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Summary

Endodormancy and the related chilling requirement synchronize the seasonal development of

trees from the boreal and temperate regions under the climatic conditions prevailing at their

native growing sites. The phenomenon of endodormancy has been known at the whole-plant

level for 100 years, and in the last coupleofdecades, insights into thephysiological andmolecular

basis of endodormancy and its release have also been obtained. Intriguingly, recent studies have

shown experimentally that subtropical trees also show endodormancy and a chilling require-

ment. Motivated by the climatic differences between the subtropical and more northern zones,

here we address the similarities and differences in endodormancy between trees growing in the

subtropical zone and those growing in more northern zones.

I. Introduction

Perennial plants display annual cycles of growth, which are
designed to cope with nonoptimal conditions that accompany
changes of seasons. In boreal and temperate regions, these plants
cease growth and enclose the shoot apical meristem and leaf
primordia within a specialized bud structure. Concurrently with
growth cessation and bud formation, a multitude of changes occur
at the cellular level, promoting the acquisition of tolerance to low
temperatures and shifts in metabolism, which result in the

accumulation of storage compounds that can be subsequently
utilized for growth in subsequent seasons (Singh et al., 2017).

In addition, one of the most critical transitions that occur in the
bud tissues is the developmental transition to endodormancy.
Endodormancy can be defined as a physiological state of the bud in
which growth resumption is prevented even under growth-
permitting environmental conditions (Singh et al., 2017). More
recently, Vimont et al. (2019) attempted to define molecular
markers for endodormancy in Prunus avium by modelling gene
expression, thus complementing earlier physiological studies.
Establishment of the endodormant state plays a key role in the
survival of perennating organs as it prevents untimely reactivation*These authors contributed equally to this work.
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of growth (e.g. by unseasonal exposure to growth-promoting
conditions in autumn/early winter) until the return of favourable
growth conditions in the spring. Release of endodormancy is
promoted by exposure to extended periods of low temperatures. In
boreal and temperate plants, 4–8°C is typically considered optimal
for inducing endodormancy release. This chilling requirement was
previously found by Coville (1920), and since then it has been
addressed in numerous studies, with both horticultural crops and
forest trees (Fuchigami et al., 1982; H€anninen, 2016). Quite
surprisingly, it took about 100 years before Du et al. (2019) and
Song et al. (2020) first addressed this research topic with regard to
the subtropical zone. They showed experimentally that the 37
subtropical woody plant species they examined also show endodor-
mancy and a chilling requirement. Importantly, this observation
now raises the question of whether the mechanism and the
regulatory cues of endodormancy have been conserved in evolution
orwhether distinctmechanisms, implying at least partially different
regulatory cues, have evolved in subtropical and in temperate/bo-
real trees, as the climatic conditions in the native growing sites of
these trees differ drastically. Addressing this question is the aim of
this review.

II. Peculiarities of endodormancy in subtropical trees

From studies addressing endodormancy, it emerges that endodor-
mancy and its environmental control in subtropical trees differ
quite drastically from those of the trees in boreal/temperate regions.
The ultimate evolutionary reason for these differences is obviously
the distinct climatic conditions specific to these climatic zones
(Fig. 1a). Winter is shorter and warmer in the subtropical than in
the boreal and temperate regions. This explains why subtropical
trees appear to have a relatively shallow endodormancy (Zhang
et al., 2021a) and a small chilling requirement (Du et al., 2019) in
comparison with those of boreal and temperate trees (Fig. 1c).

On the basis of a climatological comparison, Zhang et al.
(2021a) concluded that the optimal chilling temperatures of 4–8°C
typical for boreal and temperate trees occur infrequently and
irregularly in the subtropics. Hence it is unlikely that conditions
typically causing endodormancy release in temperate plants at
higher latitudes can provide a reliable environmental cue for the
progress of autumn in subtropical plants. Accordingly, Zhang et al.
(2021a) found that temperatures of up to +15°C are effective for
endodormancy release in trees of the northern part of the
subtropical zone in southeastern China. This is a significant
departure from the typical 4–8°C temperatures causing endodor-
mancy release in temperate trees (Fig. 1c). Importantly, with the
exception of adult Torreya grandis trees, the upper threshold of the
endodormancy-releasing temperature range was not even met by
the highest chilling temperature of +15°C applied in the exper-
iments of Zhang et al. (2021a). Together, these observations led
Zhang et al. (2021a) to hypothesize that in each climatic zone,
temperatures occurring frequently in autumn are effective in the
endodormancy release of trees native to the zone. Accordingly,
temperature conditions defined as seasonal cues for endodormancy
release in temperate trees are not universal for endodormancy
release irrespective of the geographical location.

No such climatological comparison as was carried out by Zhang
et al. (2021a) for the boreal vs the subtropical zone has been carried
out to compare different parts of the subtropical zone along a
north–south transect. However, the large temperature difference
betweenHangzhou andGuangzhou (Fig. 1a) suggests that in order
for ‘chilling’ temperatures to provide a reliable seasonal cue for trees
under the near-tropical conditions in Guanzhou, the upper
threshold for ‘chilling’ temperatures should be much higher than
the +14°C found for Hangzhou in the climatological analysis of
Zhang et al. (2021a). This suggests that trees native to the low-
latitude edge of the subtropical zone may not have endodormancy
at all or, if they do, its release is regulated by environmental factors
other than air temperature (Fig. 1c). This hypothesis finds indirect
support in the artificial selection involved in breeding cultivars of
temperate horticultural species to be grown in subtropical and
tropical conditions: in these warm climates, only cultivars with low
chilling requirements have been found to be productive (Erez,
2000). Together with the experimental findings discussed in the
preceding paragraph, these inferences suggest a major difference in
the ecophysiology of trees between different parts of the subtropical
region. In regions located at relatively high latitudes, the endodor-
mancy phenomena seem to be somewhat similar to those in
temperate trees, but in regions located at lower latitudes near the
edge to the tropical zone, the endodormancy phenomena, if any,
are evidently quite different (Fig. 1c).

However, a low temperature is not the only cue controlling
endodormancy release: in several boreal and temperate species, long
photoperiod has been shown to act as such a cue as well (Basler &
K€orner, 2012; Fu et al., 2019). In line with this, Zhang et al.
(2021b) suggested that the effect of photoperiod in regulating
endodormancy release may be more marked in subtropical than in
boreal and temperate trees (Fig. 1c). Accordingly, they proposed
that photoperiod may regulate endodormancy release and the
subsequent ontogenetic development towards leafout and flower-
ing in two different ways. First, long photoperiods prevailing in
spring may compensate for lack of chilling. This phenomenon is
well documented for many boreal and temperate trees (Worrall &
Mergen, 1967; Caffarra &Donnelly, 2011), but under the limited
chilling accumulation in the conditions of warm and short
subtropical winters, its role may be critical. Second, as an opposite
effect, short photoperiods may prevent premature leafout and
flowering (‘false spring’) in warm periods with daily maximum
temperatures of +20°C, which often occur in subtropical winters.
However, the role of photoperiod as an environmental cue in the
subtropical zone may be constrained by the relatively limited
seasonal variation of photoperiod in subtropical conditions
(Fig. 1b).

III. Process-based modelling of tree phenology in
subtropical trees

Since the 1970s, process-based models of tree phenology have been
developed for boreal and temperate trees (H€anninen, 2016;Chuine
& R�egni�ere, 2017). With air temperature and sometimes pho-
toperiod as their input, these models simulate endodormancy
release and the ontogenetic development towards leafout and
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flowering, providing the dates of these spring phenological events as
the final output. In recent decades, process-based tree phenology
models have frequently been applied in studies assessing the
ecological effect of climatic change (Cannell, 1985; Kramer, 1994;
Chuine et al., 2016).

Application of process-based tree phenology models to subtrop-
ical trees was initiated only recently by Chen et al. (2017), who
developed process-based models forMelia azedarach, a tree species
of tropical origin, and used the models to project the effects of
climatic warming on the timing of leafout and flowering inMelia.
They found that since reduced chilling slowed down the endodor-
mancy release, climatic warming delayed leafout and flowering in

the spring. This phenomenon, first suggested by Murray et al.,
(1989), has been addressed recently in several studies of temperate
trees (Fu et al., 2015; Ford et al., 2016;Wang et al., 2020). It should
be noted, however, that the model development by Chen et al.
(2017) was based on the technique of inverse modelling, an
approach in which process-based models are fitted to observational
long-term phenological records. It has been known since the
pioneering study by Hunter & Lechowicz (1992) that this method
involves an exceptionally high degree of uncertainty and that
biologically unrealisticmodels are quite often obtainedwith it (for a
recent discussion, see H€anninen et al., 2019). Unfortunately, such
was the case in the study by Chen et al. (2017), too (for details, see
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Fig. 1 Aconceptualmodel suggested for endodormancy in buds of subtropical trees, presented in comparisonwith the samephenomena and traits established
for temperate (and boreal) trees over 100 years. Seasonality of (a) air temperature and (b) photoperiod at three locations on a north–south transect in eastern
China. The three locations represent the temperate zone (Beijing, 39°540N, 116°240E), and the northern (Hangzhou, 30°140N, 120°10E) and southern
(Guangzhou, 23°60N, 113°150E) part of the subtropical zone. In (a), the curve and the lower and the upper end of the shaded area indicate the year-to-year
average, minimum and maximum value of daily mean temperature, respectively. The air temperature data were collected by the China Meteorological
Administration (http://data.cma.cn) over the years 1958–2018. (c) Suggested changes in tree traits along such transects from the temperate zone at high
latitudes to the subtropical zoneat low latitudes.Theconceptualmodel is basedon thefindingsofDuet al. (2019), Songet al. (2020),Xuet al. (2020)andZhang
et al. (2021a,b).
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Zhang et al., 2021c). An observational approach was also taken by
Xu et al. (2020), who modelled the chilling and heat requirements
of four tree species growing in temperate and subtropical regions of
China. However, rather than applying inverse modelling, Xu et al.
(2020) used air temperature responses of chilling accumulation and
heat accumulation fixed a priori (H€akkinen et al., 1998). Their
modelling results support the notion that the tree species examined
also show endodormancy and a chilling requirement of endodor-
mancy release.

Zhang et al. (2021c) were the first to develop process-based tree
phenologymodels for subtropical tree species on the basis of results
of experiments explicitly addressing the processesmodelled. In each
case, they projected an advancement of tree spring phenology for
the four subtropical tree species examined. For leafout in seedlings,
advancing rates were found that were similar to those found earlier
for temperate and boreal trees. For Torreya grandis flowering,
however, the advancing rates were considerably lower, especially in
the scenario that assumed strong warming. These differences in the
computer simulations addressing the effects of climate change were
explained by respective differences in the experimental results
among the species and life stages. This shows that to achieve robust
projections of the effects of climate change on tree spring phenology
in subtropical conditions, experimental research specifically
designed to address the dormancy phenomena in subtropical trees
is urgently needed.

IV. Plausible endodormancy mechanisms in
subtropical trees

The molecular mechanism and the signalling pathway underlying
the establishment of endodormancy have been intensively studied
in several forest and fruit trees, such as hybrid aspen, grape, peach,
apple and kiwi fruit amongst others (Singh et al., 2017; Beauvieux
et al., 2018). The key findings from these studies are the central
roles of ABA (Zheng et al., 2015; Tylewicz et al., 2018), and the
transcription factors of the SVP-related MADS-box family in the
regulation of dormancy (Singh et al., 2019; Yamane et al., 2019).
Extensive functional analyses of these components in hybrid aspen
have shown that the sensing of growth-restricting day lengths (often
referred to as short days) enhances the response to the plant growth
regulator ABA (Tylewicz et al., 2018). ABA acts via the transcrip-
tion factor SHORT VEGETATIVE PHASE-LIKE (SVL) to plug
plasmodesmata with callosic dormancy sphincters (Singh et al.,
2019). The finding that ABA-insensitive hybrid aspen plants that
fail to block plasmodesmata also lack endodormancy is a strong
indication that blockage of plasmodesmata is an integral part of the
endodormancy mechanism (Tylewicz et al., 2018). Importantly,
ABA-insensitive plants that lack endodormancy also fail to survive
the winter when grown under natural conditions (Yu et al., 2019),
highlighting endodormancy as an important adaptive mechanism.

Exposure to a low temperature and the release of endodormancy
coincide with the opening of plasmodesmata. However, definitive
evidence for the requirement of opening of plasmodesmata and the
way it contributes to endodormancy release is still lacking (Singh
et al., 2017). In addition, low temperatures are known to induce the
expression of FLOWERING LOCUS T (FT), a tree orthologue of

the Arabidopsis flowering-time gene, and to upregulate the
expression of gibberellin (GA) biosynthesis-related genes (Rinne
et al., 2011; Singh et al., 2019). It has been shown that FT in trees is
required for sustaining growth under long days (B€ohlenius et al.,
2006; Tylewicz et al., 2015; Miskolczi et al., 2019). Thus, chilling
could induce the release of endodormancy and simultaneously
promote the activation of growth-promoting signals.

Given the specific attributes of endodormancy in subtropical
trees, it might be worthwhile to investigate whether the molecular
mechanisms defined for endodormancy release in temperate trees
could be applicable to subtropical trees. The simplest explanation
for endodormancy release in subtropical trees could be that the
optimal dormancy-releasing temperature is higher than that in
boreal and temperate trees (Fig. 1c). This would be in line with
earlier observations of vernalization. For example, vernalization is
typically assayed at 4–8°C in model plants such as Arabidopsis
(Bastow et al., 2004). However, recent reports suggest that certain
genotypes of wheat could achieve vernalization at much higher
temperatures, such as 13–18°C (Dixon et al., 2019). While
vernalization-mediated promotion of flowering arguably differs
from dormancy release, these recent results nevertheless demon-
strate that a broad range of temperature signals can be effective in
controlling developmental transitions. Whether this is the case for
endodormancy regulation in subtropical plants remains to be
investigated. An alternative possibility is that a signal other than
temperature, such as photoperiod, could act as a seasonal cue
releasing endodormancy as discussed above (Fig. 1c). In both cases,
an assumption is made that the molecular components of the
endodormancy release pathway are conserved during evolution, so
that the same mechanisms are found in both boreal/temperate and
subtropical trees. However, the alternative hypothesis, namely that
the processes of endodormancy regulation in subtropical trees are
fundamentally distinct from those in boreal and temperate trees,
cannot be excluded (Fig. 1c).

V. Concluding remarks

The few studies of bud endodormancy carried out with subtropical
trees at the whole-tree level so far show that results obtained with
boreal and temperate trees cannot be generalized to subtropical
trees in assessments of the effects of climate change on spring
phenology. Rather, species-specific experimental studies and
modelling are called for. Similarly, to ascertain which of the above
hypotheses of the molecular mechanisms of endodormancy release
(Fig. 1c) is valid requires identification of the molecular compo-
nents thatmediate endodormancy, particularly in subtropical trees.
Approaches such as those taken by Vimont et al. (2019) to define
molecular markers for endodormancy by means of gene expression
can be helpful in nonmodel subtropical species. The establishment
of Populus as a model for boreal trees has significantly advanced our
understanding of the control of the growth cycle by seasonal cues in
boreal and temperate trees. These advances have been aided by
complementing the extensive physiological studies with the
identification of genetic pathways with functional analyses using
transgenic approaches. In the future, a similar approach could set
the stage for understanding the molecular basis of endodormancy
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in subtropical trees by combining extensive physiological studies
with the development of a good model amenable to genetic
transformation and obtaining genomics resources, such as a full
genome sequence, of a few subtropical trees.
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