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1  | INTRODUC TION

Understanding how natural selection acts on traits and eventu-
ally on organisms represents a fundamental challenge in biology 
(Mayr, 1982). Using a now classical regression-based approach 
(Lande & Arnold, 1983), ecologists have generated thousands of 
phenotypic selection estimates over the past 35 years; these esti-
mates help to understand the contemporary selection processes in 

nature and enable comparisons of the strength and mode of selec-
tion across traits and species (Kingsolver et al., 2001; Kingsolver & 
Pfennig, 2007; Siepielski et al., 2017). However, despite this wealth 
of phenotypic selection estimates and a large number of studies that 
indirectly infer the roles of different evolutionary forces in shaping 
gene expression patterns (Fraser et al., 2010; Gilad et al., 2006), we 
know very little about how natural selection affects transcript abun-
dance in the wild (Miller et al., 2011). This is remarkable given that 
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Abstract
Gene transcription variation is known to contribute to disease susceptibility and ad-
aptation, but we currently know very little about how contemporary natural selec-
tion shapes transcript abundance. Here, we propose a novel analytical framework 
to quantify the strength and form of ongoing natural selection at the transcriptome 
level in a wild vertebrate. We estimated selection on transcript abundance in a cohort 
of a wild salmonid fish (Salmo trutta) affected by an extracellular myxozoan parasite 
(Tetracapsuloides bryosalmonae) through mark–recapture field sampling and the in-
tegration of RNA-sequencing with classical regression-based selection analysis. We 
show, based on fin transcriptomes of the host, that infection by the parasite and 
subsequent host survival is linked to upregulation of mitotic cell cycle process. We 
also detect a widespread signal of disruptive selection on transcripts linked to host 
immune defence, host–pathogen interactions, cellular repair and maintenance. Our 
results provide insights into how selection can be measured at the transcriptome 
level to dissect the molecular mechanisms of contemporary evolution driven by cli-
mate change and emerging anthropogenic threats. We anticipate that the approach 
described here will enable critical information on the molecular processes and tar-
gets of natural selection to be obtained in real time.
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variation in transcript abundance is of central importance to evolu-
tion (Emilsson et al., 2008; Fraser, 2013; Fraser et al., 2010; Gilad 
et al., 2006; Miller et al., 2011), linking molecular functions to per-
formance and Darwinian fitness.

Here, we present an integrative approach investigating how 
contemporary natural selection shapes transcriptomic variation by 
combining analyses of selection differentials and gradients (Lande 
& Arnold, 1983) with the high-throughput screening of molecu-
lar phenotypes at the gene transcription level. Such use of the so-
called molecular phenotypes has been highly successful in medical 
science for discovering the mechanisms underlying complex human 
diseases (e.g.,Chaussabel et al., 2008; Cobb et al., 2005), but we cur-
rently know very little about how within-generation natural selec-
tion in the wild translates to changes at the RNA and protein levels 
(Husak, 2016). However, regression-based and distributional selec-
tion differentials and gradients (Henshaw & Zemel, 2016; Lande & 
Arnold, 1983), which measure the effect of a trait on relative fitness 
in standard deviation trait units, can be used to estimate the form 
and strength of contemporary natural selection on any quantitative 
trait, including transcript abundances, allowing direct comparisons 
among traits, populations and species (Lande & Arnold, 1983).

We focus on a host–parasite system consisting of brown trout 
(Salmo trutta) as the host and a myxozoan parasite (Tetracapsuloides 
bryosalmonae), the causative agent of temperature-dependent prolif-
erative kidney disease (PKD) in salmonid fishes (Okamura et al., 2011). 
Recent work has demonstrated that T. bryosalmonae is widespread 
in Europe and North America (Dash & Vasemägi, 2014; Debes 
et al., 2017; Mo & Jørgensen, 2016; Skovgaard & Buchmann, 2012; 
Vasemägi et al., 2017). At elevated temperatures (>15°C–18°C), this 
parasite causes high mortality in wild and farmed salmonids (Hari 
et al., 2006; Hedrick et al., 1993; Tops et al., 2006). The parasite 
has a complex two-stage life cycle in which freshwater bryozoans 
and salmonid fishes are consecutive hosts (Okamura et al., 2011). 
Mass release of T. bryosalmonae spores from bryozoans occurs from 
spring to early summer (Hedrick et al., 1993), resulting in the syn-
chronized infection of young-of-the-year fish through gills and/or 
skin (Longshaw et al., 2002). Inside the salmonid host, the parasite 
multiplies and induces an inflammatory response and tumour-like 
chronic lymphoid hyperplasia in the kidney (Bettge et al., 2009; 
Hedrick et al., 1993). The impairment to the kidney, the major organ 
responsible for haematopoiesis in fish, results in anaemia (Clifton-
Hadley et al., 1987; Hedrick et al., 1993), which decreases oxygen 
transportation capacity, lowering the maximum metabolic rate and 
upper thermal tolerance (Bruneaux et al., 2016). The reduction in 
aerobic and renal capacity, combined with decreased oxygen solu-
bility and increased oxygen demand at higher temperatures, makes 
PKD a serious threat to cold-water salmonid populations in regions 
affected by warm summers, which are expected to become more 
frequent under global warming (Okamura et al., 2011). Compared 
to many other host–parasite systems, brown trout and T. bryosalmo-
nae represents a highly suitable model for studying contemporary 
natural selection on host gene expression in the wild because the 
parasite shows a high prevalence (Hedrick et al., 1993) and imposes 

a strong temperature-dependent effect on host physiology, perfor-
mance (Bruneaux et al., 2016) and survival (Hedrick et al., 1993). 
Furthermore, many challenges associated with field data, such as 
differences in host age, infection onset and conspecific co-infection 
dynamics (Bishop et al., 2012; Doeschl-Wilson et al., 2012) or host 
exposure avoidance (Graham et al., 2010), are minimal or absent.

To quantify the strength and form of within-generation selec-
tion on transcript abundance, we collected small fin biopsies from 
wild juvenile trout in August, when we expected all individuals to 
be infected, for transcriptome and multilocus fingerprint profiling, 
after which they were released back into their native environment. 
Approximately 1 month later, after the anticipated period of para-
site-associated mortality, we recaptured and identified survivors 
based on multilocus genotype information and tested whether 
fin-tissue transcript abundances measured in August correlate with 
survival. To further elucidate the transcriptional signatures linked 
with the observed mortality, we also measured the T. bryosalmonae 
load in kidney tissue among survivors to identify transcripts and pro-
tein–protein interaction (PPI) networks associated with both survival 
and parasite load (PL).

2  | MATERIAL S AND METHODS

2.1 | Study population, temporal abundance and 
temperature records

The coastal river Altja (length 17.6 km, catchment area 46.1 km2) 
flows into the Gulf of Finland in the Baltic Sea (Figure S1) and supports 
a small wild anadromous brown trout population with a high preva-
lence of Tetracapsuloides bryosalmonae (Dash & Vasemägi, 2014). 
Records on young-of-the-year trout abundance in the river Altja 
across 13 years (2005–2017) were obtained from the Estonian 
Ministry of Environment Fisheries Monitoring Program. River water 
temperature was measured twice per day (at noon and midnight) 
over two years (2014 and 2015) using automatic temperature log-
gers (HOBO 8K Pedant Temperature/Alarm Data Logger, Onset 
Computer Corporation). Mean monthly air temperature records over 
a 73-year period (1945–2017, Kunda Coastal Meteorological station, 
59°31′17″N, 26°32′29″E, 25 km from river Altja) were obtained 
from the Estonian Weather Service (Environmental Agency). The 
studied population showed a strong negative correlation between 
mean summer air temperature and young-of-the-year density as well 
as pervasive temperature dependence of disease severity, consist-
ent with experimental work (Bettge et al., 2009) (Figure 1).

2.2 | Field sampling, phenotyping and genetic mark–
recapture analysis

On 30 August 2015, we electrofished 278 young-of-the-year 
trout in the river Altja from the same five areas along a 330-m 
stretch that were sampled in 2014 (Table S1, Figure S1, area 
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IDs 1–5). Individuals were anaesthetized with buffered MS-222 
(SigmaAldrich) and measured for fork length (±1 mm) as a meas-
ure of body size. After small biopsies of the right pelvic fin tissue 
for genetic mark–recapture analysis and 3′ RNA sequencing (see 
below), we released the recovered trout within their original cap-
ture area. As fins regenerate in teleost fishes, a small fin biopsy is 
unlikely to impair fish survival (Gjerde & Refstie, 1988). Biopsies 
were immediately frozen in liquid nitrogen and stored at −80°C. 
We used a fin subsample for DNA analysis and individual identifica-
tion (see below). Approximately 1 month after initial electrofishing 
(22–27 September), we caught 685 young-of-the-year trout along 
a 780-m stretch that included the initial 330-m stretch (Table S1). 
The five initial catch areas (area IDs 1–5) were electrofished three 
times (Table S1), and we estimated the capture probability and 
total number of fish using the depletion method (Zippin, 1958) im-
plemented in the fsa (Fisheries Stock Assessment) package version 
0.8.17 (Ogle, 2017) in R version 3.3.3 (R Core Team, 2017). A high 
recapture probability in all areas (average catchability 0.65, 95% 
confidence interval [CI] 0.60–0.70) combined with low inferred 
fish dispersal (based on electrofishing of the extended areas up- 
and downstream; Table S1) indicated that only a few survivors 
were not recaptured in September (n = 13.9, 95% CI 7.2–23.1). 
Among the 685 fish caught in September, we killed 363 via MS-
222 overdose. The sampling procedure, microsatellite genotyping, 

measurement of phenotypic traits (fork length [FL] as a measure of 
body size; haematocrit [Hct]; kidney-to-muscle ratio as a measure 
of kidney swollenness [KS]) and quantification of PL were carried 
out as previously described (Debes et al., 2017). The relationships 
between PL and PKD-linked phenotypic traits (Hct, KS, FL) were 
analysed using general linear mixed models in asreml-r 3.0 (Butler 
et al., 2009). To control for genetic variation in the expression of 
the traits, the models accounted for the genetic relationship matrix 
of the individuals (A) via linking (A−1) to random individual effects. 
The relationship matrix was obtained by genotyping the sampled 
individuals (see next section) and then reconstructing their par-
entage using colony version 2.0.6.5 (Jones & Wang, 2010).

2.3 | Microsatellite analysis and identification of 
individual recaptures

We genotyped individuals using 14 highly variable microsatellite 
loci as previously described (Debes et al., 2017). Individuals with 
at least 10 successfully genotyped loci were included in the analy-
sis. Recaptured individuals were defined as having identical geno-
types with at most one allele mismatch (at least a 95% match when 
10 loci were genotyped) using microsatellite toolkit (Stephen D. E. 
Park, Trinity College, Dublin, Ireland). To estimate genotyping error 

F I G U R E  1   Temperature dependence 
of PKD in wild trout. (a) Dead young-of-
the-year brown trout found in the Altja 
river with putative PKD-associated death 
symptoms (swollen kidney, a widely 
opened mouth and flared gills suggestive 
of anaemia). (b) Body section of trout with 
normal (left) and swollen (right) kidney. (c) 
Effect of temperature on juvenile trout 
abundance during 2005–2017 in the Altja 
river in relation to average summer air 
temperature (7-year moving average mean 
summer air temperature over 73 years is 
highlighted in bold). (d) Water temperature 
variation over a 4-month period in 2014 
(red) and 2015 (blue) in the Altja river. (e) 
Relationships between parasite load (PL) 
and fork length (FL), kidney swollenness 
(KS) and haematocrit (Hct) in 2014 and 
2015. All plotted relationships (model-
based regression lines; individual points 
based on the model output) are significant 
(p < .001), except FL versus PL in 2015 
(p = .933)



     |  2727AHMAD et Al.

rates, we amplified and genotyped 440 randomly selected samples 
twice, which indicated low error rates (mean allelic dropout rate: 
0.0107, range 0.0013–0.0292; mean false allele rate: 0.0027, range 
0.0010–0.0176).

2.4 | Quantitative real-time polymerase chain 
reaction (qPCR)

PL was determined from kidney tissues collected in September 2015 
by qPCR using previously described protocols (Debes et al., 2017). For 
each sample, we quantified two DNA sequences per run: a 166-bp 
fragment of T. bryosalmonae 18S rDNA sequence (GenBank acces-
sion U70623) and 74-bp fragment of the Salmo salar nuclear DNA 
sequence (GenBank accession BT049744.1). Simultaneous quantifi-
cation of both DNA fragments enabled us to standardize the amount 
of parasite DNA relative to brown trout DNA. We ran 10 plates (384-
well format) on the QuantStudioTM 12K Flex Real-Time PCR System 
(Thermo Fisher Scientific). Each 10 µl reaction contained 200 nm of 
each primer, 1 × HOT FIREPol EvaGreen qPCR Supermix master mix 
(Solis BioDyne) and 2.5 µl of template DNA (10 ng/µl). Each sample 
was run in quadruplicate per gene and included four nontemplate 
controls per gene to detect possible contamination. To determine the 
quantification cycle (Cq), we used the online tool real-time pcr miner 
(Zhao & Fernald, 2005). PL was defined as the difference between the 
Cq values (on the log2 scale) of the two target genes (CqS. trutta–CqT. 

bryosalmonae, lower values indicate low PL). Our 2015 qPCR results were 
calibrated to 2014 results using 10 2014 samples that we repeated 
along with the 2015 samples (linear regression, PL2014 = −0.193 + 1
.031 × PL2015). To estimate technical bias among plates, we included 
a log10 dilution series (50, 5, 0.5, 0.1 and 0.05 ng/µl) from a reference 
sample in quadruplicate per gene on every plate. Standardized am-
plification efficiency was calculated among plates, using plate- and 
gene-specific efficiencies estimated from the Cq versus log10-dilution 
slopes (Debes et al., 2017). Subsequently, we fitted a linear mixed 
model to estimate PL for each individual that accounted for technical 
bias among plates and wells (Debes et al., 2017).

2.5 | RNA isolation and library preparation for 
Illumina sequencing

Total RNA was successfully extracted from pelvic fin tissue of 238 
individuals (85.6%) out of 278 collected in August 2015 (i.e., survi-
vors and nonsurvivors) using the NucleoSpin RNA kit (Macherey-
Nagel) and ensuring RNA quality using the Agilent 2100 Bioanalyzer. 
We prepared a barcoded library using Lexogen QuantSeq 3′ mRNA-
Seq Library Prep Kit FWD for Illumina according to the manufac-
turer's recommendations (Lexogen). QuantSeq provides an efficient 
and cost-effective protocol for generation of strand-specific next-
generation sequencing libraries close to the 3′ end of polyade-
nylated RNAs (Moll et al., 2014). This approach is analogous to other 
tag-based RNA sequencing (RNAseq) approaches, such as TagSeq 

(Meyer et al., 2011), which have been shown to generate more ac-
curate estimates of transcript abundances than standard RNAseq 
with a fraction of the sequencing effort (Lohman et al., 2016). 
We inspected all barcoded libraries for quality with fragment ana-
lyzer (Advanced Analytical, AATI) using the High Sensitivity NGS 
Fragment Analysis Kit. The three pooled barcoded libraries, consist-
ing of 64, 91 and 96 individuals, were single-end sequenced using 
an Illumina HiSeq2500 in 14 lanes. For the first two pooled libraries, 
we generated 125-bp-long reads in two lanes. For the remaining 12 
lanes, we generated 100-bp reads. Overall, we obtained 2.21 bil-
lion raw reads, with 1.5–34.6 million reads per individual (median 
8.9 million reads). In addition, conventional Illumina mRNA paired-
end sequencing (100 bp) was carried out for two fin-clip mRNA 
pools both consisting of seven individuals from the River Altja (29.5 
and 25.9 million reads). The data have been deposited with links 
to BioProject accession no. PRJNA517427 in the NCBI BioProject 
database (https://www.ncbi.nlm.nih.gov/biopr oject/). The library 
preparation for this was done according to the Illumina TruSeq 
Stranded mRNA Sample Preparation Guide. For adapter trim-
ming and read preprocessing, we used trimmomatic (version 0.35; 
Bolger et al., 2014) (parameters: ILLUMINACLIP = TruSeq3-SE.
fa; HEADCROP = 10; SLIDINGWINDOW = 4:20; LEADING = 5; 
TRAILING = 5; MINLEN = 40). A total of 44.6 million quality-con-
trolled paired-end reads were retained (23.8 and 20.8 million reads 
per pool). For the QuantSeq, we used trimmomatic with slightly 
different settings (HEADCROP = 12 and MINLEN = 70). We sub-
sequently used cutadapt version 1.10 (Martin, 2011) to inspect 
and trim longer runs of poly-As at the end of the QuantSeq reads 
(parameters: q = 10; b = A{20}; b = A{30}; m = 40) and discarded 
sequences shorter than 40 bp. We assessed the quality of reads 
before and after trimming using fastqc (version 0.11.2; https://
www.bioin forma tics.babra ham.ac.uk/proje cts/fastq c/). A total of 
1.1–27.1 million QuantSeq reads per sample remained after quality 
filtering (median 6.8 million reads).

2.6 | Trout fin-specific splice sites, reference 
genome modifications and mapping

To identify brown trout fin-specific splice sites, we mapped quality-
filtered paired-end reads from two pooled fin libraries (total 44.5 mil-
lion paired and 9.1 million unpaired reads) and three 3′ mRNA-Seq 
samples with the highest read depth (total 58.4 million reads) to the 
Atlantic salmon genome (GCF_000233375.1) (Lien et al., 2016) using 
spliced aligner hisat2 (version 2.1.0 (Kim et al., 2015). Subsequently, 
the resulting spliced alignment and the salmon genome annota-
tion file were used as an input for stringtie (Pertea et al., 2015) to 
assemble full-length transcripts expressed in the trout fins. The 
splice-site locations of the stringtie output were extracted using the 
extract_splice_sites.py script provided with hisat2. Furthermore, sin-
gle nucleotide variants were called from the pooled fin paired-end 
alignment using mpileup in samtools (Li et al., 2009). The Atlantic 
salmon genome was modified with the alternative alleles. Finally, all 

https://www.ncbi.nlm.nih.gov/bioproject/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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quality-controlled reads from QuantSeq 3′ mRNA-Seq were splice 
aligned to the modified reference genome using hisat2 with trout 
fin-specific splice sites as a guide.

2.7 | Estimation of transcript abundance and batch 
effect correction

All alignment data were loaded into R as the Ranged-
SummarizedExperiment object returned by the summarizeOverlaps 
function available in the R package genomicalignments (Lawrence 
et al., 2013). The original salmon-genome-annotation GFF file was used 
to dissect exons on the basis of gene information, and union mode was 
selected for assigning the reads within the exons while considering 
strand information. Read counts from separate lanes, runs and repli-
cate files were summed to individual counts using collapseReplicates 
implemented in the R package deseq2 (Love et al., 2014). The result-
ing data object contained a raw read count matrix and phenotypes for 
each sample. For subsequent analysis, we selected only protein-cod-
ing, nuclear genes with an average of >10 reads per individual. To make 
the gene expression data compatible for linear modelling, the raw read 
counts were converted into quantile-normalized log2-counts per mil-
lion (logCPM) using the voom method (Law et al., 2014) implemented 
in the limma package (Ritchie et al., 2015). Pooled library batch effects 
were removed by employing the ComBat function implemented in the 
sva package (Leek et al., 2012), and corrected gene counts were used 
in differential gene expression analysis.

2.8 | Differential expression (DE)

To describe the relationships between the continuous phenotype 
(PL) and transcript abundance, generalized linear models were fit-
ted using the glm function available in R. Each gene in the corrected 
gene count matrix was used as a predictor against the phenotype 
(response variable) assuming the normal distribution for both.

Q-values were calculated using the qvalue package implemented 
in R. To identify genes associated with survival, we used an iterative 
random forest (RF) classification approach using the ranger (Wright & 
Ziegler, 2017) R package. The corrected gene count matrix and survival 
status (dependent variable) were used as an input for the classification. 
After each RF iteration (100,000 trees), genes with permutation impor-
tance value <0 were eliminated for the next iteration. The iterations 
ended when all the genes in the input matrix have permutation impor-
tance values ≥0. After 64 iterations, a final set of 1270 genes classified 
individuals into survivors and nonsurvivors with a 16% error rate. RF 
misclassified 25 (10.5%) recaptured individuals as nonsurvivors, and 13 
(5.5%) uncaptured individuals as survivors. While misclassification of 
the recaptured individuals may reflect their poor physiological status, 
it is likely that some proportion of uncaptured individuals survived. This 
was further supported by mark–recapture analysis, which indicated that 
a small number (n = 13.9, 95% CI 7.2–23.1) of surviving fish that were 
marked in August were not recaptured in September (Table S1). For 

subsequent analysis, we therefore treated the 13 putatively uncaptured 
individuals as survivors based on their transcript profiles (Table S4), but 
the main findings remained unchanged irrespective of the classifica-
tion (Figures S2–S5). For example, we observed considerable overlap 
(n = 171) among the top 416 genes (Figure S2) between the top lists 
of observed survivors and corrected survivors, both of which showed 
highly significant enrichment for mitotic cell cycle genes (GO:0000278, 
Figure 2; Figure S3). Furthermore, DE analysis based on uncorrected 
survival produced a hill-shaped, rather than uniform, p-value distribu-
tion, indicating that misclassification of individuals probably resulted in 
violation of the statistical test assumptions (Figure S2). Thus, corrected 
survival status was used in the DE analysis using deseq2. First, the raw 
read counts, library size factors and dispersion were estimated using 
estimateSizeFactors and estimateDispersions, respectively and then 
the differential gene expression was performed using nbinomWaldTest 
along with the three pooled library IDs as a covariate. However, given 
that this work primarily aimed to generate new hypotheses rather than 
validate earlier findings and focused on pathways rather than single 
transcript detection, we adopted a relatively relaxed significance thresh-
old (unadjusted p < .01) for DE and survival analysis.

2.9 | Discriminant analysis of principal components 
(DAPC)

We performed DAPC on the corrected gene expression matrix 
using the dapc function implemented in the R package adegenet 
(Jombart, 2008; Jombart et al., 2010). As the DAPC function re-
quires categorical data, PL values were split into three groups: low 
(PL < −1.27, n = 24), intermediate (PL = −1.27 to 0.58, n = 39) and 
high (PL > 0.58, n = 48) using the cut command in R.

2.10 | Weighted gene co-expression network 
analysis (WGCNA)

Genes associated with survival were subjected to automatic net-
work construction and module detection using the blockwiseMod-
ules function implemented in the R package wgcna (Langfelder & 
Horvath, 2008). The cut-off for the minimum scale-free topology-
fitting index was set to 0.8 (power = 7), and we used biweight 
midcorrelation (bicor) to estimate correlations (other parameters: 
networkType = “signed,” minKMEtoStay = 0.2). For the analysis 
of quadratic selection differentials (see below), similar parameters 
were used (except cut-off for the minimum scale-free topology fit-
ting index = 0.61 [power = 6]).

2.11 | Gene Ontology (GO) and protein–protein 
interaction network analysis

Atlantic salmon orthologue gene symbols, entrez IDs, and descrip-
tions in humans (86.8%), zebrafish (3.6%) or other organisms (9.6%) 
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were searched using complete gene names in NCBI using the rent-
rez (Winter, 2017) package in R. GO-enrichment analysis was per-
formed using string-db (Szklarczyk et al., 2015) and gorilla (Eden 
et al., 2009), in which all orthologue gene symbols were used as a 
background list. For string-db PPI analysis, we used single lists of 
gene symbols against human protein references (minimum interac-
tion score: 0.70; text mining disabled).

2.12 | Quantification of linear and nonlinear 
selection differentials

We estimated linear and nonlinear (i.e., quadratic) selection differen-
tials for each of the 18,717 gene transcripts quantified in 238 individ-
uals based on both corrected and uncorrected survival (binary status, 
nonsurvivor = 0, survivor = 1; Table S2). Subsequently, estimates 

of linear or quadratic selection differentials were computed using 
generalized linear models under the glm function in R. These mod-
els used logit-link functions and binomial error distributions for the 
binary survival response and the predictor of the mean-centred and 
variance-scaled (mean = 0, SD = 1) transcript levels (linear differen-
tials) or added a quadratic scaled transcript-level predictor (nonlinear 
differentials). To transform the logistic regression model coefficients 
to selection differentials on the relative fitness scale that is mean-
ingful to microevolutionary studies, we used the method suggested 
by Janzen and Stern (1998). The p-values for each selection differ-
ential were estimated using t tests that were constructed based on 
logistic regression coefficients, their standard errors and model re-
sidual degrees of freedom. In addition, to calculate the distribution 
of linear and nonlinear selection differentials when no selection is 
acting on transcripts, we randomized the survival values (1000 per-
mutations) and estimated selection differentials as described above. 

F I G U R E  2   Transcriptome responses 
in relation to parasite load and corrected 
survival. (a) Density distribution of the 
first discriminant scores corresponding to 
low, intermediate and high PLs (black, dark 
grey and light grey areas, respectively). 
(b) Density distribution of the first 
discriminant scores corresponding 
to survivors and nonsurvivors (light 
grey and black areas, respectively). (c) 
Proportion of genes involved in mitotic 
cell cycle presented as a heatmap. The 
inserted histograms reflect excess 
transcripts associated with PL and 
survival. Contours reflect the density 
of individual transcripts. (d,e) Protein–
protein interaction (PPI) network with 
transcripts positively correlated with PL 
(d) and survival (e). Mitotic cell cycle genes 
(GO:0000278) within the PPI networks 
are shown as red circles. The overlap 
between parasite load (PL) and survival 
(CS) are shown in the inserted Venn 
diagram
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To compare the strength of directional and nondirectional selection, 
we used a recently developed unified measure, the distributional se-
lection differential (DSD) (Henshaw & Zemel, 2016) for standardized 
trait values (mean = 0, SD = 1). This enabled us to use a single frame-
work to partition total selection (DSD) into selection on the trait 
mean (dD) and selection on the shape of the trait distribution (dN).

2.13 | Quantification of linear selection gradients

The linear selection gradients for the DE genes were reconstructed 
from a subset of principal components (Chong et al., 2018), as this 
approach not only enables the multicollinearity between the predic-
tors to be handled but is also suitable for cases in which the number 
of predictors exceeds the number of observations. For this purpose, 
the principle components were calculated from the correlation ma-
trix of the standardized values of 416 DE genes, and the linear se-
lection gradients were subsequently computed for the first 55 PCs 
(explaining 76% of the variation) with the glm function in R, using the 
logit-link function and binomial error distribution. The eigenvectors 
from the original 55 PCs were then matrix multiplied with the result-
ing linear selection gradients to reconstruct the selection gradients 
for individual genes (Chong et al., 2018). Similarly, the selection gra-
dients for 416 DE genes were calculated by including FL as a predic-
tor. The standard errors were reconstituted for these gradients as 
described by Chong et al. (2018). The t-statistic was calculated by 
dividing the gradients by the standard errors, and the p-values were 
estimated from the results using 237 degrees of freedom. The p-
values were corrected for the FDR using the p.adjust function in R.

3  | RESULTS

3.1 | Parasite load, survival and transcript 
abundance

Among 18,717 host genes expressed in pelvic fin tissue, 804 cova-
ried with PL quantified in kidney tissue 1 month later (unadjusted 
p < .01, FDR < 0.19; Figure 2c; Table S2). These results indicate that 
among the top 804 transcripts, ~650 probably represent true posi-
tives showing a genuine association between transcript abundance 
and PL. Consistent with the linear regression results, DAPC (Jombart 
et al., 2010) identified a host transcriptome signature predictive of PL 
(Figure 2b). GO analysis revealed that the genes positively correlated 
with PL represent a nonrandom set of genes showing enrichment for 
59 GO terms (gorilla, Eden et al., 2009; FDR < 0.05; Table S3), with 
the top three (FDR < 7.7 × 10−6) biological processes of cell divi-
sion (GO:0051301, n = 41), mitotic cell cycle process (GO:1903047, 
n = 48) and cell cycle process (GO:0022402, n = 57).

Fish survival was predicted with 84% accuracy based on the 
transcription profiles for 1,270 genes using RF analysis. Similar to 
analysis of PL, both DE and DAPC analyses revealed a gene expres-
sion signature that covaried with survival (n = 416 genes, unadjusted 

p < .01, FDR < 0.45; Figure 2b and c; Table S2). These results sug-
gest that among the top 416 transcripts, ~229 transcripts probably 
represented true positives showing genuine associations between 
transcript abundance and survival.

3.2 | Potential links between survival and 
parasite load

PPI network analysis using string-db indicated that both survival-as-
sociated transcripts (PPI enrichment, p < .001) and transcripts posi-
tively correlated with PL (PPI enrichment, p < 1.0 × 10−16) were highly 
enriched for genes involved in the mitotic cell cycle (GO:0000278; 
FDR = 7.45 × 10−7 and 3.87 × 10−24, respectively; Figure 2d and e). 
Among the genes associated with both survival and PL are several 
known oncogenes and tumour suppressors (e.g., AURKB, BTG1, 
UBE2C, BIRC5, EEF2K; Figure 2c). At the same time, survival was not 
dependent on fish size (Welch's two-sample t test, n = 278, p = .216; 
Wilcoxon's rank sum test, p = .190).

To further explore the relationships between PL and survival 
at the transcriptome level, we carried out WGCNA (Langfelder & 
Horvath, 2008). The survival-associated genes clustered into seven 
gene co-expression networks (Figure 3a), which included two mod-
ules that correlated with PL (Figure 3b). One particular module 
consisting of 27 genes (depicted in red in Figure 3b) showed strong 
enrichment for the mitotic cell cycle (gorilla, FDR = 5.9 × 10−5; PPI 
enrichment p < 1.0 × 10−16), similar to the results from individual 
transcript analysis. Within the red module, the survival-linked genes 
that showed the highest correlations with PL were AURKB, UBE2C, 
BIRC5 and CENPH, which are known key regulators of the mitotic cell 
cycle (Figure 3c and d).

3.3 | Linear selection differentials and gradients

To quantify the strength and form of contemporary natural selec-
tion on transcript abundance, we first estimated standardized linear 
(s) and quadratic selection differentials (λ) for 18,717 transcripts. 
Selection differentials quantify selection (both direct and indirect) 
on a trait in terms of the effects of trait values on relative fitness in 
units of standard deviations of the trait, allowing direct comparisons 
among traits, populations and species (Lande & Arnold, 1983). We 
compared their magnitudes to a large data set of phenotypic selec-
tion estimates based on a variety of traits and taxa (1,834 published 
estimates of s) (Siepielski et al., 2017). The vast majority of s val-
ues, which measure the change in a population's mean trait value 
before and after selection, were small (median(|s|) = 0.047; 95% 
values of s between −0.132 and 0.129, Ŝ ± SE = −0.0011 ± 0.0005, 
t18716 = −2.14, p = .033), whereas the coregulated gene

associated with survival showed larger values of s (Figure 4a). 
Similar results were obtained for the linear differential estimates 
calculated using both uncorrected and corrected survival informa-
tion (Figure S4).



     |  2731AHMAD et Al.

Next, we measured the linear selection gradients (β) for each of 
the 416 transcripts that covaried with survival after removing the 
effect of indirect selection in a multiple regression framework using 
principal component scores (Chong et al., 2018). Among the recon-
stituted linear selection gradients for the 416 DE genes, a total of 67 
estimates of β remained significant (unadjusted p < .01, FDR < 0.05). 
Similar to the differentials, genes showing significant linear gradi-
ents were enriched for regulation of the cell cycle (GO:0051726, 
FDR = 0.031, n = 9) and comprised known key regulators of mitotic 
cell cycle, including CENPH, CENPN and KIF20A. Interestingly, body 
size, which had no direct effect on survival, showed a significant se-
lection gradient (β = 0.473; FDR = 6.0 × 10−4). However, the recon-
stituted selection gradients for 416 DE genes either controlled or nor 
controlled for body size (Table S2) were highly correlated (r2 = 0.950) 
indicating that fish size has little effect on these estimates.

3.4 | Nonlinear selection

Direct comparison of the strength of linear and nonlinear selection 
using distributional selection differentials (Henshaw & Zemel, 2016) 
revealed that the linear component of selection was generally 
stronger than the nonlinear component, which represents selection 

on the shape of the trait distribution (mean dD = 0.053, dN = 0.031; 
signed test, p = 9.4 × 10−206; Figure 4b). Nevertheless, for 7273 
(40.8%) genes, the nonlinear differentials were higher than the linear 
selection differentials (Figure S5). Furthermore, permutations indi-
cated that while a small proportion of transcripts were affected by 
directional selection, the data set was highly enriched for transcripts 
influenced by disruptive selection, reflecting the elevated survival 
associated with extreme transcript abundance (Figure 5); the distri-
bution of λ was shifted strongly towards the right tail (Figure 4b, 95% 
values of λ between −0.137 and 0.279), and its mean differed from 
zero (�̂ ± SE = 0.058 ± 0.001, t18,716 = 78, p = 2.2 × 10−16; compared 
to 658 phenotypic λ estimates [Siepielski et al., 2017], two-sample 
Wilcoxon test p = 2.2 × 10−16). Similar results were obtained for the 
quadratic selection differentials calculated for both corrected and 
uncorrected survival information (Figure S4).

GO analysis indicated that genes shaped by disruptive selection 
(λ > 0.2, n = 1,652) showed enrichment of many molecular processes 
(gorilla, 51 GO terms, FDR < 0.05; Table S5), including multi-organ-
ism process (GO:0051704, FDR = 0.02, n = 158), regulation of cell 
death (GO:0010941, FDR = 0.045, n = 187), iron ion homeostasis 
(GO:0055072, FDR = 0.035, n = 18), vesicle-mediated transport 
(GO:0016192, FDR = 0.003, n = 208) and neutrophil activation 
(GO:0042119, FDR = 0.041, n = 73). The transcripts affected by 

F I G U R E  3   Weighted gene co-
expression network analysis (WGCNA) 
of survival genes and their relationship 
with parasite load. (a) Gene dendrogram 
with the corresponding seven modules. 
Each colour represents a module with 
highly connected genes. (b) Relationships 
of module eigengenes and survival, 
parasite load (PL) and fork length (FL). 
The numbers in the table represent the 
Pearson correlation coefficients between 
the corresponding module eigengene and 
trait, with the p-values in parentheses. (c) 
Module membership of the red module 
genes and the corresponding Pearson 
correlation coefficients with parasite load. 
(d) Protein–protein network of the red 
module genes involved in the mitotic cell 
cycle (GO:0000278) shown as red circles
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disruptive selection (λ > 0.2) were clustered into six co-expressed 
gene modules that all showed higher variance among survivors com-
pared to nonsurvivors, a hallmark of disruptive selection favouring 
extreme trait values (Levene's test, FDR < 2.0 × 10−4, Figure 4b). 
The constructed co-expressed gene modules showed further en-
richment for more specific GO terms, such as the cellular response 
to cytokine stimulus (brown module, GO:0071345, FDR = 0.015, 
n = 23) and antigen processing and presentation of peptide antigen 
via MHC class II (brown module, GO:0002495, FDR = 0.049, n = 10).

4  | DISCUSSION

There has long been interest in understanding the relative roles of 
drift and selection shaping gene expression variation within and be-
tween species (Dunn et al., 2013; Romero et al., 2012). The com-
mon approach to this complex question encompasses phylogenetic 
or comparative analyses that aim to indirectly identify patterns of 

expression, which do not fit neutral expectations over evolutionar-
ily long time periods. However, these approaches describe the re-
sponse to selection (R) and not the strength of selection (S) when 
expressed in the context of the breeder's equation (R = Sh2), where 
h2 is narrow-sense heritability. By combining 3′ RNA-sequencing, 
genetic mark–recapture and selection analysis, we adopted an alter-
native approach as in Groen et al. (2020) to directly quantify the 
intensity and form of contemporary natural selection on transcript 
abundance. As a result, we were able to characterize the transcrip-
tomic targets and potential molecular pathways involved in the pro-
cess of contemporary parasite-driven selection.

4.1 | The strength of natural selection on 
transcript abundance

Based on uni- and multivariate regression analysis, we identified a 
small number of transcripts potentially affected by selection. This is 

F I G U R E  4   Strength of survival 
selection on 18,717 transcripts and 
published phenotypic traits. (a) Linear 
selection differentials s. (b) Quadratic 
selection differentials λ. Differentials for 
transcripts and published phenotypic 
traits (Siepielski et al., 2017) are shown 
as dark and light grey histograms, 
respectively. Negative and positive λ 
values reflect stabilizing and disruptive 
selection, respectively. Estimates <−0.75 
were assigned a value of −0.75, and 
estimates >0.75 were assigned a value 
of 0.75. Selection differentials for the 
WGCNA gene modules are shown as 
coloured pins. The inserted figures 
illustrate the relationships between 
survival and module eigengenes as cubic 
spline (Schluter, 1988) functions (95% CI 
in grey) for the red and brown modules; 
short insert lines reflect individual 
data. The inserted boxplot illustrates 
total selection as measured by the 
distributional selection differential (DSD; 
Henshaw & Zemel, 2016), which is broken 
down into components representing 
selection on the trait mean (dD = |s|) 
and selection on the shape of the trait 
distribution (dN). The line across the box 
represents the median; the box edges 
represent the upper and lower quartiles; 
the whiskers extend to a maximum of 1.5× 
interquartile range beyond the box; and 
the points represent outliers
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consistent with recent work in rice, suggesting that directional selec-
tion is generally weak at microevolutionary times, and the strength of 
selection depends on environmental conditions (Groen et al., 2020). 
Nevertheless, the estimated selection differentials measuring both 
indirect and direct selection on traits ranged widely from −0.26 to 
0.23, implying that if heritable variation is present and constraints 
are absent, selection can exert evolutionary changes in transcript 
abundances at evolutionarily short timescales (Campbell-Staton 
et al., 2017; Donihue et al., 2020; Kingsolver et al., 2001; Kingsolver 
& Pfennig, 2007). When we compared our transcriptomic data with 
published phenotypic traits (n = 1834) in terms of the strength of 
linear selection (which includes both indirect and direct selection 
components), similar frequency distributions were observed, with 
the large majority of estimated differentials being close to zero. 
However, the phenotypic traits possessed longer “tails” for selec-
tion differentials than the transcripts, suggesting either rare but very 
strong linear selection on some phenotypic traits and/or potential 
bias due to small sample sizes. On the other hand, selection differen-
tials quantify selection considering each trait separately and meas-
ure the total selection acting on the trait (both direct and indirect). 
Thus, when traits are highly correlated, as is likely among the many 
transcripts, it becomes impractical to distinguish separate influences 

of individual transcript abundances on relative fitness. To overcome 
this limitation, we subsequently calculated selection gradients (β) for 
416 transcripts that covaried with survival to quantify the strength 
of direct selection on individual genes after removing indirect selec-
tion from other correlated transcripts. Altogether, we identified 67 
significant β estimates ranging from −0.47 to −0.15 and from 0.15 
to 0.63, indicating that direct selection on transcript abundances 
has the potential to cause substantial evolutionary changes at rela-
tively short timescales. However, further studies are clearly needed 
to shed light on how environmental conditions driven by climatic 
fluctuations influence the strength and form of selection on tran-
script abundances (Groen et al., 2020). Given that gene expression 
variation has a strong environmental component, we expect that 
the patterns of selection often vary considerably among years and 
populations, and changes in the direction of selection are frequent, 
as observed for phenotypic traits (Campbell-Staton et al., 2017; 
Donihue et al., 2020; Siepielski et al., 2009, 2017).

4.2 | The form of natural selection on 
transcript abundance

Direct comparison of the strength of linear and nonlinear selec-
tion using the distributional selection differentials (Henshaw & 
Zemel, 2016) revealed that for 40% of transcripts, the nonlinear 
differentials were higher than the linear selection differentials. 
Furthermore, when nonlinear selection was partitioned into stabi-
lizing and disruptive components, our data set was highly enriched 
for transcripts showing signatures indicative of disruptive selection. 
This is unexpected because disruptive selection is thought to be 
rare in nature (Kingsolver et al., 2001; Kingsolver & Pfennig, 2007). 
Moreover, this finding contrasts with the expectation that stabilizing 
selection is more common than disruptive selection if most popu-
lations are well adapted to their current environment (Kingsolver 
et al., 2001). On the other hand, it has been suggested that disrup-
tive selection may be more widespread than previously thought, 
reflecting density-dependent or frequency-dependent competition 
for resources (Kingsolver & Pfennig, 2007). Thus, our results cor-
roborate with phenotypic selection estimates, and also suggest that 
host transcript abundance may be influenced by disruptive selec-
tion in response to parasite infection. For example, it may be more 
beneficial for a host to either invoke a strong immune response (i.e., 
highly resistant hosts with the lowest PL and lowest disease expres-
sion as measured by kidney hyperplasia) or tolerate the damage from 
a high PL than to partially control the parasite load (i.e., hosts suf-
fering from damage by both parasites and immunopathology). The 
functional categorization of genes and gene modules under disrup-
tive selection supported this hypothesis, because they were highly 
enriched for biological processes related to host immune defence, 
host–pathogen interactions, cellular repair and maintenance. These 
inferred functions presumably reflect the complex nature of host–
parasite interactions, as the transcripts shaped by disruptive selec-
tion were involved in a wide range of molecular processes.

F I G U R E  5   The distribution of linear and quadratic selection 
differentials. (a) Linear selection differentials. (b) Quadratic 
selection differentials. The black line corresponds to observed data, 
and grey lines represent 1000 randomizations (no selection)
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4.3 | Functional annotation of putative 
targets of selection

Variation in transcript abundance, similar to that in morphologi-
cal or physiological traits, is expected to be shaped by selection 
through whole-animal performance, which can be defined as how 
well an organism accomplishes certain ecologically relevant tasks 
(Arnold, 1983). Therefore, it is pertinent to ask what performance 
traits are “visible” to selection in the studied host–parasite system. 
The functional categorization of genes and correlated gene mod-
ules provides some clues to this question, as both survival- and 
PL-associated transcripts shaped by linear selection were highly 
enriched for genes involved in the mitotic cell cycle. First, it is 
unlikely that the genes associated with survival reflect variation 
for general stress response of the host caused by Tetracapsuloides 
bryosalmonae infection. This is because most stress factors lead 
to an arrest of mitosis (Burgess et al., 2014; Kassahn et al., 2009; 
Martín-Hernández et al., 2017), whereas we detected that PL asso-
ciated with up-regulation, rather than down-regulation (what may 
be expected for arrest of mitosis), of the key mitotic cell cycle host 
genes (AURKB, UBE2C, BIRC5; Figure 3). Second, the observed as-
sociations between fin tissue transcriptome, PL and survival may 
reflect the host response to parasite entry because T. bryosalmo-
nae enters its salmonid host through surface tissues, which may 
include fins (Longshaw et al., 2002). However, we currently lack 
experimental evidence that T. bryosalmonae entry causes upregu-
lation of cell-cycle activity in fin or/and other mucosal tissues of 
the host. Third, the coupling of the transcription of mitotic cell 
cycle genes in fin, PL and survival may reflect the severe physi-
ological impact of PKD on the host at the whole organismal level. 
For example, previous studies in salmonids have demonstrated 
that one of the main PKD symptoms is tumour-like proliferation of 
the lymphoid renal tissue, where the kidney may increase in size 
to over ten times its normal volume (Figure 1; Bettge et al., 2009; 
Clifton-Hadley et al., 1987; Hedrick et al., 1993). Similarly, PKD 
causes enlargement of the spleen, and several studies suggest that 
PKD in salmonids is a systemic disease that affects multiple organs 
and tissues (Bettge et al., 2009; Bruneaux et al., 2016; Clifton-
Hadley et al., 1987; Hedrick et al., 1993; Longshaw et al., 2002; 
Okamura et al., 2011). In teleost fishes, pelvic fins consist of epi-
dermis, bony rays, ligaments, nerve fibres, connective tissue cells 
and blood vessels. The observed associations between cell-cycle-
related host genes, PL and survival may, therefore, reflect the 
importance of blood homeostasis and sustaining normal kidney 
function. However, analysis of multiple tissues, including renal, 
blood and fin transcriptomes, during the progression of PKD is 
clearly needed to further dissect the molecular mechanisms of the 
host response, as we currently lack comprehensive understanding 
of the inflammatory, mitotic and immune processes across organs 
(Chevrier, 2019). Regardless of the specific physiological mecha-
nism, this work adds to the increasing body of work showing that 
parasitism can have an effect on the host's cellular machinery (Guo 
et al., 2016; Kassahn et al., 2009; Martín-Hernández et al., 2017).

Two limitations in this study may be addressed in future re-
search. First, despite the high electrofishing effort, low dispersal and 
relatively high recapture probabilities, we probably did not recover 
all survivors. We therefore carried out functional and selection anal-
ysis based on both initial recapture information and by treating 13 
putatively uncaptured individuals as survivors, as suggested by their 
transcript profiles that matched recaptured individuals. However, 
given that the main findings (e.g., distribution of the linear and non-
linear selection coefficients, GO enrichment patterns) remained 
very similar irrespective of the classification, imperfect classifica-
tion of small number of survivors probably had only a small effect 
on the main conclusions. Second, even though it was not possible to 
analyse the primary target tissue of the parasite (kidney), requiring 
lethal sampling and thereby preventing survival estimates, the sys-
temic nature of PKD conceivably enabled us to acquire biologically 
meaningful information from fin biopsies with a minimal expected 
effect on fish survival (Gjerde & Refstie, 1988). Similarly, transcript 
abundances in fin tissue have recently been associated with age-
ing-related mortality in fish, demonstrating the usefulness of fin 
tissue for linking gene expression and whole-organism performance 
(Baumgart et al., 2016). More generally, because of their major role 
in pathogen defence, mucosal surface tissues have been widely used 
to study innate and adaptive immune responses in teleost fishes 
(Gomez et al., 2013).

In summary, our work demonstrates the power and challenges 
of integrating nonlethal sampling and transcriptomics with classical 
ecological methods to dissect complex high-order organismal traits, 
such as survival in the wild, into functionally interpretable molecu-
lar processes. As such, our study provides a novel perspective for 
studying contemporary selection at the suborganismal level and is 
readily applicable to other species and systems, where nonlethal 
sampling of blood, mucosal and other tissues is feasible. We antic-
ipate that the approach described here will enable critical informa-
tion on the molecular mechanisms and targets of natural selection 
to be obtained in real time, as wild populations increasingly contend 
with novel selective pressures (Hendry et al., 2008), including those 
imposed by global warming (Hoffmann et al., 2011).

ACKNOWLEDG EMENTS
We thank M. F. Oleksiak, J. M. Henshaw, T. Aykanat, V. Kisand, 
C. Primmer, T. Tenson, R. J. Pawluk and A. Krasnov for comment-
ing on earlier drafts of the manuscript; K. Haugjärv for help dur-
ing sample collection; K. Salminen from the Center of Evolutionary 
Applications, University of Turku, for RNA extractions and library 
preparations; and Põlula Fish Rearing Centre (RMK) for their sup-
port during fieldwork. Bioinformatic analyses used resources at 
the CSC—IT Center for Science, Finland. This work was supported 
by the Academy of Finland (grant 266321), the Estonian Ministry 
of Education and Research (institutional research funding project 
IUT8-2), the Estonian Research Council grant (PRG852), Ella & Georg 
Ehrnrooth foundation, University of Turku Foundation, Archimedes 
Foundation Scholarship in smart specialization growth areas, and a 
German Research Foundation Research Fellowship (DE 2405/1-1).



     |  2735AHMAD et Al.

AUTHOR CONTRIBUTIONS
A.V. conceived the study. A.V., F.A., P.V.D., S.K. and L.P. collected 
the samples. P.V.D. measured haematocrit and kidney swollenness. 
I.N. carried out microsatellite analysis and parasite quantification. 
M.O. carried out mark–recapture analysis. F.A. carried out bioinfor-
matic and transcriptomic analyses. F.A. and P.V.D. estimated selec-
tion differentials. All authors participated in interpretation of the 
results. A.V., F.A. and P.V.D. drafted the manuscript, and all others 
commented. Competing interests: the authors declare no competing 
interests.

DATA AVAIL ABILIT Y S TATEMENT
Data supporting the findings of this work are available in the 
Supporting Information. The sequence data have been deposited in 
the NCBI BioProject database under accession no. PRJNA517427 
and are publicly available. The R scripts and input files for each 
analysis are available from the Dryad Digital Repository (https://doi.
org/10.5061/dryad.612jm 641t).

ORCID
Freed Ahmad  https://orcid.org/0000-0002-8994-4723 
Paul V. Debes  https://orcid.org/0000-0003-4491-9564 
Anti Vasemägi  https://orcid.org/0000-0002-2184-5534 

R E FE R E N C E S
Arnold, S. J. (1983). Morphology, performance and fitness. American 

Zoologist, 23(2), 347–361. https://doi.org/10.1093/icb/23.2.347
Baumgart, M., Priebe, S., Groth, M., Hartmann, N., Menzel, U., Pandolfini, 

L., Koch, P., Felder, M., Ristow, M., Englert, C., Guthke, R., Platzer, M., 
& Cellerino, A. (2016). Longitudinal RNA-seq analysis of vertebrate 
aging identifies mitochondrial complex I as a small-molecule-sen-
sitive modifier of lifespan. Cell Systems, 2(2), 122–132. https://doi.
org/10.1016/J.CELS.2016.01.014

Bettge, K., Segner, H., Burki, R., Schmidt-Posthaus, H., & Wahli, T. (2009). 
Proliferative kidney disease (PKD) of rainbow trout: Temperature- 
and time-related changes of Tetracapsuloides bryosalmonae DNA in 
the kidney. Parasitology, 136(06), 615. https://doi.org/10.1017/s0031 
18200 9005800

Bishop, S. C., Doeschl-Wilson, A., & Woolliams, J. A. (2012). Uses and 
implications of field disease data for livestock genomic and genet-
ics studies. Frontiers in Genetics, 3, 1–5. https://doi.org/10.3389/
fgene.2012.00114

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible 
trimmer for illumina sequence data. Bioinformatics, 30(15), 2114–
2120. https://doi.org/10.1093/bioin forma tics/btu170

Bruneaux, M., Visse, M., Gross, R., Pukk, L., Saks, L., & Vasemägi, A. 
(2016). Parasite infection and decreased thermal tolerance: Impact 
of proliferative kidney disease on a wild salmonid fish in the context 
of climate change. Functional Ecology, 31(1), 216–226. https://doi.
org/10.1111/1365-2435.12701

Burgess, A., Rasouli, M., & Rogers, S. (2014). Stressing mitosis to 
death. Frontiers in Oncology, 4, 140. https://doi.org/10.3389/
fonc.2014.00140

Butler, D. G., Cullis, B. R., Gilmour, A. R., & Gogel, B. J. (2009). Mixed mod-
els for S language environments ASReml-R reference manual.

Campbell-Staton, S. C., Cheviron, Z. A., Rochette, N., Catchen, J., Losos, 
J. B., & Edwards, S. V. (2017). Winter storms drive rapid phenotypic, 
regulatory, and genomic shifts in the green anole lizard. Science 
(American Association for the Advancement of Science), 357(6350), 
495–498. https://doi.org/10.1126/scien ce.aam5512

Chaussabel, D., Quinn, C., Shen, J., Patel, P., Glaser, C., Baldwin, N., 
Stichweh, D., Blankenship, D., Li, L., Munagala, I., Bennett, L., 
Allantaz, F., Mejias, A., Ardura, M., Kaizer, E., Monnet, L., Allman, 
W., Randall, H., Johnson, D., … Pascual, V. (2008). A modular analysis 
framework for blood genomics studies: Application to systemic lupus 
erythematosus. Immunity, 29(1), 150–164. https://doi.org/10.1016/J.
IMMUNI.2008.05.012

Chevrier, N. (2019). Decoding the body language of immunity: Tackling 
the immune system at the organism level. Current Opinion in Systems 
Biology, 18, 19–26. https://doi.org/10.1016/j.coisb.2019.10.010

Chong, V. K., Fung, H. F., & Stinchcombe, J. R. (2018). A note on mea-
suring natural selection on principal component scores. Evolution 
Letters, 2(4), 272–280. https://doi.org/10.1002/evl3.63

Clifton-Hadley, R., Bucke, D., & Richards, R. H. (1987). A study of the se-
quential clinical and pathological changes during proliferative kidney 
disease in rainbow trout, Salmo gairdneri Richardson. Journal of Fish 
Diseases, 10(5), 335–352. https://doi.org/10.1111/j.1365-2761.1987.
tb010 81.x

Cobb, J. P., Mindrinos, M. N., Miller-Graziano, C., Calvano, S. E., Baker, H. 
V., Xiao, W., … Inflammation and Host Response to Injury Large-Scale 
Collaborative, Research Program. (2005). Application of genome-wide 
expression analysis to human health and disease. Proceedings of the 
National Academy of Sciences of the United States of America, 102(13), 
4801–4806. https://doi.org/10.1073/pnas.04097 68102

Dash, M., & Vasemägi, A. (2014). Proliferative kidney disease (PKD) 
agent Tetracapsuloides bryosalmonae in brown trout populations in 
Estonia. Diseases of Aquatic Organisms, 109(2), 139–148. https://doi.
org/10.3354/dao02731

Debes, P. V., Gross, R., & Vasemägi, A. (2017). Quantitative ge-
netic variation in, and environmental effects on, pathogen re-
sistance and temperature-dependent disease severity in a wild 
trout. The American Naturalist, 190(2), 244–265. https://doi.
org/10.1086/692536

Doeschl-Wilson, A., Bishop, S. C., Kyriazakis, I., & Villanueva, B. (2012). 
Novel methods for quantifying individual host response to infectious 
pathogens for genetic analyses. Frontiers in Genetics, 3, 1–9. https://
doi.org/10.3389/fgene.2012.00266

Donihue, C. M., Kowaleski, A. M., Losos, J. B., Algar, A. C., Baeckens, S., 
Buchkowski, R. W., Herrel, A. (2020). Hurricane effects on neotrop-
ical lizards span geographic and phylogenetic scales. Proceedings of 
the National Academy of Sciences, 117(19), 10429–10434. https://doi.
org/10.1073/pnas.20008 01117

Dunn, C. W., Luo, X., & Wu, Z. (2013). Phylogenetic analysis of gene ex-
pression. Integrative and Comparative Biology, 53(5), 847–856. https://
doi.org/10.1093/icb/ict068

Eden, E., Navon, R., Steinfeld, I., Lipson, D., & Yakhini, Z. (2009). 
GOrilla: A tool for discovery and visualization of enriched GO terms 
in ranked gene lists. BMC Bioinformatics, 10(1), 1–7. https://doi.
org/10.1186/1471-2105-10-48

Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A. S., Zink, F., 
Zhu, J., Carlson, S., Helgason, A., Walters, G. B., Gunnarsdottir, S., 
Mouy, M., Steinthorsdottir, V., Eiriksdottir, G. H., Bjornsdottir, G., 
Reynisdottir, I., Gudbjartsson, D., Helgadottir, A., Jonasdottir, A., 
Jonasdottir, A., … Stefansson, K. (2008). Genetics of gene expression 
and its effect on disease. Nature, 452(7186), 423–428. https://doi.
org/10.1038/natur e06758

Fraser, H. B. (2013). Gene expression drives local adaptation in hu-
mans. Genome Research, 23(7), 1089–1096. https://doi.org/10.1101/
gr.152710.112

Fraser, H. B., Moses, A. M., & Schadt, E. E. (2010). Evidence for wide-
spread adaptive evolution of gene expression in budding yeast. 
Proceedings of the National Academy of Sciences, 107(7), 2977–2982. 
https://doi.org/10.1073/pnas.09122 45107

Gilad, Y., Oshlack, A., & Rifkin, S. A. (2006). Natural selection on 
gene expression. Trends in Genetics, 22(8), 456–461. https://doi.
org/10.1016/j.tig.2006.06.002

info:x-wiley/peptideatlas/PRJNA517427
https://doi.org/10.5061/dryad.612jm641t
https://doi.org/10.5061/dryad.612jm641t
https://orcid.org/0000-0002-8994-4723
https://orcid.org/0000-0002-8994-4723
https://orcid.org/0000-0003-4491-9564
https://orcid.org/0000-0003-4491-9564
https://orcid.org/0000-0002-2184-5534
https://orcid.org/0000-0002-2184-5534
https://doi.org/10.1093/icb/23.2.347
https://doi.org/10.1016/J.CELS.2016.01.014
https://doi.org/10.1016/J.CELS.2016.01.014
https://doi.org/10.1017/s0031182009005800
https://doi.org/10.1017/s0031182009005800
https://doi.org/10.3389/fgene.2012.00114
https://doi.org/10.3389/fgene.2012.00114
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1111/1365-2435.12701
https://doi.org/10.1111/1365-2435.12701
https://doi.org/10.3389/fonc.2014.00140
https://doi.org/10.3389/fonc.2014.00140
https://doi.org/10.1126/science.aam5512
https://doi.org/10.1016/J.IMMUNI.2008.05.012
https://doi.org/10.1016/J.IMMUNI.2008.05.012
https://doi.org/10.1016/j.coisb.2019.10.010
https://doi.org/10.1002/evl3.63
https://doi.org/10.1111/j.1365-2761.1987.tb01081.x
https://doi.org/10.1111/j.1365-2761.1987.tb01081.x
https://doi.org/10.1073/pnas.0409768102
https://doi.org/10.3354/dao02731
https://doi.org/10.3354/dao02731
https://doi.org/10.1086/692536
https://doi.org/10.1086/692536
https://doi.org/10.3389/fgene.2012.00266
https://doi.org/10.3389/fgene.2012.00266
https://doi.org/10.1073/pnas.2000801117
https://doi.org/10.1073/pnas.2000801117
https://doi.org/10.1093/icb/ict068
https://doi.org/10.1093/icb/ict068
https://doi.org/10.1186/1471-2105-10-48
https://doi.org/10.1186/1471-2105-10-48
https://doi.org/10.1038/nature06758
https://doi.org/10.1038/nature06758
https://doi.org/10.1101/gr.152710.112
https://doi.org/10.1101/gr.152710.112
https://doi.org/10.1073/pnas.0912245107
https://doi.org/10.1016/j.tig.2006.06.002
https://doi.org/10.1016/j.tig.2006.06.002


2736  |     AHMAD et Al.

Gjerde, B., & Refstie, T. (1988). The effect of fin-clipping on growth rate, 
survival and sexual maturity of rainbow trout. Aquaculture, 73(1–4), 
383–389. https://doi.org/10.1016/0044-8486(88)90071 -3

Gomez, D., Sunyer, J. O., & Salinas, I. (2013). The mucosal immune sys-
tem of fish: The evolution of tolerating commensals while fighting 
pathogens. Fish & Shellfish Immunology, 35(6), 1729–1739. https://doi.
org/10.1016/J.FSI.2013.09.032

Graham, A. L., Shuker, D. M., Pollitt, L. C., Auld, S. K. J. R., Wilson, A. 
J., & Little, T. J. (2010). Fitness consequences of immune responses: 
Strengthening the empirical framework for ecoimmunology. 
Functional Ecology, 25(1), 5–17. https://doi.org/10.1111/j.1365- 2435. 
2010.01777.x

Groen, S. C., Ćalić, I., Joly-Lopez, Z., Platts, A. E., Choi, J. Y., Natividad, 
M., Dorph, K., Mauck, W. M., Bracken, B., Cabral, C. L. U., Kumar, 
A., Torres, R. O., Satija, R., Vergara, G., Henry, A., Franks, S. J., & 
Purugganan, M. D. (2020). The strength and pattern of natural selec-
tion on gene expression in rice. Nature (London), 578(7796), 572–576. 
https://doi.org/10.1038/s4158 6-020-1997-2

Guo, Z., González, J. F., Hernandez, J. N., McNeilly, T. N., Corripio-Miyar, 
Y., Frew, D., Morrison, T., Yu, P., & Li, R. W. (2016). Possible mecha-
nisms of host resistance to Haemonchus contortus infection in sheep 
breeds native to the canary islands. Scientific Reports, 6(1), 26200. 
https://doi.org/10.1038/srep2 6200

Hari, R. E., Livingstone, D. M., Siber, R., Burkhardt-Holm, P., & 
Guttinger, H. (2006). Consequences of climatic change for 
water temperature and brown trout populations in alpine riv-
ers and streams. Global Change Biology, 12(1), 10–26. https://doi.
org/10.1111/j.1365-2486.2005.001051.x

Hedrick, R. P., MacConnell, E., & de Kinkelin, P. (1993). Proliferative kid-
ney disease of salmonid fish. Annual Review of Fish Diseases, 3, 277–
290. https://doi.org/10.1016/0959-8030(93)90039 -e

Hendry, A. P., Farrugia, T. J., & Kinnison, M. T. (2008). Human influ-
ences on rates of phenotypic change in wild animal populations. 
Molecular Ecology, 17(1), 20–29. https://doi.org/10.1111/j.1365- 
294x. 2007.03428.x

Henshaw, J. M., & Zemel, Y. (2016). A unified measure of linear and 
nonlinear selection on quantitative traits. Methods in Ecology and 
Evolution, 8(5), 604–614. https://doi.org/10.1111/2041-210x.12685

Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary 
adaptation. Nature, 470(7335), 479–485. https://doi.org/10.1038/
natur e09670

Husak, J. F. (2016). Measuring selection on physiology in the wild and 
manipulating phenotypes (in Terrestrial Nonhuman Vertebrates). 
Comprehensive physiology, 6(1), 63–85). https://doi.org/10.1002/
cphy.c140061

Janzen, F. J., & Stern, H. S. (1998). Logistic regression for empirical 
studies of multivariate selection. Evolution, 52(6), 1564. https://doi.
org/10.2307/2411330

Jombart, T. (2008). Adegenet: A R package for the multivariate analysis 
of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.
org/10.1093/bioin forma tics/btn129

Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of 
principal components: A new method for the analysis of geneti-
cally structured populations. BMC Genetics, 11(1), 94. https://doi.
org/10.1186/1471-2156-11-94

Jones, O. R., & Wang, J. (2010). COLONY: A program for parentage and sibship 
inference from multilocus genotype data. Molecular Ecology Resources, 
10(3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x

Kassahn, K. S., Crozier, R. H., Pörtner, H. O., & Caley, M. J. (2009). Animal 
performance and stress: Responses and tolerance limits at different 
levels of biological organisation. Biological Reviews, 84(2), 277–292. 
https://doi.org/10.1111/j.1469-185X.2008.00073.x

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced 
aligner with low memory requirements. Nature Methods, 12(4), 357–
360. https://doi.org/10.1038/nmeth.3317

Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. 
N., Hill, C. E., Hoang, A., Gibert, P., & Beerli, P. (2001). The strength of 
phenotypic selection in natural populations. The American Naturalist, 
157(3), 245–261. https://doi.org/10.1086/319193

Kingsolver, J. G., & Pfennig, D. W. (2007). Patterns and power of phe-
notypic selection in nature. BioScience, 57(7), 561–572. https://doi.
org/10.1641/B570706

Lande, R., & Arnold, S. J. (1983). The measurement of selection 
on correlated characters. Evolution, 37(6), 1210. https://doi.
org/10.2307/2408842

Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted 
correlation network analysis. BMC Bioinformatics, 9(1), 1–13. https://
doi.org/10.1186/1471-2105-9-559

Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). Voom: Precision 
weights unlock linear model analysis tools for RNA-seq read counts. 
Genome Biology, 15(2), R29. https://doi.org/10.1186/gb-2014-15-2-r29

Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, 
R., Morgan, M. T., & Carey, V. J. (2013). Software for computing 
and annotating genomic ranges. PLoS Computational Biology, 9(8), 
e1003118. https://doi.org/10.1371/journ al.pcbi.1003118

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). 
The SVA package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinformatics, 28(6), 882–
883. https://doi.org/10.1093/bioin forma tics/bts034

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., 
Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence align-
ment/map format and SAMtools. Computer Applications in the 
Biosciences, 25(16), 2078–2079. https://doi.org/10.1093/bioin 
forma tics/btp352

Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., 
Hvidsten, T. R., Leong, J. S., Minkley, D. R., Zimin, A., Grammes, F., 
Grove, H., Gjuvsland, A., Walenz, B., Hermansen, R. A., von Schalburg, 
K., Rondeau, E. B., Di Genova, A., Samy, J. K. A., … Davidson, W. S. 
(2016). The Atlantic salmon genome provides insights into rediploid-
ization. Nature, 533(7602), 200–205. https://doi.org/10.1038/natur 
e17164

Lohman, B. K., Weber, J. N., & Bolnick, D. I. (2016). Evaluation of TagSeq, a 
reliable low-cost alternative for RNAseq. Molecular Ecology Resources, 
16(6), 1315–1321. https://doi.org/10.1111/1755-0998.12529

Longshaw, M., Le Deuff, R., Harris, A. F., & Feist, S. W. (2002). Development 
of proliferative kidney disease in rainbow trout, oncorhynchus mykiss 
(walbaum), following short-term exposure to Tetracapsula bryosal-
monae infected bryozoans. Journal of Fish Diseases, 25(8), 443–449. 
https://doi.org/10.1046/j.1365-2761.2002.00353.x

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of 
fold change and dispersion for RNA-seq data with DESeq2. Genome 
Biology, 15(12), 1–21. https://doi.org/10.1186/s1305 9-014-0550-8

Martin, M. (2011). Cutadapt removes adapter sequences from 
high-throughput sequencing reads. EMBnet.journal, 17(1), 10. https://
doi.org/10.14806/ ej.17.1.200

Martín-Hernández, R., Higes, M., Sagastume, S., Juarranz, Á., Dias-
Almeida, J., Budge, G. E., Meana, A., & Boonham, N. (2017). 
Microsporidia infection impacts the host cell’s cycle and reduces host 
cell apoptosis. PLoS One, 12(2), e0170183. https://doi.org/10.1371/
journ al.pone.0170183

Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and 
inheritance. Belknap Press of Harvard University Press.

Meyer, E., Aglyamova, G. V., & Matz, M. V. (2011). Profiling gene expres-
sion responses of coral larvae (Acropora millepora) to elevated tem-
perature and settlement inducers using a novel RNA-seq procedure. 
Molecular Ecology, 3599–3616. https://doi.org/10.1111/j.1365-294x. 
2011.05205.x

Miller, K. M., Li, S., Kaukinen, K. H., Ginther, N., Hammill, E., Curtis, J. 
M. R., Patterson, D. A., Sierocinski, T., Donnison, L., Pavlidis, P., 
Hinch, S. G., Hruska, K. A., Cooke, S. J., English, K. K., & Farrell, A. P. 

https://doi.org/10.1016/0044-8486(88)90071-3
https://doi.org/10.1016/J.FSI.2013.09.032
https://doi.org/10.1016/J.FSI.2013.09.032
https://doi.org/10.1111/j.1365-2435.2010.01777.x
https://doi.org/10.1111/j.1365-2435.2010.01777.x
https://doi.org/10.1038/s41586-020-1997-2
https://doi.org/10.1038/srep26200
https://doi.org/10.1111/j.1365-2486.2005.001051.x
https://doi.org/10.1111/j.1365-2486.2005.001051.x
https://doi.org/10.1016/0959-8030(93)90039-e
https://doi.org/10.1111/j.1365-294x.2007.03428.x
https://doi.org/10.1111/j.1365-294x.2007.03428.x
https://doi.org/10.1111/2041-210x.12685
https://doi.org/10.1038/nature09670
https://doi.org/10.1038/nature09670
https://doi.org/10.1002/cphy.c140061
https://doi.org/10.1002/cphy.c140061
https://doi.org/10.2307/2411330
https://doi.org/10.2307/2411330
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1186/1471-2156-11-94
https://doi.org/10.1186/1471-2156-11-94
https://doi.org/10.1111/j.1755-0998.2009.02787.x
https://doi.org/10.1111/j.1469-185X.2008.00073.x
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1086/319193
https://doi.org/10.1641/B570706
https://doi.org/10.1641/B570706
https://doi.org/10.2307/2408842
https://doi.org/10.2307/2408842
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/nature17164
https://doi.org/10.1038/nature17164
https://doi.org/10.1111/1755-0998.12529
https://doi.org/10.1046/j.1365-2761.2002.00353.x
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1371/journal.pone.0170183
https://doi.org/10.1371/journal.pone.0170183
https://doi.org/10.1111/j.1365-294x.2011.05205.x
https://doi.org/10.1111/j.1365-294x.2011.05205.x


     |  2737AHMAD et Al.

(2011). Genomic signatures predict migration and spawning failure 
in wild Canadian salmon. Science, 331(6014), 214–217. https://doi.
org/10.1126/scien ce.1196901

Mo, T. A., & Jørgensen, A. (2016). A survey of the distribution of the 
PKD-parasite Tetracapsuloides bryosalmonae (cnidaria: Myxozoa: 
Malacosporea) in salmonids in norwegian rivers - additional infor-
mation gleaned from formerly collected fish. Journal of Fish Diseases, 
40(5), 621–627. https://doi.org/10.1111/jfd.12542

Moll, P., Ante, M., Seitz, A., & Reda, T. (2014). QuantSeq 3′ mRNA se-
quencing for RNA quantification. Nature Methods, 11(12), i–iii. 
https://doi.org/10.1038/nmeth.f.376

Ogle, D. H. (2017). FSA: Fisheries stock analysis. R package 0.8.17.
Okamura, B., Hartikainen, H., Schmidt-Posthaus, H., & Wahli, T. (2011). 

Life cycle complexity, environmental change and the emerging sta-
tus of salmonid proliferative kidney disease. Freshwater Biology, 56(4), 
735–753. https://doi.org/10.1111/j.1365-2427.2010.02465.x

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T., Mendell, J. T., 
& Salzberg, S. L. (2015). StringTie enables improved reconstruction 
of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 
290–295. https://doi.org/10.1038/nbt.3122

R Core Team. (2017). R: A language and environment for statistical comput-
ing. R foundation for statistical computing. Vienna.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. 
K. (2015). Limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Research, 43(7), 
e47. https://doi.org/10.1093/nar/gkv007

Romero, I. G., Ruvinsky, I., & Gilad, Y. (2012). Comparative studies of 
gene expression and the evolution of gene regulation. Nature Reviews 
Genetics, 13(7), 505–516. https://doi.org/10.1038/nrg3229

Schluter, D. (1988). Estimating the form of natural selection on a 
quantitative trait. Evolution, 42(5), 849. https://doi.org/10.2307/ 
2408904

Siepielski, A. M., DiBattista, J. D., & Carlson, S. M. (2009). It’s about time: 
The temporal dynamics of phenotypic selection in the wild. Ecology 
Letters, 12(11), 1261–1276. https://doi.org/10.1111/j.1461-0248. 
2009.01381.x

Siepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. 
M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, 
C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. 
B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, 
M. J., & MacColl, A. D. C. (2017). Precipitation drives global varia-
tion in natural selection. Science, 355(6328), 959–962. https://doi.
org/10.1126/scien ce.aag2773

Skovgaard, A., & Buchmann, K. (2012). Tetracapsuloides bryosalmonae 
and PKD in juvenile wild salmonids in Denmark. Diseases of Aquatic 
Organisms, 101(1), 33–42. https://doi.org/10.3354/dao02502

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., 
Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., 
Kuhn, M., Bork, P., Jensen, L. J., & von Mering, C. (2015). STRING 
v10: Protein–protein interaction networks, integrated over the 
tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.
org/10.1093/nar/gku1003

Tops, S., Lockwood, W., & Okamura, B. (2006). Temperature-driven 
proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts 
portends salmonid declines. Diseases of Aquatic Organisms, 70(3), 
227–236. https://doi.org/10.3354/dao07 0227

Vasemägi, A., Nousiainen, I., Saura, A., Vähä, J. P., Valjus, J., & Huusko, 
A. (2017). First record of proliferative kidney disease agent 
Tetracapsuloides bryosalmonae in wild brown trout and European 
grayling in Finland. Diseases of Aquatic Organisms, 125(1), 73–78. 
https://doi.org/10.3354/dao03126

Winter, D. J. (2017). Rentrez: An R package for the NCBI eUtils API. The R 
Journal, 9(2), 520. https://doi.org/10.32614/ rj-2017-058

Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of 
random forests for high dimensional data in C++ and R. Journal of 
Statistical Software, 77(1), 1–17. https://doi.org/10.18637/ jss.v077.i01

Zhao, S., & Fernald, R. D. (2005). Comprehensive algorithm for quantitative 
real-time polymerase chain reaction. Journal of Computational Biology, 
12(8), 1047–1064. https://doi.org/10.1089/cmb.2005.12.1047

Zippin, C. (1958). The removal method of population estima-
tion. The Journal of Wildlife Management, 22(1), 82. https://doi.
org/10.2307/3797301

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Ahmad F, Debes PV, Nousiainen I, et 
al. The strength and form of natural selection on transcript 
abundance in the wild. Mol Ecol. 2021;30:2724–2737. https://
doi.org/10.1111/mec.15743

https://doi.org/10.1126/science.1196901
https://doi.org/10.1126/science.1196901
https://doi.org/10.1111/jfd.12542
https://doi.org/10.1038/nmeth.f.376
https://doi.org/10.1111/j.1365-2427.2010.02465.x
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/nrg3229
https://doi.org/10.2307/2408904
https://doi.org/10.2307/2408904
https://doi.org/10.1111/j.1461-0248.2009.01381.x
https://doi.org/10.1111/j.1461-0248.2009.01381.x
https://doi.org/10.1126/science.aag2773
https://doi.org/10.1126/science.aag2773
https://doi.org/10.3354/dao02502
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.3354/dao070227
https://doi.org/10.3354/dao03126
https://doi.org/10.32614/rj-2017-058
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1089/cmb.2005.12.1047
https://doi.org/10.2307/3797301
https://doi.org/10.2307/3797301
https://doi.org/10.1111/mec.15743
https://doi.org/10.1111/mec.15743

