
1. Introduction
The terrestrial carbon budget is coupled to atmospheric CO2 concentrations (Friedlingstein et  al.,  2019; 
Keeling et al., 1995; Le Quéré et al., 2018; Piao et al., 2020; Zeng et al., 2005). Its future interplay with cli-
matic conditions will likely have profound impacts on the evolution of the global climate under continued 
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definition of the growing season. We base our analysis on long-term vegetation indices (Normalized 
Difference Vegetation Index and two-band Enhanced Vegetation Index), growing conditions (including 
2m temperature, downwards surface solar radiation, and root-zone soil moisture), and multiple 
teleconnection indices that reflect the large-scale climatic conditions over Europe. We find that the large-
scale climate-vegetation coupling during the first two months of the growing season largely determines 
the full-year coupling. The North Atlantic Oscillation and Scandinavian Pattern phases one-to-two months 
before the start of the growing season are the dominant and contrasting drivers of the early growing 
season climate-vegetation coupling over large parts of boreal and temperate Europe. The East Atlantic 
Pattern several months in advance of the growing season exerts a strong control on the temperate belt and 
the Mediterranean region. The strong role of early growing season anomalies in vegetative activity within 
the growing season emphasizes the importance of a grid-wise definition of the growing season when 
studying the large-scale climate-vegetation coupling in Europe.

Plain Language Summary Climate and terrestrial ecosystems interact and affect the global 
climate. Such a climate-vegetation relationship can be effectively quantified by using satellites to measure 
how leafy and active the vegetation is, and numerical indices reflecting large-scale climate patterns over 
a given region. Previous studies generally focused on changes in mean vegetation indices over the full 
growing season, which is usually defined by a fixed range of astronomical months for large geographical 
regions. This overlooks the fact that growing seasons differ in space and vegetation responds differently 
to the climate in different growing season periods. In this study, we explore how vegetation and climate 
interact within a growing season, here defined specifically for the local conditions. We find that there 
are strong relationships between the large-scale climate patterns and vegetation indices during the first 
two months of the growing season. Our findings highlight the important role of the vegetation activity 
during the early growing season for the year-to-year vegetation changes in Europe. Hence, for a better 
understanding of the climate-vegetation relationships, it is necessary to consider the spatial differences in 
the growing season, in particular for large geographical regions.
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anthropogenic forcing (Betts et al., 2004; Ciais et al., 2013; Friedlingstein et al., 2006). The terrestrial carbon 
budget and climate interact at multiple temporal and spatial scales (Friedlingstein et al., 2019; Le Quéré 
et al., 2018; Messori et al., 2019; Rödenbeck et al., 2018): there are very local effects, for example, hourly to 
seasonal small-scale direct drivers that affect respiration (Homyak et al., 2018; Jarvis et al., 2007; Talmon 
et al., 2011) and gross productivities (Law et al., 2002; Noormets et al., 2008; Novick et al., 2016) and subsea-
sonal or longer effects at the regional to continental scales, for example, the coupling between large-scale 
vegetation greenness and teleconnection indices such as the El Niño – Southern Oscillation (ENSO) (Ande-
regg et al., 2015; Behrenfeld et al., 2001; Bowman et al., 2017; Z.M. Chen et al., 2004) or the North Atlantic 
Oscillation (NAO) (Gonsamo et al., 2012; Maignan et al., 2008; Nordli et al., 2008; Stöckli & Vidale, 2004). 
Partly due to this variety of scales, many aspects of the carbon cycle-climate coupling are poorly understood, 
both from an observational and modeling perspective (Piao et al., 2020).

Remotely-sensed observations are now providing data with extensive spatio-temporal coverage to address 
this challenge. Specifically, remotely sensed vegetation indices available at up to meter horizontal resolution 
on a daily basis (e.g., Normalized Difference Vegetation Index, NDVI) have been used as proxies for photo-
synthesis, to detect changes in phenology, to diagnose the ecosystem-climate relationship, and more (Bari-
chivich et al., 2013; Bastos et al., 2016; Belmecheri et al., 2017; Gonsamo et al., 2016; Maignan et al., 2008; 
Ruiz-Pérez & Vico, 2020; e.g., Stöckli & Vidale, 2004). Long-term satellite vegetation products may also help 
to explore the large-scale climate-vegetation coupling, provided the temporal and spatial scales relevant to 
the specific questions being tackled are identified.

From the climate perspective, the responses of the terrestrial carbon cycle to climate variability have been 
assessed based on individual variables, such as temperature or precipitation, and more recently on so-called 
climate variability indices, or the closely related teleconnection indices (for an overview, see Messori et al. 
[2019]). These indices reflect recurring large-scale atmospheric and/or oceanic patterns over a given region, 
which typically correspond to a known set of climate anomalies in multiple variables over neighboring or 
remote regions (e.g., Hurrell & Clara, 2010), and are closely related to spatio-temporal features of the carbon 
cycle. For example, ENSO (Rasmusson & Wallace, 1983) modulates the terrestrial carbon cycle over large 
swaths of the tropics (e.g., Qian et al., 2008). Similarly, the onset of the growing season and annual mean 
leaf phenology over central and northern Europe are closely related to the impact of the NAO (Hurrell 
et al., 2001) on winter temperature and precipitation (Gonsamo et al., 2016; Gouveia et al., 2008; Maignan 
et al., 2008; Stöckli & Vidale, 2004). This, in turn, implies that the NAO may directly affect the seasonal 
onset of the carbon uptake and the net ecosystem carbon balance in these regions (Goulden et al., 1998; 
Richardson et al., 2010). However, the question of whether the NAO could exert similar impacts as for the 
seasonal onset on other growing season months, and if other teleconnection indices may have correspond-
ing influences, remains open.

In Europe, the quantification of present-day and expected future changes in the carbon cycle is still uncer-
tain (e.g., Morales et al., 2007; Reuter et al., 2017). Europe is representative of the Northern hemisphere 
terrestrial ecosystem diversity (Hickler et al., 2012), and large changes in ecosystem phenology have already 
been observed in recent decades (2013; Chmielewski & Rötzer, 2001; Fu et al., 2014; Jin et al., 2019; Piao 
et  al.,  2019). Despite the importance of sub-seasonal timescales and latitudinal gradients, many studies 
of the large scale climate-vegetation coupling focus on annual means and interannual variations, and/or 
consider a fixed growing season over large spatial areas, thereby ignoring the impact of local climate con-
ditions (e.g., thermal, photoperiodic and hydrological conditions) and dominant species in determining 
growing-season variations. For example, within a relatively small region like the Swiss Alps, altitudinal 
gradients can lead to a difference of growing season onset by 3–4 days per 100 meters of elevation (Moser 
et al., 2010). The use of a fixed range of astronomical months to define the growing season over climatically 
and ecologically heterogeneous areas can confound climate-vegetation couplings, while the focus on inter-
annual variability makes it impossible to resolve the role of sub-growing season phenological dynamics.

Here, we explore the sub-seasonal dynamics of climate-vegetation coupling across Europe, accounting 
for location-specific growing seasons. We specifically consider sub-seasonal monthly changes of vegeta-
tion greenness over 1982–2014 and their responses to local and large-scale climate variability. Our specific 
questions are: (i) what is the role of sub-seasonal vegetation activity in the overall year-to-year vegeta-
tion variability in Europe? And: (ii) which part of the growing season generally has a strong sub-seasonal 
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climate-vegetation coupling? To answer these questions, we consider teleconnection indices and vegetation 
indices based on different products, for a robust inference in the face of observational biases and uncertain-
ties. The picture emerging from this analysis highlights which parts of the seasons are most relevant for 
the climate-vegetation coupling, for which additional investigations of the carbon budget variability can be 
most fruitful.

2. Data and Methods
2.1. Data

The 33-years overlap period 1982–2014 among all the datasets of interest was chosen for the analysis in this 
study unless otherwise specified.

2.1.1. Vegetation Indices From Satellite-Based Products

To detect the variability of vegetation greenness over Europe while maximizing the robustness of the anal-
ysis, we employed two vegetation indices (VI) from two satellite products: NDVI from GIMMS3g version 
1 and EVI2 from VIP15 (see Table 1 for more details). Discrepancies between the datasets may arise from 
differences in sensor platforms (Tian et al., 2015), correction and calibration algorithms, and temporal com-
posites of the satellite products.

2.1.1.1. GIMMS NDVI3g

The third generation Global Inventory Modeling and Mapping Studies (GIMMS3g) satellite product are 
based on the Advanced Very High Resolution Radiometer (AVHRR) sensors (AVHRR/2 and AVHRR/3) 
onboard the NOAA satellite series (NOAA 7,9,11,14, 16–19), sensing in the visible, near-infrared (NIR), 
and thermal infrared portions of the electromagnetic spectrum. NDVI derived from red and near-infrared 
radiance (Rouse et al., 1974) is based on the GIMMS3g system and is called GIMMS NDVI3g. This data 
set currently provides the longest available continuous record of NDVI (1981/07–2015/12) and has been 
widely used to study the interannual variation of the terrestrial carbon cycle (e.g., Barichivich et al., 2013; 
Bastos et al., 2016). The dataset is produced based on a 15-days maximum value composite (MVC) at an 
approximately 8 km horizontal resolution, with radiometric calibration for improved snowmelt detection 
and aerosol correction (Pinzon & Tucker, 2014; Vermote et al., 1997).

2.1.1.2. VIP15v004 EVI2

Enhanced Vegetation Index 2 (EVI2), developed by the multi-sensor Vegetation Index and Phenology (VIP) 
Earth science data records project, is a two-band enhanced vegetation index without a blue band. It is de-
rived based on the AVHRR and MODIS sensors (switching in 2000) and uses a MODIS-based red-NIR-MIR 
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GIMMS3g VIP15-v004

Vegetation Index used NDVI EVI2

Platform and sensors 1981/07–2000/10: 1982/01–1999/12:

AVHRR-2 (NOAA 7,9,11,14) AVHRR-2 (NOAA 7,9,11,14)

2000/11–2015/12: 2000/02–2014/12:

AVHRR-3 (NOAA 16–19) MODIS-Terra (MOD09CMG)

Temporal coverage 1981/07–2015/12 1981/01–2014/12

Temporal resolution 15-day maximum 15-day maximum

Spatial resolution 1/12° 1/20°

Composite methods Maximum value composite (MVC) Constrained view angle maximum value composite (CV-MVC)

Key references Pinzon & Tucker (2014); Tucker et al. (2005) Didan (2010); Jiang et al. (2008); Pedelty et al. (2007)

Abbreviations: AVHRR-2, Advanced Very High Resolution Radiometer; CMG, Climate Modeling Grid; EVI2, Enhanced Vegetation Index 2; GIMMS3g, Global 
Inventory Modeling and Mapping Studies; NDVI, Normalized Difference Vegetation Index.

Table 1 
Satellite-Based Vegetation Indices Used in This Study
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model. EVI2 backward-extends the three-band EVI, which was designed to improve vegetation signal sen-
sitivity in high biomass regions. EVI2 is functionally equivalent to EVI (Jiang et al., 2008), with similar 
performance and lower aerosol noise, and employs a hybrid per-pixel algorithm to ensure continuity be-
tween the different sensors during the transition period (i.e., the year 2000). EVI2 has been widely used 
to characterize land surface phenological dynamics, including LAI estimation (Kang et al., 2016; e.g., Liu 
et al.,  2012), burn severity (Rocha & Shaver,  2009), and insect-induced defoliation (Olsson et al.,  2016), 
complementing the long-term AVHRR-based NDVI and the relatively short-term MODIS-based EVI. The 
dataset version 4 VIP-EVI2 adopts a two-step filtering approach for the input daily data and incorporates the 
vegetation background signal, which aims to improve vegetation seasonal dynamics and spatial consistency 
for high-latitude boreal regions.

2.1.2. Growing Conditions

Three local growing conditions: 2m temperature, downwards surface solar radiation, and root-zone soil 
moisture were used to investigate the local climate-vegetation coupling. We extracted 2m temperature 
and downwards surface solar radiation from ECMWF's ERA5 reanalysis (Hersbach et al., 2020). We used 
monthly-mean data at approximately 31 km horizontal resolution over the same period as that of EVI2. We 
used root-zone soil moisture estimates from the Global Land Evaporation Amsterdam Model (GLEAM), 
which considers detailed physical and vegetation processes affecting total evapotranspiration and thus soil 
moisture variations (Martens et al., 2017; Miralles et al., 2011). The data version GLEAM v3.3a used in this 
study covers the period 1980–2018 at a monthly scale and 0.25° horizontal resolution. It is based on ERA5 
forcing, and satellite and gauge-based observations (precipitation, vegetation optical depth, soil moisture, 
etc.).

2.1.3. Teleconnection Indices

Seven teleconnection indices obtained from NOAA Center for Weather and Climate Prediction (see Data 
Availability) were selected to reflect large-scale European climate variability. These are the NAO, East At-
lantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern (PNA). East Atlantic/West 
Russia Pattern (EA/WR), Scandinavian Pattern (SCA), and Polar/Eurasian Pattern (POL).

2.1.4. Ancillary Data

To define the grid-wise growing season, we used monthly frost day frequency at 0.5-degree horizontal res-
olution from CRU TS404 (Harris et al., 2020). For the analysis of climate-vegetation coupling, we further 
used the MODIS landclass data set MCD12C1 (Friedl et al., 2002) and the Köppen-Geiger climate classifica-
tion (Kottek et al., 2006) for regrouping of spatial data (see Methods below). The MODIS landclass data set 
provides yearly land cover types in 0.05-degree resolution Climate Modeling Grid (CMG) cells and contains 
17 International Geosphere–Biosphere Program (IGBP) land cover classes.

2.2. Methods

Figure S1 presents the data workflow and data processing from the VI and climate datasets used as inputs 
to the results of our analysis, including the locally defined growing season.

2.2.1. Spatial Resampling and Grouping

To reduce noise induced by small-scale land surface heterogeneities (e.g., topography) that may affect the 
large-scale climate-vegetation coupling, and to maintain cross-data consistency for analysis, we resampled 
all the gridded datasets to 0.5-degree horizontal resolution.

For the MODIS landclass data set, each coarse-grained gridpoint was assigned the land class correspond-
ing to the maximum ratio of the resampling grids. The resampled land classes were then aggregated into 
eight groups, highlighting common vegetation characteristics for specific land surfaces over Europe. Those 
eight groups and their corresponding IGBP land classes are group EF for the evergreen forest; group DF for 
the deciduous forest; group MF for the mixed forest; group WS for closed shrubland, open shrubland, and 
woody savannas; group GRS for grasslands and savannas; group WL for wetland; group CRP for crop land 
and natural vegetation mosaic; group SIB for snow, ice, barren soil, and sparse vegetation.
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To distinguish vegetation responses to the prevailing thermal and hy-
drological conditions, we define three climate zones based on the Köp-
pen-Geiger climate classification (Kottek et al., 2006), as (1) the boreal 
zone (Köppen-Geiger climate zones: Dfb, Dfc, ET); (2) the temperate zone 
(Köppen-Geiger climate zones: Cfa, Cfb, Cfc); and (3) the Mediterranean 
zone (Köppen-Geiger climate zones: Csa, Csb, Csc, BSk). The spatial pat-
terns of the grouped land classes and climates are shown in Figure S2.

2.2.2. Time-Series Smoothing and Temporal Aggregation of 
Vegetation Indices

In addition to the temporal compositing methods (e.g., MVC) and correc-
tions applied in the original VI data set, TIMESAT version 3.3 (Jönsson & 
Eklundh, 2004) was used to post-process the VI time-series data to further 
eliminate atmospheric effects and construct high-quality VI time-series. 
First, the seasonal and trend decomposition (STL) spike filter was applied 
to reduce the influences of outliers. Double logistic function fitting was 
then applied to smooth the VI time-series and further minimize the in-
fluence from noise (Figure S3). Parametric smoothing approaches may be 
difficult to apply over a large-scale domain when ground reference data 
are lacking and the optimal parameter setting is unknown. The double 
logistic filter can minimize the fitting uncertainty because it does not rely 
on smoothing parameters. This approach has been reported to yield a ro-
bust fitting close to the ground measurements and performs well for the 
high-latitude ecosystem, where low-quality retrievals or data gaps usually 
occur (Beck et al., 2006; Cai et al., 2017; Gao et al., 2008). The smoothed 
bi-weekly VI data were then aggregated at a monthly temporal frequency.

2.2.3. Definition of the Growing Season and Its Subperiods

Based on the smoothed VI time series, we defined grid-wise climatologi-
cal growing seasons for Europe through a set of key phenological param-

eters, which include the start of the growing season (SOS), the peak of the growing season (POS), the end of 
the growing season (EOS), and the length of the growing season (LOS; Figure 1). We detected phenological 
cycles for the actual growing season based on an effective greenness amplitude VIeff, defined as the differ-
ence between the maximum and minimum VI within a seasonal cycle; i.e., VIeff = VImax − VImin. Following 
Reed et al. (1994), Jeong et al. (2011) and Jönsson and Eklundh (2004), and considering potential frost dam-
age to vegetation during the start and the end of the growing season (e.g., Augspurger, 2009), we extracted 
SOS and EOS using the detected phenological cycle and the monthly frost day frequency. Specifically, SOS 
is defined as the month when incremental vegetation greenness during the green-up phase (i.e., the part of 
the smoothed curve with a positive first derivative) reaches at least 15% of VIeff and more than 15 days are 
frost-free. Similarly, EOS is the month before the month when the decreasing greenness (i.e., the part of the 
smoothed curve with a negative first derivative) falls below 15% of VIeff and fewer than 15 days are frost-
free. POS is defined as the average of the months with at least 85% of VIeff. LOS is the number of months 
between SOS and EOS.

We then divided the growing season into two subperiods: (1) the early growing season (denoted as EGS) is 
defined as the period between SOS and POS, and (2) the late growing season (denoted as LGS) is defined as 
the period between POS and EOS. The subdivision of the year into a growing season and its two subperiods 
are exemplified in Figure 1. This approach aims to capture phenological changes within a single growing 
season and emphasizes long-term phenological variation. Ecosystems with multiple growing seasons, such 
as croplands with the main crop and a cover crop, or abrupt phenological changes due to extreme events, 
are characterized by phenological patterns that cannot be analyzed with this approach, and these biomes 
are out of the scope of this study. Figure  S4 shows that SOS, EOS, and LOS exhibit a general souther-
western-northeastern gradient throughout the continent. It is worth noting that the growing season in the 
Mediterranean region is successfully characterized by our approach. In that region, the SOS occurs in No-
vember, at the beginning of the rainy season, and the EOS occurs in July (Figures S4a and S4b)—a pattern 
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Figure 1. Schematic diagram of the characterization of the growing 
season (GS) for each gridpoint, including the definitions of phenological 
parameters (red dots): the start of the growing season (SOS), the end of 
the growing season (EOS), the peak of the growing season (POS), the early 
growing season (EGS), and the late growing season (LGS). The climate-
vegetation coupling during the growing season is characterized in two 
ways: (i) concurrent coupling (red and green arrows without plus sign); 
and (ii) asynchronous coupling (red and green arrows and a plus sign) 
with specific teleconnection indices in the months preceding each growing 
season month (i.e., lags of the teleconnection indices relative to the VI by 
1–5 months). Gray dots represent the original VI data points, while the 
blue curve represents the smoothed seasonal cycle.
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in antiphase with the seasonal cycle in the boreal and temperate regions (Figure S3). This is in contrast to 
simpler approaches based on a single climatic threshold (e.g., temperature), which do not allow detecting 
the growing season for regions where growing season onset is controlled by the co-occurrence of multiple 
climatic conditions (Linderholm, 2006).

2.2.4. Definition of the Growing Season Anomalies

The monthly anomalies were generated based on the time-series detrended with a 5-year running mean 
and deseasonalized by subtracting the average seasonal cycle and were calculated only during the identified 
growing season period. The year-to-year VI anomalies of each identified growing season month (m) in a 
given gridpoint and year y are denoted as   ,GS m y . These anomalies are then normalized by the mean 
vegetation greenness to obtain the equivalent of a coefficient of variation (CV). Accordingly, the interannual 
stability of monthly growing season VI is calculated as:

     


GS

,
CV

y GS

GS

m y
m (1)

where  y is the standard deviation of the year-to-year VI anomalies for month m, and GS is the long-term 
vegetation greenness for the entire growing season. The CV of the entire growing season is then given by:

 





  
  
 GS

,

CV ,

EOS
m SOS GS

y

GS

m y

LOS (2)

where  y  represents the standard deviation of the year-to-year mean growing season anomalies. The rel-
ative importance of VI anomalies of each growing season month to the entire growing season for year y is 
defined as:

   
 









,
,

,

GS
GS EOS

m SOS GS

m y
m y

m y
 (3)

The relative importance of growing season month stability to the stability of the entire growing season is 
given by:

   
  GS

GS
GS

CV m
m

CV
 (4)

where  GS m  can be >1, indicating high sub-seasonal instability, and possible compensating effects within 
the growing season (e.g., positive anomalies for some months but negative for others) that buffer the overall 
growing season interannual variability. Similarly, the relative importance of EGS and LGS variability to that 
of the entire growing season, EGS and LGS, are written as:

  EGS
EGS

GS

CV
CV (5)

and

  LGS
LGS

GS

CV
CV (6)
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where:
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As in Equation 2, in Equations 7 and 8,  y indicates the standard deviations of the year-to-year anomalies, 
and anomalies are averaged over the early and late growing season, respectively. Based on Equations  5 
and 6, the relative difference of the coefficients of variation during EGS and LGS is calculated as:

   Δ EGS LGS (9)

When Δ  > 0, early growing season variability dominates, and vice versa for negative values.

2.2.5. Coupling of Vegetation Index Anomalies and Local Growing Conditions and 
Teleconnection Indices

Based on the generated phenological parameters used to characterize the growing season (see Definition 
of the growing season and its subperiods), climate anomalies for each growing season month were also ex-
tracted. For each gridpoint, climate variables and teleconnection indices are timed relative to the locally 
identified growing season (see Figure 1). Their year-to-year anomalies are denoted as   ,GS m , in which 
  is the negative lag in months of the climate data relative to the VI at growing season month m. For local 
growing conditions, we focus on concurrent effects, and therefore set   = 0. For the teleconnection indices, 
we additionally consider lagged effects, where the teleconnection index precedes the phenological month 
by 1–5 months. In this case,   thus varies in the range −5 to 0. When   < 0, the coupling of   ,GS m  with 

 GS m  is referred to as asynchronous coupling. For example,   1, 2GS  refers to the anomaly of a telecon-
nection index two months before SOS.

For concurrent coupling, we used the partial correlation coefficient (ρ) to associate VI anomalies with the 
three local growing conditions (2m temperature, solar radiation, and soil moisture; see Growing conditions 
and land surface classes). Such an approach allows isolating the association between vegetation and each 
local growing condition while considering possible confounding effects from the other two growing con-
ditions. For the asynchronous coupling, we used Pearson's correlation coefficient (r) to associate VI anom-
alies with seven teleconnection indices at different time lags (see teleconnection indices). That is, for each 
time-series of VI anomalies for a specific growing season month and gridpoint, there will be seven (number 
of teleconnection indices) times six (number of time lags including zero-lag) pairs of time-series to be 
correlated. Such an approach does not eliminate possible influences from the covariance between different 
teleconnection indices, but can nonetheless give a general indication of the climate-vegetation coupling 
across different temporal scales due to different large-scale circulation patterns. In this way, the dominant 
teleconnection index for a specific lag, growing season month, and gridpoint can be found. The strongest 
asynchronous coupling which reveals the most relevant large-scale climate control is then given by:

  maxΦ max , ,r m k (10)

where k  denotes individual teleconnection indices.
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3. Results
3.1. Early Growing Season Dominates the Variation in Vegetation Indices

The Iberian peninsula, North Africa, the regions surrounding the Black Sea and the Scandinavian moun-
tains have the largest growing season CV in Europe (Figure 2a), indicating a large interannual variability 
of the vegetation greenness during the last three decades. The contribution of the different growing season 
months to the total growing season mean anomaly is not uniform: the highest contributions come from the 
months corresponding to the SOS and soon after that, while the lowest contributions come from the months 
around the POS (Figure 2b). For LOS of 3–7 months, there are relatively higher contributions from the first 
several months, lower values for the mid growing season months, and again an increase for the last several 
months, albeit with a smaller amplitude compared with the early-mid growing season difference. A similar 
pattern can be found for the changes in the CV of individual growing season months (  GSCV m , Equation 1, 
Figure S5). Comparing the early growing season greenness anomalies with those of the late growing season, 
the dominance of the former emerges over western Europe, parts of central Europe, southern and eastern 
Europe, and the majority of Scandinavia (Figure 2c). In contrast, North Africa with highly variable vegeta-
tion activity (high GSCV ), and the Gulf of Finland, southern Sweden, and central Germany with less variable 
vegetation (low GSCV ) are dominated by the late growing season variations. The early-late growing season 
differences decrease with increasing LOS and become marginal for LOS = 9 months, which corresponds 
to parts of western Europe and the southern Iberian peninsula (Figure S4c). This pattern is independent of 
the chosen VI data set. Indeed, differences between NDVI and EVI2 are smaller than the amplitude of the 
early-late growing season differences, even though they can be large for specific growing season months 
(shading in Figure 2b).

3.2. Contribution of Vegetation Index Anomalies in the Early Growing Season Across Land 
Classes and Climates

The boreal and Mediterranean regions tend to have larger variations in growing season mean greenness 
than temperate regions (blue bars, Figure 3). In each climate zone, herbaceous vegetation and areas with 
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Figure 2. Interannual variability of vegetation greenness as represented by vegetation indices and the importance of early growing season variation over 
Europe for the period 1982–2014. (a) Spatial distribution of the coefficient of variation (CVGS, Equation 2) for the growing season (GS) mean vegetation index 
(VI), averaged across NDVI-based and EVI2-based VI products. (b) Relative contribution of absolute monthly greenness anomalies to the total absolute anomaly 
for the entire growing season (   ,GS m y , Equation 3). Values represent the spatial averages over areas with a given length of the growing season (LOS, indicated 
by colors). The shadings represent the differences between NDVI-based and EVI2-based data, and the solid lines represent the mean of the two products. (c) 
Relative difference between early- and late-growing season variations ( Δ , Equation 9). Calculated values are the mean from the two remote-sensing products. 
White indicates no data, no growing season due to invalid data points, or weak relative difference.
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sparse tree cover (i.e., grassland, savannas, and croplands) are more var-
iable than closed-canopy forests (i.e., deciduous forest, mixed forest, and 
evergreen forest). Deciduous forest in the temperate zone is an exception 
(Figure 3b), as it tends to have higher interannual variability than grass-
land and shrubland. A comparison of CVs within each climate zone and 
land cover class confirms that in most cases the early growing season 
variations are significantly (at p > 0.05) larger than the later growing sea-
son variations (green and yellow bars respectively, Figure 3). However, a 
land-class dependence can be easily identified. For example, evergreen 
forest tends to have little early-to-late growing season differences in both 
the boreal and the temperate zones (Figures 3a and 3b). Climate effects 
can also be identified, for example for shrublands and woody savannas. 
The early-to-late growing season difference for WS is not statistically 
significant for the Mediterranean area but becomes pronounced in the 
temperate-boreal regions, with relatively large spatial heterogeneity in 
the former. These patterns of relative differences across land classes and 
climate zones are generally consistent between EVI2 and NDVI, although 
the variability of EVI2 is higher than that of NDVI and the underlying 
reason is not clear.

3.3. Local Drivers of Climate-Vegetation Coupling

In the early growing season, temperature imposes a strong positive con-
trol in terms of high positive ρ between temperature and VI anomalies 
over the boreal and temperate western Europe, Finland, and parts of east-
ern Europe, in particular during the first two months of the growing sea-
son (Figures 4a and 4d), and for the majority of land classes (Figures S7a–
S7l). Impacts from radiation and soil moisture are more geographically 
scattered, except for the Iberian peninsula, North Africa, and the crop-
land region north of the Black Sea. Over the latter region, a marked nega-
tive impact from radiation is found (Figure S6c). During the late growing 
season, soil moisture dominates over a large part of the continent with a 
strong positive effect, but weakening toward the EOS with relatively large 
landclass differences (Figures 4b–4d). Cropland and deciduous forest are 
the two landclasses with the strongest soil moisture control (Figures S7a–
S7l). In addition, radiation and temperature together largely control the 
higher-latitude regions, including Scandinavia, parts of the British Isles 
and most of the Alps (Figure 4b). Moreover, GIMMS NDVI is more sen-

sitive to radiation over these regions than the VIP vegetation indices (Figure S8). It is interesting to note 
that, even over boreal mesic regions such as Scandinavia, a weak negative temperature-vegetation coupling 
is found (Figure S6b), implying that a warm summer can suppress forest productivity there (Ruiz-Pérez & 
Vico, 2020; Solberg, 2004). Over the temperate regions, the correlation with temperature rises during the 
late growing season and in some cases dominates at the EOS, for example, in evergreen forests (Figures 4d 
and S7h–S7l). Over the boreal regions, radiation and soil moisture instead control the late growing season 
(Figures S7a–S7f).

For the Mediterranean, and in particular, for the Iberian peninsula and North Africa, soil moisture dom-
inates vegetation growth throughout the entire growing season, with the strongest control during the 
mid-growing season, while the effects from radiation and temperature are mild (Figures 4e, S6e, and S6f). 
Such a response may be related to the dominant plant types, which mostly encompass low vegetation, such 
as grasslands, savannas, cropland, and shrubland (Figures S2a and S7m–S7o) that exhibit leaf senescence 
when soil moisture decreases (Jongen et al., 2011).
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Figure 3. Comparison of coefficients of variation in the early growing 
season (CVEGS) and late growing season (CVLGS) by climate zone and land 
class (see Figure S2 for the definition of climate zones and land classes). 
Error bars indicate the standard deviation of CV across spatial points 
within each category. The calculation was based on the mean of NDVI-
based and EVI2-based VI within the analysis period. Symbols indicate the 
mean CV of each category for the two remote-sensing products. Gridpoints 
with a land classification that changed over the analysis period are 
excluded. Solid error bars indicate significant differences (Student's t-test, 
p < 0.05) between the mean CVEGS and CVLGS; dashed error bars indicate 
no significant differences. Landclasses in each climate zone are ordered 
by descending CVGS. The y-scale varies across panels. CRP, crop land, and 
natural vegetation mosaic; DF, deciduous forest; EF, evergreen forest; GRS, 
grasslands, and savannas; MF, mixed forest; WS, closed shrubland, open 
shrubland, and woody savannas.
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3.4. Large-Scale Climate Coupling Dominated by Early Growing Season Dynamics

When identifying maximum correlations across lags of 0–5 months, the NAO exerts strong positive control 
over mid- and high-latitude Europe at the SOS. The initially positive correlation decreases starting from the 
second month within the growing season (SOS +1), and changes sign later in the season (Figure 5, top; Fig-
ures 6, 7a, and 7b). The strength of the correlation peaks at lags of 1–2 months. Simultaneous correlations 
between the early-growing season NAO (i.e., lag 0) and the early-growing season phenology are relatively 
weak (Figures 7a and 7b). The correlation coefficients based on the entire growing season anomalies pres-
ent very similar spatial patterns to those from the first month of the growing season, albeit with lower values 
(Figure 5, first vs. second column).

In the temperate and boreal zones, the SCA at lag +2 months plays a role comparable in strength with that 
of the NAO at lags of 1–2 months during the early growing season, yet with an opposite sign (Figures 7a 
and 7b). Its footprint spans central and southern Europe, spatially complementing the NAO dominance 
(Figure 5, sixth row). Similar to the NAO, the impacts of SCA prevail during the first two growing season 
months, in which the spatial pattern generally reflects that of the entire growing season, and weakens in the 
following growing season months. The impacts of SCA and NAO exhibit a short-distance dipole between 
the Baltic Sea and the Black Sea regions (Figure 5, first vs. sixth row). Early growing season phenology, in 
particular for SOS and SOS+1, over central temperate Europe is negatively affected by EA, albeit at longer 
negative lags than for the NAO and SCA (Figures 5 and 7b). A 5-months lag relative to the SOS of this region 
(April to May), corresponds to the winter months (November to December).

For the Mediterranean zone, the overall response to large-scale climate variability modes is weak and spa-
tially heterogeneous (Figures 5, 6, and 7c). The western and southwestern Iberian peninsula is an exception, 
and displays a constant positive EA control throughout the entire growing season (Figure 5, second row; 
Figures 6d–6f).
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Figure 4. Concurrent climate-vegetation coupling for the early (a) and late (b) growing-season, based on partial correlation coefficients (ρ) between growing-
season monthly EVI2 anomalies and concurrent local 2m temperature (red), downwards surface solar radiation (green), and root-zone soil moisture anomalies 
(blue). The partial correlation was performed between pairs of time series of VI anomalies and one of the growing condition anomalies while controlling for 
the effects of the other two growing condition variables (see also Figure S6). (a)-(b) Spatial distribution of multi-driver sensitivities represented by Maxwell's 
color scheme (Agoston, 1987). This uses the weighted vector defined as [|ρ1|, |ρ2|, |ρ3|]/max(|ρ1|,|ρ2|,|ρ3|) to visualize the relationships among multiple divers, 
where ρ1, ρ2, and ρ3 are the three partial correlations of the three climate drivers, respectively. White indicates no data or non-identifiable growing season 
due to invalid data points. (c)-(e) Evolution of the monthly multi-driver sensitivities within the growing season for different climate zones (characterized by 
different growing season lengths); colors represent the three drivers as in (a)-(b). The shadings represent the range across land classes (see also Figure S7). EVI2, 
Enhanced Vegetation Index 2.



Journal of Geophysical Research: Biogeosciences

WU ET AL.

10.1029/2020JG006167

11 of 19

Figure 5. Spatial distribution of the maximum strength of the climate-vegetation coupling for individual teleconnection indices. The coupling is represented 
by Pearson's correlation coefficient (r) between growing season-based teleconnection indices (see Section 2) and subseasonal vegetation index anomalies (EVI2) 
within the growing season (GS). For each gridpoint, r with maximum absolute values across the different temporal lags (0–5 months, see Methods) are shown 
(see Equation 10). For example, the red area in the panel showing correlations at the SOS for NAO is attributed to the strong positive r from NAOlag1 and NAOlag2 
as shown in Figures 7a and 7b. Gridpoints with significant r (p < 0.05) are stippled with “+”. EA, East Atlantic Pattern; EA/WR, East Atlantic/West Russia 
Pattern; NAO, North Atlantic Oscillation; POL, Polar/Eurasian Pattern; PNA, Pacific/North American Pattern; SCA, Scandinavian Pattern; WP, West Pacific 
Pattern;. White indicates no data, no growing season due to invalid data points, or weak correlation.
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4. Discussion
We showed that sub-seasonal vegetation anomalies are important for the interannual variability in vegeta-
tion indices. Further, we defined a spatially varying growing season for Europe and showed that the early 
part of the growing season is key in determining the coupling between the large-scale climate variability 
and vegetation variability across the whole growing season. This is likely associated with the dominance 
of early-growing season greenness variability relative to that of the entire growing season (Figure 2) and 
its high sensitivity to specific large-scale circulation patterns. Indeed, the spatial analysis of the coupling 
between large-scale teleconnection indices and vegetation greenness reveals a strong control by the NAO, 
SCA, and EA over large parts of Europe during the first two months of the growing season (i.e., SOS and 
SOS+1; Figures 5–7). As the growing season progresses, the coupling weakens and the spatial patterns be-
come more heterogeneous.

Our results underscore the importance of defining the growing season locally when investigating large-
scale vegetation variability using remotely sensed VI products. Selecting a predetermined growing season 
based on astronomical months can miss its initial part which, as we have shown, is the most important for 
the climate-vegetation coupling. The spatially-varying growing season we defined here generally match-
es that based on the phenological data from the International Phenological Gardens network (Rötzer & 
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Figure 6. Changes in the spatial distribution of maximum strength (Φmax; Equation 10) of the climate-vegetation coupling with corresponding Pearson's 
correlation coefficient (r) (a–c) and the corresponding dominant time-lagged teleconnection indices (d–f) within the growing season. Growing season 
vegetation index anomalies are based on EVI2. The different shades within each teleconnection index in panels (d–f) correspond to different lags (lightest shade 
0 lag, darkest shade 5-months lag). The abbreviations of the teleconnection indices are as in Figure 5. EVI2, Enhanced Vegetation Index 2.
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Chmielewski, 2001), and FAO's growing season definition for crops using 
the SPOT-VEGETATION NDVI data set (FAO, 2020).

Our finding that early growing season greenness anomalies dominate 
annual VI variability over vast parts of Europe agrees with observations 
from phenological gardens across Europe, where marked interannual 
changes in the timing of growing season onsets and spring phase phe-
nology (e.g., leaf unfolding, flowering) were found, while changes in the 
autumn phase phenology (e.g., leaf coloring and senescence) were gen-
erally limited (Chmielewski & Rötzer, 2001; Gordo & Sanz, 2009; Men-
zel & Fabian, 1999; Menzel et al., 2006; Thompson & Clark, 2008). For 
example, for the period 1943–2003 changes in the advancement of leaf 
unfolding, flowering, and fruiting (−0.48, −0.59, and −0.32 days yr−1, re-
spectively) were 4–5 times faster than in leaf falling (+0.12  days yr−1) 
across Spain (Gordo & Sanz, 2009). The temperature sensitivity was also 
much larger for the first part of the growing season than for the latter 
(2.5 days/degree vs. 1.0 day/degree, Menzel et al., 2006) in Europe. This 
is generally in line with our findings, which show a larger partial correla-
tion coefficient between vegetation greenness and temperature occurring 
during the early growing season than the late growing season over most 
of Europe (Figure 4).

The underlying drivers of the large early growing season anomalies 
and low mid and late-growing-season anomalies remain elusive, but 
a number of hypotheses can nonetheless be proposed. Early-growing 
season anomalies can be caused by the reduction in tolerance to low 
temperatures after the release of winter dormancy (Lenz et al., 2013). 
Further, even under similar abiotic stresses during the early growing 
season, new tissues tend to be more susceptible than in other grow-
ing stages (e.g., prolonged drought and heat stress), in particular for 
annual species such as most crops because other functional compart-
ments (e.g., roots) are not fully developed (Lipiec et  al.,  2013; Wa-
hid et  al.,  2007). Conversely, the recurrent stress-induced summer 
endodormancy (e.g., due to accumulated heat and drought) renders 
meristems insensitive to growing signals (Campoy et al., 2011; Cooke 
et al., 2012; Rohde & Bhalerao, 2007) may contribute to low mid-grow-
ing season anomalies.

Indeed, although both the mid and late-growing-season VI anomalies 
are comparatively small, the latter displays larger anomalies than the 
former. This may relate to the fact that autumn phenology tends to be 
sensitive to multiple growing conditions which can be highly variable. 

Autumn senescence is generally mostly driven by photoperiod and other light-related factors (Hänninen 
& Tanino, 2011; Way, 2011), but can also respond to temperature (L. Chen et al., 2020; Hänninen & Tani-
no, 2011; Richardson et al., 2018; Way, 2011; Wu et al., 2018), water availability (e.g., Sade et al., 2018), 
ambient CO2 concentrations (Taylor et al., 2008), or the timing of spring leaf-out (Fu et al., 2014; Keenan & 
Richardson, 2015).

Alternatively, the dominance of early growing season anomalies might also be linked to the higher level 
of phenological synchronicity. Compared with fruit ripening, fruit harvesting, and leaf senescence, the 
changes of the timing for leaf unfolding are more consistent across species in response to changes in 
climate. For example, leaf unfolding exhibits a lower variance of sensitivity to temperature than leaf 
fall (Gordo & Sanz, 2009; Menzel et al., 2006; Peñuelas et al., 2002). Such differences in phenological 
synchronicity can lead to a more spatially consistent signal of greenness for the early growing season 
than for the other growing season months within a given gridpoint, as detected by satellites. The varied 
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Figure 7. Seasonal average (left column) and seasonal evolution (right 
column) of the strength of asynchronous climate-vegetation coupling 
for different climate zones. The climate-vegetation coupling is expressed 
by Pearson's correlation coefficients (r) between teleconnection indices 
and VI anomalies as in Figure 5, but now aggregating the values of all 
gridpoints and standardizing by the total number of gridpoints within the 
corresponding climate zones. Only gridpoints with significant r (p < 0.05) 
for the respective teleconnection index are included in the calculation. 
Lines that do not extend beyond an absolute value of 0.06 are shown 
in gray. Diamond markers indicate an average of r  among significant 
gridpoints in the range 0.4–0.6, and square markers in the range 0.2–0.4. 
For each teleconnection index, the lightest shades indicate 0 lag and 
darkest shades 5-months lag; the abbreviations of the teleconnection 
indices are as in Figure 5.
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response of leaf senescence across species may produce contrasting sub-grid signals that average out 
when spatially aggregated. This in turn implies that high-diversity ecosystems may exhibit larger can-
cellation effects in the late-growing season, and may thus appear to have weaker late-growing season 
anomalies, potentially resulting in a larger early- versus late-growing season difference than low-di-
versity ecosystems. The expected increase in plant phenological synchronicity (Wang et al., 2016) and 
changes in plant community composition in a changing climate (Hickler et  al.,  2012) may alter the 
observed level of phenological synchronicity among species and thus affect our understanding of future 
climate-vegetation coupling.

In addition to the aforementioned direct effects on plant physiology and community ecology, the domi-
nance of early growing season variations can also be a consequence of indirect effects from local physi-
cal environments (e.g., recharging spring/summer soil moisture from winter precipitation, Barriopedro 
et al., 2006), and/or changes in pre-season conditions, which can be carried on to the current growing 
season. Furthermore, nutrient resorption related to leaf senescence at the end of the previous growing 
season could affect nutrient availability during the early growing season of the current year (Estiarte & 
Peñuelas, 2015).

As a consequence of these processes, vegetation responses during the early growing season can reflect cli-
mate variability over a wider temporal window than other growing season months. Indeed, the concurrent 
correlations between early-growing season NAO and early-growing season phenology (i.e., lag 0 months) 
are generally much weaker than the dominant asynchronous coupling (i.e., lag 1–2  months) we identi-
fied (Figure 7), in agreement with Gong and Ho (2003). Similar correlations have been found between the 
pre-season NAO and early-growing season phenology as measured by growing season onset (the timing of 
phenological phases instead of greenness anomalies investigated in this study), in particular in the decidu-
ous and evergreen forests in the Baltic region (Aasa et al., 2004; Nordli et al., 2008). This is also in agreement 
with the large-scale results based on AVHRR NDVI (Gouveia et al., 2008; Maignan et al., 2008; Stöckli & 
Vidale, 2004).

Based on this evidence, the identified strong asynchronous coupling between teleconnection indices and 
vegetation indices can be explained by the effects of atmospheric dynamics on both physiological and eco-
logical responses. Therefore, in principle, asynchronous coupling should not be limited to NAO, but may 
also apply to other large-scale circulation drivers. The coupling with the pre-season SCA and EA (lag 2 and 
lag 5 months, respectively) are good examples of these lagged effects. The negative impacts of pre-growing 
season SCA over central and southern Europe may relate to changes in cold air mass advection to southeast-
ern Europe, affecting local winter and spring temperatures (Macias-Fauria et al., 2012; Vihma et al., 2020). 
A positive winter EA generally coincides with a cold winter (Comas-Bru & McDermott, 2014), which could 
increase snow depth and surface albedo for the early spring, leading to lower surface air temperature (T. 
Zhang, 2005). These pre-season changes may thus affect temperature-sensitive phenology, such as delaying 
the bud burst and leaf unfolding caused by changes in air or soil temperature. Moreover, cold winter in 
Scandinavia, as reflected by a negative NAO pattern, can cause higher snow cover and hence higher soil 
water supply in June–July in this region (Barriopedro et al.,  2006), which in turn may prompt summer 
vegetation growth. However, we find a very limited NAO impact on summer phenology, which may require 
further investigation.

The teleconnection indices discussed here can be closely related to changes in atmospheric circulation. For 
example, the NAO has been related to the position and strength of the North Atlantic jet stream (Messori 
& Caballero, 2015; Woollings & Blackburn, 2012; Woollings et al., 2010) and the Southern Föhn flow in the 
Alps (Desai et al., 2016). To examine the mechanistic link between the teleconnection indices, European 
climate, and vegetation phenology, we conducted a preliminary analysis of the link between the pre-season 
500  hPa geopotential height anomalies and the early-GS continental-scale VI anomalies. A close corre-
spondence emerged between the 500 hPa geopotential height anomaly pattern associated with positive VI 
values in the boreal and temperate regions of Europe and the combination of positive NAO and negative 
SCA phases (not shown). This result supports the hypothesis that the relation between teleconnection in-
dices and vegetation is mediated by anomalies in the Euro-Atlantic atmospheric circulation. Previous work 
has further shown that in the pre-season a positive NAO combined with a negative SCA is usually followed 
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by warm early-GS anomalies (Comas-Bru & McDermott, 2014), which could, in turn, promote leaf unfold-
ing and positive VI anomalies.

Regarding the sensitivity of SOS and EOS to the local climate, our findings partly reflect some well-es-
tablished features of climate-vegetation coupling, for example, the strong vegetation-temperature cou-
pling during the early growing season over high-latitude Europe (Chmielewski & Rötzer, 2001; Menzel 
et al., 2006), and the vegetation-soil-moisture coupling during the late-growing season over central and 
southern Europe (e.g., Jongen et  al.,  2011). Moreover, we identify a large, albeit patchy, area across 
central and parts of northern Europe as being controlled by temperature during the late growing sea-
son (Figures S6b and S7h–S7l). This partly supports the findings from ecosystem-warming field exper-
iments, in which the autumn senescence was in general delayed as ambient temperatures rose, but 
differed considerably among species (e.g., Richardson et al., 2018). The overall homogeneous control 
of photoperiod on the late-growing season greenness variation identified over the Scandinavian area 
(Figures 4 and S6) also supports recent findings using NDVI and solar-induced chlorophyll fluorescence 
(Y. Zhang et al., 2020).

From a methodological point of view, we note that our analysis of vegetation greenness relies on re-
mote-sensing derived VI products, each with its own uncertainties. Sensor shifts can lead to artificial 
breaks in the long-term VI time-series (e.g., Tian et al., 2015), and the analysis period in our study 
may cover 1–2 sensor shifts corresponding to 1–2 breaks in the EVI2 time-series. However, these are 
expected to have a limited effect on the correlation coefficients. To test if the choice of VI products 
affects our results, we conducted the same VI-climate analyses employing an alternative satellite re-
trieval product, VIP-NDVI. Compared with GIMMS-NDVI and VIP-EVI2, VIP-NDVI differs in the 
remote-sensing platform from the former (MODIS vs. AVHRR, see Table 1) and differs in VI definition 
from the latter (NDVI vs. EVI2). We found that the differences between GIMMS-NDVI and VIP-NDVI 
are larger than the difference between VIP-NDVI and VIP-EVI2 (Figure S8), indicating that the sen-
sor-induced bias tends to be more important than the VI-definition-induced bias for the VI-climate 
coupling analysis.

Moreover, we tested the robustness of our findings to the chosen spatial resolution of the data. We specif-
ically tested using data at a higher resolution of 0.25°. We used the same datasets as in our main analysis, 
except that the number of frost days is calculated based on the daily minimum temperature derived from 
hourly ERA5 data, and 2m temperature, shortwave radiation, and soil moisture are at the original spatial 
resolutions instead of 0.5°. VIP-EVI2 is regridded to 0.25°. The overall coupling spatial pattern remains un-
changed, yet the coupling strengths are slightly weaker for the 0.25° data than for the 0.5° data (Figure S9). 
This is partly expected because the higher resolution data set contains more small-scale noise that will 
partly confound the large-scale signal.

Finally, we also considered the impacts of the choice of VI smoothing approaches (Figure S3), phenological 
parameter settings (i.e., the threshold between 10% and 25% for SOS and EOS), and data temporal resolu-
tions (e.g., monthly vs. daily, not shown) on the defined growing season. We found that the influences on 
the final outcome were limited.

5. Conclusions
We investigated the climate-vegetation coupling in Europe, based on two vegetation indices, local 
growing conditions, and seven teleconnection indices. We specifically considered a grid-wise defini-
tion of the growing season. We found that the coupling of climatic conditions and greenness anomalies 
during the first two months of the growing season largely determine those of the full growing season. 
NAO, SCA, and EA emerged as the most relevant large-scale drivers for this coupling. The relevance of 
the early part of the growing season on the changes in climate-vegetation coupling clearly shows the 
importance of locally identifying the timing of the growing season, in particular over large geograph-
ical domains, as opposed to using a coarser definition of the growing season based on fixed ranges of 
astronomical months.
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Data Availability Statement
GIMMS NDVI3g (doi.org/10.3390/rs6086929) is available from: https://icdc.cen.uni-hamburg.de/en/
gimms-ndvi3g.html. VIP15v004 EVI2 (https://doi.org/10.5067/MEaSUREs/VIP/VIP15.004) is availa-
ble from: https://lpdaac.usgs.gov/products/vip15v004/. The MODIS landclass dataset MCD12C1 (DOI: 
10.5067/MODIS/MCD12C1.006) is available from: https://lpdaac.usgs.gov/products/mcd12c1v006/. ERA5 
reanalysis data (https://doi.org/10.24381/cds.f17050d7) is available from: https://cds.climate.coperni-
cus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview. CRU TS404 (doi.
org/10.1038/s41597-020-0453-3) is available from: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/. 
The Global Land Evaporation Amsterdam Model (GLEAM) output (https://doi.org/10.5194/gmd-10-1903-
2017, 2017) is available from: https://www.gleam.eu/. The teleconnection indices (https://doi.org/10.1126/
science.269.5224.676) are available from: https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml.
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