
agronomy

Article

A Novel Pinkish-White Flower Color Variant Is Caused by a
New Allele of Flower Color Gene W1 in Wild Soybean
(Glycine soja)

Jagadeesh Sundaramoorthy 1,2,† , Gyu-Tae Park 1,†, Hyun Jo 1 , Jeong-Dong Lee 1 , Hak-Soo Seo 3

and Jong-Tae Song 1,*

����������
�������

Citation: Sundaramoorthy, J.; Park,

G.-T.; Jo, H.; Lee, J.-D.; Seo, H.-S.;

Song, J.-T. A Novel Pinkish-White

Flower Color Variant Is Caused by a

New Allele of Flower Color Gene W1

in Wild Soybean (Glycine soja).

Agronomy 2021, 11, 1001. https://

doi.org/10.3390/agronomy11051001

Academic Editor: Hamid Khazaei

Received: 4 April 2021

Accepted: 14 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
jagadeesh@slu.se (J.S.); gyutae@knu.ac.kr (G.-T.P.); johyun@knu.ac.kr (H.J.); jdlee@knu.ac.kr (J.-D.L.)

2 Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden
3 Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;

seohs@snu.ac.kr
* Correspondence: jtsong68@knu.ac.kr; Tel.: +82-539-507-753
† These authors contributed equally to this work.

Abstract: The enzyme flavonoid 3′,5′-hydroxylase (F3′5′H) plays an important role in producing
anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3′5′H always produces
white flowers. However, few color variations have been reported in wild soybean. In the present
study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white
flowers. We found that the flower’s pinkish-white color is caused by w1-s3, a single recessive allele of
W1. The SNP detected in the mutant caused amino acid substitution (A304S) in a highly conserved
SRS4 domain of F3′5′H proteins. On the basis of the results of the protein variation effect analyzer
(PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3′5′H activity rather
than non-functional activity, which thereby results in its pinkish-white color.

Keywords: flavonoid 3′,5′-hydroxylase; Glycine soja; pinkish-white flower; soybean; W1 locus

1. Introduction

In plants, flavonoid 3′, 5′-hydroxylase (F3′5′H) is one of the key enzymes respon-
sible for the blue and/or purple coloration in flower petals [1]. F3′5′H, together with
dihydroflavonol 4-reductase (DFR), generally synthesize delphinidin-based anthocyanin
pigments through the flavonoid biosynthesis pathway [2]. However, F3′5′H enzymes
are absent in several ornamental plants, such as rose (Rosa hybrid) and carnation (Di-
anthus caryophyllus). These ornamental plants only contain cyanidin and/or pelargonidin
pigments, and therefore only have pink, yellow, and red as their natural colors but not
purple or blue [3]. F3′5′H is a cytochrome P450, which hydroxylates the naringenin or
dihydrokaempferol biomolecules at the 3′ and 5′ positions of the β ring to synthesize the
delphinidin-based anthocyanin pigments [4,5]. The loss of function mutations in the F3′5′H
gene subsequently affects the production of delphinidin-based anthocyanin and results
in flower color variations from blue to pink in several ornamental plants, for instance,
petunia (Petunia hybrida) and gentian (Gentiana scabra) [6–8]. In leguminous crops, such as
pea (Pisum sativum), lack of functional F3′5′H enzyme results in rose-pink flower petals [3].
In contrast, soybean (G. max) showed that the variations in the F3′5′H gene produced
white flowers rather than color variations, such as pink flowers, which were observed in
other plant species [3]. In addition, under W1 allelic background, the DFR-encoding genes,
namely, W3 (DFR1) and W4 (DFR2), are epistatic to each other. Double mutations in these
DFRs, i.e., w3 w4, cause near-white flowers in soybean [9].

In soybean, the W1 locus encoding F3′5′H displays purple and white flower colors for
its dominant and recessive alleles, respectively [10]. The white flower color observed in the
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common soybean cultivar, “Williams 82”, is caused by the 65-bp insertion and 12-bp dele-
tion in the F3′5′H coding region, consequently resulting in premature translation [11,12].
We previously reported that F3′5′H sequences from 99 landraces with white flowers were
identical to that of “Williams 82” cultivar [13]. However, most of the wild soybean acces-
sions (G. soja) have purple flowers and lack color variations among them, except for a few
varieties that have been reported in the past two decades [14]. A white flower wild soybean
accession, PI 424008C, was isolated from the progenies of the purple-flowered PI 424008A.
Genetic analysis showed that the white color flower was caused by a mutation in the W1
locus [15].

In another study, we isolated two G. soja accessions (CW13381 and CW12700) with
white flowers [16]. Genomic analysis of the W1 gene of CW13381 revealed the presence
of an indel (≈90-bp AT-repeat) in the second intron, whereas the CW12700 mutant had
a unique single-nucleotide substitution that subsequently resulted in amino acid change
(N300K) in the substrate recognition site (SRS) 4 of F3′5′H [16]. Another wild soybean
accession (B00146) was found as a single plant with purple and white variegated flowers
(B00146-m) [17]. From the progeny of B00146-m, the lines with white (B00146-w) and purple
(B00146-r) flowers were developed. The w1-m allele of B00146-m showed the insertion of
the Tgs1 transposon (CACTA family) in the first exon. Taken together, the loss of function
of F3′5′H in soybean always halts anthocyanin production, consequently resulting in white
color flowers [16]. Apart from the aforementioned white color variants, a light-purple-
colored G. soja variant (B09121) has been reported with a new w1-lp allele [18]. A unique
single-base substitution in the nucleotide position 653 of w1-lp mutant led to a noteworthy
amino acid change (V210M). Flavonoid analysis showed that the w1-lp mutant had a scarce
number of major anthocyanins commonly detected in purple flowers. However, there was
no difference in the transcription level between the alleles of w1-lp and W1. On the basis of
their results, the authors suggested that an SNP mutation in the F3′5′H gene may lead to
reduced F3′5′H enzymatic activity [18].

In this study, we isolated a new color variation of a wild soybean accession (IT261811)
with pinkish-white flowers. The objective of the present study was to determine the
genetic basis of the new wild soybean variant with pinkish-white flower color and its allelic
component that influences anthocyanin biosynthesis.

2. Materials and Methods
2.1. Plant Material

A wild soybean accession (IT261811) with pinkish-white flowers was obtained from
the National Agrobiodiversity Center, Korea. Another wild soybean accession (IT182932)
with purple flowers was used as the wild-type accession in the present study (Figure 1).
F2 individuals derived from the cross between IT261811 and IT182932 were used for the
segregation analysis. F2 progenies with two parental lines were grown in the experimental
fields of Kyungpook National University (Gunwi, 36◦07′ N, 128◦38′ E, Korea).

2.2. RT-PCR and Sequence Analysis

RT-PCR analysis was performed using the first-strand cDNA method to determine
the transcript levels of F3′5′H (W1) and DFR2 (W4). The soybean Actin 1 gene (GmActin;
Glyma.19G000900.1) was used as a loading control [19]. The PCR reactions were performed
using primer pairs for respective genes described in Sundaramoorthy et al. [16]. Exons
and introns of W1 (Glyma.13G072100) and W4 (Glyma.17G252200) were amplified using
the primer pairs previously described in Park et al. [20]. PCR products were sequenced
(SolGent, Daejeon, Korea) using the same primer pairs used in the aforementioned amplifi-
cation procedure.

2.3. Multiple Alignment Analysis of W1 Proteins

The F3′5′H protein sequences from 14 different plant species were obtained from
the National Center for Biotechnology Information Conserved Domains Database (NCBI-
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CDD, https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml; accessed on 10 January
2021) and used to perform multiple sequence alignment using the ClustalW analysis tool
(http://www.genome.jp/tools-bin/clustalw; accessed on 10 January 2021).
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Figure 1. Photographic images showing the flower colors of the plant materials. Plant materials of
wild soybean accessions IT182932 (purple flower) and IT261811 (pinkish-white). (A) A whole flower.
(B) A banner petal.

2.4. Prediction by Protein Variation Effect Analyzer (PROVEAN)

To estimate the impact of non-synonymous SNPs causing amino acid sequence
changes in the W1 proteins, we used the online server PROVEAN (http://provean.jcvi.
org/; accessed on 12 January 2021). Each amino acid substitution was given as input and
the PROVEAN score was calculated [21,22].

2.5. SNP-Based Genetic Analysis

To study the phenomenon of segregation, cleaved amplified polymorphic sequence
(CAPS) was developed to detect a single-base substitution in IT261811. PCR amplifica-
tion was performed according to the procedure previously described by Park et al. [20].
Digestion of the PCR-amplified products were performed using DdeI (Enzynomics, Dae-
jeon, Korea).

3. Results and Discussion
3.1. Genetic Analysis of New Pinkish-White Flower Variant of Wild Soybean

In the present study, we identified a pinkish-white flower variant (IT261811) among
the wild soybean (G. soja) accessions (Figure 1). A total of 124 F2 individuals derived from
the cross between IT261811 and IT182932 segregated into 95 plants with purple flowers and
29 plants with pinkish-white flowers (Table 1). The segregation fitted a 3:1 ratio, suggesting
that a single recessive gene controls the pinkish-white mutant phenotype in IT261811.

https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://www.genome.jp/tools-bin/clustalw
http://provean.jcvi.org/
http://provean.jcvi.org/
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Table 1. Segregation and co-segregation analyses.

Flower Color W1

Segregation Ratios

P/PW * A/H/B **
Observed 95:29 31:64:29
Expected 93:31 31:62:31

Ratio 3:1 1:2:1
χ2 0.0056 0.0063

Probability † 0.94 0.99

* P, purple; PW, pinkish-white. ** A, wild homozygote; H, heterozygote; B, mutant homozygote; † not significant
(p < 0.05).

3.2. Molecular Analysis of the w1-s3 Variant

In soybean (G. max), the W3 and W4 loci encoding DFR enzymes epistatically interact
with each other in a W1 genotypic background [23]. However, in G. soja, the W3 locus is
not involved in the determination of flower colors [24]. Taking this into consideration, we
conducted RT-PCR for both F3′5′H (W1) and (W4) genes to analyze alterations in gene ex-
pression. PCR products for W4 were amplified with the size of 1175-bp. For W1 expression,
5′ (W1-U) and 3′ (W1-L) half regions of the F3′5′H gene were amplified with the size of
331-bp and 558-bp, respectively (Figure 2A). Both W1 and W4 genes from IT261811 showed
no significant difference in expression levels compared to that of wild-type IT182932, in-
dicating that the mutant IT261811 had normal W1 and W4 expressions (Figure 2A). We
analyzed the genomic sequences of F3′5′H (W1) and DFR2 (W4) to determine the involve-
ment of W1 and W4 in the allelic variation of the mutant, IT261811. First, we analyzed
the genomic sequences of DFR2 (nucleotide positions −4 to +3416) from IT182932 and
IT261811, and results showed no polymorphism between them. Next, the nucleotide
sequences of F3′5′H (nucleotide position −64 to +4534) from the mutant IT261811 showed
a single-nucleotide substitution (G–T) in the third exon at nucleotide position +3763 (NCBI
GenBank accession number: MW298105; Figure 2B), resulting in amino acid substitution
(A304S) relative to the corresponding sequences of the wild-type IT182932 (NCBI GenBank
accession number: KX077984). The new mutant allele was designated as w1-s3.

Resequencing data of soybean accession in China, Korea, and the USA are publicly
available through the NCBI [25–27]. With SNP and INDEL data on W1 locus from of 775 re-
sequenced accessions on SoyKB (http://soykb.org; accessed on 15 January 2021), we found
no occurrence of SNP and/or INDEL on chromosome 13 at position 17,316,282 (Wm82.a2.v1),
where w1-s3 shows a single-nucleotide substitution. This prompted us to perform amino
acid sequence alignment of F3′5′H proteins from 14 different plant species from the NCBI-
CDD database (Figure 2C) to determine the effects of single amino acid substitution in
the w1-s3 allele on the functionality of the F3′5′H protein. The results showed that the
amino acid change (Ser for Ala at position 304) in w1-s3 allele was located at the highly
conserved position of SRS4 domain. SRS4 is the one of the six functional SRS domains in
F3′5′H enzymes, which plays an important role in substrate-binding specificity [28,29].

In our previous study, a white-flowered EMS-induced mutant, PE1837 (w1-p1), showed
a single amino acid substitution (A304T) at a position similar to that of the mutant IT261811
(w1-s3) [16]. In the same study, we speculated that the hydroxyl group of T304 in w1-p1 may
have inhibited the proper binding of the flavone substrate on the basis of the results of the
3-D prediction tool, thereby leading to the loss of function of F3′5′H protein [16]. Thus, the
amino acid substitution (A304S) identified in w1-s3 may also result in functional variation
of F3′5′H proteins.

http://soykb.org
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Figure 2. Expression profiles of W1 and W4 genes and schematic representation of the F3′5′H allele
along with F3′5′H protein variation analysis. (A) Gene expression analysis of W1 and W4 through
RT-PCR was performed in the purple-flowered line (IT182932) and the pinkish-white-flowered
mutant line (IT261811). The 5′ and 3′ half regions of F3′5′H are designated as W1-U and W1-L,
respectively. GmActin, a housekeeping gene, was used as the loading control. M, a 1-kb molecular
marker. (B) Gene structure of W1 and polymorphism between W1 and w1-s3 alleles. White boxes
indicate mutational change in the recessive w1-s3 allele at the W1 locus. Black boxes indicate exons.
W1-U and W1-L denote the 5′ and 3′ parts of W1, respectively. (C) Amino acid alignments of F3′5′H
proteins. The amino acid sequences of 14 F3′5′H proteins from different plant species were compared
with wild-type F3′5′H and mutant proteins. Gray text indicates identical amino acids. White letters
with a black highlight indicate relevant amino acid substitutions. Thick black box indicates the
SRS4 domain. GenBank accession numbers of F3′5′H proteins are as follows: Camellia sinensis,
AAY23287; Clitoria ternatea, BAF49293; Cyclamen persicum, ACX37698; Gossypium hirsutum, ACH56524;
Iochroma calycinum, AIY22750; Lycium ruthenicum, AGT57963; Medicago truncatula, XP_013459330;
Nekemias grossedentata, AGO02173; Petunia occidentalis, BAF34571; Petunia reitzii, BAF34572; Pisum
sativum, ADW66160; Ribes nigrum, AGI16385; Vitis amurensis, ACN38269; and Vitis vinifera, BAE47007.
(D) PROVEAN scores of amino acid variations identified in w1-s3, w1-p1, and w1-lp mutants. The
PROVEAN tool sets the threshold at −2.5 as default.
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Recently, prediction software tools have been widely used to identify the deleterious
or neutral effect of SNPs in candidate genes on the basis of the biochemical severity of the
amino acid substitution [30]. We used the Protein Variation Effect Analyzer (PROVEAN,
http://provean.jcvi.org/seq_submit.php; accessed on 12 January 2021) software tool that
predicts whether an amino acid substitution has any impact on the functional activity
of F3′5′H (Figure 2D) [21]. The PROVEAN tool sets the threshold at −2.5 as default. If
the score of the protein variant is ≤−2.5 as predicted, the variation has a “deleterious”
effect. Scores above the threshold indicate that the variant has a “neutral” effect [21].
We used the mutants IT261811 (w1-s3) and PE1837 (w1-p1) for predicting the amino acid
substitution’s effect on F3′5′H protein function, along with the previously reported light-
purple flower-bearing wild soybean mutant B09121 (w1-lp), whose F3′5′H protein was
described as hypofunctional due to an alteration in one of its amino acid residue [18]. The
results showed that the F3′5′H proteins of all the three w1-s3, w1-p1, and w1-lp mutants
had deleterious effects, with −2.692, −3.550, and −2673 PROVEAN scores, respectively.
However, the scores of w1-s3 and w1-lp were similar and at par with the cutoff score,
suggesting that the w1-s3 mutant protein is similar to that of w1-lp, which is more likely a
hypofunctional F3′5′H rather than a completely deleterious one.

3.3. Co-Segregation of the W1 Polymorphism with Flower Color Phenotype

We conducted the single-marker analysis, which is the simplest mapping analysis
to detect the associations between a marker and phenotype (pinkish-white flower color).
The CAPS marker designed from the SNP (G–T) generates a DdeI site (CTNAG) in the
PCR-amplified product from the mutant parent, IT261811 (Figure 3A). The CAPS marker
co-segregated with flower colors of the F2 individuals was derived from the cross between
IT261811 and IT182932 (Figure 3B). The result of single-marker analysis showed that the W1
gene was highly associated with pinkish-white flower in this study (n = 124, p < 0.0001, R2

= 1). Results also showed that genotype segregation fitted a 1:2:1 ratio (Table 1), indicating
that the w1-s3 allele is recessive to W1. We concluded that the new w1-s3 allele under the
w1 recessive allelic background produces pinkish-white flowers of the mutant IT261811 on
the basis of the tight co-segregation between w1-s3 and pinkish-white flowers.
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Figure 3. Schematic diagram of CAPS analysis and co-segregation of W1 polymorphism with the pinkish-white flower color
phenotype. (A) CAPS analysis was aimed to detect an SNP in the w1-s3 allele (T, indicated in white font highlighted in
black). The underlined DdeI site (CTNAG) was used for CAPS analysis. PCR products from IT261811 (w1-s3) were 210 bp in
length and were digested with DdeI into 112- and 98-bp DNA fragments, whereas those from IT182932 (W1) remained uncut
after digestion. (B) CAPS analysis shows the co-segregation of W1 polymorphism and the flower color observed in the F2

population derived from the cross between IT261811 and IT182932. M, a 1-kb molecular marker; H, heterozygous F2 plants
with purple flowers; A, wild-type F2 plants with purple flowers; and B, homozygous F2 plants with pinkish-white flowers.
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