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Operational prediction of forest attributes using standardised harvester data and
airborne laser scanning data in Sweden
Jon Söderberg a*, Jörgen Wallerman b, Anders Almängc, Johan J. Möllera and Erik Willéna

aSkogforsk (the Forestry Research Institute of Sweden), Uppsala, Sweden; bDepartment of Forest Resource Management, Swedish University of
Agricultural Sciences, Umeå, Sweden; cSveaskog Förvaltnings AB, Ljusdal, Sweden

ABSTRACT
With cut-to-length harvesters, tree stems are measured and cut into different timber assortments at
the time of felling. These measurement data collected from harvested trees can be used for decision-
support at different levels of the forest industry chain and also for forest planning when combined
with remote sensing data. The aim of this study was to examine the operational application for
predicting merchantable stem volume, basal area, basal area-weighted mean tree height, basal
area-weighted mean stem diameter and diameter distribution at stand level with airborne laser
scanning data and harvester data from final felling operations. The area-based approach using k-
MSN estimation was evaluated for six different variants of spatial partitioning. The results were
stand level predictions with relative root mean square errors of 11–14%, 10–15%, 3–4% and 6–7%
for merchantable stem volume, basal area, basal area-weighted mean tree height and basal area-
weighted mean stem diameter, respectively. Predictions of stem diameter distributions resulted in
error indices of 0.13–0.14. The results demonstrate that harvester data from cut forests may serve
as ground truth to airborne laser scanning data and provide accurate forest estimates at stand
level. The predicted diameter distributions could be useful for improving yield estimates and
bucking simulations.
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Introduction

Cut-to-length (CTL) is the dominating harvesting method in
Scandinavian forestry. Using CTL harvesters, tree stems are
measured and cut into separate timber assortments at the
time of felling, and optimisation of bucking and the sub-
sequent flow of timber to industries is crucial in maximising
revenues. Each planned harvest currently lacks sufficient
information to ensure this optimisation. Möller et al. (2015)
clearly identify the need for improved yield estimates, for
planning as well as communication along the value chain,
in the Swedish forest industry.

This study examines a possibility to capture the necessary
information by using the extensive and detailed data avail-
able from previous harvests stored in data files from harvest-
ers. Using airborne laser scanning (ALS) data, a planned
harvesting area is matched to previous harvests of similar
forests, and existing harvester data are then used to create
a very detailed representation of the forest planned for
cutting. This enables a completely new level of harvest optim-
isation using simulations of bucking strategies and harvesting
systems (Möller et al. 2015).

Harvesters in Sweden collect data for each processed log
(Arlinger et al. 2003; Rasinmäki and Melkas 2005) in accord-
ance with the StanForD standard (Arlinger et al. 2012). In
most cases, the geographical position of the machine
(measured by on-board GPS mounted on the main body) is

recorded for each processed tree. Harvester data in Sweden
are provided daily, or even hourly, from around 1400 harvest-
ers, transmitted through cellular networks, and stored by the
forest companies or by Biometria (www.biometria.se), a data
centre supporting most Swedish forest companies. These
data are currently used for reporting production and control-
ling the timber flow (Skogforsk 2021).

Data from harvesters provide detailed information of the
output in terms of length, diameter, species and timber
assortment of each produced log. This information can be
used to accurately reconstruct the dimensions of each har-
vested tree, if complemented with taper functions for esti-
mating the length of the cut-off treetop. From this, the
yield can be optimised using bucking simulations based on
various price lists and assortment combinations. Upcoming
harvests can be better planned and optimised if key infor-
mation about the forest is available, such as stem volume,
basal area, tree height, stem diameter, stem diameter distri-
bution, tree species, stem taper and wood quality. To date,
there has been little use of these data, as the data are only
available for forest stands that no longer exist (Rasinmäki
and Melkas 2005). For these stands, the use of harvester
data combined with remote sensing data, acquired before
the harvest, has been suggested.

Forest management planning in Sweden has been revolu-
tionised by three-dimensional (3D) data about the forest

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Jon Söderberg jon.soderberg@skogforsk.se
*Present address: Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden

SCANDINAVIAN JOURNAL OF FOREST RESEARCH
2021, VOL. 36, NO. 4, 306–314
https://doi.org/10.1080/02827581.2021.1919751

http://www.biometria.se
http://crossmark.crossref.org/dialog/?doi=10.1080/02827581.2021.1919751&domain=pdf&date_stamp=2021-06-01
http://orcid.org/0000-0001-9401-1410
http://orcid.org/0000-0002-9996-1447
http://creativecommons.org/licenses/by/4.0/
mailto:jon.soderberg@skogforsk.se
http://www.tandfonline.com


canopy captured by ALS. Accurate, large-scale maps of forest
variables, available at low cost, can now support and improve
decisions about silvicultural treatments compared to the sub-
jective and manual practices used previously. Using the area-
based estimation method (e.g. Næsset 2007), ALS data can
provide estimates of forest variables in Scandinavian boreal
forest with accuracies in terms of root mean square error
(RMSE) in the range of 11–18% (in percent of true mean)
for stem volume, 3–6% for basal area-weighted mean tree
height and 9–13% for basal area-weighted mean stem diam-
eter at stand level (Næsset 2007; McRoberts et al. 2010; Gobak-
ken et al. 2014; Kukkonen et al. 2019). The accuracy produced
by ALS generally outperforms traditional sources of data for
management planning, such as subjective field estimation
(15–25% RMSE for stem volume, and 9% RMSE for tree
height), and field estimation in combination with interpret-
ation of aerial photos viewed in stereo (15–25% RMSE for
stem volume and 10% RMSE for tree height) (see, e.g. Ståhl
1988, 1992). Estimates are commonly made using non-para-
metric estimation methods (e.g. the k-MSN algorithm), also uti-
lising a set of field-surveyed reference data plots (Maltamo
et al. 2006a; Packalen and Maltamo 2007). However, acqui-
sition of ALS data is expensive, and this has previously
limited the use in operations to large forest holdings.

ALS data are now available for all forested land in Sweden,
because of an ALS campaign carried out by Lantmäteriet (the
Swedish National Land Survey) between 2007 and 2016, orig-
inally intended to produce a new, accurate digital terrain
model (DTM) of Sweden. Updating of this initiative began in
2018 and is currently ongoing at an approximate annual scan-
ning rate of 1/7 of the forested area in the country. Apart from
the DTM, the data have also been used to produce country-
wide raster maps of estimated forest variables, published
online, free-of-charge for public use, and have been highly
appreciated by forest owners in Sweden (Nilsson et al. 2017).
These maps are produced using the area-based estimation
method utilising sample plot data collected by the Swedish
National Forest Inventory (NFI) (Fridman et al. 2014) as refer-
ence data. With the emergence of the detailed DTM from Lant-
mäteriet, a whole new level of accuracy can also be achieved
with other sources of remote sensing data, such as stereo
matching of high-resolution images from satellites or aerial
photography, enabling 3D modelling similar to ALS (Maltamo
et al. 2006b; Bohlin et al. 2012; Vastaranta et al. 2014).

ALS data enable an assessment of similarity of forest prop-
erties, and in this context data can be used to select existing
harvested forest with as similar attributes as possible to those
in a planned harvest site. This is clearly the most promising
remote sensing data source for this application, assuming
the geographical positions of harvested trees can be deter-
mined with sufficient accuracy. Most harvesters currently in
operation only record GNSS coordinates of the harvester
main-body, and not the harvester head. This means that if
an accurate position of each harvested tree is not available,
spatial aggregation of harvester tree and ALS data is necess-
ary to form the spatial plots used as reference data.

Rasinmäki and Melkas (2005) addressed an operational
application based on existing, but very limited, data (two
forest stands) using a simulation approach. Various spatial

divisions (in blocks, segments, raster and Thiessen polygons)
of the harvested forests were used as reference plots in area-
based estimation using ALS data. The method for partitioning
a stand when using harvester data did not affect the accu-
racies of the predictions; it was the size of the plots that
was significant. Generally, when using field plot data, better
accuracy is expected in predictions based on smaller plot
size, since each plot will contain less variation (Tuominen
and Haapanen 2011), but Rasinmäki and Melkas (2005)
found the inverse to be true for predictions on stand level
harvester data. This is likley due to the poor accuracy of
tree positions – the smaller the plots, the greater the prob-
ability that a tree will be erroneously assigned (Rasinmäki
and Melkas 2005; Gobakken and Næsset 2009).

Using highly accurate, manually measured positions of
each tree in combination with high-density ALS data, Holmg-
ren et al. (2012) clearly showed the potential of a single-tree
level prediction, although using data not operationally avail-
able. Saukkola et al. (2019) utilised ALS, aerial image and har-
vester data to predict forest variables using different
positional accuracy of harvested trees and raster aggrega-
tions to form reference plots. The predictions resulted in
accuracies of 25%, 25%, 6–8% and 10–11% RMSE (in
percent of sampled means) for stem volume, basal area,
basal area-weighted mean tree height and basal area-
weighted mean stem diameter, respectively, at stand level.
However, bias in predictions of basal area and stem volume
was approximately 15%. Harvester head positioning pro-
duced best results using small plot sizes (254 m2), while
larger plot sizes were advisable if only harvester main-body
positions were recorded.

Using accurate tree positioning and ALS data, Hauglin et al.
(2018) produced accurate predictions of stem volume at plot
level (400 m2), 19–22% RMSE in high-production forest, and
32–60% RMSE in medium-production forest. Finally, highly
accurate stand level predictions of stem volume and stem
diameter distributions were reported by Maltamo et al.
(2019), with RMSE under 9% for merchantable stem volume
and error index (EI) values less than 0.2 for stem diameter dis-
tributions. This was done using ALS data and plot sizes of 200,
400, 900 and 1600 m2 aggregated as raster. Performance was
better for the smaller sizes, but the differences were small.

Prediction accuracy is obviously improved by high-pre-
cision positional data of each harvested tree. Boom positioning
is not available from operations today, but boom angle and
boom extension are already implemented in the current stan-
dard, StanForD 2010. Hence, CTL-harvester manufacturers can
now relay this information from the harvester control systems.
The final piece needed is machine heading, to accurately utilise
the boom angle, and this could be addressed by adding a
second GNSS receiver to triangulate the heading of the har-
vester, as described by Hauglin et al. (2017).

This study examines the operational application of esti-
mating forest attributes and stem diameter distribution at
stand level in Sweden, using tree data measured and col-
lected from harvesters and the national ALS data, based on
an area-based estimation method. Prediction accuracies of
merchantable stem volume, basal area, basal area-weighted
mean tree height, basal area-weighted mean stem diameter
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and stem diameter distribution for final felling operations is
evaluated. The influence of size and spatial form of reference
plots are also considered.

Materials and methods

The study was based on harvesting data from the forest
company Sveaskog in central Sweden, and corresponding
ALS data from the national laser scanning performed by Lant-
mäteriet. The studied area ranges from Lake Siljan (60°50′ N,
14°55′ E) in the northwest, to Lake Mälaren (59°30′ N, 16°40′ E)
in the south-east (Figure 1). In this region the most common
tree species are Norway spruce (Picea abies (L.) Karst.), Scots
pine (Pinus sylvestris L.) and birch (Betula spp.).

Harvester data were provided in the StanForD XML format
(Arlinger et al. 2003; Arlinger et al. 2012) and contained data
from clear-felling sites only. The sites were dominated by pine
or spruce and laser scanned prior to harvest. Data on 510,001
harvested trees from 168 stands with a total area of approxi-
mately 1160 ha were collected, excluding data from logging
outside stands (i.e. roads and landings). From these data mer-
chantable stem volume (solid under bark) (V), basal area (B),
basal area-weighted mean tree height (H) and basal area-
weighted mean stem diameter at breast-height (D) were esti-
mated at stand level (Table 1). For V, measured diameter at
10 cm intervals along the stem were used and for H,
measured log lengths were used together with estimates of
tree top lengths based on stem diameter measurements

(Kiljunen 2002). Each tree was assigned a geographical pos-
ition, using GPS data of the harvester location at the time
of felling. These operations were performed using the soft-
ware hprCM developed by the Forestry Research Institute of
Sweden (Skogforsk) (Siljebo et al. 2017). In a few cases, GPS
data were lacking and positions for the corresponding trees
were spatially interpolated from position data of trees har-
vested earlier and later in time, using the pchip algorithm
from the Signal Library (R Core Team 2018). This resulted in
complete tree lists, including position and information
about each log. Spatial boundaries of the harvested areas
were then assessed by forming a convex hull of tree positions
within 25 m of each other, with a 10 m buffer added to the
stand polygon border to account for positional errors and
reach of the harvester boom.

The ALS were performed from altitudes between 1700 and
2300 m, with ±20° scanning angles and 20% flight path
overlap, producing a density of 0.5–1 returns/m2 and 0.5–
0.7 m footprint (Lantmäteriet 2020). The point-cloud data
were normalised to height above ground using the DTM pro-
duced by Lantmäteriet from the same point-cloud. Only
points with heights above ground lower than 50 m or less
than 2 m below ground were retained, and in areas of over-
lapping flight paths, only points from the path of steepest
scan angles were retained.

The analyses were based on the area-based estimation
method (Næsset 2007; Mcroberts et al. 2010), evaluating
two methods of spatial aggregation of tree lists to form

Figure 1. The study area in central Sweden (59°30′ N to 60°50′ N, 14°55′ E to 16°40′ E) with the harvested stands (red polygons) distributed in the four counties of
Dalarna, Örebro, Västmanland and Gävleborg.
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reference data plots – rasterization and segmentation. Fur-
thermore, each method was also applied and evaluated
using three different spatial sizes of reference data units,
resulting in six independent estimations evaluated side-by-
side. Using rasterization, each stand was partitioned using
rasters of three different cell sizes, to explore the effect of pos-
itional uncertainty, with cell sides of 10, 20 and 40 m (ras10,
ras20 and ras40, respectively). Segmentation was made by
region merging initiated from a raster (10 m × 10 m cell
size) of ALS metrics, where rectangular initial start regions
were used instead of irregular Voronoi polygons (Olofsson
and Holmgren 2014). The metrics used were vegetation
ratio (vr – the proportion of returns higher than 2 m above
ground), average canopy height (ach – the average height
of first returns higher than 2 m above ground), and the
95th height percentile (h95 – the percentile of all returns
higher than 2 m above ground). Three different segmenta-
tions were made, using minimum segment sizes of 100, 300
and 900 m2 (seg100, seg300 and seg900, respectively).
Maximum segment size was 1,000,000 m2 and merging
limit was 0.1 standard deviations in all segmentations. From
the complete tree lists, trees were assigned to the raster
cells and segments produced in the previous steps and the
corresponding variables V, B, H and D were calculated.
Finally, ALS metrics were calculated for each raster cell and
segment in terms of height percentiles (p05, p10, p20,… , p90,
p95), average height (ah), canopy cover (cc), vegetation ratio
(vr) and height count metrics (d0, d1, d2, d3, d4, d5 – the percen-
tage of points in height intervals of 2–5 m, 5–10 m, 10–15 m,
15–20 m, 20–25 m and 25–30 m, respectively). Height count
metrics were also transformed to capture non-linear relations,
using the natural logarithm (lndi), inversion (invdi), square
root (sqdi) and square (x2di), for i = 0,… , 5, corresponding
to the six height intervals. Two dummy variables, spruce
and pine, were classified at stand level by a proportion of mer-
chantable stem volume of at least 70 percent for spruce and
pine stem volume, respectively, and all elements were
assigned these variables from the parent stand.

Prediction was based on non-parametric k-nearest neigh-
bour estimation (k-NN), using the Most Similar Neighbour
(MSN) similarity measure (Moeur and Stage 1995). This
method utilises a reference dataset where the dependent
variables Y are known, and a set of p independent variables
X with data available for the reference dataset as well as for
all prediction points. An unobserved Yi is predicted using a
weighted average of the data from the k reference measure-
ments most similar to the predicted target. In MSN, similarity
is measured using a linear transformation of differences d in

the independent variables X

d2ij = (xi–xj)A(xi − xj)
T (1)

for the matrix A corresponding to a given transformation of
the variables X. In the MSN method, A is defined using cano-
nical correlation analysis of Y and X aiming to find the linear
transformation of X, which explains most of the target vari-
ables Y, i.e.

A = GL2GT (2)

where Γ is the p ′1 vector of canonical loadings and Λ is the p
′p diagonal matrix of canonical correlation coefficients.

Using MSN distances for the k most similar reference
measurements, predictions were based on the weighted
average of those k reference measurements of Y, using the
inverse of the MSN distance as weights (Packalen and
Maltamo 2007). The canonical correlation model was fitted
to the harvester measurements of V, B, H and D as Y, pro-
portions of spruce (spruce) and pine (pine) stem volumes,
and a subset of the ALS metrics, as X. The subset was selected
by first screening the set of all metrics for collinearity using
the variance inflation factor (VIF), excluding metrics with a
value of 10 or more from modelling (Chatterjee and
Simonoff 2013), and then applying stepwise regression of V,
H and D based on spruce, pine, and the remaining ALS
metrics. V and B were highly correlated, above 0.974, there-
fore B was excluded from this step. To reduce edge effects
from positional uncertainty and the simple stand delineation
method, only elements with at least 90% of their area inside a
stand polygon were included for prediction and validation.
Elements with missing data or ALS metrics with less than
2 m in average height were also excluded.

The performance of predictions was evaluated by dividing
the dataset in two parts, one set used as validation data, and
the other used as reference data to predict V, B, H and D for
the elements in the validation stands using the k-MSN
method. Here, 80 stands from the 168 were randomly selected
to form the validation data. Accuracy was then inferred from the
predictions of the evaluation dataset using root mean square
error (RMSE) (Equation (3)) and bias (Equation (4)). To validate
prediction of stem diameter distributions, Reynold’s error
index (REI) (Reynolds et al. 1988; Gobakken and Næsset 2006)
was used (Equation (5)). Here, the error index (EI), as suggested
by Packalén and Maltamo (2008), was also calculated for each
stand (Equation (6)). By calculating relative frequencies of
stems, each stand receives an equal weight in the evaluation.

RMSE =
����������������∑n

i=1 (ŷi − yi)
2

n

√
(3)

Bias =
∑n

i=1 (ŷi − yi)
n

(4)

REI =
∑k
i=1

| fi − f̂ i|
N

100 (5)

EI =
∑k
i=1

0.5
fi
N
− f̂i

N̂

∣∣∣∣∣
∣∣∣∣∣ (6)

Table 1. Stand level forest attributes, merchantable stem volume (V ), basal
area (B), basal area-weighted mean tree height (H ), basal area-weighted
mean stem diameter (D) and number of stems (S), as reconstructed from
harvester data and used as training and validation datasets.

Training Stands (n = 88) Validation Stands (n = 80)

min-max mean (SD) min-max mean (SD)

V (m3 ha−1) 88–354 200 (47) 118–311 201 (47)
B (m2 ha−1) 10.8–31.3 21.6 (3.7) 15.3–27.9 21.5 (3.5)
H (m) 18.0–29.2 23.0 (2.4) 16.6–28.9 23.2 (2.3)
D (cm) 22.5–36.0 28.2 (2.9) 18.4–36.8 28.1 (3.1)
S (ha−1) 127–800 462 (115) 265–1177 457 (123)
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where ŷi is the predicted and yi is the observed value for stand i,
where i= 1,… , n, and �y is the mean of all observed values. For
REI and EI, k is the number of stem diameter classes in the stand,
fi is the observed and f̂i is the predicted number of stems in
stem diameter class i, and N and N̂ are the observed and pre-
dicted number of stems for all classes, respectively.

Results

In selection of variables for the canonical correlation model in
k-MSN, the stepwise regression model of V, H and D based on
spruce, pine, p95, cc, d04, lnd01 and lnd04, showed to be the
most significant and were selected for constructing the cano-
nical correlation models used in k-MSN. Validations of raster
and segment predictions showed that merchantable stem
volume was predicted with a RMSE of 26–33 m3 ha−1 (11–
14%), with an underestimation of 4–10 m3 ha−1 (2–4%)
(Table 2). For basal area, the RMSE was approximately
3 m2 ha−1 (10–15%), with an underestimation of 0.2–
0.8 m2 ha−1 (1–3%) (Table 3). Moreover, basal area-weighted
mean tree height was predicted with a RMSE less than 1 m
(3–4%) regardless of aggregation method and an underesti-
mation less than 0.2 m (<1%) (Table 4). Prediction of basal
area-weighted mean stem diameter resulted in a RMSE less
than 2 cm (<7%) for all spatial aggregations, with a bias of
less than 0.3 cm (<1%) in all instances (Table 5). Evaluating
the raster predictions, the relationship between accuracy in
terms of relative RMSE and element size varied between the
predicted variables, where the accuracy was approximately
the same for V, higher for the smaller sizes for B, and higher
for the larger sizes for H and D (Tables 2–5). These relation-
ships between accuracy and plot size were not identical for
the segment predictions, where the accuracy of V and B
was higher for smaller element sizes, but not affected by
size for H and D. The results from one raster variant (ras20)

and one segmentation variant (seg300) are displayed in
Figures 2 and 3, respectively.

Prediction of stem diameter distributions using 2 cm
diameter classes and area-weighted aggregations of trees in
imputed elements produced a mean relative REI of 29, 28,
30, 32, 35 and 49 for the variants ras10, ras20, ras40,
seg100, seg300 and seg900, respectively (Table 6). Using
the error index (EI), adapted by Packalén and Maltamo
(2008), all six variants produced similar results, with a mean
EI of 0.13–0.14.

Discussion

In general, the prediction method proposed in this study per-
formed very well, producing high accuracies in terms of rela-
tive RMSE for H and D (3–4% and 6–7% RMSE, respectively),
but somewhat less accurate for V and B (11–14% and 10–
15% RMSE), evaluated at stand level. This with negligible
bias. These results are similar to those obtained using the
area-based estimation method with standard surveyed
sample plots as reference data, applied on similar ALS data.
In particular, the results are similar, or better, compared to
the ALS-based national predictions of Sweden (Nilsson et al.
2017). The latter study was made using the same ALS data
as in this study, but used field inventoried sample plots
(with a plot size of 314 m2) from the Swedish NFI as reference
data rather than harvester data. Compared to Saukkola et al.
(2019) and Hauglin et al. (2018), both of which are using har-
vester data as reference data, the results from the current
study outperformed those obtained in both studies.
However, these studies are not easily compared, since they
were performed in various forest types (especially with vari-
ations in spatial homogeneity), used different harvesters,
used different methods to spatially assign a harvested tree

Table 2. Validation results in terms of RMSE and bias for predictions of
merchantable stem volume using three different raster cell sizes (ras10,
ras20 and ras40) and three segmentation sizes (seg100, seg300 and seg900)
(n = 80).

RMSE Bias

Method (m3 ha−1) (%) (m3 ha−1) (%)

ras10 31.28 11.01 -9.37 -3.30
ras20 25.88 11.03 −6.74 −2.87
ras40 26.44 11.53 −4.38 −1.91
seg100 27.69 11.60 −9.77 −4.10
seg300 30.11 12.85 −8.24 −3.51
seg900 33.17 14.16 −8.00 −3.42

Table 3. Validation results in terms of RMSE and bias for predictions of basal
area using three different raster cell sizes (ras10, ras20 and ras40) and three
segmentation sizes (seg100, seg300 and seg900) (n = 80).

RMSE Bias

Method (m2 ha−1) (%) (m2 ha−1) (%)

ras10 3.04 9.99 −0.68 −2.23
ras20 2.73 10.90 −0.46 −1.83
ras40 2.74 11.27 −0.26 −1.08
seg100 2.82 11.02 −0.78 −3.06
seg300 3.07 12.29 −0.58 −2.34
seg900 3.62 14.55 −0.64 −2.56

Table 4. Validation results in terms of RMSE and bias for predictions of basal
area-weighted mean tree height using three different raster cell sizes (ras10,
ras20 and ras40) and three segmentation sizes (seg100, seg300 and seg900)
(n = 80).

RMSE Bias

Method (m) (%) (m) (%)

ras10 0.84 3.64 −0.11 −0.47
ras20 0.63 2.72 −0.12 −0.52
ras40 0.62 2.67 −0.07 −0.28
seg100 0.77 3.30 −0.15 −0.66
seg300 0.76 3.25 −0.15 −0.65
seg900 0.82 3.54 −0.10 −0.45

Table 5. Validation results in terms of RMSE and bias for predictions of basal
area-weighted mean stem diameter using three different raster cell sizes
(ras10, ras20 and ras40) and three segmentation sizes (seg100, seg300 and
seg900) (n = 80).

RMSE Bias

Method (cm) (%) (cm) (%)

ras10 1.87 6.65 0.13 0.45
ras20 1.58 5.63 0.15 0.54
ras40 1.58 5.62 0.23 0.81
seg100 1.75 6.23 0.07 0.26
seg300 1.83 6.49 0.10 0.36
seg900 1.95 6.94 0.17 0.60

310 J. SÖDERBERG ET AL.



Figure 2. Predictions of stem volume (a), basal area (b), basal area-weighted mean tree height (c) and basal area-weighted mean stem diameter (d) compared to
harvester measured dito from final felling operations, using a raster approach, with 20 m × 20 m raster cells (ras20) (n = 80).

Figure 3. Predictions of stem volume (a), basal area (b), basal area-weighted mean tree height (c) and basal area-weighted mean stem diameter (d) compared to
harvester measured dito from final felling operations, using a segmentation approach, with a minimum segment size of 300 m2 (seg300).
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to a probable growing location, and often used very limited
amounts of data.

The large dataset in this study is unique, having thousands
of reference and validation elements for imputation.
However, to put this study into an operational perspective,
this dataset represents less than a day’s worth of collected
harvester data in Sweden. Data used here may be more
uniform compared to other studies, with selected final
felling sites dominated by coniferous trees, which may posi-
tively affect prediction accuracy. This is especially expected
for k-NN methods; even in a limited sample of reference
data observations, there are usually several similar reference
data observations (close in feature space) available for each
prediction target.

Evaluating predictions of stem diameter distributions, the
REI for all raster-based variants were roughly equal, while for
segmentation variants the fit decreased with increasing
segment size. This is likely due to greatly varying size of seg-
ments within each variant, compared to equal-sized raster
cells. However, when calculating the error index (EI) based
on a relative distribution ignoring variation in segment size,
the segmentation variants were on par with the raster var-
iants. These results were on par or better compared to
those reported by Maltamo et al. (2019), where the error
indices, using 2 cm diameter classes but only evaluated for
one tree species (Norway spruce), were 0.14, 0.18, 0.16 and
0.21 for 200, 400, 900 and 1600 m2 cell sizes, respectively.

The different spatial aggregations of harvester data pro-
duced similar results regarding the evaluated spatial sizes,
and the small differences found were not consistent
between the raster and the segmentation aggregations.
This is in accordance with, e.g. Saukkola et al. (2019), where
raster aggregations of 761 m2 cell sizes were recommended
for use with harvester data where harvester head position is
not available. Maltamo et al. (2019) showed a RMSE of 8–
12% for predictions of V using raster aggregated data with
200, 400, 900 and 1600 m2 cell sizes, and only noted minor
improvements in accuracy for small cell sizes. In general,
the raster aggregation was superior to the segmentations,
although the differences were small. A segmentation
approach follows the spatial variations of the forest and
does produce segments of more homogeneous forests com-
pared to raster aggregations of similar cell sizes. The lack of
accurate positions of harvested trees probably negates this
advantage, as harvested tree data are then often assigned
to incorrect segments. On the other hand, studies using har-
vester head positioning to co-locate every harvested tree to
ALS data more accurately do not generally show substantially

higher prediction accuracy (e g., Hauglin et al. 2018; Saukkola
et al. 2019).

Another interesting aspect of harvester data is the yield
volumes of timber assortments, recorded for each processed
log. This information could be used to predict yield volumes
from harvest operations. Vähä-Konka et al. (2020) evaluated
the accuracy of ALS based yield estimates from the Finnish
Forest Centre by comparing to harvester measured yields
and found a RMSE of 26% for total harvest removal volume,
but much larger RMSEs 49–170% for individual timber assort-
ments. Harvester data can provide large volumes of reference
data for modelling yield estimates, but another vital com-
ponent needed to improve yield predictions is reliable tree
species composition, beyond the dominant species. This
could be feasible using ALS in combination with airborne
optical imaging or even a multispectral laser scanner as Kuk-
konen et al. (2019) has shown, or possibly even using more
readily available satellite imaging data.

The methodology developed in this paper shows clear
potential for large-scale applications using high-precision
remote sensing data. In Sweden, the national ALS campaigns
provide full cover of all forest land and can already facilitate
accurate predictions of final felling outcome at any potential
harvest site in Sweden. The method described in this paper
can substitute yield estimates based on general functions
with regional harvester data. The industry is currently adopting
these new possibilities and is compiling databases of harvester
data to provide reference data. Furthermore, harvester data
may also complement standard plot-based field surveys as a
reference data source for large-scale remote sensing-based
forest mapping, although there are some issues to resolve
regarding the sample representativity. In contrast to the
current regime based on field plot sampling, the very large
amount of harvester data available for remote sensing-based
mapping tasks enables application of machine learning algor-
ithms, such as deep neural networks (Goodfellow et al. 2016),
which benefit from very large datasets. Machine learning is
also expected to provide information about delicate target
variables from very complex relationships in the data, direct
as well as spatial, information that is not available using
current methods. To some extent, it is also expected to
deliver higher inference accuracy generally.

In Sweden, the centralised collection of harvester data and
the national ALS campaigns provide unique possibilities to
evaluate and develop the presented methodology. Large-
scale mapping performance in various forest types and har-
vesting regimes, prediction performance of other forest vari-
ables, and integration of additional remote sensing data (e
g. optical satellite image data to assess tree species) are
important issues to address in future research. The ongoing
improvements of positioning techniques for harvesters,
especially the boom and harvester head, are expected to
improve performance, as this reduces the errors introduced
by spatial uncertainty. This is especially important for highly
accurate single-tree level machine learning analyses using
densely scanned ALS data and the extremely large quantity
of data available today.

For applicability outside Sweden, national ALS data are not
a requirement, the method could be applied on larger forest

Table 6. Validation results for predictions of stem diameter distributions using
Reynold’s error index (REI) and error index (EI) for three different raster cell sizes
(ras10, ras20 and ras40) and three segmentation sizes (seg100, seg300 and
seg900) (n = 80).

Method Mean REI Min REI Max REI SD REI Mean EI

ras10 29.37 11.17 71.90 11.69 0.14
ras20 28.24 11.94 66.19 10.51 0.13
ras40 29.86 12.59 62.65 10.24 0.13
seg100 32.35 11.54 81.41 13.65 0.13
seg300 35.39 12.74 105.13 18.14 0.13
seg900 48.91 12.92 189.71 33.53 0.14
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holdings with a recent acquisition of ALS data.
However, wide-spread use of the CTL-harvester system is a
requirement, but the availability of harvester data could still
face challenges of ownership rights, and concerns with
privacy issues. The methodology presented here was devel-
oped for the Nordic region, and further development of
algorithms to process and recreate trees from harvester
measurements could be required for additional tree species.
This study was limited to coniferous forest and further
studies are also required to ascertain the accuracy in broad-
leaved forests.

In conclusion, this study shows how harvester data from
cut forests may serve as ground truth to ALS data and
provide accurate forest estimates for mature, harvest ready
stands. The predicted stem diameter distributions and
imputed stem profiles could be useful for improving yield esti-
mates and bucking simulations. As data fromALS are available
nationwide in Sweden, it implies a possibility for operational
implementation for forest companies to improve forest vari-
able estimates, yield estimates for planning harvest oper-
ations to meet industry demand, and a feedback system for
continuous improvements of data describing the forest.
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