
1474 |     Ecology Letters. 2021;24:1474–1486.wileyonlinelibrary.com/journal/ele

M E T H O D

General statistical scaling laws for stability in ecological systems

Adam Thomas Clark1,2,3  |    Jean- Francois Arnoldi4  |   

Yuval R. Zelnik5,6 |    György Barabas7,8 |    Dorothee Hodapp9,10 |    Canan Karakoç3,11 |   

Sara König12 |    Viktoriia Radchuk13  |    Ian Donohue4  |    Andreas Huth14 |   

Claire Jacquet15,16  |    Claire de Mazancourt6 |    Andrea Mentges3,17 |    Dorian Nothaaß1,14 |   

Lauren G. Shoemaker18  |    Franziska Taubert14 |    Thorsten Wiegand3,14 |   

Shaopeng Wang19  |    Jonathan M. Chase3,17  |    Michel Loreau6 |    Stanley Harpole1,3,20

1Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
2Institute of Biology, University of Graz, Graz, Austria
3German Centre for Integrative Biodiversity Research (iDiv) Halle- Jena- Leipzig, Leipzig, Germany
4Zoology Department, Trinity College Dublin, Dublin, Ireland
5Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
6Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
7Division of Theoretical Biology, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
8MTA- ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
9Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
10Alfred- Wegener- Institute Helmholtz- Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
11Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
12Department of Soil System Science, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany
13Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
14Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
15Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
16Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
17Department of Computer Sciences, Martin Luther University, Halle, Germany
18Botany Department, University of Wyoming, Laramie, WY, USA
19Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking 
University, Beijing, China
20Institute of Biology, Martin Luther University, Halle, Germany

Received: 2 November 2020 | Accepted: 21 March 2021

DOI: 10.1111/ele.13760  

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.

Correspondence
Adam Thomas Clark, Department of 
Physiological Diversity, Helmholtz Centre 
for Environmental Research (UFZ), 
Leipzig, Germany.
Email: adam.clark@uni-graz.at

Funding information
TULIP French Laboratory of Excellence, 
Grant/Award Number: ANR- 10- 
LABX- 41 and ANR- 11- IDEX- 0002- 02; 
Swedish Research Council, Grant/Award 
Number: VR 2017- 05245; Deutsche 
Forschungsgemeinschaft, Grant/Award 
Number: FZT 118; NSF, Grant/Award 
Number: EPS- 1655726; Horizon 2020 
Framework Programme, Grant/Award 
Number: 666971

Abstract

Ecological stability refers to a family of concepts used to describe how systems of 

interacting species vary through time and respond to disturbances. Because ob-

served ecological stability depends on sampling scales and environmental context, 

it is notoriously difficult to compare measurements across sites and systems. Here, 

we apply stochastic dynamical systems theory to derive general statistical scal-

ing relationships across time, space, and ecological level of organisation for three 

fundamental stability aspects: resilience, resistance, and invariance. These rela-

tionships can be calibrated using random or representative samples measured at 

individual scales, and projected to predict average stability at other scales across 
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INTRODUCTION

Ecological stability refers to a range of concepts that de-
scribe how interacting systems of species and their envi-
ronments vary over time (Donohue et al., 2013; Grimm 
& Wissel, 1997; Holling, 1973; Ives & Carpenter, 2007; 
Lewontin, 1969; May, 1973; Pimm, 1984; Pimm et al., 
2019). Stability metrics are primary tools used to study 
how systems withstand and recover from disturbances, 
and are therefore vital for predicting how anthropogenic 
pressures, such as land use change, global warming, 
and species loss are likely to influence natural systems 
(Carpenter et al., 2001; Donohue et al., 2016; Scheffer 
et al., 2009; Zelnik et al., 2018). However, measures of 
stability are highly context dependent, and vary with the 
spatiotemporal scale and ecological level of organisa-
tion at which measurements are made (Clark et al., 2019; 
Domínguez- García et al., 2019; Kéfi et al., 2019; Levin, 
1992; Stommel, 1963). Measurements taken across differ-
ent scales are therefore not directly comparable, which 
limits opportunities for cross- system comparison and 
synthesis (Clark et al., 2019; Csillag et al., 2000; Levin, 
1992; Wang et al., 2019). This scale dependence is also a 
major challenge for conservation and management, be-
cause the scales that are most relevant for decision mak-
ing often differ from those at which ecological systems 
are measured (Carpenter et al., 2001; Chesson, 2000; 
Isbell et al., 2018; Leibold & Chase, 2018; Levin, 1992).

To address this challenge, our goal here is to identify 
general statistical scaling laws for stability in ecological 
systems. Specifically, we seek to identify relationships 
that can: (1) be fitted using empirical data observed at one 
set of scales; (2) be extrapolated to accurately describe 
conditions across other scales; and (3) that are valid re-
gardless of the underlying processes governing dynamics.

Throughout, we focus on three common stability 
metrics— resilience, resistance, and invariance— and 
explore how these change across levels of temporal, 
spatial, and ecological organisation (see Stability and 
scale definitions below) (Donohue et al., 2016; Grimm & 
Wissel, 1997). These metrics are especially relevant to 
ecological studies because they describe how systems re-
spond to regularly occurring, externally imposed pulse 
perturbations, as might be expected from, for example, 

extreme weather events or anthropogenic disturbances 
such as logging, mowing, or fishing (Holling, 1973; 
Isbell et al., 2018; Ives & Carpenter, 2007; Zelnik et al., 
2018). Moreover recent advances in stochastic dynam-
ical systems theory have identified links between these 
stability metrics and basic statistical properties that can 
be estimated from empirical data (Arnoldi et al., 2018; 
Haegeman et al., 2016; Lee et al., 2020). Because these 
statistical properties arise directly from the mathemati-
cal definitions of variance and covariance, the resulting 
scaling relationships are exceedingly general (Arnoldi 
et al., 2019; Wang et al., 2017; Zelnik et al., 2018).

We proceed in four parts. First, we present our work-
ing definitions for resilience, resistance, and invariance, 
and for temporal, spatial, and ecological scale. Second, 
we derive the scaling relationships, and explain how they 
arise from the basic mathematical definitions of vari-
ance and covariance. Third, we introduce three mod-
els that simulate species abundance dynamics across a 
range of scales, and use these to demonstrate the scaling 
functions. Finally, we introduce methods for fitting the 
scaling relationships to observational data. These meth-
ods can be implemented via our accompanying ecostats-
cale R package, available via CRAN and archived on 
GitHub (github.com/adamtclark/ecostatscale) and 
Zenodo (https://doi.org/10.5281/zenodo.4626672).

M ETHODS

The statistical scaling functions developed here are 
rooted in stochastic dynamical systems theory, which 
extends the general concept of dynamical systems mod-
elling (e.g. ordinary differential equations, such as in lo-
gistic growth or Lotka– Volterra interactions) to include 
effects of stochastic perturbations on dynamic variables 
(Black & McKane, 2012; Gillespie, 1992; Wilkinson, 
2011, 2018). In particular, we leverage the fact that when 
variability is grouped across different subsets of data, it 
adheres to rules that follow directly from the mathemati-
cal definitions of variance and covariance. These rules 
hold for any set of variables regardless of their distribu-
tions, so long as their mean, variance, and covariance 
exist and can be measured.

Editor: Tim Coulson a wide range of contexts. Moreover deviations between observed vs. extrapolated 

scaling relationships can reveal information about unobserved heterogeneity 

across time, space, or species. We anticipate that these methods will be useful for 

cross- study synthesis of stability data, extrapolating measurements to unobserved 

scales, and identifying underlying causes and consequences of heterogeneity.

K E Y W O R D S
community, disturbance, diversity, invariability, invariance, population, resilience, resistance, 
spatial, temporal
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As an example, imagine a set of n timeseries {y1, y2, 
… yn}, each representing a variable with its own mean 
and variance. For our purposes, each yi might represent 
abundance dynamics for different species. By the defi-
nition of covariance, the variance of the summed abun-
dance across all species is

where <var(yi)> and <cov(yi, yj)> indicate, respectively, 
average species- level variance and between- species cova-
riance. Following Wang et al. (2017), this relationship can 
be written as

where <ρ(yi, yj)>  =  <cov(yi, yj)>/√(<var(yi)><var(yj)>), 
which is roughly analogous to the Pearson correlation co-
efficient (see Appendix A for more details). Critically, the 
relationships in Equations 1a– 1b hold regardless of the un-
derlying structure of the groups, or the processes by which 
data were generated.

Stability and scale definitions

Our next step is to define stability and scale in terms that 
can be related to the statistical rules in Equations 1a– 1b. 
Specifically, we assume that species abundances, and the 
effects of disturbances on those abundances, can both be 
defined in terms of statistical distributions with a meas-
urable mean and variance. In practice, this assumption 
implies that: (1) species abundances fluctuate around a 
fixed average value; (2) disturbances can be abstracted 
into discrete pulses that lead to near- instantaneous 

changes in species abundances; and (3) disturbances do 
not alter the processes underlying abundance dynamics 
(e.g. reproductive rates). We will eventually relax some 
of these assumptions, though even in their strict form, 
they apply broadly across abundance dynamics that lack 
strong monotonic trends, and to disturbances that act 
quickly relative to species growth rates.

We choose to focus on resilience, resistance, and in-
variance both because they are widely used in ecology 
(Donohue et al., 2013; Grimm & Wissel, 1997; Ives & 
Carpenter, 2007; Pimm, 1984; Pimm et al., 2019), and 
because they are particularly well suited to statistical 
abstraction (see examples in Figure 1; Arnoldi et al., 
2018; Lande 1993***; Turelli 1986***). Resilience (r) 
describes the per- capita rate at which abundances re-
cover following a disturbance –  high resilience thus im-
plies fast recovery. Given N(t) as abundance at time t, 
we can therefore calculate r = log(N(t + τ)/N(t))/τ for a 
sufficiently small unit of time τ. Resistance (σ−1) is in-
versely related to the effect that disturbances have on 
abundances— thus, high resistance implies either that 
disturbances are weak, or that they weakly impact 
species. To quantify disturbance impacts, we define 
σ = sd(N(ti) − N(ti − τ)), where ti is the moment of time at 
which a disturbance occurred, ti − τ is the time imme-
diately before that disturbance, and sd is the standard 
deviation. Invariance (var(x)−1) is inversely related to 
how widely abundances fluctuate over time— high in-
variance thus implies that abundances remain relatively 
constant, and var(x) is simply temporal variance calcu-
lated across timeseries x. To avoid confusion, we use the 
term “invariance” rather than the more common “in-
variability,” as the latter often signifies a specific metric 
standardised by mean abundance.

We focus on three types of scaling, chosen both because 
they are widely used in empirical studies, and because they 
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F I G U R E  1  Working definitions of different aspects of stability for this paper. Black line shows dynamics for a basic linear process with 
equilibrium at x = 0 and subjected to repeated disturbance events, as introduced in the single- patch, single- species model in Equation 3. 
Disturbance impacts on x are drawn from a normal distribution with mean μ = 0 and standard deviation σ, and disturbances occur with average 
frequency λ. In this framework, resilience (r) describes rate of return towards equilibrium following a disturbance; resistance (σ−1) describes 
ability to avoid displacement by disturbances; and invariance (var(x)−1) describes the tendency to stay near the equilibrium value (blue dashed 
lines show standard deviation of the abundance fluctuations). Here, and in subsequent figures, we use resistance−1 and invariance−1 to signify 
these inverse relationships
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relate to grouping data into different subsets, which lends 
itself to the definitions in Equations 1a– 1b (see examples in 
Figure 2). Temporal scale describes the rate at which obser-
vations are made over time (e.g. measurements per year). 
Thus, increasing temporal scale leads to larger time gaps 
between observations. Spatial scale describes the grain 
at which spatial information is aggregated (e.g. plot size, 
sample volume). Thus, increasing spatial scale involves 
grouping information across a larger number of replicates. 
Ecological scale describes the number of species across 
which measurements are aggregated (e.g. species vs. func-
tional groups). Thus, increasing ecological scale involves 
grouping information across a larger number of species.

Statistical scaling relationships

Because they are primarily related to how data are 
grouped across observations, spatial and ecological 
scales have similar relationships with stability, which 

follow directly from Equations 1a– 1b, and are described 
below. Conversely, because our definitions of stabil-
ity are themselves functions of time, temporal scale has 
somewhat different effects, primarily related to meas-
urement biases. These are described in the Measuring 
stability section, below.

The simplest scaling relationship to arise from 
Equations 1a– 1b is that for invariance. Imagine that we 
have a series of observations of invariance measured at 
scale b, and wish to extrapolate these to some larger ag-
gregate scale B. For example, B might represent a land-
scape (e.g. Figure 2f), and b could represent individual 
plots within that landscape (e.g. Figure 2d). Substituting 
var(y) with plot- level variance in Equation 1b yields

where <var(xb)> and <ρ(xb)> represent, respectively, the 
average variance and average pairwise correlation mea-
sured at scale b.

(2a)var
(

xB
)

=< var
(

xb
)

> (B∕b)
(

1+ < 𝜌
(

xb
)

> (B∕b − 1)
)

F I G U R E  2  Working definitions of temporal, spatial, and ecological scales for this paper. Black shaded regions and lines highlight 
individual measurements at each scale. (a– c) Temporal scale describes the sampling interval (e.g. daily vs. annual sampling). (d– f) Spatial scale 
describes the total area across which available information is aggregated (e.g. plot size). (g– i) Ecological scale describes the number of species 
across which information is combined (e.g. species vs. functional groups). Note that although the scale of measurements varies among panels, 
the total simulated extent is constant within each type of scaling scenario (i.e. total time span, spatial area, or community size). For easier 
visualisation, results in panels (d– i) are standardised by the area or the number of species sampled (a and m, respectively)
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A similar relationship arises for resistance. If we re-
place var(y) in Equation 1b with σ2, that is, the observed 
variance in disturbance impacts on abundances, we find

where <σb> is the mean standard deviation of disturbance 
impacts observed at scale b, and <ρ(ξb)> is the average pair-
wise correlation between observed disturbance impacts. 
For example, in a plant community, σb might represent the 
average distance that extreme weather events push species 
away from their average abundances, whereas ρ(ξb) would 
indicate whether species respond similarly (ρ(ξb)  >  0) or 
differently (ρ(ξb) < 0) to those events.

Finally, resilience scaling relationships are somewhat 
more complicated. Given strong effects of dispersal or 
species interactions, r can vary greatly across space and 
time, even within a single measurement scale (Arnoldi 
et al., 2018). While the precise relationship varies with 
context (see Appendix B), the median expectation for an 
aggregate spatial or ecological scale B (e.g. total land-
scape or total community abundance) can be approxi-
mated as

where λ is average disturbance frequency. Note that 
Equation 2c is effectively the ratio of the variance vs. re-
sistance scaling relationships in Equations 2a– 2b. Unlike 
Equations 2a– 2b, the relationship in Equation 2c for-
mally applies only to systems with linear dynamics (see 
Appendix F). However, in practice, the relationship tends 
to hold across more complex systems (Arnoldi et al., 2019; 
Zelnik et al., 2018), as we will demonstrate in the modelling 
tests below.

Modelling tests

To illustrate the statistical scaling relationships pre-
sented above, we consider three model structures, de-
scribing: (1) a single species occupying a single patch; 
(2) a single species occupying multiple patches; and (3) 
multiple species occupying a single patch. These roughly 
correspond to the simplest structures needed to explore 
temporal, spatial, and ecological scaling, respectively. 
Although less general than the statistical scaling func-
tions themselves, we choose these basic models because 
they allow us to analytically relate expected scaling re-
lationships to simple functions of model parameters, 
against which the predictions of the statistical scaling 
functions can be clearly compared. Detailed model deri-
vations, along with comparisons to the classic logistic 

and Lotka- Volterra models, are available in Appendices 
B and C.

Our first model of a single species and patch describes 
a linear stochastic dynamical system near equilibrium 
(Arnoldi et al., 2018, 2019; Lande et al., 1999; Lee et al., 
2020). We consider dynamics of standardised abundance 
x(t) = N(t) − K, where N(t) is species abundance at time 
t, and K is carrying capacity. In the absence of distur-
bances, the system is drawn towards the equilibrium 
x(t) = 0 (i.e. N(t) = K). Thus, x(t) describes the difference 
between current and equilibrium abundance (Figure 1). 
In this model, dynamics follow

where r is the intrinsic growth rate, and ξ(t) is a stochas-
tic function representing the effects of disturbance events. 
Disturbances occur at discrete moments in time, ti, with 
time between disturbances drawn from an exponential 
distribution with frequency λ (Gillespie, 1976, 1992). The 
effects of disturbances on species abundances are drawn 
from a normal distribution with mean μ = 0, and standard 
deviation σ.

Our second model extends Equation 3 to consider 
dynamics of a single species in multiple patches. Here, 
dynamics follow

where xk = Nk –  Kk describes standardised abundance in 
patch k, Dk is dispersal rate out of patch k, a is patch area, A 
is the area of the total focal region, and rk and Kk are patch- 
level growth rate and carrying capacity. Disturbances 
occur simultaneously across patches, but disturbance im-
pacts on each patch, ξk(t), are drawn from a multivariate 
normal distribution with inter- patch covariance cov(ξk, ξl). 
Thus, correlation in stochastic forcing describes, for exam-
ple, multi- patch responses to a shared environmental dis-
turbance, such as a flood or drought.

Finally, our third model considers multiple interact-
ing species within a single patch. Here, for a community 
of M total species, dynamics for species i follow

where αij describes the effect of species j on species i, 
and ξi(t) describes disturbance impacts on species i. In 
this model, we linearise dynamics around the multi- 
species equilibrium achieved by each of the M coexist-
ing species, such that xi = Ni − Ni* (i.e. distance from 
the multi- species equilibrium abundance). Under these 
circumstances, parameters r, K, and α can be interpreted 
in the same way as in the classic Lotka– Volterra equa-
tions. Effects of disturbances in this model also occur 
simultaneously across species, but their strengths differ, 
and are drawn from a multivariate normal distribution 
with covariances cov(ξi, ξj).
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Following the definitions above, stability for the 
model with one species and patch in Equation 3 relates 
directly to model parameters, with r describing resil-
ience, resistance inversely related to σ, and invariance 
inversely related to var(x). As we will discuss, stability in 
the multi- patch and multi- species models in Equations 4 
and 5 varies across spatial and ecological scales, follow-
ing Equations 2a– 2c. Additionally, as discussed in the 
Measuring stability section below, measurement biases 
arise in all three models as a function of temporal scale, 
especially for slow sampling rates.

Simulating dynamics

For each model, we simulated 1000 independent iterations 
of 100 time- units each, and, after allowing a 20 time- unit 
“burn- in” period, measured resilience, resistance, and 
invariance following the empirical methods described 
below. Simulations were conducted in R version 3.6.1 (R 
Development Core Team, 2019). Source code is archived 
on Zenodo (https://doi.org/10.5281/zenodo.4626668).

For the single species, single patch model, we varied 
temporal scale by “sampling” the simulated timeseries 
at frequencies ranging from every 0.01 to every 10 time- 
units, with growth rate r  =  1, standard deviation of 
disturbance effects σ  =  √0.1, and average frequency of 
disturbances λ = 1. Note that because both this model 
and the multi- species model in Equation 5 can be ex-
pressed fully in terms of standardised abundances x or 
xi, dynamics can be simulated without directly including 
effects of carrying capacity K.

For spatial scale, we used Equation 4 to simulate a sin-
gle species in 30 separate patches, and “sampled” regions 
that included anywhere from 1 to all 30 patches, with rk 
and Kk drawn from normal distributions with mean 1 and 
standard deviation 0.1, and inter- patch disturbance cova-
riance cov(ξk, ξl) = σ2/2 = 0.05 for all patches (i.e. positive 
correlations among disturbances, with <ρ(ξb)> = 1/2). For 
the results presented in the main text, we set dispersal rate 
D = Dk = 1 for all patches (i.e. global dispersal). In the sup-
plement, we also present results for global dispersal rates 
ranging from D = 0 to D = 2, directional dispersal where 
Dk differs among patches, and dispersal in an open system, 
where we included an additional loss rate, −LNk, on the 
right- hand side of Equation 4 to represent net loss of prop-
agules dispersing out of the focal region.

For ecological scale, we used Equation 5 to simulate a 
single patch with a community of 30 species, and “sam-
pled” groupings containing anywhere from a single spe-
cies to all 30, with between- species disturbance covariance 
cov(ξi, ξj) = 0 for species pairs (i.e. no correlation in effects 
of disturbances). Growth rates ri were again drawn from 
a normal distribution with mean zero and standard devi-
ation 0.1, and interspecific interaction strengths αij were 
drawn from a censored normal distribution with mean 
−1/2, standard deviation 0.1, and upper limit zero (n.b. we 

avoid positive interactions in our model because these tend 
to cause runaway growth). For both the spatial and ecolog-
ical scale simulations, we set disturbance frequency λ = 1 
and used a “fast” sampling interval of one sample per 0.1 
time- units in order to avoid measurement biases.

Measuring stability

If sampling rates are slow relative to system dynamics, 
empirical estimates of resilience and resistance can be 
biased. This bias occurs because repeated disturbances 
between observations drive the system away from equilib-
rium, therefore leading to underestimates of resilience (i.e. 
r), whereas lags between disturbance events and observa-
tions lead to underestimation of disturbance effects (i.e. σ). 
In contrast, because sample- size corrected variance is an 
unbiased estimator, different sampling frequencies do not 
bias measurements of invariance (i.e. var(x)−1).

Importantly, we can leverage information from un-
biased estimates of variance to correct biased estimates 
of resilience and resistance. Following the properties of 
point processes (Arnoldi et al 2019; Zelnik et al., 2018), 
average temporal variance of x in the single species, sin-
gle patch model in Equation 3 is

Thus, variance decreases, and invariance increases, with 
higher resistance (lower σ), higher resilience (larger r), and 
slower disturbance frequency (lower λ). Building on this 
formula, we can derive an estimate for how the distance of 
x from equilibrium changes over time, yielding

where t represents the time of an observation, t + τ is the 
time of the observation made immediately after t, p(t + τ) 
is the number of disturbances that occurred between t and 
t + τ, and 1/Λ is the average waiting time between distur-
bances. For our simulations, we applied this function to 
observations of individual species and patches to obtain 
unbiased estimates of r and σ. Because this expression is 
non- separable, we estimated parameters using a nonlin-
ear optimiser (either nls in the stats package, or gnls in the 
nlme package in R; Pinheiro & Bates, 2000). More details, 
and automated functions for applying these corrections, 
are available in Appendix E and in the ecostatscale R 
package.

RESU LTS

Matching theoretical expectations for our single- 
species single- patch model, simulations showed no 

(6)var (x) = �2�∕ (2r)

(7)E
[

x(t + �)2
]

= x (t)2 exp [−2r�] + �2

p ( t+ � )
∑

i= 1

(exp[ − 2ri∕Λ])

https://doi.org/10.5281/zenodo.4626668
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temporal scaling relationships for invariance, nor for bias- 
corrected estimates of resilience and resistance based on 
Equation 7 (Figure 3). Raw estimates of both were biased 
(Figure 3a,b), and for temporal scales above ~3, raw re-
sistance could not be computed, as no disturbance- free 
reference time steps were available. For all metrics, un-
certainty increased at slower sampling rates.

For the spatial model with global dispersal Dk  =  1 
for all patches, both σB and var(xB) increased (and thus, 
resistance and invariance decreased) with spatial scale, 

matching expected relationships from Equations 2a– 2b 
(Figure 4b,c). Following the expected scaling relation-
ship in Equation 2c, resilience declined slightly with spa-
tial scale, eventually settling on the average inter- patch 
growth rate rk  =  1 (Figure 4a). There was no effect of 
changing global dispersal rates, nor of allowing variable 
dispersal rates among patches, largely because of com-
pensatory effects at the patch vs. landscape levels (see 
Figure S1a,b, and more detailed discussion in Zelnik 
et al., 2018). In contrast, for the model with an additional 

F I G U R E  3  Effects of temporal scale on observed stability, 
following the working definitions in Figures 1 and 2. Recall 
that resilience is directly proportional to r, whereas resistance 
and invariance are inversely related to σ and var(x), respectively 
(signified with “−1” superscript). Shaded regions in (a– b) show ±one 
standard deviation from the mean for corrected parameter estimates, 
following Equation 7. Hatched regions show raw estimates of r and 
σ, calculated by comparing abundances in sequential time windows 
with differing numbers of disturbances— note resulting bias (see 
main text for details). Shaded region in (c) shows temporal variance 
calculated directly from the raw timeseries— note that this estimate 
is unbiased. Intervals are calculated based on 1000 model iterations 
simulated over 100 time- units, with sampling interval specified on 
the horizontal axis, and parameter values r = 1, D = 0, μ = 0, σ2 = 0.1, 
and λ = 1. Dashed lines show true values for r and σ, and analytical 
expectation for var(x) based on Equation 6

F I G U R E  4  Effects of spatial scale on observed stability, 
following the working definitions in Figures 1 and 2. All results 
are for a system with 30 patches, but measured at different spatial 
scales. (a) Resilience declines somewhat as a function of spatial 
scale, due to stronger buffering effects among plots at smaller scales. 
(b– c) Resistance and invariance differ across scales due to changes 
in total abundance and between- patch covariance. In all panels, 
dashed lines show analytical expectation for scaling relationships, 
following Equations 2a– 2c. Sampling interval is 0.1 time- units for all 
simulations, with global dispersal (Dk = D = 1 for all patches) and 
disturbances with positive between- patch covariance (cov(ξ) = σ2/2). 
Patch- level growth rate rk and carrying capacity Kk are drawn from 
normal distributions with mean 1 and standard deviation 0.1. See 
Figures S1a– c in the supplement for examples of other types of 
dispersal. Otherwise, intervals and parameters are as described in 
the legend for Figure 3
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loss rate from dispersal outside of the focal area, mean 
abundance declined as a function of loss rate, leading to 
large changes in stability estimates (Figure S1c).

Finally, for the multi- species model (Figure 5), both 
r and σB increased (and thus, resilience increased, and 
resistance decreased) with ecological scale following 
the expected scaling relationships in Equations 2b– 2c. 
Invariance also matched the expected analytical re-
lationship Equation 2a, resulting in a concave- down 
hump- shaped relationship for var(xB).

DISCUSSION

Our results demonstrate that resilience, resistance, and 
invariance can be related to simple statistical properties 
of dynamical systems, which allow general and robust 
scaling of these stability metrics across time, space, and 
level of ecological organisation. Recall that following 
our definitions, resistance describes the immediate ef-
fect of disturbances on abundance, resilience describes 
the rate at which abundances recover from disturbances, 
and invariance describes the joint effects of these two 
processes on dynamics over time. The scaling functions 
in Equations 2a– 2c demonstrate how to extrapolate 
all three of these metrics across spatial and ecological 
scales. Similarly, the relationships among these variables 
that we summarise in Equation 6, and the correction in-
troduced in Equation 7, demonstrate how to overcome 
measurement biases that arise as a function of temporal 
scale.

Jointly, these methods allow empirical estimates of 
resilience, resistance, and invariance measured at one 
set of scales to be extrapolated out to other, unobserved 
scales. These results are therefore important both be-
cause they highlight the fact that stability measurements 
are scale dependent, and because they demonstrate how 
to correct for this scale- dependence when comparing 
and interpreting empirical results. The general impli-
cations and limitations of these methods are discussed 
below, and a guide for practitioners showing how to 
apply our methods using the ecostatscale R package is 
presented in Box 1.

General scaling relationships

Because they arise from basic mathematical definitions 
of variance and covariance, there are several important 
cases for which the scaling relationships in Equations 
2a– 2c hold exactly, regardless of the underlying pro-
cesses governing system dynamics. Most obviously, sta-
bility measurements from smaller scales can always be 
extrapolated to larger scales provided that both include 
the same total extent (e.g. using the full set of small plots 
in Figure 1d to estimate stability of the single large plot 
in Figure 1f). However, even if only partial sampling is 
available, the scaling relationships provide unbiased ex-
trapolations to larger scales so long as smaller scale sam-
pling is representative (i.e. the average conditions at the 

F I G U R E  5  Effects of ecological scale on observed stability, 
following the working definitions in Figures 1 and 2. All results are 
for a system with 30 interacting species, but measured at different 
ecological scales. (a) Resilience varies with ecological scale in 
this model because of compensatory dynamics among species. 
(b) Resistance depends only on instantaneous responses to the 
disturbance regime, and therefore varies with ecological scale, but 
not with species interactions (n.b. dashed and dotted lines overlap 
perfectly). (c) Invariance varies quadratically with ecological scale 
as a function of average species- level variance in abundance, and 
between- species correlation— negative correlation implies a concave- 
down relationship (as shown here), whereas positive correlation 
implies a concave- up relationship (see Figure S2 in the appendix for 
other examples from empirical datasets). Note that the vertical axis 
is log- transformed for easier visualisation. For all panels, dashed 
lines show analytical expectation for scaling relationships, following 
Equations 2a– 2c. For reference, dotted lines show hypothetical 
scaling relationships for a system without interactions. Sampling 
interval is 0.1 time- units for all simulations, with species interactions 
(αij) drawn from a truncated normal distribution (mean = −1/2; 
standard deviation = 0.1; upper limit = 0), and species growth rates 
ri drawn from a normal distribution with mean 1 and standard 
deviation 0.1. Otherwise, intervals and parameters are as described 
in the legend for Figure 3
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BOX 1 Recommendations for practitioners

Harmonising data
Differences in observational scales greatly influence stability measurements, which presents a problem for 
synthesis and metanalysis because available data are often measured at many different scales. For example, 
consider the effects of ecological scales (Figure 5): because all three metrics of stability vary as a function of 
the number of species included in samples, studies with different sampling designs could reach wildly differ-
ent conclusions about stability, even if they were all conducted in the same system. A potential solution is to 
“harmonise” records across studies, by extrapolating estimates to a unified set of scales. Doing so removes 
the statistical effects of scale differences, meaning that remaining differences should be ecologically mean-
ingful. To improve interpretability, we suggest that harmonisation should generally proceed by extrapolating 
smaller- scale studies up to larger scales (see General scaling relationships). For example, if studies are available 
with plot sizes of 1, 5, and 10 m2, then stability estimates for all three studies should be harmonised to a scale 
of 10 m2.
Unbiased estimates of resilience, resistance, and invariance are independent of temporal scale, meaning that 
harmonisation is not necessary to account for differential sampling rates (however, a bias correction such as 
that in Equation 7, and implemented in the xt2fun function, may still be necessary if sampling is slow relative to 
system dynamics). In contrast, stability measurements do vary with spatial and ecological scale, meaning that 
harmonisation is required to account for differences in observational scale. Harmonisation is accomplished by 
taking available estimates of invariance, resistance, or resilience, plugging them into Equations 2a– 2c, respec-
tively, and substituting b with the scales of observations, and B with the larger scale to which observations are to 
be harmonised. These computations can be carried out using the var_scale, sd_scale, and res_scale functions, 
respectively. See the help documentation in the ecostatscale R package for more details.
Extrapolating estimates
Equations 2a– 2c and the corresponding R functions also allow extrapolation of expected stability beyond the 
scale of observations. These extrapolations can be useful for, for example, estimating stability at the landscape 
level based on plot- level observations, or at the community level given observations of a subset of species. As 
with harmonisation, extrapolation is accomplished by substituting b with the scale of observations, and B with 
the desired scale at which extrapolations are to be made.
Importantly, these extrapolations only describe “average” conditions across observations. Thus, in order for 
extrapolations to be accurate, observations must be representative of the extrapolated region or species— that 
is, average conditions across the samples must be the same as the average conditions at the extrapolated scale. 
In general, random samples of plots or species should achieve this criterion. However, if heterogeneity is struc-
tured across space or time, then this must be accounted for in the sampling design. For example, if a landscape 
is known to be 20% mesic and 80% xeric, then sampling should be stratified to include this ratio of site types, 
even if it differs from local conditions near survey plots.
Detecting heterogeneity
Although unobserved heterogeneity can bias extrapolations of stability, data measured across several scales can 
be leveraged to identify underlying sources of heterogeneity and to validate extrapolations. To do so, we suggest 
parameterising the statistical scaling relationships in Equations 2a– 2c, or the corresponding R functions, with 
data from the smallest observational scale available, and comparing these to independent estimates of stability 
observed at larger scales (Pimm et al., 2019; Wang et al., 2017). If empirically observed relationships diverge from 
statistical expectations, then the associated scaling relationship is likely to be biased, and should not be used to 
extrapolate stability to other, unobserved scales.
Even if observations are only available from a single scale, it may still be possible to identify heterogeneity by 
aggregating specific combinations of plots or species through “non- random cross- validation” (Wenger & Olden, 
2012). For example, if stability varies among plots in different regions of a site (e.g. northwest vs. southeast cor-
ner of a field), or among different species groups (e.g. legumes vs. grasses), then these deviations indicate spatial 
or ecological heterogeneity, respectively. Similarly, if stability varies between estimates derived from the full 
dataset vs. for example, a subset of the dataset including every second sampling event, then this indicates that 
temporal sampling was potentially too infrequent to produce unbiased estimates of resilience and resistance, 
and a correction such as that in Equation 7, or the accompanying xt2fun R function, should be applied. See 
function help documentation for example implementations.
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smaller scale match those at the larger scale). Thus, the 
scaling definitions should be applicable for most studies 
that randomly sample species from a larger community, 
or plots from a larger landscape— which includes a sub-
stantial fraction of existing ecological timeseries data-
sets. For similar reasons, our methods can also be used 
to project stability measurements from larger scales to 
smaller scales, although these estimates summarise aver-
age conditions at smaller scales— not conditions within 
individual patches or for individual species.

Another general result is that if sampling is slow rela-
tive to system dynamics, raw estimates of resilience and 
resistance will be biased (leading to under- estimates of 
r and σ). In theory, the bias correction that we present 
in Equation 7 holds only for simple linear systems— 
however, in practice, it will often hold for more complex 
systems so long as they are undergoing bounded fluctu-
ations around a static mean (Arnoldi et al 2019; Zelnik 
et al., 2018). For example, estimates from Equation 7 
converged to the correct parameter values for both our 
multi- patch and multi- species models.

Our study also highlights the similar effects of spa-
tial vs. ecological scale on stability. For invariance, as 
predicted in Equation 2a, positive average covariance 
among species- level abundances or site- level abundances 
leads to a concave- up scaling relationship for var(x) (e.g. 
Figure 4c, as might be driven by species in nearby plots 
all responding similarly to a local disturbance). Negative 
average covariance leads to a concave- down relationship 
(e.g. Figure 5c, as might be driven by strong effects of 
competition). Recall, however, that for the simulation re-
sults presented here, we assume that species responses to 
disturbances are independent (i.e. cov(ξi, ξj) = 0), which 
allows competition effects to dominate. In real- world 
systems, these responses are generally thought to covary 
positively over time (e.g. due to similar effects of droughts 
or floods across species), leading to net positive average 
covariance in species abundances, and thus a concave- up 
relationship for var(x) as a function of ecological scale 
(Houlahan et al., 2007; Loreau & de Mazancourt, 2013). 
Examples of concave- up, concave- down, and linear scal-
ing relationships derived from empirical data are shown 
in Figure S2 in the supplement.

The spatial and ecological scaling relationships for 
resistance in Equation 2b are similar to those for invari-
ance. However, because we define resistance as the in-
stantaneous effect of disturbances on abundances, it is 
largely independent of internal system processes, such 
as inter- patch dispersal or species interactions. Scaling 
relationships are therefore the same for systems with and 
without species interactions (Figure 5b; n.b. dashed and 
dotted lines overlap perfectly). This property means that 
extrapolating resistance across spatial and ecological 
scales should be relatively straightforward even in com-
plex systems.

The scaling relationship for resilience is the most vari-
able. For temporal scaling, average per- capita growth 

rates in our model are constant across space and time, 
leading to no change in resilience with scale (Figures 3a 
and 4a). For multi- patch and multi- species communities, 
the median scaling relationship for resilience can be ap-
proximated following Equation 2c, although for multi- 
species communities, this relationship only describes the 
instantaneous recovery rate (i.e. as would be observed 
immediately after a disturbance). This is because re-
silience also varies as a function of temporal scale in 
these systems (see Figure S3)— that is, different return 
rates occur over short vs. long timespans, because inter-
actions among patches or species can lead to complex, 
non- monotonic dynamics (see Neubert & Caswell, 1997). 
In theory, this temporal scaling relationship can be ex-
pressed analytically (Eq. 6b in Arnoldi et al., 2018), but 
in practice, doing so requires substantial a priori infor-
mation, suggesting that empiricists should generally be 
careful to choose sampling intervals that match the scale 
of the phenomena being tested when studying highly in-
terconnected or diverse systems.

Interpreting deviations from scaling rules

An important limitation of the statistical scaling re-
lationships in Equations 2a– 2c is that they are largely 
phenomenological. Although they predict how patterns 
change across scales, they do not explain why these pat-
terns exist. Indeed, there are usually many potential 
mechanisms that could explain patterns equally well. For 
example, although a concave- up relationship between 
var(x) and ecological scale implies negative average cor-
relations in interspecific abundances, these correlations 
could result from many different mechanisms, including 
competition, species differences in their response to dis-
turbances, or observation error (Clark et al., 2019; Lee 
et al., 2020).

Critically, cases where observed scaling relationships 
diverge from statistical expectations can be especially in-
formative. Because Equations 2a– 2c hold only if samples 
are representative of the full extent under consideration, 
divergence from these expectations implies that there is 
unobserved heterogeneity in observations across time, 
space, or species. For example, if scaling relationships 
predicted from patch- level or species- level data do not 
match larger- scale observations (e.g. from remote sens-
ing data, or at the community level), then this might in-
dicate that samples are not representative of conditions 
at the larger- scale (König et al., 2017; Wang et al., 2017). 
Similarly, if observed invariance changes as a function of 
temporal scale, then this divergence may be indicative of 
regime shifts (Scheffer et al., 2009), or that equilibrium 
abundances are not static (Pimm et al., 2019).

Note, however, that without additional information, 
the statistical scaling relationships cannot predict how 
unobserved heterogeneity outside of the sampled region 
will influence predictions. In diverse communities, for 
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example, stability varies with community structure, 
meaning that adding or removing species, or changes 
in how species interact with one another, will alter the 
scaling relationships (Arnoldi et al., 2018; Hillebrand 
et al., 2018; Jacquet et al., 2016). Similarly, if the struc-
ture of heterogeneity changes across space or time (e.g. 
clustered disturbances in one region, vs. disaggregated 
disturbances in another), then resulting biases will be, 
for all practical purposes, impossible to correct with-
out a priori knowledge of conditions across the entire 
landscape (Arnoldi et al., 2019; Hallett et al., 2019; Lee 
et al., 2020).

Nonstationary systems

In this study, we largely neglect effects of non- stationary 
behaviour on stability (e.g. dynamics with no fixed 
equilibrium point). We do so because these kinds of 
dynamics are generally difficult to summarise through 
simple statistical relationships. However, it is possible 
to incorporate some kinds of non- stationary behaviour 
into our methods. If mean abundances change slowly 
over time, then our scaling functions can still be ap-
plied within subsets of the data. For example, in sys-
tems undergoing regime shifts, our scaling functions 
could be fitted separately for the time periods before 
vs. after the shift (Carpenter et al., 2001; Scheffer et al., 
2009). Similarly, even for systems undergoing rapid 
changes due to anthropogenic pressures, our methods 
likely still apply for historical data preceding current 
disturbance regimes (Coulson, 2021). More broadly, 
if trends in average abundances are predictable, then 
we can redefine system dynamics around this moving 
average. We demonstrate this property in Figure S1c, 
where losses due to dispersal out of the system lead 
to declines in average abundance below the expected 
equilibrium at Nk(t) = Kk. Without any additional cor-
rections, this shift in equilibrium causes stability scal-
ing relationships to diverge greatly from statistical 
expectations. However, if we redefine x around the new 
mean abundance value (i.e. xk,new(t)  =  Nk(t)  −  <Nk>) 
then we find that the statistical scaling relationships 
still hold. Using more sophisticated approaches for 
predicting changes in mean abundance values over 
time (e.g. Cenci & Saavedra, 2019; Chesson, 2017; 
Deyle et al., 2016; Hamilton et al., 2017; Karakoç et al., 
2020), it may be possible to similarly “detrend” even 
very complex nonstationary data to make them suit-
able for our methods.

Conclusions

The strong dependence of ecological stability on scale 
and context has represented a major challenge for at-
tempts to synthesise and extrapolate measurements from 

real- world systems. The methods that we present here 
greatly alleviate these challenges, and provide an oppor-
tunity to harmonise measurements from across different 
sites and systems, and to extrapolate measurements out 
to scales which are difficult to measure. We are there-
fore hopeful that these results will be especially helpful 
in facilitating cross- system comparisons of stability, pro-
viding estimates at scales that are more relevant for con-
servation and management, and identifying underlying 
drivers of heterogeneity across time, space, and species.
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