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A B S T R A C T

Spectroscopic measurements and imaging have great potential in rapid prediction of cheese maturity, replacing
existing subjective evaluation techniques. In this study, 209 long-ripening hard cheeses were evaluated using a
hyperspectral camera and also sensory evaluated by a tasting panel. A total of 425 NIR hyperspectral (NIR-HS)
images were obtained during ripening at 14, 16, 18, and 20 months, until final sensorial approval of the cheese.
The spectral data were interpreted as possible compositional changes between scanning occasions. Regression
modelling by partial least squares (PLS) was used to explain the relationship between average spectra and cheese
maturity. The PLS model was evaluated with whole cheeses (average spectrum), but also pixelwise, producing
prediction images. Analysis of the images showed an increasing homogeneity of the cheese over the time of
storage and ripening. It also suggested that maturation begins at the center and spreads to the outer periphery of
the cheese.

1. Introduction

Long-ripening cheeses are important premium products for the
dairy sector (Ardö, 1993), but cheese maturation is a costly and not
fully controllable or predictable process (Fox et al., 1996). During
maturation, the curd turns into a characteristic cheese with a particular
flavour and texture depending on the microflora, milk quality, in-
dustrial processing steps, and storage conditions (e.g., Fox et al., 1996;
Robinson and Wilbey, 1998; Rehn et al., 2010). The characteristic fla-
vour and texture of different long-ripening cheeses are associated with
the end-products of lipolysis and proteolysis in the matured cheese
(Molina et al., 1999; Collins et al., 2003; Verdini and Rubiolo, 2002).

At present, maturation of long-ripening cheeses is mainly monitored
by conventional methods based on chemical characterization and sub-
jective evaluation of organoleptic properties (O'Shea et al., 1996; Coker
et al., 2005). Destructive sensory evaluation at regular intervals is used
to determine ripeness and readiness for the market. This approach is
time-consuming and wastes material, and is therefore expensive for the
producer. Thus, rapid non-destructive technologies for monitoring the
maturation process in long-ripening cheeses are required. There is great
interest in using non-destructive spectroscopic techniques to monitor

cheese maturation and quality (Mazerolles et al., 2001; Downey et al.,
2005; Currò et al., 2017; Lei and Sun, 2019). Cheese ripening has been
studied with various novel techniques, including ultrasound (Benedito
et al., 2001), X-ray computed tomography (Huc et al., 2014), confocal
microscopic imaging (Soodam et al., 2014), and magnetic resonance
imaging (Huc et al., 2014). During the past decade, near-infrared hy-
perspectral (NIR-HS) imaging applications have been developed for use
as non-destructive quality and safety inspection tools in the food in-
dustry (Gowen, O'Donnell, Cullen, Downey and Frias, 2007; Liu et al.,
2014). It has been shown that it is possible to use NIR-HS imaging to
monitor the ripening of semi-hard cheese packed in transparent vacuum
packages (Darnay et al., 2017).

A NIR-HS image is a parallelepiped, three-dimensional data array,
sometimes called a hypercube. Two of the dimensions are pixel indices
and the third dimension is a wavelength index. Each pixel in the hy-
percube is a complete spectrum, e.g. 256 wavelength bands from 900 to
2500 nm (Gowen et al., 2007). Identifying the key wavelengths with
multivariate methods can improve the predictive capability and accu-
racy of a model (Burger and Gowen, 2011). Pre-processing of the
images to improve the spectral information and to prepare data for
further processing is therefore an important step in model development
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(Gowen et al., 2007). Due to the nature of the technique, both quali-
tative and quantitative analyses are possible with NIR-HS imaging,
using spectroscopic and multivariate calibration techniques (Burger
and Geladi, 2005). Advances in the hyperspectral imaging technique,
integrating NIR imaging and spectroscopy, provide novel possibilities to
analyse and characterize the spatial and spectral information on the
sample of interest (Gowen et al., 2007). Each pixel in the NIR-HS image
provides information based on the spectrum of that unique position,
and thus allows visualization of the biochemical constituents and their
distribution in the sample.

The objective of this study was to develop and evaluate predictive
models based on the NIR-HS imaging technique for monitoring ripening
of long-ripening cheeses. The hypothesis tested was that NIR-HS ima-
ging, coupled with chemometric techniques, can predict the maturity
and ripening process in paraffin wax-covered long-ripening hard
cheeses in a commercial cheese manufacturing setting.

2. Material and methods

2.1. Cheese material and experimental design

This study was conducted in a full-scale commercial cheese manu-
facturing process at Norrmejerier, Sweden and was part of a larger
project, in which raw milk used for cheese production was sampled and
characterized twice a month during one year. The cheese resulting from
the analyzed milk was subsequently used for this study. During the
study, 209 cheeses were scanned (NIR-HS imaging) from February 2016
to February 2017, resulting in a set of 425 NIR-HS images. Each cheese
comprised an 18 kg cylinder (40 cm diameter, 14 cm height) that was
brine-salted to a content of around 1.2% NaCl, coated with paraffin
wax, and ripened for at least 14 months under conditions previously
described by Rehn et al. (2010). After 14 months of ripening, the
cheeses were evaluated for maturity and organoleptic quality by a
sensory panel, and this was repeated every two months until 20 months
after production. At least three trained sensory panellists from the dairy
company evaluated each cheese against a standard protocol considering
outer appearance, flavour, smell and texture. Thereby, the three sen-
sory panellists collectively determined whether the cheese could be
considered sensorially approved (mature) or not. When a cheese was
considered sufficiently mature, it was removed from the study and sent
to the market for sale. If a cheese was considered to be still immature, it
was sent back to the cheese-ripening facility and re-evaluated after
another two months of storage. The NIR-HS images were captured in
parallel with the sensorial evaluation of the cheeses, irrespective of the
sensory approval. As a consequence of the analytical procedure, faster-
maturing cheeses were sampled, evaluated by the sensory panel, and
scanned by the NIR-HS camera on fewer occasions than slower-ma-
turing cheeses. Not all cheeses were studied at every scanning occasion,
and therefore different numbers of NIR-HS images were produced at
each scanning occasion. The procedure resulted in 425 images obtained
from 209 individual cheeses varying in age and maturity (Fig. 1). Out of
these 425 HS images, 81 were acquired from sensorially approved
cheeses that at this point exited the study, while 344 images were ob-
tained from cheeses that were not yet approved. The chronological age
(days) of each cheese was calculated as the difference between pro-
duction date and imaging date.

2.2. Hyperspectral imaging system

To acquire NIR-HS images, an Umbio Inspector (Umbio AB, Umeå,
Sweden) line-scan pushbroom system equipped with a moving belt was
used as described in the literature (Geladi et al., 2007). The HS imaging
system was set up as described by Hetta et al. (2017). In brief, a line-
scan pushbroom system was used with a line-scan camera with a
22.5mm sisuChema SWIR (short-wave infrared) objective (Specim,
Spectral Imaging Ltd., Oulu, Finland) and equipped with a HgCdTe 2-D

array detector. The spectral range recorded was 937–2542 nm at in-
crements of 6 nm, resulting in a NIR-HS image (variable length x 320
pixels width) in 256 wavelength channels. Scanning speed was set to
acquire square pixels.

2.3. Hyperspectral image acquisition

The cheeses were covered with a 1-mm layer of paraffin wax. They
were carefully placed on the conveyor belt on the defined scanning
occasions (14, 16, 18, and 20 months) to acquire the NIR-HS images.
The cheeses were, however, not oriented in exactly the same way on the
different scanning occasions. Illumination was supplied by quartz-ha-
logen lamps at a 45-degree angle as a radiation source. For dark and
white references, a shutter and a white spectralon surface, respectively,
were used, and pseudo-absorbance was calculated. Reflectance stan-
dards are essential for image calibration, to correct pixel-to-pixel var-
iations arising due to inconsistencies in capture and illumination of
samples (Burger and Geladi, 2005). Each image had approximately
350 000 pixels, of which approximately 63% were cheese pixels and
37% represented background pixels. The average spectra of the images
(cheese pixels) were calculated and modelled using Breeze and Evince
software (Prediktera AB, Umeå, Sweden). The key steps in the imaging
and data analysis procedure are illustrated in Fig. 2.

2.4. Image transformation and cleaning

Reflectance images (Iraw) were recorded using the dark (Idark) and
white (Iwhite) reference data and the reflectance was transformed into
absorbance (A) using the equation: A= -log10 [(Iraw-Idark)/(Iwhite-
Idark)], according to Grahn et al. (2016). NIR-HS imaging captures a
square-shaped image and the area surrounding the circular cheese was
thus background information, giving rise to a noisy spectrum that
needed to be eliminated before further processing. The background
information (pixels representing the bare belt) was eliminated by re-
moving absorbances over 1.5 at band 55 (1279 nm), to provide the best
possible difference between the sample and the background. Objects in
the images smaller than 1000 square pixels in total area were also re-
moved.

2.5. Hyperspectral image analysis

The NIR-HS image analysis was conducted using the Evince soft-
ware. In section 3.1, analysis of a single cheese is described in order to
illustrate the analytical method. In section 3.2, the analytical method is
also demonstrated using an individual cheese at four maturity levels,
forming a composite image. The tools in the Evince software were used
to create informative diagrams explaining the spectral and maturity
differences in the cheeses.

2.6. Partial least squares discriminant analysis

Because the maturity criteria were only available for whole cheeses,
the cheese NIR-HS images were replaced by average spectra after
background removal. Noisy wavelengths were further removed by ex-
cluding wavelengths below 1000 nm and above 2400 nm. The spectra
were used in the standard normal variate (SNV)-corrected and mean-
centered form. A partial least squares (PLS) discriminant model was
applied to a training dataset (n= 100 NIR-HS images). The maturity of
the cheeses, expressed in days, was used to make the PLS calibration
models. The diagnostics used for the selected PLS model were coeffi-
cient of determination for calibration (R2) and root mean squared error
of calibration (RMSEC).

2.7. Image visualization and distribution map

The maturity attributes for all pixels were predicted using the
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calibration model developed from the training dataset. Predicted ma-
turity values were applied to the region of interest (ROI) in the test
dataset and distribution maps were developed for each cheese image. A
high level of smoothing by merging 15× 15 pixels was applied to
pixels within the ROI, to improve the clarity of the pixels in the larger
image.

3. Results and discussion

3.1. Hyperspectral analysis of an individual cheese

In Fig. 3A, a 14-month-old cheese is shown as a principal compo-
nent one (PC1) image, coloured according to PC1 values (in the order

Fig. 1. Flow chart of sample handling and study design. Note: Not all cheeses remained throughout the study and, for practical reasons, not all cheeses were scanned
on every occasion. This resulted in different numbers (n) of NIR-hyperspectral images on each scanning occasion.

Fig. 2. Flow chart of the hyperspectral imaging, pre-processing, and partial linear squares (PLS) modelling procedure used for quantifying and predicting the
maturity of long-ripening hard cheeses.
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blue (lowest), cyan, green, yellow, orange, red (highest)). In order to
interpret these images, a score scatter plot was created, as shown in
Fig. 3A*. Three major regions with different score values and different
densities, obtained after making a preliminary selection of three rec-
tangular ROI (classes), are shown as coloured regions along PC1 in
Fig. 3B*. The classes can also be seen in the coloured score image in
Fig. 3B, produced using identical colours as in Fig. 3B*. Different

regions in the cheese were revealed, with the edge of the cheese (red,
yellow) mainly consisting of paraffin wax. Inside the cheese, two main
regions were observed based on pixel intensities and PC1 (cyan and
blue, respectively).

Fig. 3. A) The first principal component (PC1) of a
14-month-old cheese, colour-coded by PC1 values.
A*) PC1 vs. PC2 score scatter plot of pixels of the
same cheese, indicating different pixel intensity
areas in PC1. B*) Preliminary selection of class re-
gions (rectangular) in the score plot. B) Image co-
loured according to the classes selected in B* and
projected onto the whole cheese using identical col-
ours. The diagram should be read in the order
A→A*→B*→B. (For interpretation of the references
to colour in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 4. A) Composite of the cheese at different maturity stages (14, 16,18, 20 months), showing the first principal component (PC1) score. A*) PC1 vs. PC2 score
scatter plot for the composite image in A. B*) Manually selected regions of interest in the score scatter plot in A*. B) Projection of the regions selected in B* on the
composite image. Colour codings are identical for B and B*. The diagram should be read in the order A→A*→B*→B. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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3.2. Hyperspectral analysis of a composite image of a cheese at four
maturity levels

The procedure described in section 3.1 for one cheese was repeated
for the same cheese at different ages (14, 16, 18, and 20 months). The
four images were made into a composite (Fig. 4A). After PCA and mean-
centering of the composite image, a score scatter plot was obtained

(Fig. 4A*). It revealed two large pixel clusters, one with a sub-set of
pixels consisting of two separable clusters, forming three different main
pixel clusters, i.e., 14 and 16 months maturity together and a sub-set of
18 and 20 months maturity levels (Fig. 4A*). In one of the large clus-
ters, there was a region of high pixel density and a gradient away from
it, i.e., a combined high pixel density area for the cluster of the cheese
at 14 and 16-months of age. In the other large cluster, there were two
high pixel density areas and their gradients within the sub-set of the
cheese at 18 and 20-months of age. Pixel clusters and intensity gra-
dients may relate to the maturity of the cheese. The three major high
pixel density areas observed in Fig. 4A* were manually selected as
shown in Fig. 4B* (green, red, and magenta). There were also gradients
connected to each of the three clusters in Fig. 4A* and these were
manually selected as shown in Fig. 4B* (blue, purple, and cyan). The
selected regions of Fig. 4B* are shown in Fig. 4B using identical colours.
Furthermore, some small clusters were identified in Fig. 4A* and co-
loured grey (Fig. 4B*). The smaller cluster in the lower part of Fig. 4A*
turned out to represent the paraffin wax cover on the cheese. The
yellow colour represents uncategorized pixels (Fig. 4B). The changes in
colour illustrated in Fig. 4 indicates the occurrence of chemical
changes, observed as spectral changes, that relate to age in months, and
differences and gradients in composition within the cheese. A detailed
discussion of possible explanations for this variation in composition is
provided in section 3.3.

3.3. Wavelengths and their transformations

It is not meaningful to show many spectra at the same time, since
the image becomes confusing. We therefore selected a single cheese for
which spectra associated with the different months were representative
for the whole dataset. For reasons of clarity, only the four average
spectra (14, 16, 18, and 20 months) for this individual cheese presented

Fig. 5. A) Non-transformed and b) standard normal variate (SNV)-transformed spectral data for one randomly selected cheese scanned at 14, 16, 18, and 20 months
after production.

Fig. 6. Performance of the best prediction partial least squares (PLS) model for
quantifying cheese maturity. Chronological age of the cheeses (423, 487, 550,
and 614 days, corresponding to 14, 16, 18 and 20 months, respectively) was
taken as the difference (days) between production data and imaging date. M-
index: maturity index developed using NIR-hyperspectral image analysis.

Fig. 7. A) Partial least squares (PLS) score scatter plot (component 2 vs. 3) of cheeses imaged at 14, 16, 18, and 20 months after production. B) PLS score scatter plot
of the values in plot A, coloured according to approved or not approved for market by the sensory panel.
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in Fig. 4 is shown in Fig. 5. Higher absorbance intensities were observed
for the cheese scanned at 18 and 20 months compared with the same
cheese scanned at 14 and 16 months (Fig. 5A). The reasons for this
could be higher density (Darnay et al., 2017) and loss of gases and
water during ripening (Hickey et al., 2013).

As shown in Fig. 5B, there were differences between the cheese at
younger (14 and 16 months) and older (18 and 20 months) age in terms
of SNV-corrected absorbance intensity at a given wavelength. These
differences reflect the chemical changes that occur as a function of ri-
pening. To relate the chemical components responsible for the differ-
ences in spectra, we compared the results against typical wavelengths
reported for milk by Šašić and Ozaki (2000), who assigned differences
observed in the 1208 nm band to milk fat (CH, CH2, and CH3 bonds).
According to Fig. 5B, the intensity in this band was higher for the
cheese at 14 and 16 months than for the same cheese at 18 and 20
months of age. Due to lipolysis of fat during ripening, less intact milk fat
is available in older cheeses compared with young cheeses
(McSweeney, 2004). Šašić and Ozaki (2000) assigned band 2056 and
2160 nm to amides. In our case, the intensities in the 2056 and 2160
bands were higher in the more mature cheese than in the younger
cheese, indicating build-up of amides during ripening (McSweeney,
2004). The bands at 2316, 2340, and 2368 nm arise from combinations
of CH2 stretching and bending modes of protein side-chain groups
(Šašić and Ozaki, 2000). In the present case, the intensities were higher
for the younger compared with the older cheese, probably due to higher
protein content (McSweeney, 2004). Our observations support findings
by Hickey et al. (2013) that proteolysis increases during ripening.

3.4. PLS model between average spectra and age

The hyperspectral analyses (Figs. 3 and 4) reveal much about the
cheese and variations in its maturity. The effect of chronological aging
and changes due to maturity and differences between internal regions
of the cheese are apparent. However, presenting corresponding data for
hundreds of cheeses in a similar way would be tedious and nearly im-
possible to handle. Fortuitously, it was found that the average spectra
(Fig. 5) could also be used to show differences in ripening. An attempt
was therefore made to build a multivariate regression model of average
spectra of all the scanned cheeses and their respective age. A PLS model
was developed using average spectra calculated from the images for
each cheese and their corresponding age in days. The dataset was split
into a training set (n=100 NIR-HS images) and a test set (n=325
NIR-HS images), with the same distribution of scanning occasions.

The performance of the best PLS prediction model in assessing the
maturity of the cheeses is shown in Fig. 6. The performance of the
model was evaluated using the R2 and RMSEC values; the higher the R2

value and the lower the RMSEC value, the more powerful the model as
a prediction tool (Vigneau et al., 2011). Five PLS components were
found to be sufficient for the model. For the proposed model, R2 was
0.76 and RMSEC was 36 days of age. The model was calibrated using
cross-validation, resulting in root mean square error for the cross-vali-
dation of 34 days. The validated model was then used with the test set

and its performance was evaluated with root mean square error for
prediction, which was found to be 36 days.

The maturity (M) index and cheese age show a linear relationship
until 18 months (~550 days), at which point a shift is observed. This
indicates that cheeses older than 18 months needed a longer time to
reach maturity and seem to follow a different pattern. There is a large
variation in M-index for the cheeses on each particular scanning occa-
sion (chronological age) (Fig. 6).

3.5. Scores of the PLS model

By using partial least squares regression (PLSR), quantitative esti-
mates of particular relationships between the target variables and the
spectral response were obtained. These were used to predict the con-
centration of different components in each pixel and to visualize their
spatial distribution in the sample (see Vigneau et al., 2011). The PLS
score scatter plot of components 2 and 3, describing the most mean-
ingful variation in cheese maturity, showed that there was more var-
iation between cheeses on the earlier scanning occasions (younger
cheeses) than on the later scanning occasions (older cheeses), when
they clustered together (Fig. 7A). Component 1 was not important and
is possibly influenced by the paraffin wax layer, and was therefore not
considered. This is in agreement with the diagram showing the same
score scatter plot, but coloured in relation to approval by the sensory
panel (Fig. 7B). To be approved by the sensory panel, a cheese has to
have achieved certain characteristic properties and most of the ap-
proved cheeses were likely to be among the older ones. However, this
could be partly due to the design of the study, as older approved
cheeses were not scanned further and instead sent to market. The
variation was greatest among the cheeses that were not approved by the
pannel and is likely to derive from the young cheeses scanned on the
earlier scanning occasions. Cheeses that were approved for the market,
most of them originating from the scanning occasions at 18 and 20
months after production, showed less variation in the PLS score scatter
plot (Fig. 7).

Table 1 shows the predicted maturity and the actual age for a se-
lected set of six cheeses (C1-C6). On the earlier scanning occasions, the
predicted maturity, i.e., M-index, tended to be higher than the age of
the cheese. In contrast, towards the end of ripening, i.e., on the later
scanning occasions, the predicted M-index mostly tended to be lower
than the actual age of the cheese. This observation supports what was
mentioned previously; that the more slowly maturing cheeses are kept
in the cycle and faster maturing cheeses leave the study for the market.

3.6. Image visualization and distribution map

The PLS regression model for prediction of cheese maturity was
applied to hypercubes of selected cheese images from different scanning
occasions to visualize the maturity distribution of individual cheeses. A
high level of image smoothing was applied to obtain visually compar-
able maturity distribution maps (non or intermediate levels of
smoothing were found to give noisy results in our preliminary studies).

Table 1
Comparison of age and predicted maturity index (M-index), both in days, for six cheeses scanned at 14, 16, 18, and 20 months after production.

Cheese ID 1st scan, 14 months 2nd scan, 16 months 3rd scan, 18 months 4th scan, 20 months

Age M-index Dif Age M-index Dif Age M-index Dif Age M-index Dif

C1 419 436 17 488 473 −15 551 538 −13 614 594 −20
C2 419 445 26 488 483 −5 551 554 3 614 613 −1
C3 419 466 47 488 498 10 551 580 29 614 626 12
C4 418 454 36 487 488 1 550 557 7 613 612 −1
C5 425 473 48 487 529 42 550 534 −16 613 571 −42
C6 425 477 52 487 532 45 550 568 18 613 597 −16

Calculations performed using the PLS model as described in section 3.5. Dif= difference between M-index and age of the cheese in days.
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Fig. 8. Spatial distribution of maturity (M-) index in cheeses C1-C6 (see Table 1) on four different scanning occasions (14, 16, 18, and 20 months, corresponding to
423, 487, 550, and 614 days of age). M-index was developed using the PLS model, as described in section 3.4.
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Fig. 8 shows the distribution of maturity in the six selected cheeses (C1-
C6 in Table 1) on the four scanning occasions.

The images in Fig. 8 suggest that cheese maturation is non-homo-
geneous, i.e., within each cheese some parts are more mature than
others. Moreover, the images indicate that ripening starts from the
center of the cheese and moves to the outer periphery of the cheese
rind. Similarly, as found in the PCA analysis (Fig. 4B), the images reveal
that there are variations within an individual cheese and also within
maturity level. For the 14- and 16-month cheeses in Fig. 8, green in-
dicates the more mature center and blue the less mature edge. For the
18-month cheeses, red indicates the more mature center and purple the
less mature edge. For the 20-month cheeses, the more mature center is
coloured as magenta and the less mature edge is cyan.

Cheeses scanned on a particular occasion after production may have
reached different degrees of maturity, thus showing different distribu-
tions of ripening of the curd (Fig. 8). This indicates that cheeses ripen
internally in an uneven way and that variation occurs both within and
between cheeses.

4. Conclusions

NIR-HS imaging is a powerful non-destructive method that provides
the advantage of exploring simultaneous spatialized spectral informa-
tion in each pixel. In the present study, NIR-HS imaging made it pos-
sible to generate meaningful composition classes based on individual
images of a cheese and on a composite image representing a cheese at
four maturity levels. Using chemometric and exploratory visualization
techniques, the data were processed into meaningful and comprehen-
sible information. The NIR-HS images provide indications on the che-
mical composition and on changes taking place during cheese ripening,
potentially allowing prediction of cheese maturity. Considering that the
model developed in our study achieved 76% accuracy in prediction of
maturity (M-index), we conclude that the technique can become an
important tool in cheese production for optimizing logistics and en-
suring efficient use of costly cheese-ripening facilities.
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