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A B S T R A C T   

Private residential areas represent a large portion of urban tree canopy and provide a significant amount of 
ecosystem services for mitigation of negative environmental impacts. With densification, construction of 
impermeable surfaces, loss of plantable space and urban tree canopy loss, communities are facing a potential 
degradation of urban environment and loss of living quality. Monitoring urban tree canopy change with repeated 
assessments over time is key for supplying information for management decisions. 

We examined how remote sensing has been used in the past assessments of urban tree canopy area, the public 
availability and quality of geodata sources and grey literature examples. Field measurements of tree canopy area 
were collected in private residential properties in Malmö, Sweden and compared to estimates of canopy area 
using remote sensing data collected by the public mapping agency ‘Lantmäteriet’. The remote sensing model was 
derived using normalized difference in vegetation (NDVI) and LiDAR. 

Most Swedish municipalities conduct urban tree monitoring schemes only on street and park trees. Our results 
show a correlation in remotely sensed tree canopy area and field measurements, suggesting that monitoring of 
private residential areas can be conducted frequently and non-invasively where remote sensing information of 
similar quality is available.   

Introduction 

Urban forests have been defined as consisting of individual trees, 
stands of trees, and urban woodlands near or within urban areas 
(Konijnendijk et al., 2006). The value of urban forests for human life and 
well-being has been widely documented and described (WHO, 2016). 
They provide a wide array of ecosystem services (UN, 2014), including 
mitigation of negative impacts associated with climate change by 
removal of pollutants, carbon sequestration, and water uptake (Gill 
et al., 2007; Nowak et al., 2006). 

The spatial configuration of urban areas, with numerous different 
land uses, can involve half the land area being dedicated to housing, also 
referred to as residential land use (UN, 2014). Trends in European cities 
in past decades have resulted in an increase in residential areas, making 
them the most common setting for daily human-nature interactions 
(Kabisch and Haase, 2013). Residential areas are made up of different 
forms of housing, but most of the area belongs to private individuals or 
housing associations. Therefore private residential property not only 
provides housing amenities, but is also a large component of green 
infrastructure (GI), a term used to describe a wide range of natural 

features located at different scales and all forming an interconnected 
ecological network. For example, a single tree in a residential area is part 
of the overall GI, contributing key local environmental values (EC, 
2013). 

Urban forests on public land is most often planned and managed by 
local governments (de Magalhães and Carmona, 2009; Jansson and 
Randrup, 2020). However, very few local governments include assess-
ments of privately-owned trees and vegetation in their urban forest in-
ventories (Östberg et al., 2018). Trees growing in private residential 
areas are vulnerable to removal, e.g., a study of single-family residential 
neighborhoods in Los Angeles County found a 1.2% annual decrease in 
tree/shrub cover (Lee et al., 2017) where other authors also found that 
fine-scale changes in canopy cover affect vulnerable social groups 
disproportionately (Locke et al., al.). When a substantial part of the 
urban forest is not included in assessment, there is a risk of significant 
contributions of ecosystem services from the total urban forest being 
overlooked. Additionally, future planning and management is at risk of 
omitting valuable inputs in terms of location and specific ecosystem 
services provided by trees on private residential plots. This may lead to 
inadequate operational management and policymaking. To evaluate the 
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complete volume of ecosystem services provided by urban trees across 
the urban landscape, privately owned vegetation needs to be included in 
assessments of urban forest (Cook et al., 2011). 

Recording work on urban trees by local governments broadly falls 
into two categories: on-site approaches using field work and on-ground 
measurements, or top-down approaches using remote sensing imagery 
(satellite or aircraft-mounted cameras) (Morgenroth and Östberg, 2017) 
to detect the extent of vegetation in an area (Miller et al., 2015; Shoja-
noori and Shafri, 2016). A central argument for not applying bottom-up 
approaches to include residential trees in public tree databases is the 
private rights to the property and the related restriction on physical 
access by local government staff for monitoring and data collection. 
Top-down approaches, on the other hand, can be used to detect the total 
urban forest composition via canopy cover assessment. Its limitations in 
urban areas lie in determining tree species, vitality, and site conditions 
for individual trees (Huang et al., 2019; Johnson et al., 2015). Due to 
regular image-generating observations and relatively simple access, the 
cost of obtaining high-resolution imagery has considerably decreased in 
recent years, simplifying the data-gathering process and driving transi-
tion of tree management to a digital future (Galle et al., 2019). For the 
same reason, remote sensing is recognized as an important tool for 
assessing sudden changes in tree cover caused by development, diseases, 
or similar underlying reasons (Kangas and Maltamo, 2006). 

This study compared data on trees in private residential property 
obtained in manual field surveys with data obtained using Normalized 
Difference Vegetation Index (NDVI) and Light Detection and Ranging 
(LiDAR) classified remote sensing imagery. The aim was to compare 
remote sensing to plot based field surveys in producing tree canopy infor-
mation in private residential areas. The specific objective was to evaluate 
whether statistical extrapolations from field data align with those from 
remote sensing. . 

The terms ‘assessment’, ‘monitoring’, and ‘inventory’ are often used 
inconsistently in the literature. For clarity, we delimited the analysis to 
‘assessment’, as in ‘assessing the extent or amount of’, since both in-
ventory and measurement might imply a degree of completeness inap-
propriate to a sampled approach. Monitoring implies some sustainable 
longer-term consistency in data collection, which must be left to 
future work once the more limited aim of potential for assessment is 
investigated. However, due to the ambiguity and overlap in terms, we 
employ other authors’ choice of term when citing other work. 

Similarly, the term “validation” is often used to mean validation of 
the classified products from remote sensing (e.g., by pixel-level confu-
sion matrix). The aim of this study required a different test; not the 
proportion of pixels validly classified, but whether canopy area esti-
mated from remote sensing is comparable to area measured in field 
assessments, at plot level, in private residential gardens. We did not 
consider either the field or image dataset to be the “absolute truth”, but 
were simply interested in whether the two methods produce similar 
estimates. 

Remote sensing in assessment of tree canopy cover 

In managing trees, there is a long history of using remote sensing as a 
means to monitor and assess tree canopy coverage, starting with manual 
assessment of aerial photographs in the forestry industry and for land- 
cover mapping (Heller, 1964). The introduction of multi-spectral im-
aging greatly improved the accuracy of automated assessments, in 
particular NDVI (Pettorelli, 2015), which uses infra-red absorption to 
distinguish plant life (specifically chlorophyll) from other green land 
cover (see Pettorelli ibid. for development of the principle). NVDI was 
first proposed in the early 1970s (Rouse et al., 1974), and has proven 
useful in a wide array of application areas where vegetation plays a role 
(e.g., mapping urban heat islands, landslides (Hidalgo et al. 2021), soil 
erosion (Jianlin et al. 2016), epidemiology (Zaldo-Aubanell et al., 2021, 
psychology (Reyes-Riveros et al., 2021), and hedonic property pricing 
(Zambrano-Monserrate et al., 2021), at a wide range of scales from 

individual residential areas (Retes-Paecke et al. 2019) to global maps 
(Juliean and Sobrino, 2020). This section represents a selected overview 
of key themes within context of urban forestry, based on a structured 
literature search which found over 4000 journal papers referencing the 
technique in an urban context (See Appendix 1 for search terms and 
hits). Space does not allow for a complete literature review, but only to 
present a brief overview. 

In urban areas, until relatively recently satellite resolution for freely 
available multi-spectral imagery was limited at around 20–30 m (e.g., 
Landsat TM, SPOT) in terms of satellites with affordable global 
coverage. Consequently application to urban areas remained complex, 
with various attempts to extract greater thematic detail such as pixel un- 
mixing (Liu and Yang, 2013) and panchromatic texture analysis (Ozkan 
et al., 2016) to improve estimated total area of different types of vege-
tation per pixel. These lacked sufficient geometric precision to reveal the 
contribution of scattered trees in complex environments, limiting utility 
for canopy area estimation in places where this was the predominant 
pattern, such as private residential areas. Distinguishing between the 
urban forest and other elements of the urban GI was further hampered 
by lack of sufficient Digital Surface Models (DSM) in nationally collected 
datasets. Until c2000, a typical DSM had 20–30 m resolution, with 
building data possibly added in the form of 3D models but often without 
vegetation height data. The advent of LiDAR provided the possibility to 
automatically identify 3D structures such as canopy edges and individ-
ual tree crowns for the first time (Meng et al., 2018) (for a review in 
urban forestry see Wang et al., 2019). 

In theory, LiDAR can work to almost arbitrarily detailed resolution. 
However, collection over large areas presents data volume issues and 
national data are usually limited to around 2 m resolution for urban 
areas. Thus while many studies have used very high resolution (VHR) 
LiDAR to identify and classify individual trees, resolution of 10 cm or 25 
cm cannot be assumed to be generally available. Earth observation 
satellite missions Sentinel 2A and 2B, launched in 2015 and 2017 
respectively, increased the available resolution of freely available multi- 
spectral data to 10 m and in doing so crossed a threshold for utility in 
urban areas in general (Baines et al., 2020; Moreno et al., 2020). This, 
plus the dramatic expansion of GIS and data science use in the public 
sector (Statistics Sweden, 2020), has led to growing use of remote 
sensing to assess residential green space and its importance for various 
aspects of human wellbeing (Singh et al., 2018). 

Resolution is not the only reason why it is challenging to use NDVI to 
assess urban areas particularly when also needing indicators such as soil 
type and vegetation density (Sadeh et al., 2021). This has led to some 
concern that NDVI might locally underestimate urban GI in general 
(Gascon et al., 2016), and in the development of indices to address this 
(e.g. EVI, SAVI)(Pettorelli, 2015). The urban tree canopy is arguably less 
vulnerable to such underestimation than other constituents of the urban 
GI, since canopies are relatively dense and elevated above the back-
ground surface. LiDAR data on elevation can be used to distinguish 
larger trees from other land covers, although a resolution of 10 m would 
still make extraction of smaller tree crowns difficult. Although not freely 
available, VHR imagery can remove this size barrier, but there are 
problems associated with VHR due to spectral diversity across the tree 
crown (Ardila et al., 2012). This has been described as a ‘salt and pepper 
effect’ and solutions might necessitate more complex object-based 
methods (e.g. Ardila et al., 2012, O’Neil-Dunne et al., 2013) and arti-
ficial intelligence (AI) approaches (Chouhan et al., 2019; Timilsina et al., 
2020) to tree crown identification. This includes attempting to identify 
likely species from hyperspectral imagery or multi-spectral LiDAR (Dai 
et al., 2018). 

Swedish local authorities now have access to VHR imagery at sub-30 
cm resolution updated bi-annually and LiDAR at resolution of 1–2 points 
per square meter in urban areas (Lantmäteriet, 2020). However, 
increasing use of unmanned aerial vehicles (UAV) in the forestry sector 
(Baek and Hong, 2017) for object, texture, and AI approaches to identify 
individual tree crowns are at the forefront of current knowledge. This 
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methodology appears to be most useful when attempting to identify the 
characteristics of individual trees within a multi-tree stand, i.e., when 
canopy height does not suffice to distinguish the cover of interest. When 
the task is simply one of measuring canopy extent, there are practical 
reasons for attempting to do so using as simple and standardized ap-
proaches as possible, e.g. relying only on GIS software and skills sets 
typically available to local planning departments (Sang, 2020). 

The standard NDVI/LiDAR combination approach to assess tree 
canopy in private gardens is limited by lack of ground data, since: 
“Although inventory measurements are locally comprehensive, they can be 
sparse in a heterogeneous urban landscape, laborious and time-consuming to 
measure” (Baines et al., 2020, page 2). On the one hand, wide experience 
of use of the NDVI-LiDAR method for urban canopy assessment in gen-
eral (Parmehr et al., 2016) and successful application in studies within 
residential areas as a whole (Gernes et al., 2019; Peng et al., 2020; 
Sadeh et al., 2021) give reason for confidence. On the other hand, spe-
cific characteristics of private residential areas might give reason to 
expect confounding issues. For example:  

• Compared with parks and streets, trees in private gardens are often 
close to buildings, meaning that off nadir shadow formation (i.e. 
areas where the LiDAR signal is occluded) and resolution might 
interfere with the signal.  

• Private gardens are likely to have a diverse, unusual mix of tree 
species, particularly with more fruit trees and non-native tree spe-
cies, which might have different spectral responses (Avolio et al., 
2015).  

• In private gardens, there are fewer large stands of trees and a higher 
proportion of younger, smaller trees compared to parks and streets 
(Grove et al., 2006; Guo et al., 2019; Nitoslawski and Duinker, 2016).  

• In private gardens there are suboptimal management practices (e.g., 
cutting branches off at a property boundary), which may compro-
mise crown projection and leaf area index estimations (Miller et al., 
2015). 

Ardila et al. (2012), showed that when attempting to map tree 
crowns from VHR images there were “false negative errors concentrated 
on small trees and false positive errors in private gardens”. Thus, both 
forms of error may be a particular issue in private gardens, since smaller 
trees can also be expected in smaller plots. 

Whether these particular issues might accrue from the pixel level in 
sufficient quantity to confound comparability with plot-level, field- 
based canopy assessment is thus an unresolved question of interest for 
two key reasons. Firstly, while remote sensing is well established for 
monitoring urban canopy as a whole (Alonzo et al., 2016) urban resi-
dential areas are a significant component (Ossola et al., 2019b) to which 
different policy tools apply for their governance and management 
(Conway and Lue, 2018; Cook et al., 2011; Ossola et al., 2019a) so it is 
important to put this sub context on equally firm ground. Secondly, 
research seeking to understand effective management and governance 
of trees in private gardens will typically rely on a sample approach to 
select tree properties, supplemented with questionnaires to the owners, 
while requesting site access to the site. Ground survey will thus be plot 
based, e.g. that of the property boundary or via a standard protocol. 
However, requesting site access is problematic in regards to respect of 
private property rights and thus for obtaining a sufficient response rate 
(Dyson et al., 2019). So it is important to know whether, at this more 
detailed level of assessment, remote sensing provides a reasonable 
alternative and how comparable the results from field-based measure-
ments and remote sensing are. This could both help to maximize utility 
of survey responses refusing access and for comparability across studies 
with differing assessment methods. 

Urban tree canopy assessments by local governments 

Urban tree canopy assessments provide a systematic overview of the 

urban tree resource, to better assess that resource. The history of local 
government monitoring of urban trees stretches back over a century 
(Morgenroth and Östberg, 2017), and predates formalization of urban 
forestry as a discipline. In a review of contemporary urban tree in-
ventory methods used to monitor data at single-tree level, Nielsen et al. 
(2014) found six studies using remote sensing out of 57 (11%). More 
recently, (Klobucar et al., 2020) found that only 31% of papers they 
reviewed reported use of remote sensing in urban tree inventories, 
suggesting that the current level of documented information and qual-
ities of using remote sensing (as cited above) are not yet widely adopted 
in practice. Tree assessment methods are subject to traditions from 
adjacent disciplines, e.g., monitoring of “trees outside forest” often in-
cludes urban areas in national forest inventories, applying identical 
methodologies with sparse networks of plots (Schnell et al., 2015), 
meaning that more detailed urban tree canopy assessments are con-
ducted at the local government level. 

There are several examples in which remote sensing methodologies 
have been applied to monitor urban trees in practice. The United States 
Forest Service (USFS) provides important methodological descriptions 
for practice (USDA, 2019b). Its guidelines touch upon using LiDAR 
mapping, high-resolution imagery, and spectral imagery for assessments 
of urban tree canopy. LiDAR is described as necessary to improve the 
accuracy based solely on imagery, especially in distinguishing vegeta-
tion from other features. In its report, the USFS also suggests that 
practitioners take advantage of the potential to monitor tree canopy 
changes using remote sensing tools and not merely offer single “poin-
t-in-time” assessments for local planning bodies (USDA, 2019b). The 
(brief) report does not mention any potential issues related specifically 
to residential areas. It also directs practitioners towards use of i-Tree 
Canopy (a Google Earth-based tool for sampling assessment of tree 
canopy) and i-Tree Landscape (a web-based geographic database of 
Landsat imagery and demographic information, USDA, 2019b) both of 
which are sample based methods. 

In order to get an overview of how urban communities across the 
globe utilize remote sensing for canopy cover assessments, a further grey 
literature search was conducted focusing on reports of various local 
agencies conducting canopy assessments. Google was used as the search 
engine and search terms were comprised out of three components joined 
with a Boolean operator:  

• Keywords related to urban tree canopy (urban; canopy; cover; tree; 
assessment; map; report; summary)  

• Location (names of larger global cities)  
• Type of file (we used filtering by pdf as it is the primary format for 

online reports) 

In some instances we sub-searched municipal websites to find reports 
on canopy cover. The search included largest cites from North America, 
South America, Asia and Europe. Despite this search method, for some 
cities a report on canopy cover assessment in English language simply 
had no hits, particularly, no reports from the cities in South America 
were found to have been published in English. In Appendix 1 we list the 
instances where a report on urban tree canopy was found and describe 
the method that was utilized for the collection of its baseline data. 
Limiting this search to English does, of course, create caveats. 

An advanced example of monitoring practice is the Tree Canopy 
Assessment by the city of Philadelphia, where a combination of aerial 
photography and LiDAR, acquired through government agencies, was 
used for obtaining fundamental information about the urban tree can-
opy (O’Neil-Dunne, 2019). The local government goal of obtaining 30% 
cover in each neighborhood was repeatedly evaluated for implementa-
tion of necessary policies. The findings provided information on land 
cover change, loss of canopy cover, potential plantable space, and more. 
The greatest change was recorded in residential areas, but the analysis 
encountered issues when comparing datasets from different years, due 
to differences in sensors and time of acquisition (O’Neil-Dunne, 2019). 
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They do not discuss the specific sources of error for residential areas or 
the vegetation indices used for mapping change (O’Neil-Dunne, 2019). 

In Sweden, 26 municipalities and organizations collaborated in a 
recent project assessing ecosystem services provided by publicly 
managed urban trees at local government level using i-Tree Eco v6 
(Deak Sjöman and Östberg, 2020). Canopy assessments were made using 
field measurements and primarily on public property. The University of 
Gothenburg has used LiDAR to successfully map trees at city level using 
high-resolution LiDAR point clouds with highly accurate tree models 
(Lindberg et al., 2013). To the authors’ knowledge, no report on urban 
canopy assessment based on NDVI and LiDAR has been published in 
Sweden. Instead, local governments rely on collaborations with research 
institutions and mixtures of methods to assess urban tree canopy. 

Overall, a divergent picture emerges on the use of RS in general, and 
Lidar-NDVI in particular within urban forestry. It is a well-documented 
method with studies as to method and accuracy for monitoring urban 
forestry at larger spatial extents, particularly as to canopy and larger 
individual trees in public spaces. However it is still not standard practice 
internationally (as demonstrated by the case of Sweden which certainly 
has the technical and financial capacity) particularly outside major 
conurbations. The specific context of private gardens has also been 
studied but less conclusively as to accuracy at the pixel level but perhaps 
more importantly given the mixed methods currently in use, as to 
comparability between remote sensing and field assessment at plot level. 
Indeed there are some reasons why, prima facie, one might expect site 
and remotely sensed plot data to diverge. 

Method 

This study applied a case study approach, using one city (Malmö, 
Sweden) as a detailed examination of a single case (Flyvbjerg, 2016). 
The city of Malmö (55◦36′21′′N 13◦02′09′′E) is the third most populous 
city in Sweden, with 338 230 inhabitants (2020). It is located in the 
temperate vegetation zone, on the southern Swedish agricultural plains, 
a region with overall fertile soils and mean precipitation of 600 
mm/year (SMHI, 2021). The urban area extends to 8105 ha, with 1877 
ha of this (23%) classified as private residential area. The city govern-
ment has been proactive in using urban trees as part of overall strategies 
for mitigation of climate change, and has a full inventory of street and 
park trees (Sjöman et al., 2012). As a result, a “tree plan” strategy for 
long-term development of urban vegetation has been repeatedly upda-
ted and developed (Malmö Stad, 2017). 

Plot definition and canopy extent 

In order to compare remote sensing to plot based field surveys in 
producing tree canopy information in private residential areas, we 
focused on the evaluation of whether statistical extrapolations from field 
data would correlate with those from remote sensing. 

Sampling of circular plots is common practice for estimating urban 
forest parameters, to obtain estimates of the total sampling area, to 
obtain precise estimates for sub-regions and to attain an acceptable 
compromise between cost and precision (Miller et al., 2015). Even 
though residential landscapes are comprised of a mosaic of individual 
properties that can be seen as management units within their legal 
boundary (Cook et al., 2011), the sampling plot approach is more 
common as opposed to full inventories of individual properties. The 
added benefit in inventorying entire property lots would be to identify 
direct measures of urban form and governance through dispersion of 
values and its effect on canopy cover as described in (Klobucar et al., 
2021). 

Whether the circular plot is used or the whole garden, both face a 
definitional problem for comparison with areal imagery; the canopy 
above a plot does not necessarily grow from a stem located within that 
plot. In the case of i-Tree, the aim is to measure that which grows from 
the plot (regardless of whether it then hangs beyond the plot). In the case 

of the imagery, the aim is to measure what covers that plot, regardless of 
where the measured trees grows from. Not only do these (literally) 
ground up and top down approaches mismatch conceptually, they might 
also be expected to operate with anti-thetical effect as regards estima-
tion of canopy cover within that space. The ground up may systemati-
cally over estimate canopy within the plot (since it includes that which 
hangs outward) the top down systematically over estimate that which 
grows in the plot (since it includes that which hangs inward). 

The only way these two methods will record the same total canopy 
for a plot is if no overhang occurs or if in the ground based approach that 
which is “gained” on one stem is “lost” at another, while for the top 
down approach that “gained” from outside is “lost” from stems inside 
with crowns which hang beyond the boundary. Whether that happens 
on average depends on spatial pattern at a higher scale. Comparability 
between ground based (plot based) and area based (image based) can-
opy extent assessment is therefore not a simple question of whether pixel 
classification is sufficiently accurate to map urban canopy, or even 
whether it is sufficient to map this in private gardens. Rather it is a 
question of whether the two methods converge statistically and if so 
under what conditions of plot size, scale, urban morphology, extent and 
so on. First and foremost this method aims to answer only whether the 
methods converge, but since the i-Tree plot samples stem position not 
canopy, some slight alternative plot diameters are also tested. 

Another potential confounding factor is that canopy may overlap, 
which the ground level assessment would include but the aerial view 
does not (at least in simple 2D extent). Again, the significance or 
otherwise of this for comparability of the two methods in private gardens 
depends on how often it happens in private gardens. While of course 
overlap does occur, there are structural reasons to expect it may be not 
particularly significant e.g. plot size, tree age and the fact that most trees 
are planted with some forethought as to how much space their canopy 
will need (or are managed/removed subsequently). So while, in terms of 
RS classification, gardens may present some additional challenges at the 
pixel level, other characteristics could prove advantageous for statistical 
comparability with ground survey assessment at the plot level. 

Field data 

Field work was conducted in autumn 2018. In urban tree assess-
ments, a sampling design with 200 sampling plots gives ~12% relative 
standard error in estimating tree populations (Nowak et al., 2015). 
Within the 1877 ha of private residential areas in the city of Malmö, we 
therefore selected 225 spatially-balanced sampling points to compensate 
for potential refusal rate. In Sweden, the term “small housing unit” is 
being used for detached and semi-detached residential single family 
property. Depending on construction year, several different configura-
tions exist in regards to front and backyard space, following major 
housing reforms that shaped the residential landscape. Mean size of such 
properties was 654 m2 with a mean potential plantable space of 579 m2 

(Klobucar et al., 2021). 
Residents were notified by mail, and visits were individually 

scheduled after agreement to participate. At each sampling point, a 100 
m2 circular plot was outlined and surveyed for trees. 

For tree stems with diameter at breast height (DBH) above 5 cm 
present within the plot, the following measurements were taken:  

• Azimuth and distance of tree stem from plot center  
• Tree species  
• Stem DBH  
• Crown width in two perpendicular directions  
• Tree height 

Tree canopy measurements were made ignoring residential plot 
boundaries. 

Regulating ecosystem services supplied by trees are generated 
through photosynthesis, where the capacity to produce CO2 is closely 
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related to leaf biomass. These can be calculated using allometric equa-
tions (Nowak et al., 2013). The data were entered into the i-Tree Eco 
model (USDA, 2019a) for each plot individually and, as a result, canopy 
area and total leaf biomass were available for each plot. Individual plots 
were also classified by type of vegetation, divided into three categories: 
deciduous, coniferous or mixed, based on the tree species. In total, 200 
plots were surveyed, since not all plots were accessible due to residents 
not consenting to participate in the study. 

Orthophoto imagery and NDVI classification 

The plot unit was used to compare field measurements to remote 
sensing imagery. Cadaster maps of real estate records, which include 
shape and size of private property with building footprint, were acquired 
through public freedom of information. Coordinates of sampling points 
from the field measurements were buffered to create digital represen-
tations of the sampling plots. 

LiDAR and orthophoto geodata products were acquired through 
Lantmäteriet, the Swedish mapping, cadastral, and land registration au-
thority (Lantmäteriet, 2020). Geodata on property borders was reques-
ted from the City of Malmö through right of access to public information 
(Table 1). The multispectral imagery product used for the analysis was 
infrared aerial photography (“IRF-flygbild”) at 0.25 m resolution. The 
imagery from 2016 was most suitable, since the images for 2018 (year of 
field measurements) were taken in the early spring, when most of the 
local deciduous vegetation was not in full leaf, and were therefore less 
suitable for NDVI calculations. Raster mosaic tiles were combined to a 
single raster layer and values were normalized by the built-in mosaic 
function. NDVI was derived by ArcGIS Pro 2.6.3. software (ESRI, 2020) 
using infra-red (IR) and near infra-red (Sadeh et al.) spectral bands 
included in the product, with manual calibration of thresholds for op-
timum contrast, calculated as: 

NDVI =
NIR − R
NIR + R 

The output of this operation was a raster map of NDVI values across 
the city, which was subsequently extracted to the field plot areas. In 
order to consider the potential effect of instances where tree canopy 
extended across the circular plot boundary, two additional sets of areas 
were extracted for larger radii at one and two standard deviations (SD) 
of the mean individual tree canopy radius, as recorded in the field. Thus 
we created three concentric circles for the purpose of assessment of the 
remote sensing values, with radius 5.64 m, 6.72 m, and 7.8 m (Plot1; 
Plot + 1 SD; Plot + 2SD, respectively), as shown in Fig. 1. Negative NDVI 
values were reclassified to zero. 

LiDAR vegetation surface model 

Low vegetation (lawns and small shrubs) is difficult to distinguish 
from trees using only NDVI values. Therefore the LiDAR dataset ob-
tained from Lantmäteriet was used to create a raster Digital Surface 
Model (DSM) from first return point cloud and a Digital Terrain Model 
(DTM) from ground points. The resolution of the two raster layers was 
based on the density of available points (0.5–1 point per m2) and set at 
1.5 m. The height difference between surface and elevation models 
represented all aboveground objects. Our field measurements for canopy 
height ranged from 16.5 m to 1.3 m, providing a vertical “vegetation 

window”. The re-sampled NDVI classified imagery from the previous 
steps was then overlain to segment the surface into canopy and non- 
canopy. 

Regression analysis 

The LiDAR surface model, overlaid with NDVI-classified images, was 
used to count the total number of pixels within each of the three 
concentric plots for each plot site. To determine total canopy area, the 
total count of pixels was multiplied by pixel area size. The result was 
then compared to canopy area estimated from field measurements, 
where the two perpendicular radius measurements were used to calcu-
late canopy area of trees present within the plot. The resulting dataset 
thus consisted of 48 observations of both field-based estimates and 
remotely sensed estimates of canopy area for three concentric areas 
since that was the number of the plots where trees were recorded at the 
time of field visit. Plots with no trees present within them were excluded 
from this analysis (Table 2). 

Results 

Table 2 shows the results of the three linear regressions, for each of 
which the field estimate of canopy was the dependent variable (Y) against 
each of the respective plot sizes (independent variable X 1,2,3) using the 
following formula: 

Yi = f (Xi, β) + ei 

While all three covariates tested were significant for canopy area, the 
smallest size plot (100 m2) showed greatest significance, as visualized in 
Fig. 3. This suggests that the relationship with field measurements was 
strongest for the original plot area and that canopy extending beyond 
the plot was not a critical confounding feature. The obvious outlier was a 
case where multiple canopies overlapped, which strengthened the sig-
nificance but not critically so as the correlation remained significant 
when the outlier was removed. Additionally, using plot categorized by 
type of vegetation (deciduous, coniferous, and mixed) as a factor in a 
mixed effect model did not improve significance in the relationship with 
canopy area, and no subgroup had a significant correlation by itself. 

After the linear model result showed statistically significant corre-
lation, albeit with wide dispersion, we performed a geographically 
weighted regression (GWR) to see if the residuals were randomly 
distributed over the city (Fig. 4). 

Discussion 

How do you manage something you do not own? This is a frequent 
and delicate question often posed by public urban forests or green space 
managers. Studies have shown that in some cities more than 50% of the 
trees are privately owned (McPherson, 1998), meaning a large number 
of decisions related to trees in urban areas (species selection, estab-
lishment, pruning, and felling) are made by private land owners. In this 
environment, planting or removal decisions are driven by spontaneous 
decisions and concerns, casting doubts towards public strategic man-
agement goals being reached (Conway, 2016). 

Municipal management of green spaces in Scandinavia is based on 
and related to the publicly owned properties (Randrup and Persson, 
2009), and a recent survey of Swedish municipalities, showed that only 

Table 1 
Geodata sources used in this study with respective metadata.  

Geodata Date Projection Collecting agency Resolution/Density Raster/Vector 

LiDAR dataset 2018–03–01 SWEREF99 Lantmäteriet 0.25–1 points per m2 Point cloud 
Orthophoto 2016–05–09 SWEREF99 Lantmäteriet 0.25 m2/pixel Raster 
Cadaster data 2019–04–19 SWEREF99 Malmö FGK1  Vector  

1 City of Malmö, Fastighets och Gatukontoret, Office for real-estate and streets. 
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2 out of 85 include private trees in their inventories (Wiström et al., 
2016). This indicates how resident urban trees are an abundant resource 
that is under-utilized in against climate change and other contemporary 
challenges facing urban areas (e.g., urbanization and densification). 

Climate change data and reports from the Intergovernmental Panel 
on Climate Change show a clear need to plan for the effects of predicted 
future extreme weather events (IPCC, 2014) which can take a toll on 
urban trees. Still, urban forests are threatened by urbanization. Malmö’s 
yearly population growth of 1.8% rivals developing cities such as Manila 
and Mumbai. The need to provide more housing in limited space results 
in densification, which has been the approach of Malmö city to solve the 
demand for new housing. This means that more people are benefiting 
from the ecosystem services urban trees provide, but also puts more 
pressure on the land use, as it becomes harder to justify the need for 
green surfaces with high demands for new housing. To fight these 
changes and sustain provision of ecosystem services on a city scale, the 
response to the number of threats should also come in the form of 
including residential urban forest in planning and management. For that 
to happen, we need structural data that will generate an overview of the 
scale of this resource and how it can be included in future public plan-
ning and management. 

This study compared on-ground field data collection with remote 
sensing applications, and showed that there is a statistically significant 

relationship between results from the two methodological approaches. 
This suggests there is potential for public urban foresters to use remote 
sensing in future assessments of the entire urban forest, in order to 
generate a more comprehensive picture of what the urban tree resource 
really consist of and what it may contribute with in terms of ecosystem 
services. This can prove valuable information for future planning and 
management decisions related to future public tree planting schemes (e. 
g., for choice of planting location and species), but will also potentially 
generate a means for a new dialogue between the public authorities and 
the residential land owners. Private property rights are a strong and 
powerful part of any democracy, and the aim of achieving more infor-
mation about the residential tree resource should not be to compromise 
these rights, but to include a substantial part of the entire urban forest, 
and the associated ecosystem services into better informed decision 
making by public authorities. 

Methodologically, this study was conducted at a single location 
(Malmö, Sweden). The surrounding area is deforested arable plains and 
most woody vegetation on private property is planted by human hand, 
with higher frequency of solitary trees and rare forest stand-like con-
ditions with multi-layered tree canopies. This is perhaps less frequently 
the case for urban developments encroaching into forested areas, which 
is potentially problematic from the perspective of generalizing the re-
sults found here, given that NDVI analysis does not detect multi-layered 

Fig. 1. An infra-red false color image of a typical residential neighborhood in Malmö with property boundaries. It is estimated that residential areas in Malmö have 
26–28% canopy cover compared to 19–22&% for the total urban area of Malmö (Deak Sjöman and Östberg, 2020). 

Table 2 
Canopy area estimated by field measurements compared with remote sensing. A statistically significant correlation was found for all three variables, with the smallest 
plot showing the strongest relationship. The column “Estimates” contains coefficients of predicted linear model, the column “p” contains the p-value of probability that 
the observed difference could occur by random chance, meaning that the model using NDVI and LiDAR performs well in predicting canopy area measured on the 
ground.   

i-Tree Eco canopy area values 
Predictors Estimates Conf. Interval p-value Estimates Conf. Interval p-value Estimates Conf. Interval p-value 

(Intercept) 7.75 -10.54 –26.03 0.398 7.35 -12.90 –27.60 0.469 9.20 -11.91 –30.31 0.385 
100 m2 plot 0.65 0.20 –1.11 0.006**       
100 m2 plot + 1SD   0.46 0.10 –0.82 0.013*     
100 m2 plot + 2SD      0.32 0.04 –0.60 0.027*  
Observations 48   48   48   
R2/R2 adjusted 0.154 / 0.136  0.128 / 0.109  0.101 / 0.082      
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canopy (as indicated by the outlier in Fig. 2). In this particular case 
inclusion of the outlier improved the statistical significance of the 
relationship between remotely sensed values and field measurements 
but was not decisive. The outlier is an example of stand-like conditions 
in Malmö and is quite possibly a frequent occurrence in private resi-
dential areas of cities surrounded by forested landscape, where natural 
regeneration is the leading form of tree regeneration in residential areas 
(Nowak and Greenfield, 2012). This indicates that surrounding land-
scape characteristics are an important factor. A further caveat is that 
Malmö is a comparatively spacious city. Urban form may affect the 
suitability of plot shape and size used in field work, and the severity of 
potential issues from occlusions and shadowing by adjacent built 
structures in remote sensing work. The relationship found and the 
appropriateness of the spatial sample are likely to be scale- and spatial 
unit-dependent (Openshaw, 1984), which poses a potential challenge to 
consistent long-term monitoring as urban form evolves. However, 
mapping potential disturbances affecting provision of ecosystem ser-
vices, especially regulating ecosystem services as studied here, 
long-term monitoring is important in providing representative longitu-
dinal data (Klobucar et al., 2020). The results in this study indicate that 
remote sensing could also be a valuable resource in designing a moni-
toring system for urban forest. The geographically weighted regression 
did not indicate systematic non-stationarity in residuals (Fig. 4), but 
since the plots were randomly selected and not following urban form 
sub-groups, further research on how different types of urban develop-
ment affect the model accuracy would be required to assess the any 
patterns in dispersion. 

We found that annual high-resolution spectral orthophoto imagery in 
Sweden is not collected consistently during the season when trees are in 
leaf. Full flushing of leaves also occurs at different times during the 
spring-early summer for different species, making NDVI-based analysis 
difficult to compare between years, which is an important limitation. 
Consistent routines in data collection would greatly assist monitoring of 
urban vegetation development and should be developed in future 
research. Such routines should take into consideration the vegetation 
zone diversity in Sweden. Type of regulating ecosystem services pro-
vided and seasonal changes in these are dependent on tree species 
(Alonzo et al., 2016). Our methodology used a broad generalization for 
the entire canopy cover, due to sampling design choices for field work. 
For more detailed information on different types of canopy cover 

(deciduous, coniferous, and mixed), a different design would yield 
important information for improving remote sensing detection of 
different canopy types, so that seasonal variation and species-dependent 
provision of ecosystem services could be observed. Currently, the LiDAR 
point density publicly available for Swedish urban communities ranges 
from 0.5 to 1 point per m2 and is unsuitable for species recognition based 
on crown shape. The accuracy of using LiDAR and spectral aerial 
photography could be improved using vegetation indices. 

Much research has shown increasing interest among private stake-
holders in being heard and even engaging in urban forestry applications 
(see e.g., (Fors et al., 2015; Mattijssen et al., 2017). Remote sensing 
could be utilized as a methodology to overcome the major obstacle of 
gaining access to private gardens for monitoring. Klobucar et al. (2020) 
found that a majority of urban forest inventories performed by local 
governments did not acknowledge the potential of engaging private 
residents in collecting urban forest data. The issue of access to private 
gardens proved relevant in the present study too. Public participation is 
frequently described as a sampling approach (citizen science) relevant 
for urban forestry, but may not prove to be efficient or of sufficient ac-
curacy for large sampling areas, e.g., entire city areas (see e.g., (Foster 
et al., 2017; Roman et al., 2017). If simple field-based indices such as 
perpendicular axial estimation of canopy area can be reliably 
cross-referenced with remote sensing sources, as done in this work, then 
options exist to address both accuracy and coverage issues. In this 
context, our findings may prove to be valuable for future planning and 
management of entire urban forests in an efficient manner, without 
overlooking the important relation to the owners of the trees. A poten-
tially interesting further step would be to use the extensive coverage 
provided by remote sensing to investigate the wider social relevance of 
privately managed (and largely ungoverned) urban canopy. 

Conclusions 

A relationship was found between remotely-sensed canopy area es-
timates and canopy area measured on the ground for trees in private 
gardens. Using the approach described, remote sensing could provide 
valuable information in evaluating provision of ecosystem services, 
specifically where high-resolution data are easily accessible. Remote 
sensing of public trees and private trees in residential areas could be 

Fig. 2. NDVI-classified high resolution aerial image of sampling point, overlaid 
with “vegetation window” raster layer, DTM above 1.3 m height at 1.5 m res-
olution. The intersection of these two layers was used as our measure of canopy 
area. Green color of NDVI layer represents high reflectance values (vegetation) 
and orange color representing low reflectance values (non-vegetation). The 
concentric circles (from smallest to largest) represent: 1) Sampling plot area 
(100 m2), 2) sampling plot radius increased by one standard deviation (1.08 m) 
of average crown radius, and 3) sampling plot radius increased by two standard 
deviations (2.16 m) of average crown radius. 

Fig. 3. Validation of ground-measured canopy values to remote sensing values. 
Each point shown represents a 100 m2 circular plot on the ground. In this 
figure, the outlier was removed visually, to fit the 1 to 1 display of values, 
where the outlier value was still a part of the result. 
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utilized in cases where gaining access for monitoring on private land is 
challenging. In particular, plot level analysis of remote sensing does 
correlate with plot level field assessment. As most local governments 
manage only public trees, use of remote sensing would improve 
knowledge about the complete urban forest, including information on 
site condition, vitality, and other data that can influence the survival of 
trees on residential property. 
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