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Abstract

Feline diabetes mellitus shares many features with type 2 diabetes in people, regarding clini-

cal presentation, physiology, and pathology. A breed predisposition for type 2 diabetes has

been identified, with the Burmese breed at a fivefold increased risk of developing the condi-

tion compared to other purebred cats. We aimed to characterize the serum metabolome in

cats (n = 63) using nuclear magnetic resonance metabolomics, and to compare the metabo-

lite pattern of Burmese cats with that of two cat breeds of medium or low risk of diabetes, the

Maine coon (MCO) and Birman cat, respectively. Serum concentrations of adiponectin,

insulin and insulin-like growth factor-1 were also measured (n = 94). Burmese cats had

higher insulin and lower adiponectin concentrations than MCO cats. Twenty one metabolites

were discriminative between breeds using a multivariate statistical approach and 15

remained significant after adjustment for body weight and body condition score. Burmese

cats had higher plasma levels of 2-hydroxybutyrate relative to MCO and Birman cats and

increased concentrations of 2-oxoisocaproic acid, and tyrosine, and lower concentrations of

dimethylglycine relative to MCO cats. The metabolic profile of MCO cats was characterized

by high concentrations of arginine, asparagine, methionine, succinic acid and low levels of

acetylcarnitine while Birman cats had the highest creatinine and the lowest taurine plasma

levels, compared with MCO and Burmese. The pattern of metabolites in Burmese cats is

similar to that in people with insulin resistance. In conclusion, the metabolic profile differed

between healthy cats of three breeds. Detection of an abnormal metabolome might identify

cats at risk of developing diabetes.
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Introduction

Diabetes mellitus (DM) is an increasingly common endocrinopathy in cats and has many fea-

tures in common with human type 2 diabetes (T2DM) [1, 2]. Cats and humans share many

risk factors for developing the disease, for example, the association with insulin resistance

(IR) coupled to obesity and a sedentary lifestyle, and β-cell loss with amyloid deposition in

the islets of Langerhans in the pancreas [3–6]. There is a genetic predisposition in both peo-

ple [7–9] and cats, with the Burmese cat breed at increased risk [10–13]. An inherited dyslipi-

demia has been suggested to increase IR and predispose Burmese cats to the disease [14].

Abnormally increased serum triglyceride (TG) concentrations after oral fat tolerance test

have been described [15], indicating a delayed clearance of TG compared to unaffected Bur-

mese cats. In people, hypertriglyceridemia has been associated with both IR and T2DM [16–

20]. Hypertriglyceridemia is also one of the components of the metabolic syndrome in peo-

ple, together with central obesity, increased blood pressure and IR [21]. People with meta-

bolic syndrome have a fivefold increased risk of developing T2DM [22]. Subsequent studies

have described aberrations in the cholesterol lipoprotein fraction profiles in lean Burmese

cats, similar to obese cats, with increases in very low-density lipoprotein (VLDL) concentra-

tions, and decreases in high-density lipoproteins (HDL), a pattern similar to the metabolic

syndrome in people [23–26]. In addition, the expression patterns of several genes involved in

lipid metabolism as well as low circulating adiponectin concentrations in lean Burmese cats

resemble those of obese cats. In people, low adiponectin levels are associated with IR and

T2DM [27–31].

Metabolites are small molecules that are chemically transformed in the metabolism and

provide functional readouts of cellular biochemical activities. The metabolome provides a

measurement of the metabolic phenotype that is a net result of genomic, transcriptomic, and

proteomic variability [32]. Metabolomics is useful for studying metabolic diseases, or traits,

such as T2DM and IR, especially considering that the more than 100 so far identified T2DM

associated gene loci in people have only small to moderate effects on the individual’s suscepti-

bility to the disease [33]. Metabolomics has been utilized in diabetes research in people [34–

40], and an abnormal pattern in the branched-chain and aromatic amino acids has been

described [41–44]. Few studies using the metabolomics approach are available in cats. The

metabolome of cats in remission has been studied and compared to that of control cats, show-

ing an abnormal metabolism in cats in remission [45]. In a PhD thesis the metabolome has

been shown to differ between obese and normal weight cats, and between senior cats of Bur-

mese compared to those of other breeds [46]. In studies not related to DM, one study analyzed

the urine metabolome using gas chromatography/time-of-flight mass spectrometry in eight

healthy domestic cats [47], and in another study the effects of dietary macronutrient composi-

tion on the plasma metabolome of healthy adult cats were assessed with liquid chromatogra-

phy followed by mass spectrometry (LC/MS) [48].

The objective of the present study was to characterize the feline metabolic profile in healthy

Burmese cats, and compare it to two cat breeds of medium or low risk for developing DM, the

Maine coon (MCO) and Birman cat, respectively, [11] by using nuclear magnetic resonance

(NMR) metabolomics, serum biochemistry, and hormone immunoassays. Differences in the

metabolome of these three feline breeds might shed light into preventative measures in the

future under a clinical setting. The information may be used when metabolome perturbations

of a patient begin to emerge and can be compared to known disease associated metabolome

profiles.

PLOS ONE Differences in metabolic profiles between three cat breeds with varying risk for diabetes mellitus

PLOS ONE | https://doi.org/10.1371/journal.pone.0249322 April 22, 2021 2 / 15

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0249322


Materials and methods

Study population

The study was approved by the Uppsala Ethical Committee on Animal Research (C 299/12

and C 12/15) and the Swedish Board of Agriculture (31-11654/12), and written informed con-

sent to participate in the study was obtained from all owners.

Healthy, adult (> 1 year), purebred, client-owned cats (n = 106) of three different breeds

(Burmese, MCO and Birman) were included in the study. Food was withheld for at least 12

hours prior to sampling. Cats were weighed and a physical examination including body condi-

tion scoring using a 9-grade scale [44] was performed by a veterinarian at the University

Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden, or the Bagar-

mossen Anicura Referral Hospital, Stockholm, Sweden. Of the Burmese cats, 31 cats were sam-

pled in 2013. All other cats were sampled 2015–2016. Cats with a body condition score (BCS)

between 3 and 4 were grouped as underweight, 5 were considered normal weight, and cats

with a BCS between 6 and 9 were grouped as overweight [47]. Owners completed a question-

naire which included questions concerning the cat’s age, breed, sex, neutering status, any cur-

rent or previous medications or medical issues, and time of last meal.

Cats were excluded if they were non-fasted, non-compliant at sampling, had a history of or

ongoing severe organ related or systemic disease, or if they had received progestin or cortico-

steroid treatments during the last year. Cats were also excluded if serum biochemistry showed

values clearly outside the reference range, although small deviations in fasting serum creati-

nine levels were accepted [48]. Fasting serum concentrations of creatinine�200 μmol/L, ala-

nine aminotransferase (ALAT)�2.8 μkat/L, and fructosamine�350 μmol/L were accepted.

Sampling

Blood was drawn from the cephalic vein and collected into serum tubes. Samples were centri-

fuged for 10 minutes at 3000 rpm and serum was thereafter aliquoted and stored cool and ana-

lyzed within 24 hours, or stored in microtubes at -70˚C until further analysis.

Analyses

Serum biochemistry. All serum samples were analyzed for ALAT, creatinine, and fructo-

samine concentrations on an automated chemistry analyzer (Abbott Architect c4000, Abbott

Park, IL, USA) at the Clinical Pathology Laboratory, University Animal Hospital, Swedish

University of Agricultural Sciences, Uppsala, Sweden.

Lipoprotein profiles were obtained at the department of Medical Biosciences, Umeå Uni-

versity by utilizing an automated HPLC system (Elite LaChrom, Hitachi, Krefeld, Germany)

with a Superose 6 size-exclusion column (GE Healthcare, Uppsala, Sweden). Plasma samples

were diluted 1:16 in elution buffer that consisted of 10 mM Tris, 150 mM NaCl and 0,02%

NaN3, and injected into the column. On-line measurements of triglyceride and cholesterol

concentrations were performed using appropriate reagents (Roche, Basel, Switzerland). The

reagents were diluted 1:2 with lab grade water prior to analyses. As a standard for lipoprotein

profiles, a human plasma sample with a known lipid concentration was used. All data was pro-

cessed using the EZChrom Elite software (Agilent Technologies, Boeblingen, Germany).

Free fatty acids were measured with the MaxDiscovery™ Non-esterified fatty acids (NEFA)

Assay Kit (Bioo Scientific, Austin TX, US), at the Clinical Sciences laboratory, Swedish Univer-

sity of Agricultural Sciences, Uppsala, Sweden.

Hormone immunoassays. Total adiponectin concentrations were assayed using the Adi-

ponectin Human ELISA, High Sensitivity (BioVendor—Laboratorni medicina, Brno, Czech
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Republic), insulin concentrations were measured with the Mercodia Feline Insulin ELISA

(Mercodia AB, Uppsala, Sweden), and insulin-like growth factor (IGF)-1 with the human E20

Insulin-like Growth Factor-I ELISA (Mediagnost, Reutlingen, Germany). All analyses were

performed in duplicate at the Department of Clinical Sciences laboratory, Swedish University

of Agricultural Sciences, Uppsala, Sweden. All hormonal assays have previously been validated

for use in cats [49–52]. If the intra-assay coefficient of variation (CV) was above 10%, samples

were rerun, and the highest accepted CV was 11% (one sample). For IGF-1, samples at concen-

trations above 28 ng/mL on the standard curve were diluted further and rerun, to avoid inter-

ference by IGF-binding proteins, which may not be efficiently removed when using the

standard protocol [51].

NMR-based metabolomics analyses. Metabolomics analyses were performed on a subset

of samples, all collected 2015–2016 (in total n = 63; Burmese n = 15, MCO n = 25, Birman

n = 23,). Nanosep centrifugal filters with 3-kDa cutoff (Pall Life Science, Port Washington,

NY) were washed to remove glycerol from the filter membrane. 60 μl serum were filtered at

10,000 g, 4˚C. 40 μl of filtrate were mixed with 50 μl phosphate buffer (0.4 mol/L, pH 7.0),

15 μl D2O, 55 μl millipore water, and 10 μl sodium-3-(trimethlsilyl)-2,2,3,3,-tetradeuteriopro-

pionate (TSP, 5.8 mmol/L) (Cambridge Isotope Laboratories, Andover, MA) as an internal

standard to be able to quantify metabolites. Analyses were performed on a Bruker spectrome-

ter operating at 600 MHz equipped with a cryogenically cooled probe and auto sampler at the

Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Swe-

den. The 1H NMR spectra were obtained using zgesgp pulse sequence (Bruker Spectrospin

Ltd) at 25˚C with 512 scans at 65,356 data points over a spectral width of 17,942.58 Hz (acqui-

sition time: 1.83 s, relaxation delay 4 s). Baseline and spectral phase correction were performed

manually using Chenomx. The line width was adjusted to 1.1 Hz for all spectra. Fifty-eight

metabolites were identified and their concentrations were calculated using an automated

quantification algorithm (AQuA) accounting for interfering signals as previously described

[53].

Statistical analysis

Normally distributed data are reported as mean with standard deviation (SD), and non-nor-

mally distributed data as median with interquartile range (IQR). A one-way ANOVA was used

to compare age, sex, body weight (BW) and BCS between breeds. The assumption of normally

distributed residuals and equal variances in the model was examined by visual inspection of

diagnostic plots (histogram of residuals and normal probability plots of residuals). If residuals

were not normally distributed, data were log-transformed and diagnostic plots were reevalu-

ated. If residuals remained non-normally distributed, a non-parametric test was used.

To assess differences in metabolites between breeds, univariate statistical analyses were per-

formed (Minitab, version 17.3.1) on metabolites identified as discriminative via the multivari-

ate approach described below by using one-way ANOVA (for normally distributed data), or

Kruskal-Wallis test (for not normally distributed data). Further, the Tukey’s post hoc test was

applied to assess differences between the three breeds. To adjust for influence of BW and BCS,

a univariate mixed linear regression model was applied, for each metabolite identified as dis-

criminative between breeds (SAS, version 9.4). Concentrations are reported as least square

means or geometric means with 95% CI as described above. The significance level was set at

P< 0.05.

Multivariate regression was used to investigate the effects of breed, BW, and BCS on the

concentrations of creatinine, ALAT, fructosamine, VLDL-TG, HDL-cholesterol, FFA, insulin,

adiponectin, and IGF-1 using SAS (version 9.4). Potential interactions were controlled for by
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including interaction factors between the explanatory variables. Concentrations were reported

as least square means with 95% CI, and if data were logged for analysis, least square means

were back-transformed and reported as geometric means with 95% CI. P-values given for the

multivariate analyses are based on Wilk’s lambda. Effects of differences in storage time and

sample handling were evaluated by t-test within the Burmese breed group, where samples were

collected during two different time periods (2013, and 2015 to 2016, respectively).

Multivariate statistical analyses were performed on metabolomics data using SIMCA 14

software (Umetrics, Umeå, Sweden). Principal component analysis (PCA) was applied to get

an overview of the data and to exclude potential outliers by using the PCA-Hotelling’s T2

Ellipse (95% confidence intervals (CI)). To assess differences between the breeds, partial least

square discriminant analysis (PLS-DA) was applied, which can take class membership (e.g. cat

breed) into account. To determine discriminative metabolites between the breeds, variable

influences on projection (VIP) values were used. Metabolites with VIP values > 1 for which

the corresponding jackknife-based 95% CIs were not close to or included zero were considered

discriminative. Cross-validated ANOVA was used to confirm validity and reliability of the

PLS-DA model. Additionally, R2 (proportion of variation modeled in the component) and Q2

parameters (proportion of variation in the data predictable by the PLS-DA model) are

reported.

Results

Study population

Out of the 106 recruited cats, 12 were excluded from the study for not having met the inclusion

criteria, leaving the study population at 94 cats (46 Burmese, including 31 cats sampled in

2013, 25 MCO, and 23 Birman cats). Reasons for exclusion included non-fasting (n = 3), non-

compliance (n = 5), concurrent illness (n = 3), or increased serum biochemistry values (n = 1).

Descriptive statistics by breed for the variables age, BW, BCS, and sex distribution are shown

in Table 1. Age and sex distribution did not differ between breeds, however, BW (MCO> Bur-

mese> Birman) and BCS (Burmese > Birman) did (Table 1).

Serum biochemistry and hormonal variables. Effects of breed, BW, and BCS on the con-

centrations of creatinine, fructosamine ALAT, VLDL-TG, HDL-cholesterol, FFA, adiponectin,

Table 1. Descriptive statistics of the included cats (n = 94) by breed.

Variable1 Burmese (n = 46) Maine coon (n = 25) Birman (n = 23) P-value�

Age (years) Median 5.0 a 8.0 a 6.0 a 0.2

(IQR) (2–9) (3–10) (2–11)

BW (kg) Median 4.4 a 5.4 c 3.3 b <0.001

(IQR) (3.6–5.1) (4.6–6.6) (3.0–4.1)

BCS (scale 1–9) Median 6.0 a 5.0 a,b 5.0 b 0.014

(IQR) (5.0–6.0) (5.0–5.0) (5.0–6.0)

Sex (n) Male 2 (4%) a 2 (8%) a 3 (13%) a 0.44

Neutered male 22 (48%) 7 (28%) 5 (22%)

Female 9 (20%) 7 (28%) 8 (35%)

Neutered female 13 (28%) 9 (36%) 7 (30%)

IQR, interquartile range; BW, body weight; BCS, body condition score.
1 Data are shown as median and interquartile range and number of cats and proportions.
a,b,c Numbers within a row with different superscript letters differ from another at P < 0.05.

� P-values from one-way ANOVA.

https://doi.org/10.1371/journal.pone.0249322.t001
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insulin, and IGF-1, showed that for all variables except ALAT and FFA, a significant model

could be obtained. Breed (P< 0.0001) and BW (P< 0.0001), but not BCS (P = 0.14), had

strong overall effects in the multivariate model. There were no significant interactions present

between any of the explanatory variables. Results from the multivariate model with breed dif-

ferences are summarized in Table 2.

Body weight had significant effects on fructosamine, VLDL-TG, insulin, IGF-1, and adipo-

nectin concentrations. Increasing BW increased concentrations of fructosamine with

8.1 μmol/L per kg (P = 0.0015), VLDL-TG with 27% per kg (P< 0.0001), insulin with 20% per

kg (P = 0.024), IGF-1 with 33% per kg (P< 0.0001), and decreased the concentration of adipo-

nectin with 40.3 ng/mL per kg (P = 0.0003). Overweight cats had 20.3 μmol/L higher average

creatinine concentrations than normal weight cats (P = 0.0017).

None of the above mentioned parameters differed between Burmese cat samples collected

in 2013 and those collected in 2015 & 2016.

Metabolomics data. A significant PLS-DA model (Fig 1) successfully separated the

breeds: the first component separated MCO cats from Burmese and Birman, while the second

component separated Burmese from Birman. Out of 58 quantified metabolites 21 were found

discriminative based on their VIP along the first and second component. The discriminative

metabolites were subjected to univariate statistical analysis followed by correction for multiple

testing and 18 metabolites were reconfirmed (Table 3). The Burmese breed was characterized

by higher levels of the branched-chain amino acid (BCAA) valine, the aromatic amino acid

tyrosine, the amino acid metabolite 2-oxoisocaproic acid, and acetylcarnitine compared to

MCO cats. Additionally, 2-hydroxybutyric acid was higher and acetic acid was lower relative

to the Birman breed. Lysine and O-phosphocholine levels were lowest in Burmese cats and

significantly different from both other breeds. The metabolic fingerprint of MCO cats was

characterized by high concentrations of arginine, asparagine, methionine, creatine, dimethyl-

glycine, succinic acid and low levels of acetylcarnitine, carnitine and tyrosine compared to

Burmese and Birman cats. Birman cats showed high levels of creatinine and low taurine con-

centrations compared to Burmese and MCO cats.

Table 2. Serum biochemistry and hormonal concentrations by breed in 94 cats.

Analyte Concentration1

Burmese (n = 46) Maine coon (n = 25) Birman (n = 23) P2

Creatinine (μmol/L) 128 (119–136) a 128 (117–138) a 163 (152–174) b <0.0001

Fructosamine (μmol/L) 251 (242–260) a 238 (228–249) a 246 (234–257) a 0.004

ALAT (μkat/L) 1.1 (0.9–1.2) a 0.8 (0.6–1.0) a 1.2 (1.0–1.4) a 0.110

VLDL-TG (mmol/L) 0.19 (0.15–0.23) a 0.10 (0.07–0.12) b 0.23 (0.18–0.30) a <0.0001

HDL-cholesterol (mmol/L) 4.8 (4.4–5.3) a 4.2 (3.7–4.7) a 6.3 (5.6–7.2) b <0.0001

FFA (mmol/L) 0.52 (0.44–0.61) a 0.44 (0.36–0.53) a 0.40 (0.32–0.49) a 0.170

Adiponectin (ng/mL) 429 (390–468) a 609 (562–656) b 466 (416–516) a <0.0001

Insulin (ng/mL) 211 (157–283) a 115 (81–164) b 169 (116–247) a,b 0.036

IGF-1 (ng/mL) 660 (532–818) a 378 (292–489) b 773 (587–1018) a 0.001

ALAT, alanine aminotransferase; VLDL, very low-density lipoprotein; TG, triglycerides; HDL, high-density lipoprotein; FFA, free fatty acids; IGF, insulin-like growth

factor.
1 Concentrations are shown as estimated least square means for each breed, with 95% confidence intervals (CI). If residuals were non-normally distributed, data were

logged for analysis, and least square means were back-transformed and reported as geometric means, with 95% CI.
2 P-values represent breed differences based on results from the multivariate linear regression model including adjustments for body weight and body condition score.
a,b Numbers within a row with different superscript letters differ from another at P< 0.05.

https://doi.org/10.1371/journal.pone.0249322.t002
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Each point represents one cat. Model parameters: R2X component 1 = 0.103, R2X compo-

nent 2 = 0.074, R2Y(cum) = 0.668, Q2(cum) = 0.449; Cross-validated ANOVA: P< 0.001. Sig-

nificant metabolites are presented in Table 3.

Univariate regression analysis including adjustments for BW and BCS for each NMR

metabolite identified as discriminative between breeds, revealed that breed remained as a sig-

nificant explanatory variable for the following 15 metabolites: 2-hydroxybutyric acid, 2-oxoi-

socaproic acid, acetic acid, acetylcarnitine, arginine, asparagine, creatinine, dimethylglycine,

histidine, lysine, methionine, O-phosphocholine, succinic acid, taurine, and tyrosine (Table 4).

For the metabolites carnitine, creatine, and valine, breed did not remain significant, and the

discriminant effect was instead due to BW, BCS or a combination of the explanatory variables.

Arginine and creatine concentrations increased with 4.6 μM (P = 0.04) and 31.6%

(P< 0.0001) per kg BW, respectively. Tyrosine concentrations were affected by BCS, with

overweight cats having higher average concentrations than normal weight (P = 0.042) and

underweight (P = 0.013) cats.

Discussion

In the present study the metabolic fingerprint was compared between three breeds (Burmese,

MCO and Birman cats) and higher concentrations of biomarkers associated with insulin resis-

tance and/or diabetes were observed in Burmese cats, the breed with highest risk of developing

DM. Breed differences were also evident from serum biochemistry and hormone assays, where

breed was an important individual variable explaining the variation in the data.

In people, BCAAs (isoleucine, leucine, valine) and the aromatic amino acids tyrosine, and

phenylalanine have been identified as early biomarkers for T2DM [39]. In the present study,

Fig 1. Partial Least Square Discriminant Analysis (PLS-DA) score plot derived from Nuclear Magnetic Resonance (NMR)-based metabolomics

analysis in 63 cats by breed; Burmese (n = 15), Birman (n = 23) and Maine coon (n = 25) cats.

https://doi.org/10.1371/journal.pone.0249322.g001
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the initial comparison of the metabolic fingerprint of the three cat breeds also showed higher

levels of valine, leucine, tyrosine, 3-methyl-2-oxovaleric acid (a breakdown product of isoleu-

cine) and 2-oxoisocaproic acid (a breakdown product of leucine) in Burmese cats. After

adjustment for body weight and body condition score only tyrosine and 2-oxoisocaproic acid

remained significantly different from the MCO breed, suggesting that some of the metabolic

differences are due to a high proportion of Burmese cats being overweight. Tyrosine has been

shown to be associated with T2DM and insulin resistance in people [39, 40, 54] in epidemio-

logical studies. Mechanistic studies suggest that 2-oxoisocaproic acid induces insulin secretion

in rat islets [55]. Alternatively, high levels of 2-oxoisocaproic acid, indicative of impaired

BCAA metabolism, may lead to an accumulation of toxic intermediates which have been sug-

gested to cause mitochondrial stress and impaired insulin action [56]. The higher

Table 3. Metabolites found different between the three cat breeds in 63 cats.

Burmese MCO Birman VIP VIP P3

(n = 15) (n = 25) (n = 23) comp 12 comp 22

Metabolite Concentration (μM)1 (95% CI) (95% CI)

2-Oxoisocaproic acid 5.5±0.9 a 4.3±0.9 b 4.9±1.6 a,b 1.18 (0.39) 1.16 (0.57) 0.008

Acetic acid 7.7 a 10.1 a,b 11.3 b - 1.41 (0.62) 0.002

(5.0–10.0) (8.7–12.6) (9.7–17.0)

Acetylcarnitine 4.1 a 2.6 b 3.6 a 1.88 (0.89) 1.6 (0.47) <0.001

(3.0–5.1) (2.2–3.1) (2.8–4.2)

Arginine 122.1±19.0 a 146.7±22.4 b 118.2±13.0 a 2.14 (0.53) 1.67 (0.37) <0.001

Asparagine 57.9 a 68.2 b 60.6 a 2 (0.99) 1.55 (0.85) <0.001

(50.1–66.8) (63.3–72.9) (53.2–62.7)

Carnitine 25.0 a 21.7 b 25.6 a 1.46 (1.04) 1.13 (0.86) 0.004

(23.9–28.4) (18.3–28.5) (24.3–31.1)

Creatine 9.5 a 12.2 b 8.4 a 1.23 (1.09) - 0.001

(6.3–13.7) (10.6–23.4) (7.4–12.3)

Creatinine 128.8±28.7 a 123.7±19.0 a 146.8±19.0 b 1.5 (0.87) 1.57 (0.97) 0.002

Dimethylglycine 4.1 a 5.0 b 4.1 a 1.5 (1.25) 1.26 (0.82) 0.001

(3.5–4.3) (4.5–6.4) (3.7–4.7)

Histidine 110.5±16.3 a,b 120.7±14.3 a 107.2±16.4 b - 1.03 (1.02) 0.012

Lysine 72.0 a 107.7 b 114.3 b - 1.81 (1.13) <0.001

(63.6–80.2) (93.4–138.9) (85.2–126.2)

Methionine 40.3±9.0 a 48.1±9.0 b 35.0±7.9 a 1.99 (1) 1.68 (0.66) <0.001

O-Phosphocholine 3.3±0.5 a 4.1±0.9 b 4.2±0.7 b - 1.69 (1.11) 0.001

Succinic acid 15.0 a 17.7 b 14.6 a 1.63 (1.32) 1.27 (1.13) 0.001

(12.2–17.1) (16.2–19.9) (10.2–17.6)

Taurine 295.8±86.4 a 286.6±121.5 a 193.3±89.2 b 1.93 (0.91) 1.3 (0.8) 0.003

Tyrosine 60.7±10.7 a 47.2±10.4 b 59.3±10.2 a 1.28 (0.78) 1.51 (0.75) <0.001

2-Hydroxybutyric acid 20.0±4.7 a 17.0±4.2 a,b 16.1±3.6 b - 1.28 (0.99) 0.020

Valine 183.0±28.0 a 156.2±34.2 b 176.5±36.5 a,b - 1.11 (0.58) 0.032

VIP, variable influences of projection; CI, confidence interval; MCO, Maine coon.
1 Concentrations are shown as mean with standard deviation for normally distributed data, and as median and interquartile range for non-normally distributed data.
2 VIPs (95% CI) are based on the PLS-DA model presented in Fig 1.
3 P-values represent breed differences based on univariate statistical analyses (one-way ANOVA or Kruskal-Wallis test), P< 0.013 was considered significant based on

the Benjamini-Hochberg correction for multiple testing.
a,b Numbers within a row with different superscript letters differ from another at P< 0.05, based on univariate statistics including Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0249322.t003
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concentrations of insulin in Burmese than in MCO cats may indicate insulin resistance and

thus be related to the increased risk for DM.

Also dimethylglycine, an amino acid derivative, differed in concentration between breeds,

with Burmese cats having lower concentrations than MCO cats, after adjustment for body

weight and body condition score. Low plasma levels of dimethylglycine have been associated

with higher blood glucose levels in human [57]. Additionally, higher concentrations of

2-hydrobutyric acid were observed in the Burmese compared to the MCO and Birman breed.

2-hydroxybutyric acid, derived from alpha-ketobutyrate which is produced by glutathione

anabolism and amino acid catabolism (threonine and methionine), is an early marker for insu-

lin resistance and impaired glucose regulation in people, and the underlying mechanism may

involve increased lipid oxidation and oxidative stress [58].

Acetylcarnitine, a short-chain acylcarnitine, was significantly higher in Burmese and Bir-

man cats than in MCO cats. Acetylcarnitine has been shown to be higher in T2DM patients

than in healthy controls, and high acylcarnitines have also been associated with IR in people

[59]. Acetylcarnitine concentrations were significantly correlated with plasma HbA1c in peo-

ple, which suggests that higher acetylcarnitine levels are associated with an increasing severity

of diabetes [60]. Experimental administration of acetylcarnitine improves insulin-mediated

glucose disposal [61]. Acylcarnitines are also involved in an alternative model for explaining

the obesity-induced IR focusing on intra-mitochondrial disturbances. According to this the-

ory, an overload of lipids cause an increase, rather than a decrease, in beta-oxidation, leading

to production and accumulation of acylcarnitines, which in turn interfere with insulin signal-

ing in skeletal muscle [20, 62]. Indeed, VLDL-TG were significantly higher in Burmese and

Table 4. Metabolites remaining discriminant for breeds after adjusting for body weight and body condition score.

Metabolite Concentration (μM)1 P2

Burmese Maine coon Birman

(n = 15) (n = 25) (n = 23)

2-Hydroxybutyric acid 20.5 (17.9–23.1) a 17.1 (15.1–19.1) b 16.8 (14.7–19.0) b 0.033

2-Oxoisocaproic acid 5.8 (5.0–6.5) a 4.3 (3.7–4.9) b 4.9 (4.3–5.6) a,b 0.014

Acetic acid 8.4 (5.6–11.2) a 10.9 (8.7–13.1) a,b 13.4 (11.0–15.8) b 0.011

Acetylcarnitine 4.1 (3.5–5.8) a 2.8 (2.5–3.2) b 3.5 (3.1–4.0) a 0.003

Arginine � 124.0 (113.0–134.9) a 141.6 (133.0–150.1) b 124.3 (115.0–133.6) a 0.022

Asparagine 57.0 (52.3–62.2) a 68.7 (64.1–73.5) b 58.4 (54.3–62.9) a 0.003

Creatinine 126.3 (113.6–139.0) a 120.0 (110.1–130.0) a 150.5 (139.7–161.3) b 0.0002

Dimethylglycine 3.7 (3.2–4.3) a 4.9 (4.4–5.5) b 4.3 (3.8–4.9) a,b 0.013

Histidine 111.8 (102.2–121.5) a,b 123.5 (115.9–131.0) a 107.3 (99.1–115.5) b 0.027

Lysine 70.1 (60.6–81.0) a 104.1 (92.9–116.6) b 110.1 (97.3–124.5) b <0.0001

Methionine 39.7 (34.8–45.3) a 47.8 (43.1–53.0) b 34.3 (30.7–38.4) a 0.0005

O-phosphocholine 3.1 (2.7–3.6) a 4.1 (3.8–4.5) b 4.1 (3.7–4.5) b 0.0004

Succinic acid 13.0 (11.1–15.2) a 18.0 (15.9–20.4) b 13.0 (11.4–14.9) a 0.002

Taurine 283.3 (218.7–347.9) a 292.8 (242.2–343.3) a 184.2 (129.3–239.1) b 0.007

Tyrosine x 56.5 (50.3–63.4) a 44.8 (41.0–49.1) b 58.5 (53.0–64.5) a 0.001

1 Concentrations (μM) are shown as estimated least square means for each breed, with 95% confidence intervals (CI). If residuals were not normally distributed, data

were logged for analysis, and least square means were back-transformed and reported as geometric means, with 95% CI.
2 P-value for type 3 tests of breed as fixed effect.
a,b Numbers within a row with different superscript letters differ from another at P< 0.05.

� For arginine there was an additional effect from body weight (P = 0.04).
x For tyrosine there was an additional effect from body condition (P = 0.03).

https://doi.org/10.1371/journal.pone.0249322.t004

PLOS ONE Differences in metabolic profiles between three cat breeds with varying risk for diabetes mellitus

PLOS ONE | https://doi.org/10.1371/journal.pone.0249322 April 22, 2021 9 / 15

https://doi.org/10.1371/journal.pone.0249322.t004
https://doi.org/10.1371/journal.pone.0249322


Birman compared to MCO cats, although the BCS was lower in both Birman and MCO than

in Burmese cats.

The concentrations of adiponectin were lowest in Burmese cats, but significantly different

only from the MCO breed. Adiponectin is an adipocyte-derived hormone, with an inconsis-

tent association with obesity in cats. Some studies have shown a negative correlation [50, 63–

66], while others did not detect associations between total adiponectin concentrations and

obesity [49, 67]. Increasing BW in our study was associated with lower adiponectin concentra-

tions, however, we did not identify BCS as an independent factor influencing adiponectin lev-

els. The three breeds in this study represent two normal-sized cat breeds, the Burmese and the

Birman, and one large-sized breed, the MCO. Adiponectin directly regulates glucose metabo-

lism and increases insulin sensitivity in people by stimulating fatty-acid oxidation, glucose

uptake, and reduces gluconeogenesis in the liver [27, 68]. In cats and people with DM, adipo-

nectin concentrations are even lower than in overweight and obese individuals, indicating that

the degree of hypoadiponectinemia is more closely related to the degree of insulin resistance

than to the degree of adiposity [25, 26, 69, 70].

The plasma metabolic profile of MCO cats was characterized by higher concentrations of

two essential amino acids, arginine and methionine [71], and one non-essential amino acid,

asparagine, compared to Burmese and Birman cats. Arginine is essential due to its crucial role

in the urea cycle to excrete ammonia. Methionine, a sulfur containing proteinogenic amino

acid, is needed as methyl-group donor and acceptor.

Breed differences for plasma biochemical analytes in cats have been reported previously,

with Birman cats displaying higher creatinine and total protein concentrations than other cats

[72]. Birman cats had significantly higher creatinine concentrations than the Burmese and

MCO cats also in the present study. The reasons for these findings are unclear. Creatinine was

also associated with BCS, with higher concentrations seen in overweight cats than in both nor-

mal weight and underweight cats. Serum creatinine is a byproduct of muscle metabolism, and

it is possible that the underweight cats in our study had less muscle mass which might explain

part of the effect of BCS on creatinine.

The present study is the first using a metabolomics approach to assess differences between

cat breeds, with the comparatively large number of samples being a strength. Metabolomics

uses relatively cheap and noninvasive techniques to produce large amounts of data and thus

shows potential to improve disease diagnostics [73]. In the search for biomarkers, many

metabolites can be measured, and once a biomarker is identified and validated, other simpler

methodologies can be used in a clinical setup. An improved understanding of the variation in

metabolism between different breeds may thus enable identification of new markers related to

abnormal metabolism/insulin resistance and potentially facilitate the development of therapies

to improve glucose tolerance in cats of high-risk breeds. Although DM in people shows great

heterogeneity not only between but also within different types, and not all variants of T2DM

may have feline counterparts [74], the results also support the use of the cat as a model for

T2DM in people.

Conclusions

To our knowledge, this is the first study including NMR data from a comparably large cohort

of healthy cats of three breeds with different risk of developing DM; the Burmese, MCO and

Birman. We found significant differences in the metabolic profiles between the included cat

breeds, based on an NMR metabolomics approach, serum biochemistry analyses and hormone

immunoassays. Our results indicate that Burmese cats have a metabolic fingerprint similar to

that in people with IR. An improved understanding of the variation in metabolism between
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different breeds may facilitate the development of therapies to improve glucose tolerance in

cats of high risk breeds.
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Funding acquisition: Malin Öhlund, Bodil S. Holst.
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34. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes:

a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010; 5(11):e13953.

Epub 2010/11/19. https://doi.org/10.1371/journal.pone.0013953 PMID: 21085649

35. Connor SC, Hansen MK, Corner A, Smith RF, Ryan TE. Integration of metabolomics and transcrip-

tomics data to aid biomarker discovery in type 2 diabetes. Mol Biosyst. 2010; 6(5):909–21. Epub 2010/

06/23. https://doi.org/10.1039/b914182k PMID: 20567778

36. Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabo-

lites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013; 62

(2):639–48. Epub 2012/10/09. https://doi.org/10.2337/db12-0495 PMID: 23043162

37. Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, et al. Effects of insulin resistance

and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear mag-

netic resonance. Diabetes. 2003; 52(2):453–62. Epub 2003/01/24. https://doi.org/10.2337/diabetes.52.

2.453 PMID: 12540621

38. Menni C, Fauman E, Erte I, Perry JR, Kastenmüller G, Shin SY, et al. Biomarkers for type 2 diabetes

and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013; 62

(12):4270–6. Epub 2013/07/26. https://doi.org/10.2337/db13-0570 PMID: 23884885

39. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk

of developing diabetes. Nat Med. 2011; 17(4):448–53. Epub 2011/03/23. https://doi.org/10.1038/nm.

2307 PMID: 21423183

40. Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and type 2 dia-

betes: progress from the metabolome. The lancet Diabetes & endocrinology. 2014; 2(1):65–75. Epub

2014/03/14. https://doi.org/10.1016/S2213-8587(13)70143-8 PMID: 24622670
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