table 7)
and to all six trials (Fig. 6). Two main breeding strategies are
used to deal with G×E interactions in breeding programs: (1)
selection of clones with stable growth and broad adaptation
across the environments and (2) selection of clones that are
well adapted to each climatic region [55, 56]. Cost-efficient
cultivation of woody crops requires maximized growth and
survival of planted material per area in combination with high
value of the harvested biomass for local industries.
Consequently, matching clones with specific climatic regions
would maximize yield of this woody crop in northern Europe
with variable climatic zones along the latitude cline.
Evaluation of clonal trials, as here, gives a hint about clones
that should proceed to final evaluation in yield trials. Based on

the growth response of individual clones, we could identify
three distinct breeding zones.

The largest breeding zone consists of the areas in southern
Sweden, central Sweden (up to the Bodarna trial), Latvia and
western Lithuania, where intermediate bud burst combined
with intermediate bud set results in better growth (breeding
zone 1). The southernmost region in this study—eastern
Lithuania (Anykščiai)—represents a separate breeding zone
for poplars (breeding zone 2). In this region, which is the
northern margin of the natural distribution of P. nigra, clones
with relatively early bud burst and intermediate bud set were
superior in terms of volume growth. The separation of eastern
Lithuania as a different breeding zone is a contrasting result to
our previous study, which showed consistent ranking of pop-
lar clones in the Baltic Sea Region by using data on leaf
phenology and ambient air temperature [57]. All the trials
analyzed in the last-mentioned study, belong to the breeding
zone 1 identified in the current study, except the trial at
Anykščiai. The difference between the two studies is that cur-
rent study (1) uses also growth in addition to phenology as a
criterion to rank poplar clones and (2) the number of analyzed
clones is higher in the pairs of trials in current study, compared
to the number of analyzed clones in all six trials analyzed by
Vico et al. [57]. In addition, (3) the type B genotypic correla-
tions, as a method to compare clonal rankings in current study,
take into account also different heritabilities of traits and dif-
ferent harmonic means of replications per clone in pairs of
trials. As rankings of clones in Anykščiai and Ludza regarding
both phenology and growth were not correlated (Table 7), we
suggest Anykščiai region (eastern Lithuania) as a separate
breeding zone. Finally, the northernmost region of central
Sweden, Tierp, outlines as a third breeding zone, where com-
bination of intermediate bud burst and early bud set in relation
to the trial means resulted in better growth (breeding zone 3).
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Breeding goals for the North European market

In Sweden, the production systems with fast-growing trees are
designed to deliver wood in dimensions that are suitable for
the existing pulping industry. Populus hybrids reach high
growth rate in terms of mean annual increment (MAI = 15
m3 ha−1) at a plantation age of 9 to 10 years in southern
Sweden at 55° N [58] and 6 m3 ha−1 in Northern Sweden at
latitude 63° N [59]. MAI continues to increase after this age,
and culminates with MAI = 20–30 m3 ha−1 year−1 after 20
years in Southern Sweden [3–5, 60]. During the rotation time
of 20 years, the dimensions of poplars reach suitable sizes to
produce assortments for diverse markets: pulpwood for pulp
industry or biorefineries at first hand and secondly, tops and
branches for bioenergy. In the Baltic States, the industry that
manufactures wood fibreboards prevails. Poplar wood has al-
so potential as a feedstock for production of liquid biofuels
[61]. Recent advances in bioenergy research in Scandinavia
are also investigating possibilities to use woody biomass for
production of ethanol [62]. Innovative processes for a pulp
industry are developing, which aim at more efficient biomass
fractionation for future biorefineries to produce lignin oils and
textile fiber from fast-growing deciduous trees [63, 64]. Fast-
growing poplars would be attractive as raw material for all of
these industries. A modeling study suggests that an increased
area planted with fast-growing Populus species in medium
rotations would improve both volume production and profit-
ability to the same or higher level as the cultivation of long-
rotation Norway spruce (Picea abies (L.) Karst.) in Sweden
[65]. Regardless of the end-use of poplar as raw material, a
future breeding program for this fast-growing woody crop
needs to focus on high production capacity of stemwood.
Our study confirms earlier findings that bud burst and bud
set are likely controlled by different genes, as these adaptive
traits within our trials were not correlated [36]. This finding
paves a reliable ground for breeding poplars for regions with
different photoperiods. Our investigation contributes to the
emergence of a specific breeding program for the Baltic Sea
Region by identifying large genotypic variation in growth and
phenology traits in available material in local climates.
Several new clones, identified in the current study, are suitable
for commercial deployment in colder climates in central
Sweden and in the Baltic States. Furthermore, the current
study found some evidence that in addition to the major com-
mercial hybrid poplar clone “OP42” in southern Sweden [66],
there are several alternative clones suitable for establishment
of large-scale plantations in different climates in Sweden and
in the Baltic countries.

Future studies should follow up if the preliminary division
into three different breeding zones—(1) southern and central
Sweden, Latvia, western Lithuania, (2) eastern Lithuania, and
(3) coastal areas of central Sweden (Tierp)—is correct at later
stages of this woody crop. As clonal site suitability may also

vary with rotation length [67], this evaluation after 4 years’
growth needs to be complemented with growth assessments at
later stages of these trials. Several earlier studies have shown,
however, that top clones according to initial growth were also
the top clones at greater age, although the ranking of initial top
clones changed [45, 50, 68]. On an area basis, the changes in
relative clonal rankings in stem volume growth and survival
play a significant role in total wood production per planted
area. Hence, this evaluation of single-tree plots needs to be
complemented by evaluation of yield trials with monoclonal
plots, as estimates of volume yields from such plots reflect
better the biomass production potential on an area basis and
the magnitude of difference in volume production between
different clones [69].

To conclude, commercial deployment of poplars re-
quires clones that effectively use the short growing sea-
son at northern latitudes. Relocation of clones with
southern origin to northern latitudes does not result in
effective use of the growing season in the north owing
to the mismatch of both spring and autumn phenology
of these clones at northern latitudes. Relatively late bud
burst and bud set of genotypes of southern origin do
not result in better volume growth in the north com-
pared to poplar hybrids with intermediate/early bud
burst and bud set matched for northern climate by
breeding.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12155-021-10262-8.
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