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A B S T R A C T

There is a need for reliable and efficient methods for monitoring the activity and social behaviour in cows,
in order to optimise management in modern dairy farms. This research presents an embedded system that
could track individual cows using Ultra-wideband technology. At the same time, social interactions between
individuals around the feeding area were analysed with a computer vision module. Detections of the dairy cows’
negative and positive interactions were performed on foreground video stream using a Long-term Recurrent
Convolution Networks model. The sensor fusion system was implemented and tested on seven dairy cows
during 45 days in an experimental dairy farm. The system performance was evaluated at the feeding area. The
real-time locating system based on Ultra-wideband technology reached an accuracy with mean error 0.39 m and
standard deviation 0.62 m. The accuracy of detecting the affiliative and agonistic social interactions reached
93.2%. This study demonstrates a potential system for monitoring social interactions between dairy cows.
1. Introduction

Minimising the sources of stress for individual animals is crucial for
optimising animal welfare in the modern dairy farm [1]. Competition
for limited resources like food and space is a cause for negative stress.
In a loose housing system with cubicles, the animals can move freely,
but they have to act in competition with the rest of the herd which
may imply problems for cows with low social ranking, for example
first calvers versus multiparous cows. There are positive interactions
between animals within a herd, which reduce stress. Gentle contact,
for example, allogrooming (social licking), is one indication of the
formation and maintenance of social bonds between individuals [2].
Thus, when studying cow behaviour it is crucial to be able to discrimi-
nate between positive (affiliative) and negative (agonistic) interactions.
Increased agonistic behaviours can indicate welfare problems, for ex-
ample when mixing groups, at large group sizes or insufficient space
allowance [3]. A higher amount of allogrooming performed by newly
introduced individuals may indicate high level of acceptance in the
group [4].

To monitor animal conditions and behaviour in large herds, Preci-
sion Livestock Farming (PLF) technologies have been developed. They
can provide measurements and act as decision support tools to monitor
health and thereby help in optimising the animal welfare. Technologies
such as automated body condition scoring [5], lameness detection [6]
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or prediction of calving [7] are good examples focusing on individ-
ual welfare measurements. The social dynamics between animals can
be studied by using embedded sensor technology, for example, spa-
tial proximity loggers [8] or Ultra-wideband (UWB) technology [9].
However, these sensors can only detect the social behaviour between
individuals based on spatial proximity. Previous studies, for example
concerning automatic detection of aggressive behaviour in pigs [10],
or registration of cows’ social interactions in the waiting area before
milking [11] propose computer vision methods to detect the social con-
nections between animals. However, these studies focus on detecting
activities without connecting them to the identity of each individual.
When studying the interactions and competition between individual
animals of different groups (for example, higher and lower social rank)
in a herd, more types of data, like identification, tracking and social
interactions detection need to be taken into the measurement. The
task gets difficult to implement due to lack of data interoperability
between multiple formats [12,13]. Maintaining the communication be-
tween different data platforms and application programming interfaces
is also challenging when it comes to data collection in a production
environment [14,15]. A PLF system that can perform identification,
tracking, and analysing animal behaviour is therefore needed.
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In this study, we investigate how PLF technology can be used to
identify affiliative and agonistic social interactions to minimise po-
tential sources of stress for cows. The objective was to implement a
monitoring system to identify, track, and analyse the social interactions
between dairy cows in a herd. The system used UWB positioning tech-
nology in combination with computer vision technology to highlight
the affiliative and agonistic interactions between dairy cows. First, the
real-time locating system (RTLS) based on UWB technology tracked
individuals in the whole barn. Then, the computer vision system dis-
tinguished different social interactions around the feeding area, using
Convolutional Neural Network (CNN). The study aimed to develop
a robust system to monitor cow social behaviour in crowded scenes
with varying illumination conditions, in order to adapt to real-world
scenarios.

2. Materials and methods

2.1. Experimental setup and animals

This study has been made possible by the use of the Swedish
Infrastructure for Ecosystem Science (SITES), in this case by support of
the field station Röbäcksdalen in Umeå, Sweden, which has a dairy herd
for experimental purposes. The animals were treated and kept with
permission from the Swedish Ethical Committee on Animal Research
represented by the Court of Appeal for Northern Norrland in Umeå,
Sweden.

The trial was conducted across a period from 20th August to 2nd
October, 2018. The research facility under study is located in the north
of Sweden, and has a herd of 120 dairy cows (Viking Red), of which
around one third are first calvers. About 60 of the cows are kept in
an insulated section, consisting of a free stall with cubicles for resting.
The floor plan of this section is shown in Fig. 1. It has a rectangular
plan of 42 × 13 m with a feeding alley adjacent to a resting area with
62 cubicles arranged in two rows. The stable has 30 Roughage Intake
ControlTM feed bunks (Insentec B. V. Marknesse, The Netherlands)
installed, with automatic recording of feed intake at individual visits.
In our study, five of the feed bunks (marked brown in Fig. 1) had
limited access only to the ten cows that were chosen for the study.
Five of these cows were first calvers. All ten cows could access all five
feed bunks. The remaining 50 cows all had access to the remaining 25
feed bunks. The feeding area was open for all cows to access and pass
through during the study period. Feed was delivered in the feed bunks
seven times a day by an automatic system to ensure ad libitum feeding
conditions. The feeding system is further described by Hetta et al. [16].
Milking was carried out twice a day in a milking parlour in an adjunct
facility.

A real-time locating system based on UWB technology (further
described below) was developed and installed to register individual
positions continuously. We put collars with positioning sensors on the
selected cows under study and tracked them in the whole barn range.
Each animal’s location, identification, and movement activity (via an
accelerometer in each collar) were recorded ten times per minute.

We also deployed an optical system (Axis Q6035-E PTZ network
camera) to record the individual feeding behaviour and social inter-
actions around the selected feeding area (Green area in Fig. 1, around
3.5 m × 3 m) including three feed bunks. The camera was installed
at a height of five metres above the floor to get a top-view image
of the zone, however, the height was not enough to cover all five
feed bunks under study. The camera system collected video data of
the selected area of the barn continuously for 45 days, with a frame
resolution of 1280 × 720 pixels, 25 fps. The videos were calibrated
and rectified according to the barn floor plan and synchronised with
the RTLS system. The camera view was also used for evaluating the
performance of the UWB system.

Fig. 2 shows an overview of the system, with the RTLS module for
2

identification and tracking in the whole barn section and the computer
Table 1
The measurement of the anchors.

Anchor X axis Y axis Height above the floor

Anchor 0 22.6 m 1.3 m 2.9 m
Anchor 1 10.6 m 1.3 m 2.9 m
Anchor 2 28.6 m 1.3 m 2.9 m
Anchor 3 34.6 m 1.3 m 2.8 m
Anchor 4 7.9 m 12.2 m 2.2 m
Anchor 5 18.1 m 12.1 m 2.2 m
Anchor 6 28.1 m 12.1 m 2.2 m
Anchor 7 38.4 m 12.1 m 2.2 m

vision module which was developed to detect social behaviour of the
cows around the feeding bunks, using Convolutional Neural Network
(CNN). These two modules were synchronised to each other with
time-stamp and mapping through the floor plan of the barn.

2.2. Real-time location module

We designed an UWB RTLS sensor tag based on the Decawave
DWM1000 module. This is an IEEE 802.15.4-2011 UWB compliant
module that operates on frequency bands from 3.5 GHz to 6.5 GHz.
In order to also record activity of the cow, an ST LIS2DE 3-axis
accelerometer was added to the sensor tag. The sensor tags can operate
in three different modes depending on their programming:

• Sensor tag that is attached on the collars of the tracked cows.
• Anchor node that is a static reference point in the coordinate

system. The distances to all sensor tags in range are calculated
from each anchor.

• A special anchor that is called a ‘‘zero-anchor’’. This device is
working as a data provider to the gateway system. The zero
anchor has the function for tag synchronisation. There is only
one zero-anchor in the positioning system. All tracked sensor tags
must therefore be in range of the zero-anchor.

The location calculation includes three steps in the UWB system.
First, the tag makes a broadcast that requests every listening anchor to
provide information that is used to calculate distances. In the second
step, each anchor is sending the requested information within a time
slot that is assigned to each of them. The sensor tag is using the pro-
vided information to calculate the distance to each anchor. In the third
step this information is forwarded to the zero-anchor. The distances
between sensor tags and anchors are then forwarded to the gateway
machine for calculation of positions. The location calculation is done by
Least Squares Estimation (LSE) and both the calculated position and the
raw distance data is sent to a backend server and stored in a database.

In this study, we used eight anchors to cover the whole barn
section. The plan of the anchor positions is shown in Fig. 1 and the
measurements of positions are shown in Table 1.

Although the RTLS system captured the real-time location of cows
over the whole barn area, the performance evaluation was selected to
be done on ten cows when they appeared in the feeding area within the
camera scene. During the test period, three tags went out of function,
so eventually our study included seven cows.

To evaluate the RTLS module’s performance from the camera, an
interface was developed in MATLAB to label ground truth position. The
image from the Axis camera was calibrated and rectified according to
the barn plan. The camera scene was calibrated by placing a chessboard
in the middle of the camera view area at the average cow shoulder
height 1.5 m. The lens distortion was removed, and a homography
was estimated using Zhang’s method [17], which projected each of
the camera images onto the cow shoulder plane. The calibrated scene
is shown in Fig. 3. The calibrated top-view image was used to eval-
uate the performance of the RTLS system. The top-view images were

mapped using four reference points on each feeding bunk to match
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Fig. 1. Floor plan of the barn section under study with the UWB anchor positions. Eight anchors were installed at the positions marked. Five feed bunks, which are marked
brown, had limited access for ten cows. The green area was monitored with the camera. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
Fig. 2. Overview of the monitoring system.
Fig. 3. Example of interface developed to compute the control ground truth localisation
of UWB tags on the cows.

the coordinates of the RTLS system. The position of the sensor on the
cow’s collar was manually identified and marked using the cross of the
green lines (Fig. 3) on the top-view image. The marked coordinates
were transferred to the barn floor map coordinates. The transferred
coordinates were used as the cow’s ground truth position.

The real-time location system was evaluated by comparing each
tag’s position 𝑃𝑖( 𝑥, 𝑦) with the human labelled position from the top-
view images 𝑃𝐶

𝑖 ( 𝑥, 𝑦) . For each tag, the localisation error 𝜀𝑖 was the
distance between the position provided by the RTLS system and the
control point verified by the operator:

𝜀𝑖 =∥ 𝑃𝑖( 𝑥, 𝑦) − 𝑃𝐶
𝑖 ( 𝑥, 𝑦) ∥

=∥
√

(𝑥𝑖 − 𝑥𝐶𝑖 )2 + (𝑦𝑖 − 𝑦𝐶𝑖 )2 ∥
(1)

Errors from each tag were brought into computing the localisation
mean error and standard deviation for the number of the event 𝑁 where
𝑖 = (1, 2,… , 𝑁).
3

2.3. Computer vision module

In total 1080 h of videos were recorded in this study, of which
videos from 14 days daytime (06:00 to 18:00) with different weather
were selected. The amount of video data gave a fair overview of
different light conditions, crowded situations, and the diurnal activities.
Although the feeding bunks gave limited access for ten cows, the
feeding area was open for all 60 cows in the barn section. The videos
showed all of the cows appearing in the camera scene.

The videos containing social behaviour event information were
segmented and labelled manually. Each event video was between 1 to
30 s. The assessment of dairy cow’s social interactions was based on the
ethogram adapted from Rousing et al. [18] and Foris et al. [19]. First,
all interactions between pairs of cows were labelled as affiliative or
agonistic. Then, all the positive interactions were labelled into spatial
proximity or gentle contact behaviour. All the agonistic interactions
were more specifically labelled into one of four states: threat and
withdrawal, body pushing, head butting, and head pressing.

• Affiliative

– Spatial proximity: Two or more cows stay closer than 3 me-
tres to each other without body contact. Since the monitor
area from the camera covers around 3.5-by-3 m area, more
than one cow appearing in the image, without body contact,
was considered as spatial proximity;

– Gentle contact: The body of one cow touches the body of
another cow, or licking another cow.

• Agonistic

– Threat and withdrawal: One dominant cow makes slight
aggressive movement. The other cow shows avoidance or
withdrawal. The cows do not touch each other during the
whole process;
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– Body pushing: Two cows press body against body;
– Head butting: One cow pushes her forehead (directed blow

movement) at the body of another cow;
– Head pressing: Two cows push at each other head to head.

An experienced observer confirmed the presence of social interactions
in the video sequences.

The overview structure of the computer vision module is shown in
Fig. 4. The process was divided into video input steps, pre-processing,
feature extraction step and classification. In the pre-processing step, we
performed colour consistency, area of interest masking and foreground
detection. Then we harnessed a CNN to extract the features from each
frame. Finally, we fed the feature sequences to a bidirectional Long
Short-Term Memory (LSTM) architecture to perform the behaviour
classification task.

2.3.1. Video pre-processing
The light conditions in the barn varied during the experiment. The

indoor illumination was lit most time of the day, but direct sunlight
and dark periods of the day made the robust colour-based computer
vision task hard to perform. Colour constancy is the ability to show
correct colours and eliminate the effect of the colour of the light source.
We used the Modified White Patch theory [20] to reduce the effect
of illumination variation for its exceptional performance and real-time
processing. The Modified White Patch method uses the mean of the
highlights by using image pixel sampling instead of the maximal values
of the RGB channels of the image. Four 4-by-4 pixels highlight blocks
were selected from the scene to calculate the intensity threshold. The
corrected pixel values 𝑅𝑐 , 𝐺𝑐 , 𝐵𝑐 , were expressed in terms of original
pixel values R,G,B as follows:
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where

𝐾𝑅 = 𝑊 ℎ𝑖𝑡𝑒𝑅
𝑅ℎ

(3)

𝐺 = 𝑊 ℎ𝑖𝑡𝑒𝐺
𝐺ℎ

(4)

𝐾𝐵 = 𝑊 ℎ𝑖𝑡𝑒𝐵
𝐵ℎ

(5)

𝑅ℎ, 𝐺ℎ, 𝐵ℎ are the averages of the intensity values of the R, G and
channel over the four selected blocks. WhiteR, WhiteG and WhiteB

epresent the reference white [255, 255, 255]. The colour consistency
as performed directly to the videos. The process was automatic and

ould be performed as real-time.
In the real production environment, there is usually a complex

ackground appearing in the video stream. The cows under study were
iking Red cows with a red and white coat. They have unique coat
atterns, patches and markings with clear contours. Several previous
tudies have utilised these features to perform visual identification
f cows with the use of deep learning [21,22]. The features in coat
atterns may affect the detection of social behaviours. In our com-
uter vision module, we wanted to analyse the mechanism of cows’
nteractions without the disturbance of coat patterns. To solve these
hallenges, the computer vision system implemented a binary fore-
round mask for the RGB video streams. The cows as foreground were
eparated from the background by manipulating the colour components
n the CIELAB colour space. The computer vision module detected the
ed and white components of the cows’ coats in the video stream. After
esting different light conditions, the colour component thresholds were
ixed in the software. The foreground detection performed a binary
4

oreground mask in each frame (Foreground video in Fig. 4). The
service alley in front of the feed bunks, where the feeding conveyer and
staff could appear, was masked out from the videos. The foreground
videos were used for detecting the positions of the cows from the
camera view, and their social interactions.

2.3.2. Behaviour detection using long-term recurrent convolution networks
Social interactions between individuals are time series activities.

Agonistic behaviours, in particular, which are described as aggressive
acts and responses to aggression. For example, an agonistic behaviour
started with one cow head butting another cow, then the other cow
responded by avoiding or it could result in confrontation and fighting.
Instead of CNN, which handles each video frame separately, LSTM
was used to better understand the action in the context of the time
series information. In our study, video data with the cows’ movements
over time were extracted. We employed the combination of CNNs
and LSTMs, which is referred to as Long-term Recurrent Convolution
Networks (LRCNs) [23,24], for the task of social behaviour detection.
The CNN layers were responsible for learning image features and the
LSTM layers discovered the temporal dependencies. Labelled videos
were converted to a sequence of feature vectors using CNN network
from each frame. Then the LSTM network was trained on the sequences
to classify the video labels. At last, the layers from both networks were
assembled to perform the social behaviour classifying task.

Deep learning works well with large amounts of labelled data
with modern neural network architectures. In this study, we combined
880 videos sequences and LRCN architectures to test whether deep
learning can extract sufficient features to distinguish the differences
in cow social behaviour by using computer vision. 460 labelled videos
contained affiliative behaviour and 420 contained agonistic behaviour.
Of these 880 videos, 623 were used as training partition with 10%
as validation partition, and 257 videos were used as testing partition.
The affiliative and agonistic interaction videos had equal proportions
of training, validation and testing data.

We converted videos to sequences using a pre-trained deep network
GoogLeNet (Inception v1) [25] to extract features from each frame
feature vectors. GoogLeNet contains multiple inception modules, in
which multiple different filter sizes are applied to the same layers to
extract features at different scales of detail simultaneously. By learning
of diverse types of variations present in the same class of different
images, it can reach high accuracy and reduce computational cost [26].

All the videos were resized into 224-by-224 pixels and labelled
with one of the defined social behaviours to match the input of the
GoogLeNet network. We employed Fine-tuning GoogLeNet to transfer
its learned information from the ImageNet [27] domain to cow social
behaviour detection task. The pre-trained model was 22 layers deep and
contained nine inception modules. Each inception module performed
convolution on an input, with different sizes of filters (1 × 1, 3 × 3, 5

5). Max-pooling was also performed. The outputs were concatenated
nd sent to the next inception module. To reduce the model size and
he computation, an extra 1 × 1 convolution before the 3 × 3 and 5 × 5
onvolutions was added. It used global average pooling at the end of
he last inception module. We used the output from the last pooling
ayer as feature vectors.

The convolutional layers treated each frame of the videos inde-
endently. The Bidirectional LSTM (BiLSTM) layer learns long-term
ependencies between time steps in a time series video. The BiLSTM
ayer consists of two LSTMs to take the input from both forward and
ackward directions. A sequence folding layer was added to the batch
f image sequences to assemble both networks. A sequence unfolding
ayer was added after the convolutional layers to restore the sequence
tructure of the input. We fed the feature sequence into a LSTM network
o perform the classification task. The LSTM network consisted of:

• Feature sequence input layer
• BiLSTM layer with 1000 hidden units

• Dropout layer
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Fig. 4. Overview structure of the behaviour detection.
• Fully connected layer, Softmax layer and Classification layer.

We used the MATLAB software to implement the proposed algo-
rithm, performed on a single CPU laptop. We trained the network
with the parameters as mini-batch size of 16, maxEpochs at 20, initial
learning rate at 0.0001.

To investigate if the computer vision module can learn more de-
tailed social interactions, the six sub-classes (spatial proximity, gentle
contact, head butting, head pressing, body pushing, and threat) of
social interactions also were trained using the similar LRCNs model.

To know if LSTM improved the interaction analysing, we also
performed the classification using only CNN without LSTM. Transfer
learning using GoogLeNet was deployed with sampled foreground video
frames as input. We used 18 640 frames as training partition with 10%
as validation partition, and 2312 frames were used as testing partition.
We transferred the layers to the new classification task by replacing
the classification layers according to our data containing six outputs
corresponding to the six sub-classes of social interactions. The network
was trained with the parameters as mini-batch size of 16, maxEpochs
at 20, initial learning rate at 0.0001.

2.3.3. Synchronise RTLS and computer vision modules
Time-stamp was used to synchronise the RTLS and computer vision

modules from the timeline. The barn floor plan was used to map the
coordinates from both modules. The identities of the cows and their
social behaviour were combined by the computer vision system.

After the video pre-processing step, the binary foreground video
was automatically labelled by using blob detection, where large groups
of connected foreground pixels were considered as a blob. The blob
detection helped to register where a cow appeared and the social
interaction that happened from the camera scene. The area (number
of pixels) and centroid coordinates of each large blob were registered.
The blob centroid coordinates were transferred to the barn position
according to the floor plan. The individual positions detected by the
UWB module around the feeding area under study were assigned to
the closest blob coordinates from the computer vision module. Fig. 5
shows an example of an original video frame and the event registered
image. The largest blob shows where the body pushing event happened
according to the camera scene. The area and centroid coordinated were
registered according to the barn map. All UWB tags’ positions within
the camera scene area were listed in the corner of the image.

3. Result and discussion

The experiment was conducted across a period of 45 days. To give
a fair overview of different light conditions and activities during the
day, five continuous days were selected to evaluate the RTLS system.
5

Seven individuals with 930 tag positions were evaluated by comparing
the position of each tag with labelling results from the calibrated
and rectified top-view images. The mean error of all tags’ position
measurements was 0.39 m and the standard deviation 0.62 m.

Cow identification on farm is frequently achieved by Radio Fre-
quency Identification (RFID) technology [28]. In some research studies,
the possibility of using different indoor positioning systems for tracking
individuals have been investigated. Wireless Local Area Network tech-
nology for cow positioning performed with 1 m as mean error [29]
and Bluetooth wireless technology obtained an accuracy of 0.6 m [30].
Porto et al. [31] evaluated the performance of an existing commercially
available system, Ubisense system (Ubisense, UK) in a semi-open free-
stall cow barn. The localisation mean error of the system was stated
to be 0.52 m for the tags applied to the cows. The mean error of
our system reached the same accuracy as the commercially available
Ubisense system. In this study pure triangulation from all anchors
without any filtering was used to calculate the position. Previous
studies show improvement in UWB result by adding filters [32] or
image analysis [33]. Selecting the four nearest anchors to calculate the
distance, instead of all eight anchors, can also improve the accuracy.
The four nearest anchors might have a good line of sight compared to
anchors far away that might be hidden behind obstacles. Our system
gave us easy access to the raw data and the possibility to add other
sensors and a computer vision module, compared to if a commercial
RTLS system would have been used in the study.

The detection accuracy of the affiliative and agonistic social inter-
actions reached 93.2%. Fig. 6 shows the normalised confusion matrix.
Among all the false classifications, 92% of them happened when more
than three cows appeared in the scene at the same time, with 15% of
the total false classifications happening when more than five cows ap-
peared in the camera scene at the same time. Our study was conducted
around the feeding place, as the highest amount of aggressive interac-
tions and allogrooming among loose-housed cattle normally occur in
this area [34]. When the feed bunks were newly filled, the feeding
area was more crowded, which made the classification of agonistic
interactions more difficult.

In our study, agonistic interactions were divided into threat, body
pushing, head butting and head pressing, while affiliative interactions
were cows spending time next to each other or gentle contact. The
average accuracy reached 88.78% in the six classes classification. Fig. 7
shows the normalised confusion matrix for the result of social be-
haviour detection in the six classes from the full dataset testing. For
head butting, body push and spatial proximity, the accuracy reached
more than 90%. The head pressing and threat showing behaviours had
the lowest detection rates. Both of these events usually last for a very

short time (less than 4 s), which may limit the feature learning.
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Fig. 5. Example of an original video frame and the event register image.
Fig. 6. Normalised confusion matrix of detected agonistic and affiliative interactions.

Fig. 7. Normalised confusion matrix of social behaviour detection in six classes from
full dataset testing.

Earlier studies show positive results of using different types of
sensors to analyse social behaviour. As an example, electronic feeding
systems can reach the sensitivity 86% for detecting replacement [35].
Guzhva et al. [10] used computer vision to describe social interactions
based on geometrical shapes segmented from images. In their study,
the result of detecting cows spending time next to each other without
body contact had a high accuracy rate (99.9%). But the accuracy
of their method of detecting body pushing, head butting and body
sniff were 30.5%, 18% and 19.8%, respectively. In a similar way, we
also performed the classification into six classes using only CNN on
foreground video frame input. The average accuracy was 42.19% with
a 97.69% accuracy rate of spatial proximity. The accuracy of head
6

butting and head pressing was 30.0% and 23.5%, respectively, with
over 50% false classifications regarding spatial proximity. Our method
with LRCNs had a significantly higher accuracy rate, due to adding
LSTM to understand the time-series action context.

The proposed system is currently in the development and testing
stage. One limitation is the RTLS detection’s accuracy, which was not
sufficient to give the identities of cows when they were having close
body contact with each other. With the computer vision’s help, the
identities could be recorded as cow IDs at a social interaction event.
But the identity could not be assigned to the individual to know which
one of the cows that was pushing and which one was the cow being
pushed. Moreover, beside the 10 cows with UWB tags, the remaining 50
cows also could appear in the camera scene. Currently, the identity can
be used as a reference method for farm management. To improve the
synchronisation between RTLS and the computer vision system, RTLS
update intervals can be increased to a higher frequency. However, it
is a trade-off with battery life. Our future work will concentrate on
using the computer vision module to improve the accuracy of the RTLS
system. Another limitation is that the camera view only covered a small
area of the barn. The application can however be extended to a larger
area with a different camera setting.

4. Conclusions

A monitoring system that is capable of tracking individuals and
analysing their social interactions has been purposed and tested in this
exploratory study. The system integrated RTLS and computer vision
modules, maintained the communication between them and combined
various formats of data. The RTLS based on UWB technology reached
an accuracy with mean error 0.39 m and standard deviation 0.62 m and
the detection of the affiliative and agonistic social interactions reached
the accuracy 93.2%. The proposed system may help to achieve a real-
time automated tool for continuous monitoring of social behaviour in
a dairy barn environment. The individual activity and social behaviour
in the herd can be used as inputs in an early warning system for the
herd manager to detect anomalies in health and welfare of individual
cows.
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