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A B S T R A C T   

The increased temporal frequency of optical satellite data acquisitions provides a data stream that has the po-
tential to improve land cover mapping, including mapping of tree species. However, for large area operational 
mapping, partial cloud cover and different image extents can pose challenges. Therefore, methods are needed to 
assimilate new images in a straightforward way without requiring a total spatial coverage for each new image. 
This study shows that Bayesian inference applied sequentially has the potential to solve this problem. To test 
Bayesian inference for tree species classification in the boreo-nemoral zone of southern Sweden, field data from 
the study area of Remningstorp (58◦27′18.35′′ N, 13◦39′8.03′′ E) were used. By updating class likelihood with an 
increasing number of combined Sentinel-2 images, a higher and more stable cross-validated overall accuracy was 
achieved. Based on a Mahalanobis distance, 23 images were automatically chosen from the period of 2016 to 
2018 (from 142 images total). An overall accuracy of 87% (a Cohen’s kappa of 78.5%) was obtained for four tree 
species classes: Betula spp., Picea abies, Pinus sylvestris, and Quercus robur. This application of Bayesian inference 
in a boreo-nemoral forest suggests that it is a practical way to provide a high and stable classification accuracy. 
The method could be applied where data are not always complete for all areas. Furthermore, the method requires 
less reference data than if all images were used for classification simultaneously.   

1. Introduction 

Tree species information is currently one of the key parameters of 
interest to ecologists and forest managers alike. The increased stream of 
freely available optical satellite data provides more opportunities to use 
a multitude of images, making it possible to map more thematically 
detailed classes with higher accuracy. As an example, the Sentinel-2 
satellites from the European Space Agency’s (ESA) Copernicus pro-
gram provides images with a temporal frequency of five days at the 
equator, and higher frequency at higher latitudes (e.g., every one to 
three days over Sweden). The use of multi-temporal data for land cover 
classification has been shown to improve accuracy of tree species clas-
sification (Amani et al., 2017; Immitzer et al., 2019). Yet, processing a 
large number of images poses a new challenge in the process of land 
cover mapping: how can the stream of partially overlapping data best be 
used? Hence, there is a need for methods that provide highly accurate 
and thematically detailed (e.g., tree species) maps over large areas that 
can be easily updated as new images are acquired. 

Earlier work on tree species classification from optical data benefited 
from using a few multi-temporal images where phenological differences 

were used to separate the classes (Fassnacht et al., 2016; Hagner and 
Reese, 2007; Hill et al., 2010; Reese et al., 2002; Wolter et al., 1995). 
Much of the recent work using Sentinel-2 data have used a selection of 
scenes rather than the continuous data flow. Immitzer et al. (2019) 
classified tree species using 18 Sentinel-2 images (from 2015 to 2017) 
and a random forest classification. They found that six to seven dates of 
imagery provided as accurate a model as using all 18 images (an out-of- 
bag overall accuracy of 85.7% for 12 tree species), and that images from 
April to August contributed most to a higher accuracy. Persson et al. 
(2018) used four images, from April, May, July, and October of the same 
year in a random forest classification of five tree species. They achieved 
the highest overall accuracy of 88.2% when using all images and 
confirmed that the spring and autumn images, which had different 
phenological states, were the most useful. Puletti et al. (2018) used three 
Sentinel-2 images from spring, summer and autumn in a random forest 
classification to discriminate between coniferous, broad-leaved and 
mixed forest, achieving a maximum overall accuracy of 86.2% using a 
separate validation data set. 

Research on determining vegetation phenology (including tree spe-
cies) using a continuous flow of remote sensing data has been conducted 
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at a site in Sweden by Jönsson et al. (2018). Their study evaluated a new 
method that would better accommodate data gaps in time series of 
Sentinel-2, Landsat and MODIS data, and compared the method to that 
used in TIMESAT (Jönsson and Eklundh, 2004), among others. They 
applied seasonal shape priors combined with box constrained separable 
least squares fit to logistic model functions, which was a robust approach 
when processing time series with sparse or missing data (e.g., due to 
cloud occlusions). 

When making land cover classification over large areas with multi- 
temporal images, there are other issues apart from handling the large 
number of images. One such issue is the problem of occluded areas in the 
images, leading to missing data. One of the primary causes of this is 
clouds and cloud shadows. Another issue may be differences in images 
taken under different atmospheric conditions or with different illumi-
nation conditions (e.g., sun angle). Yet another issue is that each area 
may have been imaged a different number of times, resulting in an un-
equal number of observations at different times between sites. There-
fore, one motivation behind the current study is to investigate a method 
that could utilise a data stream of images that are only partly 
overlapping. 

As the amount of available data have increased, new approaches to 
efficiently and accurately classifying a continuous stream of optical data 
have been developed, including convolutional neural networks (Yuan 
et al., 2020), distribution-based thresholding (Nink et al., 2019), and 
support vector machines (Shelestov et al., 2017). In past decades, 
Maximum likelihood classification was the most widely used classifi-
cation method for making thematic land cover maps from remote 
sensing data. One advantage of Maximum likelihood classification is 
that it can be used in a Bayesian framework where probabilities can be 
updated by using new observations. Strahler (1980) proposed that the 
method may make “use of time-sequential information in making the 
outcome of a later classification contingent on an earlier classification.” 
How this is done depends on the decision rule used (Swain, 1978). With 
the high temporal resolution of current earth observation missions, 
combined with the increase in computational power since 1980, this 
Bayesian method can be worth revisiting. 

Similar to Strahler’s proposal Strahler (1980), Bayesian updating of 
land cover was used by Cardille and Fortin (2016) to solve the problem 
of partially overlapping data when classifying an area of central Quebec 
into water, forest and burnt area from a time series consisting of eleven 
Landsat 8 images. They used the method to ignore noise caused by 
clouds and smoke, and to avoid problems due to images covering only 
parts of the area. By using Bayesian updating, they achieved an overall 
accuracy of more than 90% at each time step, compared to a median 
overall accuracy of 78% when images were used separately. Crowley 
et al. (2019) used the same method with a combination of six Landsat 8 
images, ten Sentinel-2 images, and six MODIS images to produce maps of 
burned and unburned areas in British Colombia. 

The objective of this study was to investigate the utility of applying a 
Bayesian inference method to a continuous flow of Sentinel-2 data for 
tree species classification in the boreo-nemoral forest landscape of 
southern Sweden. The aim was to test the method of Bayesian inference 
by applying Maximum Likelihood classification to the posterior proba-
bilities produced by the method, similar to that proposed by Strahler 
(1980), and using data with high temporal resolution. The focus was not 
on finding the optimal spectral bands or combination image dates for 
classification. This method could provide a relatively simple approach to 
achieve continuously updated and highly accurate large area tree spe-
cies maps, using a continuous flow of data with different image date 
combinations and only partial overlap. In the case of Sweden, such tree 
species maps are of interest to the forest agency and the environmental 
protection agency, and at European level for example for keeping the 
Corine land cover data base up to date. By applying Bayesian inference 
and updated posterior probabilities to multiple images in a sequence, the 
expected outcome was to obtain a higher and more stable overall ac-
curacy than when classifying single or few images. 

2. Materials and methods 

2.1. Study site and field data 

Field data were collected during the summer of 2016 and the spring 
of 2017 in the study area of Remningstorp in the boreo-nemoral zone of 
southern Sweden (58◦27′18.35′′ N, 13◦39′8.03′′ E). In total, 335 circular 
plots with a radius of 10 meters were available (Fig. 1). Of these plots, 
265 were placed in the north-west and central parts of the study area, in 
managed forest stands mainly dominated by conifers. These plot co-
ordinates had been determined by an earlier inventory campaign using 
systematic sampling in a grid with random start. A new grid with 
random start was placed in the south-east part of the study area, that was 
dominated by broad-leaved forest, mainly in a nature reserve that was 
historically used for grazing. 

During the field inventory of the south-eastern area, the grid points 
were used as a reference, but the plot centres were allowed to be shifted 
by up to 20 m to the nearest area containing a dominant representation 
of a single tree species. The tree species composition was assessed with 
an angle gauge at the grid point as well as positions 20 m north, east, 
south and west of the grid point. If one species constituted more than 
70% of the basal area at one of the positions, that position was selected 
as the new centre coordinate for the field plot. In total 70 new field plots 
were established. 

All plot centres were positioned using a real-time kinematic GPS with 
an accuracy of one metre. Stem diameter at 1.3 m above ground (dbh) 
and species was recorded for all trees where dbh was at least 4 cm. Only 
plots where mean dbh was at least 10 cm were included. Since angle 
gauge measurements of basal area might differ from the basal area 
within a circular plot (Gregoire and Valentine, 2008, chapter 8), only 
those plots where one species constituted 70% or more of the basal area 
calculated from dbh were used. To assure enough training data for each 
species, only those that dominated more than 10 plots were kept. In 
total, 169 plots with four species classes remained (Table 1). These four 
tree species represent over 90% of the forest biomass in Sweden (Nilsson 
et al., 2020). 

2.2. Remote sensing data 

Satellite imagery from both Sentinel-2A and Sentinel-2B were used 
for classification. The mission provides data around every three days 
over the study area. Each image consists of thirteen spectral bands with 
varying ground sampling distance: 10 metres, 20 metres and 60 metres 
(European Space Agency, 2015). Images from the period of 2016-07-31 
to 2018-08-30 from granule T33VVE were downloaded from Copernicus 
Open Access Hub. Only Level-1C images were available for all dates, 
therefore, we performed atmospheric correction to Level-2A using the 
Sen2Cor program, version 2.8 (European Space Agency, 2019), provided 
by ESA. Both processing levels were evaluated and due to the way in 
which the proposed classification method works, combined with a fairly 
small study area, no significant differences in the outcomes when using 
Level-1C or Level-2A were expected. 

Due to the low sun angles and presence of snow in winter images, 
only images from the months of April to October of each year were used. 
In total, 142 images were obtained from this time period, and 22 images, 
or 15%, were free of clouds and cloud shadows in the study area. 

Among the spectral bands available from different sensors, the most 
common ones used for vegetation mapping are green, red and near- 
infrared. Since the aim of this study was to evaluate the method of 
Bayesian inference on a data stream (i.e., rather than to determine 
optimal band combinations), it was deemed most important to have 
constant parameters for every image through the time series; therefore, 
the green, red, and near-infrared wavelength bands were used (bands 3, 
4, and 8), which all have the same pixel size of 10 metres. The visible 
blue band was excluded, however, since it is very sensitive to variations 
in atmospheric effects, and therefore less useful for large-area 
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operational mapping of tree species. 
When extracting pixel values, field plot coordinates were trans-

formed from SWEREF 99TM (EPSG 3006) to WGS84/UTM zone 33 N 
(EPSG 32633), which are almost identical in their placement for this 
study area. Spectral data for the field plot locations were extracted with 
bilinear interpolation. 

2.3. Classification method 

Maximum likelihood (ML) classification is made by using a decision 
rule based on an expression describing conditional probabilities of 
different classes given an observation (Swain, 1978, pp. 152–158). A 
decision rule for making an ML classification using multiple images was 
formulated, with the assumption that observations were conditionally 
independent given a class. The probability of interest was 
Pr(ωk|X1 ∩ X2 ∩ … ∩ Xn), where ωk is the event that a pixel has class k, 
and Xt is the event of observing the vector x→t of band values in the pixel 

of an image taken at time t. The selection rule, equivalent to the prob-
ability of interest, which was used for classification was: Select k to 
maximize 

ln(Pr(ωk) )+
∑n

t=1
ln
(

p
(
Xt, θ

→
k,t
) )

, (1)  

where p is the probability density function, θ
→

k,t is the parameter vector 
of that function for species k and image t. 

Bayesian classification is often made using a normal distribution, but 
can be used with any likelihood function (Gorte and Stein, 1998). Two 
alternative distributions were tested: normal distribution and t-distri-
bution. The t-distribution has wider tails, possibly allowing for a more 
robust classification. Kernel methods for obtaining empirical distribu-
tions were not an option due to the small sample size for some of the tree 
species in this study. 

2.4. Image selection 

Images were assigned a grade according to the level of class sepa-
ration within them. For each pair of classes, a Mahalanobis distance 
(Mahalanobis, 1936), hereafter denoted as Z or Z-value, of the difference 
between the class population means was calculated as 

Z = ( μ̂→ a − μ̂→ b)
T
(

Σ̂a

ma
+

Σ̂b

mb

)− 1

( μ̂→ a − μ̂→ b), (2)  

where μ̂→ is sample mean vector, Σ̂ is the sample variance–covariance 
matrix, m is sample size, and subscripts a and b denote the different 

Fig. 1. Map of the Remningstorp study area and field plots therein. Background map is GSD - Terrain Map, © Lantmäteriet.  

Table 1 
Number of plots (n) per species and their properties in field data. Diameter at 1.3 
meter above ground is denoted dbh, basal area weighted height is denoted h, and 
basal area is denoted q.  

Species n dbh 

(cm)  
SD(dbh)

(cm)  
h 

(m)  
SD(h)

(m)  
q 

(m2)  
SD(q)
(m2)  

Betula spp. 25 15 7 19 6 17 13 
P. abies 99 20 9 19 6 25 13 
P. sylvestris 26 23 8 21 5 26 7 
Q. robur 19 21 11 21 3 24 10  
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classes. To select images, they were put in decreasing order by Z-value 
and for each pairwise combination of classes, the highest ranking images 
were selected. The number of images to be selected was set as close as 
possible to fifteen percent of the total number of images (N = 142), 
corresponding to the proportion of cloud-free images. There were a total 
of four thematic classes, giving six different class combinations. The 
value closest to 15% of 142 that is evenly divisible by six is 24. The total 
number of images selected per class combination by their Z-value was 
increased until the number of images selected for classification was no 
more than 24. 

2.5. Accuracy evaluation 

Classification model accuracy was evaluated using leave-one-out 
cross-validation. The main measure of accuracy was overall accuracy, 
that is defined as the number of correctly classed elements divided by 
the total number of elements. 

To assess the impact on accuracy due to adding more images, com-
binations of a different number of images were evaluated. This was done 
both for all available images (N = 142) as well as the subset selected by 
their Z-values (N⩽24). For each integer number i from one to the number 
of available images N minus one, N image combinations were sampled 
from a set of image combinations, Si. The set Si consisted of all possible 
combinations of i images. The overall accuracies when using each of 
those sampled combinations for classification were recorded and plotted 
to view the effect of using multiple images. When only one image was 
used for classification, it was the same as making an ordinary ML 
classification. 

3. Results 

When using images selected by their Z-value, no difference between 
the use of a normal distribution and a t-distribution was found. Only the 
results from calculations made using normal distributions are presented 
here. In addition, there was no difference when using Level-1C and 
Level-2A data for classification, and therefore Level-1C images were 
used for the study. 

The images selected by their Z-values ranged from April to October, 
but most tended to be from May, June, and July, which is the beginning 
and middle of the summer in Sweden. To separate between P. abies and 
P. sylvestris, only images from the middle and end of summer were 
selected, and to separate Q. robur from other classes, mostly images from 
early summer were selected. P. abies and P. sylvestris were the two most 
spectrally similar classes, as shown by low Z-values for images selected 
for separation of that combination. The highest Z-values were obtained 
for class-pairs that included the Q. robur class (Table 2). 

The overall accuracy for the classification was 87% when using the 
23 images selected by their Z-values (Table 3). When all 142 image-
s—both those with high and low Z-values—were used for classification, 
an overall accuracy of 85% was achieved. When using only a single 
image, the highest overall classification accuracy obtained was 83%, the 
average was 63%, and the lowest was 33%. When using all 142 images 
as well as when using the images selected by their Z-value, it could be 
seen that a maximum overall accuracy occurred when using only a 
subset of the images (Fig. 2). When sampling image combinations, both 
from the total of 142 images and the 23 images selected by Z-values, the 
average overall accuracy of the samples increased with increasing 
sample size, as expected. At the same time, variation in classification 
accuracy decreased (Fig. 2) (see Fig. 3). 

The confusion matrix (Table 3) shows that it was primarily the two 
coniferous species that were conflated. Q. robur was only conflated with 
Betula spp. while Betula spp. itself was conflated at least one time with 
each of the other species. 4. Discussion 

The use of Bayesian inference applied sequentially on multiple 
Sentinel-2 images resulted in a higher overall classification accuracy of 

Table 2 
Images selected by their Z-value (a Mahalanobis distance, calculated using Eq. 
(2)). B stands for Betula spp. (birch), S stands for Picea abies (spruce), P stands for 
Pinus sylvestris (pine), and O stands for Quercus robur (oak). Bold face means that 
the image in question was among the best ones for discriminating between those 
two classes.  

Cloud 
free 

Date B vs. 
S 

B vs. 
P 

B vs. 
O 

S vs. 
P 

S vs. 
O 

P vs. 
O 

Yes 2017-04- 
07 

219 114 36 16 508 242 

Yes 2018-04- 
10 

122 87 48 44 518 384 

Yes 2018-04- 
12 

147 111 32 46 441 323  

Yes 2018-05- 
07 

119 74 33 28 404 323 

Yes 2018-05- 
15 

255 93 135 61 443 253 

No 2018-05- 
20 

228 105 154 54 338 341 

Yes 2018-05- 
22 

181 110 115 25 429 376 

Yes 2017-05- 
27 

238 92 128 61 291 200 

Yes 2018-05- 
30 

238 133 23 46 293 312  

Yes 2018-06- 
01 

162 92 22 41 448 356 

Yes 2018-06- 
04 

225 112 18 42 459 273 

No 2017-06- 
06 

189 122 134 13 410 345 

Yes 2018-06- 
24 

221 97 7 107 335 186 

Yes 2018-06- 
26 

225 118 8 59 263 188 

No 2018-06- 
29 

253 104 7 91 241 158  

Yes 2018-07- 
04 

185 71 9 120 383 190 

No 2017-07- 
09 

241 123 27 34 422 269 

Yes 2018–07- 
14 

205 70 18 109 403 177 

Yes 2018-07- 
16 

190 88 16 98 192 165 

No 2018-07- 
21 

147 59 11 102 264 130 

No 2018-07- 
24 

167 62 15 120 328 148  

No 2017-08- 
30 

184 122 13 6 214 141 

Yes 2016-09- 
12 

102 44 79 74 209 202  

Table 3 
Confusion matrix when using 23 images chosen by Z-value in Table 2. UA is 
Users Accuracy, PA is Producers Accuracy, and the entry in the lower right corner 
is Overall Accuracy. Cohen’s kappa for this confusion matrix is 78.5%. Columns 
are field-inventoried classes and rows are the classification result.   

B. spp P. abies P. sylvestris Q. robur UA (%) 

B. spp 20 1 2 3 76.9 
P. abies 1 91 4 0 94.8 
P. sylvestris 1 7 20 0 71.4 
Q. robur 3 0 0 16 84.2 
PA (%) 80.0 91.9 76.9 84.2 87.0  
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tree species in a boreo-nemoral forest. In addition, the variation of 
overall accuracy between samples was smaller as compared to the result 
when Bayesian classification was applied to a single date image. Even 
though the method presented in this article does not utilize the temporal 
relationship between images, it does improve the classification accuracy 
by using information from multiple observations. Similar to other 
studies (e.g., Hill et al., 2010; Persson et al., 2018), a higher accuracy 
was obtained when using multiple image dates as opposed to a single 
date image. A big advantage of the proposed method is that it does not 
require that all areas are covered with the same sequence of image data, 
which allows, for example, cloudy areas to be handled in an efficient 
way. 

There are many classification algorithms available for use with 
remote sensing data, however, there are certain advantages to Bayesian 
inference. For example, in large area mapping, each cell in a fixed grid 
over the area could be assigned the probability density values of 
different tree species, and updated with new probabilities and class 
membership as each new image became available. In this study, images 
were selected based on a quality measure derived for the entire image (i. 
e., Z-values). Sentinel-2 data products include pixel-wise quality mea-
surements which are routinely used to flag pixels with poor quality. This 

could be utilized to select the pixels to include or exclude when making a 
Bayesian inference. 

In addition, when using Bayesian inference on individual images in a 
sequential manner, the curse of dimensionality can be avoided; if bands 
from every image in the time series were added as a new dimension of 
the data set, this would cause observations to be too sparse and over-
fitting would be a concern. Otherwise, to utilize a stream of images 
simultaneously, reduction in dimensionality would be needed each time 
an image was added to the model. With Bayesian inference where 
probabilities can be updated sequentially, this is not a problem as long as 
the assumption of conditional independence holds. When processing 
single images sequentially as opposed to combining many images, less 
training data would be required for this Bayesian approach. 

Selecting images by their Z-value improved the overall classification 
accuracy, but more importantly, the overall accuracy initially increased 
by a relatively large percentage when adding more images that had 
relatively high Z-values. This supports the practice of selecting images 
that are cloud-free and of good radiometric quality (Kempeneers and 
Soille, 2017). When using Z-values to select images, mainly cloud-free 
images were identified, even though the emphasis of the method lies 
in class separation. The main advantage of using Z-values is that it is 
easily implemented and provides an automated approach to find a 
subset of optimal images from the data stream for the classification 
process. When all images were used, as shown in Fig. 2(a), the increase 
in accuracy started to flatten out when using between 50 and 100 im-
ages. When this result is compared to the overall accuracy obtained 
using images chosen by their Z-value, it can be seen in Fig. 2(b) that the 
variation in overall accuracy quickly decreased with increased sample 
size. Most importantly, the average classification accuracy was higher 
when using images with higher Z-values, as compared to using all 
images. 

There were high Z-values for different tree species at different times 
of the year, supporting the use of multi-date images for catching 
phenological differences. Q. robur and Betula spp. green-up at different 
times in the spring, which is shown by the high separability between 
Q. robur and Betula spp. when using spring images, which for this study 
was primarily mid to late May images (Table 2). P. abies and P. sylvestris 
had the highest separation during late June and all through July. The 
reason for this might be that P. sylvestris trees have a sparser crown 
structure in comparison to P. abies trees, which leads to a sparser canopy 
in P. sylvestris stands as compared to P. abies stands. For P. sylvestris 
stands, this allows more light to penetrate the canopy. In the study area, 
P. sylvestris stands often have an undergrowth of Corylus avellana (hazel), 
resulting in some pixels with a mixed spectral response of P. sylvestris 
and C. avellana; this can result in difficulties in obtaining a pure 
P. sylvestris signature and lead to confusion in the classification with 
other spectrally overlapping classes. For the results from this paper, it 
should be kept in mind that a drought occurred in Sweden during the 
summer of 2018, potentially affecting the forest and other vegetation. 

As for all parametric methods, some assumptions of data distribu-
tions need to be made. Two assumptions were tested: (1) that data were 
normally distributed, and (2) that all species followed a t-distribution 
with as many degrees of freedom as there were plots in the training data. 
The assumption of a t-distribution was selected since it allowed for a 
higher probability density for values far from the mean, especially in 
classes with few field plots. Both assumptions produced the same overall 
accuracy, which means that the variation in data is greater that the 
difference between the two distributions. An example where both of 
these assumptions would not be met would be during the leafing out of 
deciduous trees; a part of the population could be leafed-out while 
another could still be leafless. This would result in a bimodal distribu-
tion with the two subgroups appearing as local maxima. If more field 
data were available, it might be feasible to construct empirical distri-
butions using kernel methods. 

Sentinel-2 has some issues with the geometric quality of images. The 
geometric correction of Sentinel-2 imagery has proven to be of varying 

Fig. 2. Overall accuracy over number of images used for classification. The 
upper and lower limits of the red areas are the maximum and minimum overall 
accuracy in the respective samples. The black lines show the average over-
all accuracy. 
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quality, with geo-location inaccuracies in Level-1C data of up to around 
10 m on unrefined images and 8 m on refined images (Gascon et al., 
2017). Such shifts in the pixel geometry, and therefore occasional poor 
geographic co-location between images, was also seen in this study. The 
classification results could be expected to improve with better co- 
location of pixels, but the general results from this study should be 
valid even without a perfect geometry. 

An image-level linear calibration from digital numbers to radiance or 
reflectance will not influence the classification result since each image is 
classified with the aid of ground reference plots. However, for large-area 
applications, any variation in atmospheric optical thickness within an 
image might be an error source. For this reason, and to obtain a good 
signal to noise ratio, it is important to select images that are as cloud and 
haze free as possible and only use the part of the images with a good 
image quality, which is possible with the presented method. In the case 
of large-area applications, the use of data at processing level 2A (with 
Bottom of Atmosphere correction) might provide a better basis for tree 
species classification, since the effects of non-linear atmospheric cali-
bration could be greater. 

Additional modeling could be used with Bayesian inference. A Hid-
den Markov Model (HMM) could provide a way to incorporate a model 
for phenological change to improve classification accuracy (Siachalou 
et al., 2015). To do this, a model of probabilities for phenological change 
as a function of time would be needed. To do this in the best way, field- 
based information on vegetation phenology over the study area should 
be used to formulate the transition matrices needed for HMM; however, 
this type of field data is not currently collected in a comprehensive and 
available manner for all of Sweden. 

All images were treated as equally important for classification 

purposes, regardless of how close they were in time to the field in-
ventory. One idea for future development would be to smooth out the 
distributions with a weighting according to the difference in time from 
the inventory data. This would mean that an observation taken at a date 
close to the image acquisition date would be trusted more than one 
further away in time. 

To further examine the usefulness of Bayesian inference as a classi-
fication method of tree species, a study on a greater landscape level 
would be of interest. If data from a national forest inventory (NFI) were 
to be used, it might be advisable to use whole swaths of satellite data, as 
opposed to individual 100 × 100 km granules, to get better estimations 
of distributions. Since NFI data are often acquired on a regular basis, 
weighting observations by temporal difference might be useful. 

The method of Bayesian inference, where pixel-wise probabilities 
can be calculated and then updated as more observations are made, 
provides a way to easily automate classification of a data stream con-
sisting of multi-temporal images. The results in this study might provide 
a foundation for a practical method for continuous large area forest 
mapping where new images are screened for image quality using a Z- 
value, and high quality images are used for improving the previous 
classification. The method looks promising and should be tested in more 
forest ecosystems. 

5. Conclusions 

This study demonstrated the utility of classical Bayesian inference 
applied sequentially, where accumulated class likelihoods were used as 
prior probabilities from an image stream. The study used an initial 
stream of 142 Sentinel-2 images to map four tree species over a study 

Fig. 3. Classification results when using the 23 images chosen by Z-value. An existing land cover map was used here for non-forest land cover. Right subfigure is 
GSD-Orthophoto, 0.5m, color-IR © Lantmäteriet. 

A. Axelsson et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observations and Geoinformation 100 (2021) 102318

7

area in southern Sweden. Using Z-scores, a best subset of 23 images was 
identified. The overall classification accuracy of the 23 images was 87%, 
while for the 142 images it was 85% and for the single best image it was 
83%. In addition, the variation of overall accuracy between samples was 
smaller when Bayesian inference applied sequentially was used. The 
method is a straight forward way to handle cases where images have 
different geographical extents or contain occlusions (e.g., due to cloud 
cover). The method thus has the potential to be an efficient way for 
utilizing a stream of multi-temporal images for large area tree species or 
land cover classification. 
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