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The relationship between biodiversity and stability of marine benthic assemblages was investigated through
meta-analyses using existing data sets (n = 28) covering various spatial (m–km) and temporal (1973–2006;
ranging from 5 to N250 months) scales in different benthic habitats (emergent rock, rock pools and sedimentary
habitats) overdifferent Europeanmarine systems (North Atlantic andwesternMediterranean). Stabilitywasmea-
sured by a lower variability in time, and variability was estimated as temporal variance of species richness, total
abundance (density or % cover) and community structure (using Bray–Curtis dissimilarities on species composi-
tion and abundance). Stability generally decreased with species richness. Temporal variability in species richness
increasedwith the numberof species at both quadrat (b1m2) and site (~100m2) scales,while no relationshipwas
observed bymultivariate analyses. Positive relationships were also observed at the scale of site between temporal
variability in species richness and variability in community structure with evenness estimates. This implies that
the relationship between species richness or evenness and species richness variability is slightly positive and de-
pends on the scale of observation. Thus, species richness does not stabilize temporal fluctuations in species num-
ber, rather species rich assemblages are those most likely to undergo the largest fluctuations in species numbers
and abundance from time to time. Changes within community assemblages in terms of structure are, however,
generally independent of biodiversity. Except for sedimentary and rock pool habitats, no relationship was ob-
served between temporal variation of total abundances and diversity at either scale. Overall, our results emphasize
that the relation between species richness and species-level measures of temporal variability depends on scale of
measurements, type of habitats and the marine system (North Atlantic and Mediterranean) considered.
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1. Introduction
For a long time, ecologists (e.g. Elton, 1958; MacArthur, 1955) have
suggested that more diverse communities are more stable and
diversity–stability relationships have been explored using various
theoretical models (e.g. Loreau and de Mazancourt, 2013; May,
1974; Raffaelli, 2004; Solan et al., 2004), laboratory and field studies
(e.g. McGrady-Steed and Morin, 2000; Petchey et al., 2002; Tilman
and Downing, 1994). Interest in these relationships has resurged in
recent years due to concern about the potential consequences of chang-
ing biodiversity for ecosystem functioning (e.g. Donohue et al., 2013;
Stachowicz et al., 2007). Many of the theoretical and experimental
studies have produced idiosyncratic results (Balvanera et al., 2006;
Cottingham et al., 2001). Empirical support for relationships between
biodiversity and stability across different ecological systems and spatial
scales is still limited and contrasting, partly because of the practical
limitations of empirical studies in encompassing long-term community
dynamics. Indeed, individual studies have shown that increasing diver-
sity may reduce (Ives and Hughes, 2002; Li and Charnov, 2001; Loreau
and de Mazancourt, 2013), increase (e.g. Isbell et al., 2009; McCann,
2000; Tilman, 1996), or have little or no effect on the stability of some
community attributes (e.g. McGrady-Steed and Morin, 2000). While
no widespread consensus has been reached in the literature on which
mechanisms are important in relating stability to biodiversity, a number
of factors are known to affect the relationship. Among others, these
include the scale of observation, historical effects of sites and species'
life-histories, direct and indirect effects of disturbance (e.g. Bertocci
et al., 2005; including speed and asynchrony of responses: Loreau
and de Mazancourt, 2013), biodiversity and productivity (Kondoh,
2001). Other factors that may prevent determining relationships are
pitfalls in experimental design (e.g. Hector et al., 2007; Loreau et al.,
2001), calculation method and bias in estimating temporal variability
(Cottinghamet al., 2001;McArdle et al., 1990) and unappreciated statis-
tical properties of these variables (Doak et al., 1998).

Studies on diversity and stability relationships have focussed largely
on community aggregated variables (i.e. total biomass, production) or
population abundances (see also Mykrä et al., 2011). Conversely, the
analysis of stability of diversity per se within assemblage has received
less attention. Temporal stability (inversely proportional to variability)
in richness is expected to decrease with increasing average in number
of taxa due to a pure statistic argument (positive scaling relationship
between mean and variance). On the other hand, temporal variability
in richness and changes in species structure within assemblages are im-
portant properties of communities. Disturbance regimes (Connell,
1978; Hughes et al., 2007) and resource availability may contribute to
maintain high and relatively stable numbers of taxa at certain temporal
and spatial scales. Several studies have shown that rich assemblages
are locally organized in complex networks with varying interaction
strengths and are prone to be generally more resistant to compositional
turnover than less complex systems (Frank and McNaughton, 1991;
Levine andD'Antonio, 1999; Shurin et al., 2007). If assemblage complex-
ity begets stability via increased networks of interactions that prevent
local extinctions, then rich (or more generally, diverse) assemblages
should be compositionally more stable through time as compared
with less diverse assemblages, despite the expected positive relation-
ship between mean and variance. Also, intrinsic community properties
such as negative covariance in species occurrence could lead to lower
temporal variation at the more diverse sites offsetting the mean–
variance scaling effect.

The role of evenness in diversity–stability relationships is not well
understood (Hillebrand et al., 2008) and its use can provide different
information not considered in the other diversity indices (Wilsey
et al., 2005). Evenness within assemblages may enhance compositional
stability (Frank and McNaughton, 1991) and reduce the risk of local
extinction and invasion provided that no strong dominant can prevent
further colonization. Polley et al. (2013) have shown that, in some
circumstances, evenness in plant abundances and functional traits con-
tributes as much as species richness to reduce temporal variability in
productivity. Moreover, low dominance intensifies the stabilizing effect
of richness on aggregated variables (e.g. total abundance): their vari-
ability becomes less affected by the scaling coefficient, z, determining
the strength of the relationship between the mean and the variance
(Doak et al., 1998; Vogt et al., 2006).

Ecological mechanisms that govern diversity, resource availability
and species interactions are scale-dependent, so the prevalence of one
mechanism at a given scale does not exclude the potential influence of
other mechanisms at other scales (e.g. Raffaelli, 2006; Whittaker et al.,
2001). This justifies the need to examine diversity–stability relation-
ships at multiple scales. In this study, existing data sets were used to
examine diversity–stability relationships and test whether they were
different among habitats and between different European marine sys-
tems. This approach tests the general hypothesis that diversity mea-
sures (species richness and evenness) can be used as predictors of
temporal stability within assemblages. Temporal stability implies
lower variability that was measured as temporal variance in total com-
munity abundance, taxa number and community structure. Our specific
hypotheses are that temporal variability in univariate and multivariate
measures reflecting changes in species (or higher taxa) abundance
and compositionwithin assemblages is related to biodiversitymeasures
(i) at the scale of small patches (quadrats or grabs; ~0.10m2); and (ii) at
the scale of shores (site; ~100 s of m2); and (iii) relationships between
temporal variability and biodiversity at either scale vary according to
the type of habitats and regions (marine systems). We are aware that
the above hypotheses testedwith observational data sets remain strictly
correlative, not causal.

2. Methods

2.1. Data base description

Existing data sets of macrobenthic communities (n= 28) have been
compiled (see list in Table 1). Each data set consists ofmulti-site tempo-
ral series (6 minimum) of macrobenthic community abundances
(densities or % cover) of algae and fauna and coveredmost European re-
gions (Fig. 1). Data sets had median values of 12 sites per data set, 4
sampling dates and 6 samples per date. The data sets cover diverse ma-
rine benthic habitats (emergent rock: n = 20; rock pool: n = 3; sedi-
ment: n = 4) with the addition of one data set using subsurface
artificial panels (discarded for categorical habitat analyses).

2.2. Estimation of temporal variation

The temporal variability in species richness (number of species/taxa
within quadrats/grabs) and total abundance (as density or % cover,
within quadrats/grabs) of macrobenthic algae and fauna were used as
surrogate measures of the community stability (where low variability
corresponds to high stability). Due to differences in sampling design
among data sets, the temporal variability was estimated as follows:
(i) For randomized spatial samples at each sampling date, temporal var-
iability (σt

2) in targeted variableswas estimated using theMean Squares
(MS) obtained froma one-wayANOVAwith time as independent factor,
asσt

2≅ (MStime−MSresidual)/n, where n is the number of replicate quad-
rats/grabs at each sampling date. (ii) In the case of unbalanced data, the
variance componentwas estimated by a restrictedmaximum likelihood
method (MIXED procedure in SAS, SAS, 1999). (iii) For fixed quadrat
samples (i.e. repeated measures through time), temporal variability
was assessed as the variance (over time) of response variables from in-
dividual quadrats.Multivariate temporal variability was estimated from
the same linear model as for the univariate case using Permutational
Multivariate Analysis of Variance (PERMANOVA, Anderson, 2005). For
fixed quadrats the average Bray–Curtis dissimilarity for each replicate
quadrat over time was used. For analyses of variation in community



Table 1
List of data sets included in themeta-analysis. Number of time series refers to thenumber site forwhich sampleswere takenovermany dates. Number of date refers to number of sampling
occasion. Region category: NA: North Atlantic; Med: Mediterranean.

Data
set #

Country Location Number of
time series

Number
of date

Temporal
range

Samples
per date

Range of taxa number Habitat Region Organization

Quadrat
scale

Site
scale

1 Estonia Gulf of Finland, Gulf
of Riga, Tallinn Bay

8 7 to 18 1993–2001 2 to 3 3.9–8.5 13–38 Sediment Baltic EMI

2 France Baie de Seine, Wimereux,
Roscoff, Baie de Somme

7 9 to 20 2000–2003 1 to 3 2.2–10.4 4–29 Sediment NA CNRS-Roscoff

3 Germany Helgoland Island 18 5 2005–2006 6 1.9–7.5 11–18 Artificial NA AWI
4 Germany Sylt Island 6 2 2005 10 8.5–10.2 15–18 Sediment NA USTAN
5 Ireland Northern Irish Sea 8 2 to 4 2004–2005 4 6.6–14.3 17–25 Emergent rock Med UCD
6 Ireland South Western Celtic Sea 10 2 to 4 2004–2005 4 7.1–18.8 18–39 Emergent rock Med UCD
7 Italy Lecce region 12 3 2002 10 6.1–13.3 24–45 Emergent rock Med CoNISMa
8 Italy Lecce region 12 3 2002 10 9.5–15.9 34–42 Emergent rock Med CoNISMa
9 Italy Lecce region 12 4 2002 10 9.5–12 36–51 Emergent rock Med CoNISMa
10 Italy Lecce region 12 4 2002 10 5.7–9.9 31–48 Emergent rock Med CoNISMa
11 Italy Lecce region 12 4 2002 10 6.6–8.9 34–51 Emergent rock Med CoNISMa
12 Italy Lecce region 12 4 2002 10 8.6–12.5 33–42 Emergent rock Med CoNISMa
13 Italy Lecce region 12 4 2002 10 10–13.8 38–46 Emergent rock Med CoNISMa
14 Italy Lecce region 12 4 2002 10 8.8–11.7 31–43 Emergent rock Med CoNISMa
15 Italy Lecce region 12 4 2002 10 3.9–6.6 22–30 Emergent rock Med CoNISMa
16 Italy Pisa region 12 3 2003–2004 5 8.1–11.3 22–37 Emergent rock Med UP
17 Italy Pisa region 12 4 1999–2001 5 7.5–10 16–20 Emergent rock Med UP
18 Italy Pisa region 12 4 1999–2001 5 7.9–11.3 21–27 Emergent rock Med UP
19 Italy Pisa region 8 3 2003–2004 5 8–11.3 20–32 Emergent rock Med UP
20 Italy Pisa region 12 6 1994–1995 6 3.6–6.3 9–10 Emergent rock Med UP
21 Italy Pisa region 9 3 1996–1998 3 4.3–6.9 8–11 Emergent rock Med UP
22 Italy Pisa region 12 10 1998–2001 8 5.8–11 17–26 Emergent rock Med UP
23 Portugal Porto region 40 2 2003 4 .8–12.6 2–36 Rock pool NA CIIMAR
24 Portugal Porto region 12 2 2003 20 3.9–10.9 20–63 Emergent rock NA CIIMAR
25 England Plymouth region 12 5 2002–2004 2 4.9–24.2 16–68 Rock pool NA MBA
26 England Plymouth region 12 5 2002–2004 2 3.5–7.9 7–26 Emergent rock NA MBA
27 England Plymouth region 6 5 2002–2004 6 22.4–33.4 99–120 Rock pool NA MBA
28 England Tees Bay and Estuary 13 22–32 1973–1996 3 to 5 11.4–23.3 117–166 Sediment NA PML

Only algal cover: data set #27.
Intertidal zone: #2, 4–6, 17–27.
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structure, all abundances were square-root transformed while for vari-
ation in community composition, data was transformed to presence–
absence.

2.3. Diversity estimates

In each region, organisms were identified to the lowest taxonomic
level possible in the field or in the lab (usually species). Organisms
were identified at the same level of taxonomic resolution across data
sets. Diversity was quantified in terms of species richness (S, number
of species, taxa, or morphological groups) and Pielou's evenness (J′).
Separate analyses were done using estimates from two different scales
of observation: at the scale of the quadrat/grab (~0.10 m2) and at
the scale of the site (~100 s m2). Estimates at the scale of the quadrat
refer to the average values of variables within quadrats (i.e. all dates
pooled) while estimates at scale of the site (i.e. all dates and quadrats
pooled) refer to the total number of species and to the evenness of spe-
cies densities averaged by site. Analyses were also performed using the
rarefaction index E(Sn) (Sanders, 1968, as modified by Hurlbert, 1971)
in order to address the comparability of richness by standardizing abun-
dances (Gotelli and Colwell, 2001; see Appendix 1 for details).

2.4. Data analysis

All relationships between dependent (univariate and multivariate
measures of temporal variability) and independent variables (diversity
measures: S and J′)were separately investigated using linear regression.
Specifically, it was examined if average species richness could be a pre-
dictor of temporal variations (as a response variable) in: a) species rich-
ness; b) community structure; and c) composition. Average evenness
was also used as a predictor of temporal variation in: d) average species
richness; e) community structure; and f) composition. Finally, it was
tested if h) average species richness and i) average evenness were po-
tential predictors of temporal variation in community abundance. It is
worth noting that the analysis in a) represents a test for mean–variance
relationship of species richness and this is discussed further in the text.
The rarefaction index E(Sn) was also used as a predictor of temporal
variation in average species richness, community structure and compo-
sition (see supplementary results in Appendix 1). The correlation coef-
ficient (r) and the slope parameter (β), reflecting the strength and
steepness of the relationship between dependent and independent
variables, respectively, were used in meta-analyses (see Table A1 in
supplemental material, appendix 2). A standard meta-analytical effect
size was used to determine whether there is a significant general
trend in the strength of the relationship among all the data sets
(Gurevitch et al., 2001; Hedges and Olkin, 1985). Fisher Z-transformed
correlation coefficients rz = 0.5 × ln(1 + r)/(1 − r) were used, with
sampling varianceνz=1 / (N− 3), where r is the correlation coefficient
from the linear regression andN is the sample size. The slope parameter
(β) along with its variance estimate SEβ was used as size effect
(Hillebrand et al., 2001; see also Hillebrand, 2004) to test for general
trends. It was also investigated with categorical meta-analyses if the re-
sults were significant when aggregatedwithin habitats (emergent rock;
rock pool; and sediment) or regions (North Atlantic andMediterranean
locations; no test for Baltic region) and to test whether categories differ
from each other. Sediment habitat includes both subtidal and shore soft
sediment. The analysis of heterogeneity (Q-statistic) of effect sizes for
different groups was also tested (Q-statistic Hedges and Olkin, 1985).
This test discriminates between the total heterogeneity (QT) into
heterogeneity between and within categories (respectively QB and
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QW) that are comparable to the SS terms in a standard ANOVA. Mixed
model meta-analyses were used (with MetaWin 2 Rosenberg et al.,
2000) and effect sizeswere considered significant if their confidence in-
terval did not bracket zero. Bootstrap 95% confidence intervals were
built using 999 iterations. Potential effects of the duration (average in
month) of sampling at each study site as well as the sampling effort
(composite variable of averaged number of dates and samples per
date for each data set sites) on effect sizes rz and β were examined by
continuousmodelmeta-analysis (Rosenberg et al., 2000). A significance
level α of 0.05 was adopted for all tests.

3. Results

3.1. Analyses of species richness variations

3.1.1. Species richness as independent variable
Significant positive correlation coefficients were observed between

temporal variation in species richness and species richness levels at
both quadrat (~0.10m2) and site (~100 sm2) scales as the overall effect
sizes (grandmeans) were positive and did not bracket zero (Fig. 2A, B).
However, no significant trends were observed for emerged rock (ER)
habitat and western Mediterranean (ME) region at both scales. At the
scale of the site, the relationship strength rz values were significantly
higher for rock pool (RP) than ER habitat and significantly higher
in North Atlantic (NA) than in ME region (Fig. 2B). No difference of
ER effect sizes between NA (n = 4) and ME (n = 16) regions was ob-
served in all tests (results not shown). No significant overall size effects
or relationship between temporal changes in community structure and
composition within assemblages with species richness was found
(Fig. 2C–F). The strength and the slope of the relationships followed
similar patterns for these analyses. Relationship analyses using expect-
ed species richness E(Sn) (or rarefaction index) at the scale of the site
as an independent variable depicted some differences with observed
species richness (see Fig. A1 in Supplemental materials).
3.1.2. Evenness as independent variable
Overall, positive rz effect size of the relationship between temporal

variation in species number and evenness was observed only at the
scale of the site (Fig. 3A, B). Positive strength rz values were observed
for soft sediment (SD) habitats and NA region at the quadrat scale,
while at the scale of the site, positive rz-values were observed for ER
habitats and for both NA and ME regions. Slope β of the relationships
followed similar trends as for the strength rz, except from the NA region
where β values were not significantly different from zero (Fig. 3A, B).
When considering relationships between temporal changes within as-
semblages with evenness values, positive overall rz was only observed
with community structure analyses at the scale of the site (Fig. 3C–F).
ER habitats as well as the ME region showed positive rz for the latter
analysis (Fig. 3D) while data from SD habitats always showed positive
rz values for allmultivariate analyses (both in structure and composition
data at both scales; Fig. 3C–F). Inversely, temporal changes in communi-
ty composition were negatively related to evenness for ER habitat and
ME region (Fig. 3E). All multivariate analyses for rz and β followed the
same trends (Fig. 3C–F) with an exception for SD habitats at the scale
of the quadrat (Fig. 3C), where rz was positive but β was not.
3.2. Analyses of total community abundance variations

Diversity was not linked to temporal variation in total community
abundance (total % cover or density). Overall strength rz and slope β
effect sizes of relationships between temporal variations in community
total abundance (density or % cover) and both species richness (S) and
evenness (J′) were not significant (Fig. 4A–D) at all scales. Positive
strength rz and slope β with S were however observed for SD habitat
(both scales) andNA region (scale of the site only) (Fig. 4A, B). Temporal
variation in total abundance was positively correlated with J′ for rock
pool habitat at both scales (Fig. 4C, D) as shown by positive rz and
slope β effect sizes.
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3.3. Heterogeneity among data set (sampling effort and duration effect)

The duration of the studies did not affect the values of strength rz and
slope β in any of the analyses (see Supplemental material, Appendix 3).
The sampling effort, determined as composite variable of number of
dates and samples per date, negatively affected rz from analyses of tem-
poral changes in community structure (quadrat: p-value= 0.0255) and
composition (quadrat: p= 0.0114; site: p= 0.0049) that used species
richness as an independent variable. Sampling effort did not affect effect
sizes in analyses of temporal variation in richness with evenness as the
independent variable and all analyses of temporal variation in total
abundance. Slope β-values were not affected by sampling effort in any
of the analyses (results not shown).

Diversity indices measured at the scale of the quadrat versus indices
measured at that of the site were correlated (average ± SE of Pearson's
r coefficient per data set: species richness: 0.71 ± 0.04; evenness:
0.71 ± 0.07). However, richness and evenness measures were weakly
positively correlated at the scale of quadrat (r = 0.36 ± 0.08) and at
the scale of the site (r = 0.11 ± 0.08).
4. Discussion

This study has highlighted that, in most cases, temporal variability
in the number of taxa is positively related to diversity measures in
marine benthic coastal assemblages. These results suggest that greater
diversity leads to less stability (inversely related to temporal variabili-
ty). Variations in species abundance and composition within communi-
ties and temporal variation in total community abundance were,
however, generally not linked to species richness and evenness. In addi-
tion, the diversity–stability relationships were scale dependent and
varied across type of habitats and regions considered. The potential un-
derlying mechanisms linking diversity measurements to stability are
discussed below.
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4.1. Temporal variation in species richness

Our results suggest that the overall stability in species richness is
negatively related to diversity estimates (species richness, evenness
and rarefaction index). To some extent, the observed negative relation-
ship between species richness and stability in species richness may be
explained by simplemean–variance scaling effect. However, positive re-
lationships between other diversity indices (evenness and rarefaction
index) and richness assessed at the scale of the site were consistent in
our analysis. This strengthens the hypothesis that fluctuations within
assemblages are closely controlled by their constituent species and
their dominance structure. Empirical and theoretical studies have gen-
erally shown that diversity levels affect variations in relative abun-
dances, patterns of colonization and extinction rates (e.g. Inchausti
and Halley, 2003; Solan et al., 2004), which, in turn, determine species
richness variability. The cycle of colonization and local extinction of
species, variation in species richness, are affected by processes that
influence average population sizes and their temporal stability. Indeed,
small or highly variable populations are more likely to become locally
extinct (Inchausti and Halley, 2003; Melbourne and Hastings, 2008;
Pimm et al., 1988; Shaffer, 1981).

The identity of species within communities undoubtedly plays an
important role since more diverse communities are more likely to in-
clude species or functional groups (McCann, 2000) that can affect the
function or properties of the whole community (i.e. sampling effect,
Huston, 1997; Tilman et al., 1997). Outcomes from various studies of
temporal variation in species richness have led to different results. Sim-
ulation studies have demonstrated that species variation (turnover) is
reduced with increasing richness when high number of taxamay either
facilitate colonization or reduce extinction of present species, or when
environmental conditions are variable (Shurin, 2007). In contrast,
higher temporal stability (assessed as low values of the coefficient of
variation) in species richness was associated with low richness and
evenness values in New Zealand sandflat sites (Thrush et al., 2008).
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These results were explained by strong connections between functional
groups in species-poor communities.

4.2. Temporal variation in abundance

Stability in total abundance of communitywas generally not linearly
linked to species richness nor evenness indices. Balvanera et al. (2006)
also failed to observe significant relationships between stability (as
natural variation) and diversity, although using different measures of
stability and data sets that study did not exclusively represent marine
habitat. Temporal variability of aggregated community (total abun-
dance, total biomass, etc.) or population (density, biomass) properties
are preferred response variables used in studies of diversity–stability re-
lationships and most of the relationships were negative (Stachowicz
et al., 2007; Valdivia and Molis, 2009). Many mechanistic approaches
were identified to interpret theoretical and empirical outcomes from
relationships between variability of such aggregated variable and diver-
sity measures (e.g. de Mazancourt et al., 2013; Petchey et al., 2002). In
particular, different non-exclusive mechanisms were reported to regu-
late the link between diversity and stability: the statistical averaging
(Doak et al., 1998; “portfolio effect” Tilman et al., 1998); negative
covariances among populations (Tilman et al., 1998); asynchrony in
response to environmental fluctuation (Ives and Hughes, 2002) and
overyielding (Tilman, 1999). These mechanisms have been considered
important to shape the relationship between diversity and stability of
above-ground biomass (Grman et al., 2010), total abundances inmarine
hard bottom communities (Benedetti-Cecchi, 2009; Bulleri et al., 2012)
and production in grassland plants (de Mazancourt et al., 2013; Isbell
et al., 2009). Increasing the number of taxa present in a community
would reduce mean and variance in the total community abundance
and, then statistically reduce community variance (see Cottingham
et al., 2001). On the contrary, rich communities may also increase aver-
age strength among species favoring competitive exclusion and enhanc-
ing abundance fluctuations. Even if mean–variance scaling effects were
present, intrinsic community properties such as negative covariance in
species occurrence could lead to lower temporal variation at sites with
higher species richness. Several empirical studies have highlighted the
role of dominant species traits for the function of thewhole community.
For example, lower variability of dominant species than subordinate
species may affect the whole community stability (Grman et al., 2010;
Polley et al., 2007; Sasaki and Lauenroth, 2011; Valdivia et al., 2013).

The results of the present study also suggest that communities from
different habitats exhibit different diversity–stability relationships.
While data from emergent rocky habitats exhibited no relationship,
richness decreased stability of sandy community abundances while
evenness decreased stability in rock pool community abundances
(see Fig. 4). If poor correlation between richness and evennessmeasures
at each scale may partly explain this, inherent differences exist in forces
that structure communities among habitats. Strong interactions, mainly
competition, among species in soft sediments are largely limited to
the provision of biogenic habitat communities that are commonly
maintained in early successional stages by frequent physical and biolog-
ical disturbances. Competitive displacement and exclusion are generally
less frequent in sediment habitats compared to hard-bottom ones
(Black and Peterson, 1988; Peterson, 1979). Following the work of
Danovaro et al. (2008) in deep sea sediments, Loreau (2008) suggested
that infaunal species, through the reworking of sediments could gener-
ate a prevalence of positive species interactions in soft sediments (in



12 M. Cusson et al. / Journal of Sea Research 98 (2015) 5–14
contrast to hard-bottoms, cf Benedetti-Cecchi, 2009; Noël, 2007)
leading to complementarity effects (Loreau, 2000). Positive covariance,
which is observed when species fluctuate synchronously in response to
environmental change, is widespread (Houlahan et al., 2007; Valone
and Barber, 2008) and contributes to increase variability in total abun-
dance. However when present, the compensatory dynamics among in-
tertidal species that contribute to stability has a lower effect in high
latitudewhere environmental forcingmay prevail on biological interac-
tions (Bulleri et al., 2012). While rock pools are benign environments
compared to emergent rock in terms of physical stress (i.e. desiccation,
see Noël, 2007), they can be much more heavily grazed (e.g. Benedetti-
Cecchi et al., 2005). This high grazing pressure observed in rock pools
may change the nature of interactions between species from competi-
tion to facilitation (Bertness and Callaway, 1994) and increase the num-
ber of grazer resistant-species (Noël et al., 2009). If stabilizing effects of
species richness on community abundances were observed in rock pool
mesocosms (Romanuk and Kolasa, 2002), the effect of evenness still re-
mains unclear.

4.3. Temporal variation within communities

Usingmultivariate analyses, we found that stability (measured with
Bray–Curtis dissimilarities) of species abundance and composition
within communities are generally not correlated with diversity indices.
Our results suggest that relationships between diversity and communi-
ty stability may be governed by evenness rather than the number of
species (cf. Figs. 2 and 3). Moreover, contrasting results among habitats
exist, with sediment communities with high evenness being less stable,
perhaps from prevalence of positive species interactions in this habitat
previously discussed. Theoretical studies have revealed that relation-
ships between community variability in composition and number of
taxa may increase, decrease or remain unchanged mainly due to the
type of calculation of variability used but also stochastic processes that
alter patterns of dominance and total abundance among species
(Stevens et al., 2003). Among other results, Stevens et al. (2003) report-
ed that simulated community variation in composition, given that total
abundance stays equal, would show positive correlation with evenness.
Our empirical observations would give only little support to these pre-
dictions (see Fig. 3E). At high dominance (or low evenness), it was ob-
served that stability in species composition within a community may
be either enhanced on emergent rocky shores or become reduced on
sediment shores (see Fig. 3E). Results from empirical studies have also
contradictory outcomes showing that variousmeasures of grassland di-
versity (including species richness and evenness) can enhance (Frank
and McNaughton, 1991) or decrease stability (Rodriguez and Gomez,
1994, while no effect was recorded for J′) measured by temporal vari-
ance in compositional richness. Moreover, in contrast to our study,
Mykrä et al. (2011) observed that stability within assemblage in
streams is promoted by species richness, although this relationship dis-
appeared when compositional stability was related to species richness
estimated with a rarefaction index that standardized abundance.

4.4. Scale of observation

Many rich benthic communities are actually composed by rare spe-
cies (Ellingsen et al., 2007; Gray, 2000; Gray et al., 2005). Uncommon
species are theoretically important to maintain ecosystem functions in
the context of the insurance hypothesis (Yachi and Loreau, 1999) and
are important to ensure community persistence and resilience
(Hillebrand et al., 2008). Spatial species distributions are highly hetero-
geneous at various scales (e.g. Chapman et al., 2010; Kraufvelin et al.,
2011). Indeed, variations in the number of taxa may be influenced by
a combination of random spatial and temporal sampling errors that
cause species, particularly those that are either sparse or rare, to be in-
cluded or not in a patch (de Juan and Hewitt, 2014; McArdle et al.,
1990). The recent work of de Juan and Hewitt (2014) illustrated how
seasonality and inter-annual sampling schemes may affect variability
in species composition and species accumulation profiles. In our study,
care was taken to select data sets with sampling dates spread among
seasons or within years. There was no effect of the duration of the stud-
ies on effect sizes measured, but seasonal variations within studies may
have influenced our overall results. Patterns of diversity in small patches
have been identified as potential contributors to ecological stability
(Frank and McNaughton, 1991), but the consistency seen in our results
at both quadrat and site scales indicates that mechanisms not related to
heterogeneity among patches may dominate and create the observed
patterns. It has been generally accepted that regional species pools
may regulate the species richness seen at smaller scales (e.g. Kotta
and Witman, 2009; Ricklefs, 1987; Witman et al., 2004).

When data sets were analyzed separately, a large proportion of the
observed relationships between stability and biodiversity were weak
or not significant. For example, in the analyses shown in Fig. 2A, only
5 data sets out of 28 showed significant relationships and 6 show corre-
lation coefficients over 0.5 (Table A1, appendix 2). The observed signif-
icant results with combined data sets illustrate the importance of using
robust meta-analytical tools to investigate such hypotheses. Nonethe-
less, more data from soft sediments and rock pool habitats are needed
to generate more conclusive results. The available data sets in this
study were to some extent over-represented in the Mediterranean re-
gion and in the emergent rock habitat. Indeed, the Mediterranean re-
gion was solely represented by studies on emergent rock. On the
other hand, consistent results betweenMediterranean and North Atlan-
tic results for emergent rockwere seen. Large scale comparison of diver-
sity effects on ecosystem processes may be masked systematically by
the effects of variation in environmental variables on these processes
and may lead to erroneous conclusions (Loreau, 1998, 2008).

5. Concluding remarks

This study provides one of the few comprehensive assessments of
large spatial scale variation in the relationship between diversity and
temporal stability across different marine systems. Our results suggest
that diverse assemblages enhance variability in species richness with-
out affecting variability in species abundance and composition within
community. The use of complementary diversity indices (e.g. richness
and evenness) over various time series warrants the generation of
robust stability–diversity analyses. Despite the caveat resulting from in-
complete and unevenly distributeddata, it has been highlighted that the
scale of observation needs to be considered in diversity–stability studies
and outcomes may also depend on the habitats and the biogeographic
systems considered (e.g. North-Atlantic or western Mediterranean).
Conversely, there are needs to extend the analyses shown here to
more sites (and time series) in order to generate better pictures across
habitats. Targeted long-term observations and experiments are un-
doubtedly important to unravel effects of environmental variables, spe-
cies interaction strength within assemblages and potential effect of
climate changes on biodiversity and the functioning of ecosystems. Nev-
ertheless, where sufficient data sets exist, a meta-analysis like the one
presented here can provide a cost-effective approach to clarifying and
generating further hypotheses about diversity–stability relationships.
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