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16.1 Introduction

During their life cycle, plants constantly monitor environmental signals and tailor their

developmental program to continuously adapt to them. Most environments are dynamic

and consist of many variables that can be predictable or fluctuate. Eventually, plants expe-

rience environmental conditions that surpass their genetic program. These situations are

defined as stress, which can be transient or persistent. Transient stresses can vary in their

severity and only persistent stresses are predictable, opening a window for plant adapta-

tion over subsequent generations. Plants exposed to stress can reprogram their develop-

ment allowing the distribution of resources to activate specific adaption responses. This

re-distribution of resources affects tremendously the development of the plant and, in the

field, it is translated into yield losses that threaten agricultural production.

Exposure of plants to a mild stress condition enhances the acclimation to a subsequent

exposure to the stress through the acquisition of memory. This phenomenon, known as

priming, serves as a stress memory, which can persist even to future generations. This

memory of priming is not a common response to stress and is poorly characterized

and understood. Nevertheless, the involvement of several regulatory pathways as

RNA decay and, especially, epigenetics is well accepted.

In this review, we will focus on the known molecular and mechanistic aspects that

regulate the priming response. We will also review their potential regulation during

stress. Furthermore, we will review the known examples of transgenerational epigenetic

inheritance in plants and discuss the mechanistic knowledge about its transmission that

could mediate transgenerational priming and epigenetic memory.
16.2 Mechanisms regulating priming and stress memory

As exposed above, priming of stress response is defined as an enhanced response to a stress

by a plant that has been previously exposed to a mild or temporary type of the acute
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stress.1 Importantly, the primed state does not affect the individual at the phenotypical

level and neither induces changes in the DNA sequence. This points to a stress memory

that might involve the conservation of the response to stress by transcriptional, transla-

tional, or epigenetic means. The stress memory has a duration that varies from days to

weeks but that could also be transmitted transgenerationally.

Changes in the transcriptional response have been associated with the memory of

stress. These responses involve the activation or repression of transcripts, transcriptional

feedback loops, or pausedRNApolymerase II (Pol II) induced by the initial mild stress.2–4

Examples of this type of regulation exist in yeast, where the interaction of the nuclear pore

protein complex with the INO1 gene leads to an altered chromatin structure and binding

of a preinitiation form of RNA Polymerase II to its promoter that bypasses the need of

new transcription rounds.3 In Arabidopsis, priming with benzo(1,2,3)thiadiazole-7-

carbothioic acid S-methyl ester (termed benzothiadiazole) induces the accumulation

inactive proteins and transcripts from the mitogen-activated protein kinase 3 (MPK3)

and MPK6 genes,5 an example that will be explained in detail below.

Together with changes at the transcriptional level, changes in the conformation or

accumulation defense proteins induced by the initial stress have also been associated with

stress memory.6–9 For example, as anticipated above, priming Arabidopsis with ben-

zothiadiazole induces the accumulation of inactive proteins and transcripts from the

MPK3 and MPK6 genes.5 Infection of primed plants with Pseudomonas syringae pv.

tomato strain DC3000 induced the activation of more MPK3 and MPK6 proteins than

in unprimed plants. Furthermore, priming with benzothiadiazole increases the level of

the leucine-rich repeat receptor kinase (LRR-RK) FLS2, which is involved in the rec-

ognition of the bacterial microbe-associated molecular patterns flagellin epitope flg22.10

The recognition of flg22 by FLS2 increases an MPK signaling pathway that includes

MPK3/6, which indicates how these two reports might be influencing the same path-

way. This also sheds light into the broad-spectrum conferred by priming.11

Simultaneouslywith these twomechanisms, epigenetic regulation of priming has been

proposed as a general pathway that might control the accessibility of defense-related genes

for enhanced transcription after priming.1,12 Indeed, an epigenetic control of primingwill

explain its transgenerational component. In the next sections of this chapter we will focus

in explaining the known examples of interaction between stress and epigenetic regulation,

how these mechanisms might control priming, and the transgenerational stress memory.
16.3 Interplay between epigenetics and the stress response
16.3.1 Epigenetic machinery in plants: DNA methylation,
histone modifications, and their interplay
Developmental processes in plants (as the stress response) rely on a wide range of genetic

reprogramming, which is managed by different transcriptional regulatory mechanisms.
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One of those mechanisms is the epigenetic regulation of transcription. As in most eukary-

otes, in plants two main players mediate epigenetic regulation: DNA methylation and

histone modifications (Fig. 16.1). These marks have an ample presence on transposons

and other repetitive genes13 and can eventually influence gene expression. The first of

these two epigenetic marks, DNA methylation, involves the covalent modification of

the residue cytosine of the DNA by the addition of a methyl group. In plants, three dif-

ferent modes of methylation can be encountered: symmetrical CG and CHG (H repre-

sents A, T, or C nucleotides) and asymmetrical CHH patterns.13 In Arabidopsis thaliana

the global representation in the genome of each of these contexts of methylation are: 24%

CG methylation, 6.7% CHG methylation, and 1.7% CHH methylation.14 These marks

are heavily concentrated on TEs, where their values increase drastically to more than 80%

CG, 20%–60% CHG, and up to 20% CHH methylation.15 The location of this epige-

netic mark shows differences between plants but, as a general rule, in plants with smaller

genomes like Arabidopsis, these marks are found in pericentromic regions, whereas in

plants with larger genomes, like maize, these marks are located throughout the chromo-

some arms.15

Mechanistically, incorporation of cytosinemethylation ismediated through the action

of small RNAs (sRNAs) in a pathway referred to as RNA-directed DNA methylation

(RdDM).16 There are alternate versions of this pathway, but the canonical version begins

when theheterochromatic regionsof thegenomegets transcribedby theRNApolymerase

IV (Pol IV), which as a results synthesizes short single-stranded RNAs (ssRNAs) that are

around 40 nucleotides in length. These ssRNAs are then converted into double stranded

RNA through the action of RNA DIRECTED RNA POLYMERASE 2 (RDR2),

which are then cleaved by DICER-LIKE 3 (DCL3)13 to produce 24-nucleotide sRNAs

and exported to the cytoplasm.17 There, they are loaded into ARGONAUTE (AGO)

proteins, primarily AGO4 but possibly AGO6 or AGO9,16,17 which re-import them to

the nucleus. There, these complexes regulate the targeting of newly formed transcripts

of Pol V17 by recruiting DOMAINS REARRANGED METHYLTRANSFERASE 2

(DRM2), which methylates cytosine residues in every possible pattern (CG, CHG, and

CHH) in the targeted area17 (Fig. 16.1A). In the alternative pathway of RdDM, which

is referred to as RDR6-RdDM, Pol II transcription and RDR6 amplification are used

in order to produce a long double stranded RNA that is cleaved by DCL4 to produce

sRNAs that are 21/22 nucleotides long. These sRNAs are then loaded into AGO6 to

mediate cytosinemethylationof theTEs through initiationof active transcription.18There

is also a third variation of RdDM pathway that was revealed to use RDR6 and DCL3 to

silence the newly formed copies of the retrotransposon Evad�e.19

Once cytosine methylation is established, a number of regulators act in order to main-

tain DNA methylation during replication. In plants, several DNA methyltransferases are

known to maintain this for every pattern of methylation.15 METHYLTRANSFERASE

1 (MET1), maintains CGmethylation in plants through recognition of hemi-methylated
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Fig. 16.1 The epigenetic machinery in plants. (A) Establishment and maintenance of heterochromatin. RNA polymerase IV produces a transcript
processed by RDR2 and DCL3 that produces 24 nts sRNAs that are loaded in AGO4. The sRNA-AGO4 complex interacts with a transcript produced
by the RNA polymerase V, which brings DRM2 and introduces DNAmethylation. DNAmethylation is then maintained by MET1 in the CG context
and by CMT3 and CMT2 in the CHG and CHH contexts, respectively. CHG methylation attracts KYP, which induces the methylation of H3K9.
Heterochromatic regions are then maintained by DDM1, which allows the accessibility of methyltransferases to the heterochromatic DNA.
(B) Representation of the genome-wide distribution of repressive/heterochromatic (H3K9me2) and active/euchromatic histone marks
(H3K4me1/2/3, H3K36me3, but also the repressive histone mark H3K27me3) in a linear representation of a chromosome. Centromeric
region is marked in black. (C) Depiction of the distribution of different histone marks in genic regions showing their enrichment in the
50UTR or the gene body.
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CG sites after DNA replication, which results in the methylation of the daughter strand.16

Additionally, two chromomethylases (CMTs), CMT2 and CMT3, can bind to the his-

tone mark dimethylation of the lysine 9 of histone 3 (H3K9me2) to maintain CHG

methylation,20 while the maintenance of CHH methylation relies on DRM2 through

the action of the RdDM pathway. In addition, maintenance by CMT2 depends on

DECREASE IN METHYLATION (DDM1), a chromatin remodeler that facilitates

the interaction between CMT2 and its target, H1-containing heterochromatin. In addi-

tion, DRD1, a part of the RdDM pathway, is also required for the maintenance of

CHH methylation in short TEs and the terminal regions of long TEs.15,16 It must be

noted that DNA methylation can be a reversible process and can be erased by DNA

demethylation. This process can occur either passively, from an absence of DNAmethyl-

transferase activity, or an absence of a methyl donor, as well as actively, through an enzy-

matic activity to remove the methyl group. In Arabidopsis, four DNA glycolases that

function for this purpose can be found: REPRESSOR OF SILENCING (ROS1),

TRANSCRIPTIONAL ACTIVATOR DEMETER (DME), DEMETER-LIKE

(DML2), and DML3.16

Together with DNA methylation, histone marks are relatively well known and their

effects have been studied in detail in plants. Histone proteins H2A, H2B, H3, and H4 are

integral parts of the nucleosome, the fundamental subunit of chromatin.21 The tails on

the N-termini of these histones are exposed to many covalent modifications, such as

methylation, acetylation, phosphorylation, ubiquitination ADP-ribosylation, biotinyla-

tion, and sumoylation.22 These modifications can regulate various attributes of the nucle-

osome such as its density or receptiveness to transcription machinery21 (Fig. 16.1B). One

of the best-studiedmodifications is methylation, which is incorporated through the activ-

ity of histone lysine methyltransferases (HKMTs).22 In Arabidopsis, histone methylation

occurs primarily (around 75%) on lysine 4 of histone H3 (H3K4) and lysine 36 of histone

H3 (H3K36), which are correlated with active genes,23 as well as lysine 9 of histone H3

(H3K9) and lysine 27 of histone H3 (H3K27), which are correlated with silenced

regions.24,25 In general, H3K9me1 and H3K9me2 are found in chromocenters, while

H3K9me2 is mostly present in TEs and repetitive sequences.26 H3K9me3, on the other

hand, can be found in euchromatin.27 A summary of the distribution of histone marks

over genic regions is shown in Fig. 16.1C.

Some histone modifications can function in a combinatorial way to institute addi-

tional chromatin states for gene expression regulation.28 However, an analysis made

on 12 different marks in Arabidopsis, which impacts about 90% of its genome, has

revealed that the combinatorial activity of histone marks are only limited to a small num-

ber of combinations.28 It must be noted also that, like DNA methylation, modifications

of histone proteins are reversible, such as via the hydroxylation activity of Jumonji

C (JmjC) containing proteins and amine oxidation activity of lysine-specific demethy-

lase1 (LSD1) histone demethylase families.22,29
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Both DNA methylation and histone modification are involved in gene repression

during plant development. The dependence of these pathways on one another and

how this crosstalk is mediated by biochemical interactions between histone methyltrans-

ferases and DNA methylases have been extensively studied.30 The first identified H3K9

methyltransferase in plants was KRYPTONITE (KYP),31 also known as SU(VAR)3-9

homolog 4 (SUVH4).32 Similar to SUVH6, KYP carries out H3K9 methylation to

nearby histones through its SET domain.31 This is executed after the proteins are

recruited to target methylated CHG, which they bind through their N-terminal

YDG/SRA domains.22 SUVH2, that binds primarily to methylated CG, and SUVH9,

that mainly binds to methylated CHH, have been revealed to be required for RdDM.33

In addition, these epigenetic marks have been shown to act in a reinforcing loop model,

as removal of H3K9 methylation results in loss of non-CG methylation and vice-versa.34

It was also revealed that both of these distinct epigenetic marks can be the initial epige-

netic event that begins the gene silencing process.35 In summary, this loop model is

required to maintain heterochromatin by regulating the silencing of TEs during most

stages of plant development.36
16.3.2 Epigenetic modifications induced by stress
Several stresses (both biotic and abiotic) are known to interfere with the epigenetic reg-

ulation of the genome both at the DNAmethylation and chromatin levels.37 Viruses and

viroids are, so far, the only known examples of stresses that can interact directly with the

components of the epigenetic pathways. For example, geminiviruses produce silencing

suppressor proteins that directly interfere with the host genome DNA methylation and

also reduce the expression of MET1 and CMT3, which explains the known reactivation

of TEs during their infection.38,39 Also, RNA viruses like Cucumber mosaic virus pro-

duce a viral silencing suppressor that sequesters the sRNAs produced by theRdDMpath-

way, which consequently affects the level of methylation of its target genes.40 Viroids are

also know to interact directly with a histone deacetylase, HDA6, in order to hijack the

DNAmethylationmachinery.41 Other pathogens are also known to decrease the levels of

DNA methylation. For example, P. syringae pv. tomato strain DC3000 (Pst DC3000)

induces demethylation at genomic repeats,42 whichmight be responsible of the transcrip-

tional reactivation of a defense gene located physically close to a TE.43 Indeed, compo-

nents of the RdDM pathway have an enhanced defense response to PstDC300042–46 but

also to other pathogens like Hyaloperonospora arabidopsis isolate WACO9,47 Agrobacterium

tumefaciens,48 or Fusarium oxysporum.49 On the other hand, resistance against necrotrophic

fungi is reduced in RdDM mutants.45 Together with biotic stresses, abiotic stresses like

drought, salinity, low humidity, or heat are known to reduce the levels of DNA meth-

ylation and activate the expression of TEs.50–53 In general, for almost all the stresses stud-

ied to date, the general response to stress involves a decrease of DNA methylation.
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Together with DNA methylation, reprogramming the histone landscape is another

common response to stress. Stresses like heat, PstDC3000, or viroid infection are known

to alter the organization of the chromocenters of somatic or reproductive cells,46,54–57

which might visually represent broader changes in the histone composition of the nucle-

osome.58 Certainly, histone acetylation, histone methylation, and histone ubiquitination

play a role in the regulation of the stress response. Histone deacetylases (HDAC) and his-

tone acetyltransferases (HAT) have a complex regulation of plant defense and stress

responses. For example, HDAC mediated by HDA19, HDA6, and SRT2 activity neg-

atively regulate the defense response againstAlternaria brassicicola and/or PstDC3000.59–61

Interestingly HDAC activity mediated by HDA19 mediates the removal of the H3 and

H4 acetylation marks present in several defense genes.60,62 Another HDAC, the MAPK-

activated HD2B, positively regulates immunity (in contrast with the previous examples).

During stress, HD2B is phosphorylated by MPK3 and transported from the nucleolus to

the nucleus, where it removes H3K9Ac from the promoters of several defense genes,

fine-tuning their expression.63 HATs, like the Arabidopsis HAC1, are crucial for the

switch of histone marks needed for the transcriptional activation of several loci.64

Drought and salinity stresses also induce H3K9Ac of several drought and salinity-related

genes and is reduced during rehydration,65 in an HAD6mutant66 or an HDA9mutant,67

respectively.

Analogous to acetylation, histone methylation also plays an important role in the reg-

ulation of plant defense through two families of enzymes with opposite functions: histone

methyltransferases (HMTs) and histone demethylases (HDMs), which can regulate pos-

itively or negatively stress response. The Arabidopsis H3K9me1/2 demethylase JMJ27,

H3K4methyltransferase ATX1,H3K36me2/3methyltransferase SDG8, theH3K36me3

methyltransferase SDG25, and the rice H3K27me3 and H3K4 demethylases JMJ705 and

JMJ704 are all positive regulators of immunity.68–72 H3K4me3 has been associated with

the responses to dehydration and salinity. Its levels are dynamic during dehydration stress

andmark the body of genes that respond to this stress,73,74 and mutants in JMJ15 (a H3K4

demethylase) have a downregulation of salinity stress-related genes.75H3K27me3 has also

beenwidely associatedwith the response to stress. The levels of this histonemark decrease

upon hyperosmotic priming in Arabidopsis roots76 and the levels of this mark decrease

upon heat or cold stress on target genes.77,78

Genome-wide analysis of genes targeted by the PRC1 complex indicates that many

stress response-associated genes are actually targeted by H3K27me3.79 Together with

acetylation and methylation, ubiquitination has been identified as required for resistance

to pathogens. For example, HUB1 positively regulated resistance to fungal pathogens,

both in Arabidopsis and tomato.80,81 Furthermore, the interaction between different his-

tone marks has been addressed for several target genes, showing the complexity of this

regulatory mechanism. The simultaneous presence of H3K4me3 and H3K9/K14Ac

was correlated with response to submergence in rice.82 Also the enrichment of
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H3K4me3, H3K9Ac, H3K23Ac, and H3K27Ac was found during dehydration,83 an

enrichment that is followed by loss of H3K4me3 and H3K9Ac during rehydration.65

These two marks increase also in selected genes during heat stress, together with

H3K4me2 and, interestingly, while H3K9ac decreases rapidly after stress, H3K4me2/3

levels are sustained.84 This pattern of enrichment in H3K4me2/3 together with

H3K9/14ac has also been observed in the promoter of several immunity genes,64 pointing

to a conservation of this histone landscape during stress response.12 Together with this

complex activity, chromatin remodelers and histone variants have also been involved

in the control of the stress response. For example, BRM and DDM1 have been involved

in the regulation of abscisic acid responses during drought stress response and R gene reg-

ulation, respectively.85–88 Furthermore, histone variants also play a role during stress.

SWR1 and H1.3 have been related to the regulation of defense genes and the response

to drought stress.89

As highlighted by the examples mentioned here, the role of histone modifications dur-

ing stress is not as straightforward as that of DNAmethylation. Their analysis needs a careful

individual evaluation that impedes making generalizations about their role in stress

response. This probably highlights the high complexity and intertwined layers of crosstalk

between the different histone modification enzymes.90 Interestingly, nucleotide-binding

site leucine-rich repeat genes (NBS-LRR) accumulate in clusters in heterochromatic

regions of genomes closely associated with TEs characterized by the presence of DNA

methylation and repressive histone marks.91 In support of this relationship, the bal epiallele

(located in the RPP5 cluster of NBS-LRR genes) generated in ddm1 mutants92 and the

upregulation of the RMG1 defense gene under Pst DC3000 infection43 emerge as two

illustrative examples of the interaction between epigenetic regulation and control of

defense responses.
16.3.3 Interplay between priming and epigenetic regulation
As mentioned above, epigenetic regulation is one of the mechanisms regulating priming

or stress memory.11 In the examples provided above, epigenetic modifications induced

by stress are most of the time transient and overlap with the presence of the stress. How-

ever, stresses that induce a stress memory or priming induce epigenetic modifications that

exceed the presence of the initial priming stress.

From all the histone marks that respond to stress, histone methylation (more con-

cretely H3K4me2 and H3K4me3) has been closely associated with stress memory.

Indeed, there are several examples that show the relationship of priming with the enrich-

ment in H3K4me2/3. Plants primed with benzothiadiazole showed increased levels of

H3K4me2/3.93 H3K4me3 is also enriched in the promoter and first exon of several genes

associated with immunity to PstDC3000 after priming with different abiotic stresses and

it requires the function of the histone acetyltransferase HAC1.64 Enrichment in
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H3K4me3 has also been observed for genes that experience a priming pattern.74 Com-

parison of stress-primed and nonprimed genes showed that the former experience a

maintenance of H3K4me3 together with stalled Pol II during stress recovery that lead

to increased transcription during the stress phase.74 Increased presence of H3K4me2/3

has also been shown for heat-inducible genes after priming.84 This study also showed that

heat stress memory and H3K4me2/3 accumulation depend on a transcription factor,

HSFA2.84 Another transcription factor, HY5, has been associated with H3K4me3-

dehydration stress memory of the P5CS1 gene.94 Together with H3K4me2/3, other his-

tone marks have been linked to priming. For example, analysis of genome-wide histone

mark profiling after salt priming in roots showed that H3K27me3 was the only dynamic

mark.76 Together with histone methylation, nucleosome occupancy has been shown to

play a role in the maintenance or establishment of priming. The helicase FGT1, which

interacts with BRM, binds to heat-memory genes, decreasing the nucleosome occu-

pancy on those, and is required for heat stress memory.95 The histone chaperone

CAF-1 has also been implicated with priming. CAF-1 mutants show constitutive prim-

ing response. Analysis of its function showed that CAF-1 suppresses H3K4me3 incorpo-

ration in defense genes preventing priming.96

In summary, stress memory seems to be correlated with an enrichment and mainte-

nance of H3K4 methylation in certain stress-responsive genes (Fig. 16.2A). Together

with this, nucleosome occupancy regulates the acquisition of memory for genes. The

interaction between all these different players remains to be discovered but it is certainly

an active subject of research that is expected to give interesting results in the next years.
16.4 Transgenerational memory of stress
16.4.1 Examples of transgenerational inheritance: Epialleles
Epialleles are forms of a gene that have differential epigenetic marks (and not DNA

sequence) that lead to a differential level of expression of that gene causing, most of

the time, a heritable phenotype.15 A very illustrative example is the epiallele, found in

the Lcyc locus of Linaria vulgaris, which radically changes the symmetry of the flower from

bilateral to radial.97 The changes in expression of Lcyc are associated with the presence

of DNA methylation, which is inherited transgenerationally.97 Other examples of epial-

leles in plants include the CNR locus in tomato,98 the paramutation phenomenon in

maize,99–101 the Epi-dwarf allele in rice, the g and VTE3 loci in melon, the regulation

of vitamin E content in tomato,15 or the well-studied cases of FWA and QQS genes

in Arabidopsis.102,103 Some of these epialleles involve the presence of repeats, DNA

methylation, and sRNAs.101,104 Analysis of the variability of DNAmethylation in nature

using different Arabidopsis ecotypes indicates that cytosine methylation is highly vari-

able.105,106 These methylation cytosines belong mostly to the CHH context and are fre-

quently found in their unmethylated form on TEs.105 These changes seem, moreover, to



(A)

(B)
Fig. 16.2 Epigenetic regulation of priming andmemory of stress. (A) Priming induces enrichment in H3K4me2/3 and stalled RNA polymerase II in
the regulatory regions and bodies of genes with stress memory. (B) Potential epigenetic mechanisms involved in transgenerational epigenetic
inheritance. The epigenetic status of the somatic tissues is maintained during reproduction by the activity of Pol IV, DDM1, andMOM1. Stress can
induce two different epigenetic statuses: hypomethylation, which is in principle easily inherited from both paternal and maternal genomes, and
hypermethylation, which would only be inherited from the maternal gamete.
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be correlated with variation at the DNA sequence level.105 The inheritance of epialleles

has also been addressed experimentally through the use of Arabidopsis mutants.107,108 In

these experiments,met1 and ddm1were used as parents for crosses with wild type plants to

create recombinant inbred lines (termed epiRILs). These epiRIL lines have genomes

with a mosaic of methylation pattern that shows stable inheritance over several genera-

tions. In general, methylation differences accounted mostly for TEs, which also suffer a

progressive re-methylation mediated by the RdDM pathway.109 Interestingly, met1-

induced epiRIL lines showed broader changes due to the misregulation of ROS1 and

other epigenetically regulated genes.109 Briefly, transgenerational inheritance of epige-

netically induced alleles is supported by these numerous examples taking place in nature.
16.4.2 Inheritance of stress-induced epigenetic changes
Naturally and experimentally induced epialleles can be inherited transgenerationally and

even be stable for hundreds of years.97 This inheritance of epigenetic regulation has led

the field to question if environmentally or stress-induced epigenetic changes can be

inherited transgenerationally, and if this represents a memory of the stress conditions

experienced by the plant in previous generations. As reviewed, both abiotic and biotic

stresses induce epigenetic changes in the genome.37,110 Dehydration,73 salinity,66 heat,84

viroidal,111,112 viral,38 and bacterial infections43 cause the relaxation of the epigenetic

control of stress-responsible genes and repetitive regions in the genome that can lead,

generally, to short-term memory that is not inherited by the subsequent generation.

It has been proposed that, like epialleles, some of these epigenetic changes could be trans-

mitted through the reproductive phase and inherited by the next generation.37,113 The

inheritance of these phenotypes is technically challenging and has become controversial

due to reduced reproducibility of results and duration of the transgenerational

effects.114–116 Nevertheless, an epigenetic memory is known to exist because TE silenc-

ing is inherited transgenerationally,117 but also environmental cues like vernalization

can be inherited transgenerationally in H3K27 demethylase mutants.118

One of the first reports showing transgenerational inheritance of a resistance phenotype

in plants showed that treatment of parental plants with UV-C or flg22 induced an increase

of somatic homologous recombination.119 Heat stress affects posttranscriptional gene

silencing (PTGS) and induces siRNA-mediated epigenetic changes that are transgenera-

tionally inherited.120 Salt stress causes hypermethylation in the CHG and CHH contexts

of TEs in the proximity of genes involved in the response to this stress.50 Thesemethylation

changes are transgenerational only through the female gamete, due to the efficient demeth-

ylation that takes place in the paternal gamete.50 A mechanism that must be taken into

account and that can explain transgenerational inheritance of stress response is the potential

transposition of TEs and the genome rearrangements associated with them. One such

example is the heat stress-dependent reactivation of the ONSEN retrotransposon in
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Arabidopsis.121 The retrotransposon ONSEN contains a heat stress-response transcription

factor binding-site in its promoter region.122 Under heat stress ONSEN reactivates and

reintegrates in the genome transmitting heat stress-responsiveness to the genes physically

close to the new ONSEN transposition events.123

This mechanism has been observed, too, for abscisic acid insensitivity, which has been

recently associated with the transposition of a TE.52 A forward genetic screen in Arabi-

dopsis looking for factors involved in the transmission of stress-induced transcriptional

changes identified DDM1 and MOM1 as inhibitors of the transmission of those changes.

The majority of affected transcripts derived from TEs, indicating that indeed the trans-

mission of TE epigenetic states would be responsible for the transmission of the stress

memory.124 A deeper analysis of the molecular characteristics of transgenerational epial-

leles identified several properties associated with their transmissibility, such as low-copy

number loci or enrichment in CG dinucleotides.125 Altogether, the inheritance of

stress-induced epigenetic changes is still a matter of debate that requires further efforts

and deeper investigation of its extent and the mechanisms involved in the process.
16.4.3 Transgenerational memory of stress
Inheritance of primed states has been shown for some biotic stresses. For example, the

immune response to the infection by Pst DC3000 is inherited by the next generation.47

This response is also mimicked by the triple mutant drm1 drm2 cmt3, which has low levels

of DNA methylation; this points to the changes in DNA methylation induced by the

pathogen as the cause for the transgenerational resistance.47 Priming with the chemical

reagent BABA induces enhanced resistance to P. syringae in the next generation.126

In addition, herbivore insects and biotrophic pathogens can induce an enhanced defense

state in the next generation.127–129

Mechanistically, little is known about how this transgenerational memory could

work. Analysis of the stress memory of resistance to Pst DC3000 indicated that PolV

and ROS1 are needed for transgenerational acquired resistance, pointing to DNAmeth-

ylation as the main regulatory mechanism.128 A profound subsequent analysis revealed

that these two factors (PolV and ROS1) are responsible for the indirect regulation of

49% of pathogen-responsive genes, since only 15% of these genes were associated with

TEs.128 Further analysis of the genome-wide epigenetic changes taking place during

three generations of plants exposed to an initial stress showed alterations in the third gen-

eration, but not in the initial generation exposed originally to stress.130 Most of the

changes took place over gene bodies in the CG context,130 a mark that is not completely

understood in plants. The inheritance of transgenerational resistance is limited in the tri-

ple mutant dcl2 dcl3 dcl4 in the case of herbivores127 and associated with DNA methyl-

ation regulated by PolV and ROS1 or DRM1 DRM2 and CMT3 in the case of

biotrophic pathogens.45,47,128,129 The involvement of inherited histone marks has not
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been studied in depth yet, but it is believed that they are completely reprogrammed dur-

ing gametogenesis.131 In summary, current evidences point to DNA methylation or

changes in the RNA silencing mechanisms (linked to DNA methylation in plants) as

the transmitters to the next generation of epigenetic states induced by stress.

In summary, several mechanisms have been implicated in the transgenerational trans-

mission of priming or memory stress but the overall mechanism is still undefined. In gen-

eral, it seems improbable that there is a transgenerational inheritance of the H3K4me2/3

states that are implicated with priming in somatic tissues, and it would rather seem that

transgenerational priming relays on DNAmethylation or associated sRNAs (Fig. 16.2B).

From that perspective, and with the knowledge that we have from natural epialleles,

transgenerational inheritance of epigenetic mechanisms would rely mostly on TEs or

genes in close association with them. Additionally, the intrinsic characteristics of the

TE as genomic location, copy number, or CG dinucleotide enrichment will determine

the extent of the epigenetic memory.
16.5 Conclusion and perspective

In the light of climate change, epigenetic variation could contribute to both short-term

and the longer-term adaptive capacity in plants and thus provide them with the ability to

overcome variable environment conditions. Together with this, the influence of priming

and the transgenerational memory of stress in plants grown in communities, where they

encounter competition with other plants of the same or different species, may be an

essential factor in mediating ecological interactions. In field conditions, their offspring

would benefit from enhanced resistance via transgenerational inheritance, especially if

they encounter the same stress factors as their parents. Integration of transgenerational

defense priming into agricultural pest management then can have a great potential to

provide novel and sustainable solutions.
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