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Abstract
1. Intensive fertilization of young spruce forest plantations (i.e. ‘nutrient optimiza-

tion’) has the potential to meet increasing demands for carbon sequestration and 
biomass production from boreal forests. However, its effects on biodiversity, other 
than the homogenization of ground- layer plant communities, are widely unknown.

2. We sampled ground beetles (Coleoptera: Carabidae) in young spruce forest plan-
tations of southern Sweden, within a large- scale, replicated ecological experiment 
initiated in 2012, where half of the forest stands were fertilized every second year. 
We assessed multi- scale effects of forest fertilization on ground beetle diversity 
and community assembly, 4 years after commencement of the experiment.

3. We found that nutrient optimization had negative effects on ground beetle diver-
sity at multiple spatial scales, despite having negligible effects on species richness. 
At the local scale, ground beetle species had lower variation in body size at fer-
tilized sites, resulting in within- site functional homogenization. At the landscape 
scale, fertilized sites, with higher basal area and lower bilberry cover, filtered 
carabid traits composition to larger body sizes, generalist predators and summer 
breeding species.

4. Synthesis and applications. Fertilization of young spruce plantations is a strong 
filter for ground beetle assemblages, leading to functionally homogeneous com-
munities in the short term, without changes in species richness. The large- scale 
functional impoverishment of carabid communities because of fertilization may 
have negative consequences on system resilience and on ecosystem service pro-
vision by this functionally diverse group. Large- scale establishment of nutrient 
optimization threatens ground beetle diversity in young conifer plantations, un-
derlining the risks of introducing more intensive management schemes in already 
heavily managed forest landscapes.
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1  | INTRODUC TION

Intensive forest management, including forest fertilization, has been 
proposed as a way of fulfilling increasing demands of fossil fuel re-
placement with woody biomass while contributing to increased car-
bon sequestration for climate change mitigation (Rytter et al., 2016). 
Nitrogen fertilization of mature boreal conifer stands is a common 
practice within intensive forest management, as a method for in-
creasing wood production (Hedwall et al., 2014), overcoming the 
strong nitrogen limitation of boreal forests (Tamm, 1991). However, 
a more intensive form of forest fertilization (i.e. ‘nutrient optimiza-
tion’, Bergh et al., 2008) has been proposed for implementation in 
10%– 15% of the productive forest land comprising young Norway 
spruce (Picea abies (L.) Karst.) plantations in Sweden (Larsson et al., 
2009). Although nutrient optimization has the potential to meet the 
increasing demands for carbon sequestration and biomass produc-
tion, it is watched with concern for its potential negative effects on 
the environment (Lindkvist et al., 2011).

Together with risks of nutrient leakage and acidification, the 
main concern regarding forest fertilization has focused on its nega-
tive effects on biodiversity (Hedwall et al., 2014). So far, the effects 
of boreal forest fertilization have focused on the response of un-
derstorey vegetation, including shifts in community structure and 
biodiversity loss. Long- term (>15 years) mature forest fertilization 
reduces cover of dwarf shrubs, lichen and mosses, favouring grasses 
and nitrophilous herbs (reviewed in Sullivan & Sullivan, 2018). Short- 
term nutrient optimization in young spruce plantations has similar 
negative effects to long- term mature forest fertilization (Hedwall 
et al., 2010, 2011).

However, the effect of forest fertilization on community struc-
ture and diversity of other trophic levels has received very little 
attention (Sullivan & Sullivan, 2018), which is especially true for re-
search on community assembly mechanism of secondary consum-
ers (Nijssen et al., 2017). Furthermore, given the large- scale focus 
of nutrient optimization, it is necessary to evaluate the mechanistic 
basis of fertilization effects at multiple spatial scales (i.e. from within 
stands to landscapes), linking local and regional effects on diver-
sity through the study of variation in community structure (Socolar 
et al., 2016). The latter is especially important because short- term 
nutrient optimization causes plant community structure to become 
more similar (i.e. biotic homogenization) between forest stands 
(Hedwall et al., 2011), which may filter local consumer communities 
towards assemblages dominated with specific trait syndromes and 
with lower variation in the number of ecosystem functions provided 
(i.e. functional homogenization; Mori et al., 2018).

In this study, we sampled ground beetles (Coleoptera: Carabidae) 
to evaluate the relative importance of local and landscape environ-
mental gradients shaped by nutrient optimization in driving con-
sumer community assembly. Ground beetles are abundant, widely 
distributed and they are important contributors to pest suppression 
ecosystem services (Riddick, 2008). Moreover, carabids are func-
tionally diverse, with traits related to ecosystem functioning and 
response to disturbance (Fountain- Jones et al., 2015), and as such, 

they have been extensively used as bioindicators (Rainio & Niemelä, 
2003), with frequent application to forest management (Niemelä 
et al., 2007). The main objective of our work was to assess how young 
forest fertilization affects biodiversity and community assembly of 
ground beetles in the short term. Specifically, we addressed three 
main questions. First, given the short treatment time, did nutrient 
optimization affect taxonomic and functional diversity of ground 
beetles? Second, does carabid community structure suffer from ho-
mogenization at local and landscape scales, mirroring fertilization 
effects on ground- layer vegetation? Third, does forest fertilization 
filter carabid species traits towards functional homogenization, and 
is its effect dependent on spatial scale?

2  | MATERIAL S AND METHODS

2.1 | Study area and experimental design

The study area is situated within the Asa Experimental Forest, south-
ern Sweden (57°10′N, 14°47′E; Figure S1), in the hemiboreal zone 
(Ahti et al., 1968). The experimental forest comprises 6,000 ha of 
spruce- dominated forest in different age classes. All study sites were 
located in young- middle- aged (average ± SD: 27.78 ± 4.51 years) 
spruce- dominated stands with a field layer dominated by Vaccinium 
dwarf shrubs and grasses, and a bottom layer with mosses. Prior to 
the experiment, all sites were subjected to even- aged forest man-
agement, based on clear- cut followed by soil scarification, planting 
and pre- commercial thinning, 5 years after establishment (Roberge 
et al., 2020). The study includes 21 stands (range: 1.14– 21.40 ha in 
size) of which 10 were managed according to an intensive fertiliza-
tion regime and 11 were untreated control stands. Stands are sep-
arated by at least 276 meters (average ± SD: 1,459 ± 708 m) and 
geographically interspersed (Figure S1). The first fertilization took 
place in 2012, with subsequent fertilizations every second year. 
The total nitrogen, applied as NH4NO3, added from 2012 to 2016, 
ranged from 125 to 150 kg ha−1 year−1. Phosphorous, potassium, 
calcium, magnesium, sulphur and boron were also added in variable 
amounts depending on nutrient concentrations from needle samples 
collected in the autumn before fertilization.

2.2 | Sampling and carabid traits

Ground beetles were sampled using 10 pitfall traps in each of the 21 
sites, during three 6- week periods from mid- May to mid- September, 
2016, covering most of the activity season in the region. Traps con-
sisted of a 150- ml plastic container (65 mm in diameter) buried so 
that the edge was in level with the ground, and filled with 70% pro-
pylene glycol and a few drops of detergent. We placed a metal lid 
3– 5 cm above each trap to prevent rainwater from flooding the traps. 
In each site, traps were arranged with one trap at the site centroid, 
and the remainder in three transects with three traps each, heading 
north, southwest and southeast from the centre and separated by 
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15 m from the nearest trap. Due to the destruction of 58 samples 
by wild boar activity, we standardized the sampling to six traps per 
site with constant spatial location across the three sampling peri-
ods (Appendix S1). We pooled ground beetle abundance from three 
periods (local scale analysis), and from three periods and six traps 
(landscape- scale analysis). Carabid specimens were identified by an 
expert taxonomist. Carabid traits related to dispersal, resource ac-
quisition, phenology, habitat affinity and life history were obtained 
from the literature (Table 1). A detailed account of carabid traits for 
this study plus sources of information are provided in Table S1 and 
Appendix S8.

2.3 | Environmental data

Data on forest structure and composition were sampled in 2017, 
measuring diameter, count and species identity of all trees with a 
stem with diameter greater than 2 cm, within ten 100 m2 circular 
plots centred on pit fall trap location (Figure S2). We established 
three stem diameter classes: small (from minimum to median diame-
ter, 2– 9.8 cm, N = 2,463 stems), medium (from median to 3rd quartile 
diameter, 9.9– 12.8 cm, N = 1,188 stems) and large (from 3rd quartile 
to maximum diameter, 12.9– 42.3 cm, N = 1,205 stems). For each plot 
within sites, we calculated 24 variables based on field measurements 
on forest structure and composition (Table S2).

Quantitative data on ground vegetation were sampled in 2016, 
scoring relative abundances of all vascular plants and bryophytes 
using a modified version of the point intercept method (Appendix S2; 
Jonasson, 1988) on three 30 m transects per site (Figure S2). We 
obtained seven variables from the quantitative sampling of ground 
vegetation for each plot within sites (Table S2). Additionally, 
Ellenberg indicator values (Ellenberg & Leuschner, 2010) for light 

(L), temperature (T), moisture (F), pH (R) and nitrogen (N) were cal-
culated for each plot as community- weighted means. Qualitative 
data on ground vegetation were sampled on 2016, identifying all 
ground- layer species within four 1- m2 quadrats per site (Figure S2). 
Species richness of all species, dwarf shrubs, grasses, mosses and 
herbs was assessed as a measure of ground- layer community struc-
ture (Table S2).

2.4 | Data analysis

Statistical analyses were performed in R Version 3.6.0 (R 
Development Core Team, 2019). We assessed differences in carabid 
total (γ) diversity between fertilized and control sites by the use of 
rarefaction curves. Carabid total species richness and Simpson di-
versity were compared among treatments by rarefaction/extrapola-
tion curves based on equal sample size per habitat, in the r- package 
iNEXT (Hsieh et al., 2020). We compared total functional diversity 
among treatments by sample- based rarefaction curves of Rao quad-
ratic diversity (Rao, 1982) calculated from data on relative abun-
dances (Ricotta et al., 2012).

We used additive apportionment of species richness, Gini– 
Simpson index (Lande, 1996) and Rao quadratic diversity (APQE; 
Pavoine & Dolédec, 2005) to quantify changes in taxonomic and 
functional diversity across hierarchical scales of trap within site 
(βtrap), and site within landscape (βsite) for each treatment. The appor-
tionment of diversity allows us to explore the existence of biotic ho-
mogenization at different spatial scales when assessing β- diversity 
differences between treatments. Significances of diversity com-
ponents αtrap (within- trap diversity), βtrap and βsite were assessed by 
comparison with appropriate null matrices depending on spatial scale 
(Appendix S3). Apportionment of species richness and Gini– Simpson 

Trait Type Description

Body size Quantitative Relative body size in reference to the largest 
species, scored as 1.0

Wing development Quantitative Brachypterous (0), dimorphic (0.5), winged (1)

Food of adult Nominal Specialist predator, generalist predator, 
omnivorous, herbivorous

Eye– head ratio Ordinal Ratio eye– head surface: 1 (<10%), 2 (10%– 
25%), 3 (25%– 50%)

Start of activity season Ordinal First catch on June– July (1), July– August (2), 
August– September (3)

Mean activity season Ordinal Catch on one, two or three sampling periods

Forest specialization Nominal Stenotopic, generalist on woody habitats, 
eurytopic

Moisture requirements Ordinal From 1– 6: xeric, fairly dry, Mesic, Mesic- 
humid, moist, very wet

Light requirements Quantitative Low (0), moderate (0.5), high (1)

Breeding season Nominal Spring, Summer, Autumn

Overwintering stage Nominal Adult, mostly larva

Life cycle duration Nominal One or two years

TA B L E  1   Summary of carabid traits 
included in this study. A detailed account 
of carabid traits in Table S1, with data 
sources in Appendix S8
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index were implemented in the r- package vEgaN (Oksanen et al., 
2019). APQE was conducted using R- codes adapted from those 
provided as Supporting Information in Pavoine et al. (2016). We as-
sessed significance among diversity components as well as among 
total diversity of different treatments using z- tests on confidence 
interval overlap, following Schenker and Gentleman (2001).

We analysed the multi- scale environmental filtering of ground 
beetle species traits after forest fertilization by applying the meth-
odology developed by Pavoine et al. (2011), in which species traits 
are connected with the environment, and environment is connected 
with spatial variation by an extension of the RLQ ordination analysis 
(Dolédec et al., 1996). This analysis uses three data matrices: matrix 
R (sites × environment), matrix L (sites × species) and matrix Q (spe-
cies × traits), identifying main co- structures between traits and en-
vironmental variables mediated by species abundances (Thioulouse 
et al., 2018). In the current application, matrices R and L contain 
environmental factors and species abundances per trap within site 
(local RLQ) or forest site (landscape RLQ), depending on the scale of 
RLQ analysis.

We followed the procedures in Declerck et al. (2011), to obtain 
spatial predictors for geographically nested designs. The landscape 
scale was represented by a matrix filled with Moran's eigenvector 
maps (MEM; Dray et al., 2006), and by an inter- site spatial compo-
nent, consisting of a matrix of dummy variables corresponding to 
forest site identity matrix (ID). The local scale was represented by a 
within- site spatial component consisting of a staggered matrix filled 
with MEM (more details on the computation of spatial matrices in 
Appendix S4). Matrix R is defined by the juxtaposition of a matrix 
E of standardized environmental variables (centred by the mean, 
scaled by SD and Box- Cox transformed), a matrix S of MEM, a matrix 
ID for the local RLQ and a matrix T (dummy variable for landscape- 
scale treatment) for the landscape RLQ.

We selected environmental and spatial variables that maximize 
the sum of trait– environment correlation (correlation L; Thioulouse 
et al., 2018) for the first two RLQ axes of environmental and spatial 
RLQs with all carabid traits considered. For every possible variable 
combination, we used a modification of procedures from Bernhardt- 
Römermann et al. (2008) to detect the optimal variable combination 
in E and S matrices (details in Appendix S5). After variable selec-
tion, we selected carabid traits by the application of the multivariate 
version of the fourth- corner analysis (SRLQ), based on the sum of all 
eigenvalues of environmental RLQs for each trait separately (as in 
Pavoine et al., 2011). We used null model 4 from Dray and Legendre 
(2008) for testing SRLQ significance, that is, permuting columns of 
matrix L. Significance under column permutation allows us to se-
lect traits linked to species distribution among traps or forest sites 
(Peres- Neto et al., 2017). Significance of RLQs was assessed by the 
use of both column (model 4) and row (model 2) permutation tests, 
considering a trait– environment link significant if p values from both 
tests are less than the nominal α level of 0.05 (ter Braak et al., 2012).

We partitioned the variation in environmental variables (matrix E) 
into their spatial and treatment components by redundancy analysis, 
and evaluated the contribution of components to trait– environment 

relationship following a modification of Pavoine et al.'s (2011) pro-
tocol (Appendix S6). We identified species clusters within RLQ or-
dination space (‘trait syndromes’, Appendix S7) following Kleyer 
et al. (2012). Analyses of the trait– environment relationship were 
implemented in r- package adE4 (Dray et al., 2020).

3  | RESULTS

We collected 1,154 individuals of 25 ground beetle species from 
8 fertilized (48 traps) and 10 control (60 traps) sites (Table S3). 
Fertilized forest sites were characterized by higher spruce basal area 
(corresponding to an average 7% increase in spruce canopy cover, 
following models from Korhonen et al., 2007), higher herb species 
richness and higher nitrogen indicator values. Control sites had 
much higher dwarf shrub cover, especially for heather and bilberry, 
and higher total moss cover, with Hylocomium splendens dominating 
on the basal layer (Table S2).

Total carabid species richness was not significantly different be-
tween control and fertilized sites (z = 0.71, p = 0.869). However, 
both Simpson (z = 5.35, p = 9e- 08) and functional diversity (z = 8.01, 
p < 1e- 15) were 1.5 and 1.2 times, respectively, higher in control 
compared with fertilized forest sites (Figure 1).

Additive apportionment of carabid species richness revealed 
β- diversity among sites as the main contributor to total species 
richness for both treatments, with no difference among diversity 
components between treatments (Figure 2a). Total Gini– Simpson 
index and Rao's quadratic entropy were mostly determined by α- 
diversity (Figure 2b,c). Control forest sites had higher βtrap than fer-
tilized sites (Gini– Simpson index: z = 2.35, p = 0.019; Rao's Q index: 
z = 2.51, p = 0.012), with this difference accounting for the higher 
site and landscape Simpson and functional diversities of control 
sites. However, community variation among traps within sites (βtrap) 
was not different from the random expectation for all partitions, in-
dicating lack of species aggregation nor differentiation within forest 
sites (Table 2).

We found a single trait (body size) linked with species distribu-
tions at the local scale (Table S4). The main contributor to ground 
beetle community assembly at this scale was the inter- site spatial 
component (matrix ID), which was the only environmental fac-
tor correlated with body size distribution among traps within sites 
(under both column and row permutation schemes, Table 3). Spatially 
structured environmental variation within sites accounted for a very 
small portion of trait– environment correlation (Table 3). Carabid 
functional groups were distributed along the first RLQ axis, with a 
higher variety of carabid size- groups distributed on control sites, and 
the largest size- groups mainly related to fertilized sites (Figure 3a).

At the landscape scale, we found three carabid traits correlated 
with environmental variables: body size, breeding season and food 
of adult (Table S4). There was a significant relationship between 
traits and environmental (spatial and environmental variables) and 
fertilization factors at this scale (Table 3). Environmental effects 
on community assembly were mediated by fertilization and forest 
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site geographical location (Figures S3 and S4). Fertilized sites had 
higher basal area and lower bilberry cover, filtering carabid traits 
composition to larger body sizes, generalist predation and summer 
breeding species (Figure 3b). Spruce stem density, related with 
pre- commercial thinning intensity, reinforced basal area effects on 
community assembly (Figure 3b; Table S3). Control sites contained 
higher diversity of body sizes, feeding guilds and breeding seasons 
for carabid species (Figure 3b; Table S5).

4  | DISCUSSION

Our study shows that intensive forest fertilization of young spruce 
plantations (i.e. nutrient optimization) has negative short- term ef-
fects on ground beetle diversity, revealing mechanisms of second-
ary consumer community assembly driven by forest fertilization. 
Nutrient optimization increases spruce basal area, which decreases 

light availability through increased canopy cover. Lower sunlight ir-
radiation was found as the main filter of ground beetle community 
assembly, either directly, selecting species with larger body size, or 
indirectly, by changing understorey plant community structure. By 
filtering body size to larger species, fertilization causes local- scale 
functional homogenization, which, in turn, reduces functional diver-
sity at the landscape scale.

We found that short- term nutrient optimization had negative 
effects on carabid site (αsite) and landscape (γ) abundance- weighted 
and functional diversities, a pattern consistent with the reduction 
in carabid diversity related to canopy closure (Koivula et al., 2002; 
Spake et al., 2016). Canopy closure has also been related to lower 
variation in carabid community structure among traps within forest 
sites (βtrap), with biotic homogenization of closed- canopy forests 
ascribed to lower levels of environmental heterogeneity (Niemelä 
et al., 1996). Our results show a similar pattern, with βtrap values in 
both control and fertilized sites that did not deviate from the random 

F I G U R E  1   Rarefaction (solid line) and extrapolation (dashed line) plots with 95% confidence intervals (shaded areas) comparing (a) ground 
beetle species richness and (b) ground beetle Simpson diversity, and (c) effective functional diversity in fertilized and control forest sites. 
Reference (observed) samples are indicated by solid black dots. The numbers in parentheses show the x-  and y- axis coordinates for each 
point

F I G U R E  2   Mean α-  and β- diversity values (± SE) for (a) carabid species richness, (b) carabid Gini– Simpson index and (c) carabid Rao's Q 
index. Diversity component αTrap stands for average trap diversity, βTrap for diversity among traps, within sites, and βSite for diversity among 
forest sites. Different lowercase letters indicate significant differences in diversity components between each treatment
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expectation, suggesting environmental homogeneity within sites 
typical of dense plantation forests (Puetmann et al., 2009). However, 
fertilized sites had lower βtrap values than control sites, indicating 
even lower values for environmental heterogeneity within fertilized 
sites, which may be explained by levelled environmental conditions 
because of denser canopy cover (Nijssen et al., 2017), and increased 

spatial homogeneity of understorey vegetation following fertiliza-
tion (Gilliam, 2006).

Nutrient optimization did not affect carabid species richness 
nor increased homogenization of community composition (i.e. 
incidence- based) in our system. This result is driven by the typical 
carabid species- abundance distribution in closed- canopy boreal 
forests, with very few dominant species, and absence of species of 
intermediate abundance (Niemelä, 1993). In our sites, forest fertil-
ization mainly affected relative abundance of dominant species by 
trait filtering, driving functional homogenization by the selection of 
a very limited assortment of trait values.

At the local scale (i.e. within sites), body size was filtered by 
landscape- scale processes, with fertilized sites selecting for larger 
ground beetles. This pattern of ground beetle community assem-
bly has been linked to predictions from the habitat templet theory 
(Southwood, 1977, 1988), in which species in predictable, adverse 
and spatially homogeneous habitats (e.g. fertilized forests) tend to be 
larger, and to have lower fecundity and lower dispersal abilities (Ribera 
et al., 2001). The carabid species that were dominant on fertilized sites 
in our system comply with predictions from the habitat template the-
ory: they are large (Figure 3a, group E: average size = 30 mm, Carabus 
glabratus and C. violaceus; group D: average size = 24.5 mm, C. hort-
ensis and C. nemoralis), have lower fecundity (Grüm, 1984) and are 
brachypterous with low dispersal abilities (Brouwers & Nweton, 2009). 
Furthermore, large carabid species from our sites are mainly nocturnal 
in Central Europe (Lindroth, 1992), so they may select closed- canopy 
forests because of lower detectability by predators, or because their 
lower surface– volume ratio may allow them to thrive in habitats with 
lower sunlight irradiation (Guevara & Avilés, 2013).

At the landscape scale, environmental gradients of basal 
area and bilberry cover structured by nutrient optimization, to-
gether with spatially structured gradients of spruce stem density 
and bilberry cover, act as dominant filters, organizing Carabidae 
community assembly. The first RLQ axis, explaining most of the 
variance in the environmental and trait data, followed a gradient 
of canopy cover, with fertilized sites associated with high total 
basal area (Figure 3b; Figure S3). At each extreme of the gradi-
ent in canopy cover, large, generalist predator species, breeding in 
summer (Figure 3b, Group B1) dominated in fertilized sites, while 
small, spring breeding omnivores (Figure 3b, Group D1) were most 
abundant in control sites. In between both extremes, other trait 
syndromes with greater trait diversity were mainly distributed in 
control sites, with larger species distributed also in fertilized sites 
(Figure 3b; Table S5). Cooler closed- canopy fertilized sites will fa-
vour the development of summer breeding species with overwin-
tering larvae, reducing the risk of desiccation while spring breeding 
species with overwintering adults will favour warmer temperatures 
in more open habitats for the rapid development of their larvae 
(Butterfield, 1997).

The second landscape RLQ axis followed a gradient of bil-
berry cover structured both spatially and by nutrient optimization 
(Figure 3b; Table S4). Autumn breeding predatory species were asso-
ciated with high bilberry cover in control sites (Figure 3b, groups A1, 

TA B L E  2   Hierarchical additive apportionment of species 
richness, Gini– Simpson index and Rao's Q index for carabid 
species. p values obtained by comparing observed values with the 
distribution of expected values taken from 999 randomizations. 
Bold type indicates significant results. Equivalent number of 
species and sites for Gini– Simpson index and APQE calculated 
following Pavoine et al. (2016)

Species richnessa  p valueb  Equivalent no

Fertilized

αtrap 4.146 (21%) 0.001L 4.146

βtrap 5.479 (27%) 0.980 5.479

βsite 10.375 (52%) 0.071H 10.375

γ 20 20

Control

αtrap 3.883 (18%) 0.001L 3.883

βtrap 6.117 (29%) 0.203 6.117

βsite 11.000 (52%) 0.001H 11.000

γ 21 21

Gini– Simpson indexa 

Fertilized

αtrap 0.609 (77%) 0.001L 2.557

βtrap 0.132 (16%) 0.354 1.507

βsite 0.068 (7%) 0.001H 1.262

γ 0.794 4.863

Control

αtrap 0.594 (69%) 0.001L 2.466

βtrap 0.213 (25%) 0.189 2.111

βsite 0.060 (6%) 0.047H 1.413

γ 0.864 7.357

Apportionment of quadratic entropy (APQE)a 

Fertilized

αtrap 0.316 (73%) 0.001L 1.461

βtrap 0.082 (19%) 0.312 1.135

βsite 0.035 (8%) 0.001H 1.062

γ 0.433 1.762

Control

αtrap 0.333 (65%) 0.001L 1.499

βtrap 0.137 (27%) 0.361 1.258

βsite 0.038 (8%) 0.019H 1.078

γ 0.508 2.033

aPercentage of total diversity for each component in brackets.
bSuperscripts L and H indicate diversity component lower and higher 
than expected by chance.
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A2), and herbivore ground beetles were mainly distributed on sites 
with very low bilberry cover (Figure 3b, groups E1, E2). Short- term 
forest fertilization reduces bilberry cover by increasing canopy cover 
(Hedwall et al., 2010). Autumn breeder species association with high 
bilberry cover in our results suggests an alternative strategy for cop-
ing with high temperatures, benefiting from shrub shading, as they in-
tergrade in phenology with summer breeder carabids in Scandinavia 
(Andersen & Hanssen, 2015). Reduction in bilberry cover from fertil-
ized sites is associated with large reductions in moss cover because 
of direct toxicity (Kellner, 1993). Moss cover and habitat openness 
favour epigaeic Collembola species (Salmon et al., 2014), which are 
the preferred prey item for small oligophages (Hengeveld, 1980), 
dominating in control sites. Conversely, sites with low bilberry cover 

had larger relative abundance of herbs and grasses, which may fa-
vour seed feeder ground beetles (Lundgren, 2009).

5  | CONCLUSIONS

Large- scale intensive fertilization of young spruce forest planta-
tions reduces ground beetle diversity at landscape scale through 
functional homogenization of local assemblages in the short term. 
This effect has high probability of being carried over time, as 
closed- canopy cover causes shifts in carabid functional composi-
tion, which are not alleviated by commercial thinning operations 
(Niemelä et al., 2007). Our results are especially relevant for boreal 

TA B L E  3   Results from RLQ ordination, depicting the association between environmental variables (E), spatial variation (S), site identity 
(ID) and treatment (T) with carabid traits at local (body size) and landscape (body size, food of adult and breeding season) scales

Site scale RLQ (among traps, 
within sites)

Observed inertia 1st 
axisa 

Observed 
inertia 2nd 
axisa 

Correlation L 1st 
axis (ratio)b 

Correlation L 2nd axis 
(ratio)b  p valuec 

All (E + S + T) 0.206 (100%) — 0.403 (0.511) — Mod2 = 0.001
Mod4 = 0.062

Environment (E) 0.173 (100%) — 0.382 (0.485) — Mod2 = 0.909
Mod4 = 0.037

Pure environment (E│S + ID) 0.010 (100%) — 0.338 (0.428) — Mod2 = 0.735
Mod4 = 0.188

Space (S) 0.164 (100%) — 0.378 (0.479) — Mod2 = 0.849
Mod4 = 0.538

Site Id (ID) 0.173 (100%) — 0.403 (0.211) — Mod2 = 0.001
Mod4 = 0.019

Pure spatial (S + ID│E) 0.189 (100%) — 0.375 (0.476) — Mod2 = 0.001
Mod4 = 0.079

Spatially structured 
environment (E ∩ S + ID)

1.8e- 05 (100%) — 0.387 (0.491) — Mod2 = 0.001
Mod4 = 0.002

Landscape- scale RLQ 
(among sites)

Observed inertia 1st 
axisa 

Observed inertia 
2nd axisa 

Correlation L 1st 
axis (ratio)b 

Correlation L 2nd 
axis (ratio)b  p valuec 

All (E + S + T) 1.089 (92.11%) 0.044 (3.7%) 0.413 (0.760) 0.182 (0.411) Mod2 = 0.001
Mod4 = 0.004

Environment (E) 0.471 (93%) 0.019 (3.8%) 0.392 (0.721) 0.142 (0.319) Mod2 = 0.001
Mod4 = 0.001

Pure environment (E│S + T) 0.039 (64.2%) 0.017 (28%) 0.165 (0.304) 0.157 (0.354) Mod2 = 0.510
Mod4 = 0.268

Space (S) 0.412 (88.3%) 0.031 (6.6%) 0.406 (0.747) 0.168 (0.379) Mod2 = 0.009
Mod4 = 0.024

Treatment (T) 0.226 (100%) — 0.321 (0.591) — Mod2 = 0.010
Mod4 = 0.033

Pure spatial (S│E + T) 0.046 (66.6%) 0.012 (17.2%) 0.154 (0.284) 0.133 (0.299) Mod2 = 0.951
Mod4 = 0.831

Spatially structured 
environment (E ∩ S)

0.360 (100%) — 0.404 (0.743) — Mod2 = 0.001
Mod4 = 0.002

Fertilization structured 
environment (E ∩ T)

0.341 (100%) — 0.361 (0.644) — Mod2 = 0.003
Mod4 = 0.036

aObserved inertia (trait– environment squared covariance), followed by % of total variation explained in brackets.
bCorrelation L (trait– environment correlation) followed by ratio of observed to maximum correlation in brackets.
cMod2 corresponds to matrix L row permutation test and Mod4 to matrix L column permutation test, bold type indicates significant results.
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forest management landscapes in Fennoscandia, where large areas 
of forest are intensively managed (Hedwall et al., 2019), but trait 
filtering effects found in this study are probably applicable to other 
forest systems and management types involving canopy closure 
(Sklodowski, 2006). The implementation of nutrient optimization 
over large forest areas could have a potentially catastrophic effect 
on carabid resilience to disturbance, as functional homogeniza-
tion of local communities across the landscape can increase vul-
nerabilities to large- scale disturbance events (Olden et al., 2004). 
Furthermore, changes in carabid functional composition are 
highly congruent with functional changes in other boreal forest 
taxa (Aubin et al., 2013), which can cause widespread functional 
homogenization, affecting the whole system resilience. Added to 
this, functional homogenization of carabid body size to larger size 
classes constraints the range size of consumed prey (Jelaska et al., 
2014) and could impair forest pest regulation by this functionally 
diverse group of epigaeic arthropods.
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