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Abstract

Background: Genome-wide association studies (GWAS) identify loci underlying the
variation of complex traits. One of the main limitations of GWAS is the availability of
reliable phenotypic data, particularly for long-lived tree species. Although an extensive
amount of phenotypic data already exists in breeding programs, accounting for its high
heterogeneity is a great challenge. We combine spatial and factor-analytics analyses to
standardize the heterogeneous data from 120 field experiments of 483,424 progenies
of Norway spruce to implement the largest reported GWAS for trees using 134 605
SNPs from exome sequencing of 5056 parental trees.

Results: We identify 55 novel quantitative trait loci (QTLs) that are associated with
phenotypic variation. The largest number of QTLs is associated with the budburst stage,
followed by diameter at breast height, wood quality, and frost damage. Two QTLs with
the largest effect have a pleiotropic effect for budburst stage, frost damage, and diameter
and are associated with MAP3K genes. Genotype data called from exome capture,
recently developed SNP array and gene expression data indirectly support this discovery.

Conclusion: Several important QTLs associated with growth and frost damage have
been verified in several southern and northern progeny plantations, indicating that these
loci can be used in QTL-assisted genomic selection. Our study also demonstrates that
existing heterogeneous phenotypic data from breeding programs, collected over several
decades, is an important source for GWAS and that such integration into GWAS should
be a major area of inquiry in the future.

Keywords: Norway spruce, Frost damage, Genome-wide association study, Wood quality,
Budburst stage, MAP3K gene
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Background
Understanding how phenotypic traits are genetically controlled has been, and will likely

remain for years to come, one of the central challenges in biology. Decades of quantita-

tive trait loci (QTL) mapping and genome-wide association studies (GWAS) have de-

tected a bounty of loci associated with the variation of quantitative traits in organisms

ranging from humans to crops [1–3]. These studies have demonstrated that the identi-

fied loci only explained a small part of the variation in these traits. For instance, a re-

cent study on human height, one of the most well studied quantitative traits, with ∼700

000 participants uncovered about 3000 near-independent associations explaining only

~25% height variation [4]. GWAS studies have also revealed substantial genotype-

phenotype associations and the genetic architecture of complex traits in many crop

species [5] including maize [6], rice [7], cotton, soybean, and other crops [8, 9]. By pro-

viding many insights into the architecture of complex traits and disease susceptibility,

GWAS have facilitated advances in functional biology and gene editing [2, 10] and

helped to increase the efficiency of genomic selection [11]. However, most GWAS vin-

dicated Fisher’s infinitesimal model which assumes that most quantitative traits are

controlled by a large number of loci of small effects and led to the development of new

models of the genetic architecture of quantitative traits. Most notably, Pritchard and

colleagues proposed an omnigenic model whereby traits are assumed to be controlled

by core and peripheral genes: the core genes may be few and affect directly the trait

and are themselves trans-regulated by a vast network of interacting regulatory periph-

eral genes [5, 12]. Pritchard and colleagues showed that the omnigenic model could ex-

plain the variation in complex diseases such as schizophrenia or rheumatoid arthritis or

complex phenotypes such as height in humans [12]. All these results indicate that iden-

tifying loci underlying quantitative traits is intrinsically difficult and that there is there-

fore a strong incentive to leverage all available data. This is particularly true in forest

trees, in general, and in conifers, in particular. Genotyping in conifers was challenged

by their large and highly repetitive genomes [13] and phenotyping by their long-life

cycle and heterogeneous living environment. Authors of previous studies made efforts

to measure many phenotypic traits in a population of limited size to increase the statis-

tical power. Long-term tree breeding programs usually accumulate a large amount of

phenotypic data that are ideal to dissect the genetic basis of complex traits [14]. In the

present study, we leveraged data available in the Swedish Norway spruce [Picea abies

(L.) Karst.] breeding program where large sets of phenotype data were accumulated

over the past 50 years from nation-wide field plantations, and genome-wide exomes

capture polymorphism to identify genes involved in the variation of growth, phenology,

and wood quality traits. Today, one of the main limitations of GWAS is the availability

of phenotypic data or, in the cases when those data have been collected from existing

breeding programs, their large heterogeneity. Coping with the heterogeneity of these

data and using them efficiently is therefore a major challenge. However, success in

doing so could unleash a large amount of information gathered over the years and

partly help to overcome the dearth of phenotypic data.

Norway spruce is the most economically important conifer species in Europe [15], es-

pecially for Nordic countries, and a large Swedish breeding program was established in

the middle of last century from seeds collected from elite trees selected across the

country [16]. By elite trees we refer to trees that were selected based on their
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outstanding phenotype or breeding values to constitute the base population of the

breeding program. Many of the selected elite trees turned out to be recent introduc-

tions from other European countries, and hence, the current Swedish Norway spruce

breeding population is representative of most of the species range, at least in its south-

ern part [17]. In contrast, the northern part of the breeding program is genetically more

homogeneous (Li et al. 2020, in preparation). A strong population structure needs to

be accounted for when doing the association per se, and it also needs to be accounted

for when gathering phenotypic data. Indeed, the available phenotypic data on the elite

trees are from two sources. In the easiest case, the elite trees were planted in common

gardens and highly heritable traits, such as wood quality or budburst, directly measured

on the elite trees themselves. However, for lower heritability growth traits, such as

height or diameter, direct measurement on elite trees is less reliable and instead, breed-

ing values of the elite trees could be estimated from measurements on their half/full-

sib offspring in progeny tests. These progeny tests usually varied in composition, were

established in different climatic regions, and were measured at different ages, thereby

introducing an added layer of heterogeneity and complexity that needs to be accounted

for before the phenotypic data are used for association analysis.

In this study, we conducted a GWAS for budburst stage (BB), frost damage (FD), tree

height (Height), diameter at breast height (DBH), and wood quality traits in Norway

spruce using data from the Swedish long-term breeding program (Table 1). These

highly heterogeneous data were height measured in progeny tests across the whole

Sweden, DBH, only in progeny tests from the southern and central Sweden, FD in two

large progeny tests, and BB and wood quality traits were measured directly on elite

trees in three common gardens. Various steps were devised to account for the hetero-

geneity of the data. The main aim of the study was to leverage existing data from the

Swedish Norway spruce breeding program to identify single-nucleotide polymorphisms

(SNPs) associated with the variation in phenotypic traits. For a subset of traits, we also

validated the identified SNPs using related populations and RNA-Seq experiments.

Results
Genotyping the elite Swedish breeding materials using exome capture sequencing

Using exome sequencing with customized probes [18], 10.6 M SNPs were identified

after initial SNP calling using GATK HaplotypeCaller, out of which 354 401 SNPs

passed initial quality control (see the “Materials and methods” section). In the 5056

unrelated elite trees, 299 240 SNPs were found to be in Hardy-Weinberg equilibrium

(P<1.4 × 10-7). These SNPs were distributed across 24,104 contigs (P. abies v1.0 anno-

tation) [19]. The mean accuracy of the imputed genotypes was estimated to be 0.97 at

both individual and SNP level (Additional file 2: Figure S1). After filtering of SNPs with

a low allele frequency (MAF < 0.03), 134 605 SNPs were kept for downstream analysis.

The first two principal components explained 1.46% and 0.46% variance of the marker

matrix (Additional file 2: Figure S2). As has been reported in [17], PCA detected seven

clearly delineated clusters across the native range of the species (Fig. 1b). The seven

genetic clusters were Alpine (ALP, light blue), Carpathian (ROM, red), central Europe

(CEU, green), Northern Poland (NPL, pink), Russia Baltic (Rus-Bal, orange), Central

and southern Sweden (CSE, blue), and Fennoscandia (Northern Sweden, Finland and
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Fig. 1 (See legend on next page.)
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Norway) (NFE, forest green) (Additional file 1: Table S1 and Fig. 1b). Importantly,

Sweden is divided into two main clusters. Out of the 5056 elite trees, 2277 trees had no

documented origin. PCA was conducted using the genotype matrix of the 5056 elite

trees, and then, a random forest method was used to assign these 2277 trees to one of

the seven genetic clusters. 966 trees were assigned to the ALP, 394 to CSE, 154 to Rus-Bal,

91 to NPL, 67 to CEU, 581 to NFE, and 24 to ROM (Additional file 1:Table S1 and S2).

Genetic variation across different genetic clusters and genetic parameters of phenology,

growth, and wood quality traits

In general, de-regressed estimated breeding values (dEBVs) or adjusted phenotypic values

of the seven traits showed an approximately normal distribution (Additional file 2: Figure

S3). All seven traits showed significant differentiation among genetic clusters (p<10-6,

Additional file 2: Figure S4) although it should be pointed out that some traits are repre-

sented by very few individuals in some clusters (e.g., DBH for NFE and most traits for

ROM). Growth and phenology traits displayed a significant correlation with latitude and

BB, a strong cline with longitude (Additional file 2: Figure S5). Wood quality traits did not

show any trend for both latitude and longitude. In the three common gardens, WD, MFA,

and WS exhibited moderate to high repeatability ranging from 0.36 to 0.60 (Additional file

1: Table S3) for parental elite tree population. Fst among seven genetic clusters are shown

in Table S4. The NFE and ALP domains were the most divergent (Fst =0.026), and the

ROM domain was closest to NPL. The CSE cluster was much closer to the Rus-Bal cluster

than to NFE. The pedigree-based narrow-sense heritabilities of these traits estimated from

two full-sib progeny tests were 0.41, 0.45, and 0.44, respectively (Fig. 2). However, SNP

heritabilities of WD, MFA, and WS estimated from elite tree population were only 0.10,

0.12, and 0.12, respectively. In the northern Sävar common garden, BB displayed the high-

est estimated repeatability (0.81). For the same trait, a pedigree-based heritability of 0.55

was obtained from the two full-sib progeny plantations, and SNP heritability was 0.45

from the three common gardens (Additional file 1: Table S3, Fig. 2). For height and DBH,

the direct measurement from those common gardens may not be reliable due to the stand

management including topping and thinning. Thus, the repeatability of the two growth

traits in those common gardens was not estimated. FD was only scored in two large half-

sib progeny plantations; therefore, the narrow-sense heritabilities of height, DBH, and FD

estimated from the two plantations were shown in Fig. 2 and were 0.11, 0.20, and 0.23,

(See figure on previous page.)
Fig. 1 Geographic location and population structure of 5056 elite trees selected for the Swedish breeding
program. a Map (top) of geographic location of plus trees using the known original location for 2779 trees
and predicted location of 2277 trees and b PCA results (bottom) of all 5056 individuals colored by cluster
groups. For the group without original location information, we used predicted group information; thus,
the size of the dot represents the number of individuals in those groups. The different genetic clusters
(Carpathian, red, ROM; Alpine, light blue, ALP; Central Europe, green, CEU; Northern Poland, light plink, NPL;
Russia-Baltic, orange, Rus-Bal; central and southern Sweden, dodger blue, CSE; Fennoscandia, forest green,
NFE). The detail of the number of seven groups was shown in Additional file 1: Table S1. The materials
(type) used for GWAS were located in three common gardens (red circles), in which threes wood quality
traits and budburst stage (BB) were measured directly, two field half-sib plantations (red triangles), in which
FD were scored directly, and the materials used for SNP replication/validation were located in two full-sib
progeny field plantations in northern Sweden and three full-sib progeny field plantations in southern
Sweden (red plus). The field plantations with growth traits are shown in Additional file 2: Figure S12
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respectively. “SNP heritabilities,” the proportions explained by the genomic relationship

matrix (GRM), were 0.25, 0.30, and 0.15, respectively.

Negative genetic correlations between FD and height and between FD and DBH varied

from −0.54 to −0.84 in two southern Swedish progeny plantations (Additional file 1: Table

S5) and from −0.71 to −0.73 for the whole elite tree population (Fig. 2b), referred to subse-

quently as the whole population. Significant negative Pearson’s correlation coefficients were

observed between adjusted phenotypic BB and both height (−0.18) and DBH (−0.22) for the

whole population (Fig. 2b). More strongly negative genetic correlations between BB and

both height (−0.37) and DBH (−0.33) were observed from the whole population using

GRM. Generally, low correlations between growth traits and wood traits were observed

from the whole population (Fig. 2b). For example, genetic correlations between height and

wood quality traits varied from -0.05 to 0.20 for the whole population (Fig. 2b). However, a

strong positive correlation between height and Pilodyn penetration (inverse of WD) was

also observed from two full-sib progeny plantations (Additional file 1: Table S5).

Mapping alleles underlying the variation of the seven traits

There were strong population genetic structure and phenotypic differences between

genetic clusters, especially between NFE (Northern Sweden, Finland, and Norway) and

other genetic clusters. The phenotypic values of growth and phenology traits vary clin-

ally and at least three of the seven genetic clusters have enough data for performing

GWAS with more than 800 individuals each (Table 1). Thus, we performed GWAS for

the whole population and each cluster. To control for false-positive detection risk,

remove the confounding between testing markers and kinship, and reduce the compu-

tational load, we used a recently developed model, Bayesian Information and Linkage-

disequilibrium Iteratively Nested Keyway (BLINK; implemented in the BLINK R pack-

age [21]. However, this method will not detect the candidate QTNs that are in strong

Fig. 2 Heritabilities and genetic correlations among traits. a Pedigree-based and SNP-based narrow-sense
heritability of the seven traits, with black line representing the ± standard errors. b Pair-wise Pearson
product-moment correlations (upper diagonal) and genetic correlations (lower diagonal) among de-
regressed estimated breeding values (dEBVs) of tree height (height), diameter at breast height (DBH), and
frost damage (FD), adjusted phenotypic values of budburst stage (BB), wood density (WD), microfibril angle
(MFA), and wood stiffness (WS). The color spectrum, bright blue to bright red presents highly positive to
highly negative correlations, and the number represents the correlation values. *The SNP heritability only
explained the proportion of dEBVs variance explained by SNP-based genomic relationships, and dEBVs of
the three traits were used to estimate the phenotypic and genetic correlations in b
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LD with QTN that have smaller p value SNPs. To detect all pseudo QTNs and make

results comparable across different genetic clusters, we also used a compression mixed

linear model (CMLM) [22] implemented in the Gapit R package [23]. One of the main

aims of both BLINK and CMLM is to consider cryptic relationships among individuals

and control for false-positive detection risk. Thus, here we only needed to consider the

effect of population structure for GWAS. The QQ plots and details of the associated

SNPs are described in Additional file 2: Figure S6 and Additional file 1: Table S6. At

5% FDR, a total of 64 unique SNPs were detected by the two methods using the whole

population or different genetic clusters for the seven traits (Additional file 1: Table S6,

S7 and S8). The LD decayed (r2) rapidly to 0.2 within 37 base pairs (bps) for contigs

harboring significant SNPs (Additional file 2: Figure S7). After grouping SNPs in tight

LD (r2 >0.2) with each other, the number of independent association signals (SNPs) for

seven traits was 55 (Additional file 1: Table S7). The number of independent associa-

tions varied between 1 (MFA) and 40 (BB) (Additional file 1: Table S8). Except for BB,

the number of detected significant and independent associations was generally small,

height (n=3), DBH (n=4), FD (n=3), WD (n=4), MFA (n=1), and WS (n=4).

SNPs associated with phenology and wood quality traits

For BB, we identified 40 independent associations, 31 from BLINK, and 11 from

CMLM, with two of them (MA_1284_2490, MA_29357_4423) overlapping (Additional

file 1: Table S9). Most of the significant associations (32 SNPs) were detected in the

whole population (n=4138), while one SNP (MA_798143_7416) was only detected by

CMLM in the CEU cluster, and seven associations identified by BLINK were specific to

Table 1 Number of trees genotyped and used in analyses for population structure and GWAS

Genetic cluster used
for GWAS

Genotypeda Trait

BB Height DBH WD MFA WS FD

ALP 1125 1010 929 877 1005 1006 1005 474

CSE 1571 1501 1418 1146 1504 1508 1501 623

CEU 508 350 301 280 350 350 350 143

NFE 1041 832 824 30 822 821 820 5

NPL 197 189 178 176 190 171 189 78

ROM 124 30 36 28 29 29 29 17

RUS_Bal 490 226 152 137 227 227 227 88

Total no. of genotypes
used for GWAS

5056 4138 3838 2674 4127 4112 4121 1428

GWAS validation of tree
height, BB,
and wood quality traits

1370 1067 1370 1370 1370 1370

GWAS validation of BB 914b 914b

Grand total 7340 6119 5208 2674 5497 5482 5491 1428
aThe number of genotyped individuals in each genetic cluster using for population structure
BB budburst stage, Height tree height, DBH diameter at breast height, FD frost damage, WD wood density, MFA
microfibril angle, WS wood stiffness
The different genetic clusters are Alpine, ALP; central and southern Sweden, CSE; Central Europe, CEU; Fennoscandia,
NFE; Northern Poland, NPL; Carpathian, ROM; and Russia-Baltic, Rus-Bal
bThe 914 individuals were genotyped by a recently developed Picea abies SNP array [20]
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some of the genetic clusters: CEU (n=1), CSE (n=1), and NFE (n=5). More associations

were identified by BLINK (n=24) than by CMLM (n=10) in the whole population as

shown in Manhattan plots and pair-wise LD r2 in Fig. 3. For FD, we only identified

three independent associations in the whole population (n=1428). Only one association

(MA_12842_2490) overlapped between BLINK and CMLM.

For WD, we detected four association signals in the whole population and two in

the ALP cluster (Additional file 1: Table S9). Two association signals (MA_

10432695_11851 and MA_93306_19178) were detected by both BLINK and CMLM

in the whole population. Two independent SNPs in the ALP cluster were only de-

tected by BLINK. For MFA, we only identified two independent associations in

cluster NFE from BLINK. For WS, we identified four independent associations

from BLINK and three from CMLM (Additional file 1: Table S9) in two clusters

(CEU, n=1; Rus_Bal, n=3). Only SNP MA_93306_19178 is unique to BLINK. Four

SNPs detected from CMLM completely overlapped with those detected from BLINK,

resulting in four associations in total.

SNPs associated with growth traits

For height, we only detected three associations with BLINK in the whole population

(Additional file 1: Table S9). For DBH, we identified five SNPs in the whole population,

with two and three SNPs detected by CMLM and BLINK, respectively, with no overlap.

Fig. 3 Manhattan plots and linkage disequilibrium (LD) for loci associated with budburst stage (BB). a Two
Manhattan plots showing significant association (red dots) with BB using CMLM and BLINK in the whole
Swedish breeding population, and b LD between single nucleotide polymorphisms (SNPs) associated with
BB in CMLM and BLINK. Blue and red horizontal lines indicate a threshold of log10(1e

−05) and
log10(1e

−07), respectively
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SNPs jointly associated with multiple traits (BB, FD, and DBH)

Two independent SNPs (MA_12842_2389/2490 and MA_29357_4423) were found to

be associated with three traits (BB, FD, and DBH) simultaneously (Additional file 1:

Table S9) while one independent SNP (MA_63888_14494) was significantly associated

with two traits (BB and FD).

In general, SNPs associated with phenology traits BB and FD explained a larger pro-

portion of the total phenotypic variation (R2) in the whole population (Table 2 and

Additional file 1: Table S10). The independent SNP MA_12842_2490 explained the

largest variation of 6.7% for BB in the whole population (Additional file 1: Table S6).

Similarly, the independent SNP MA_12842_2490 explained 5.2% and 1.5% variation for

FD and DBH in the whole population. We also observed that SNP effect size were the

largest for SNPs with MAF from 4 to 25% for BB (Additional file 2: Figure S8). For

height, BLINK detected three significant SNPs in the whole population only with PVE

ranging from 0.3 to 0.5%. For BB, all significant SNPs accounted for a total of 15.7%

phenotypic variation, while for FD, DBH, and height, all significant SNPs accounted for

a total of 4.9%, 2.6%, and 1.5% additive genetic variation in the whole population, re-

spectively (Table 2).

Replication of associated SNPs using data from several full-sib progeny plantations

All SNPs associated with five of the seven traits (except for FD and DBH, due to lack

of additional phenotypic values) were evaluated using two full-sib progeny plantations

established in northern Sweden (Additional file 1: Table S6). Out of the 55 reported as-

sociation signals, 52 signals could be tested, of which ten (seven for BB, two for height,

and one for WD) were replicated at nominal significance (P value <0.05) (Additional

file 1: Table S8). Interestingly, two independent SNPs (MA_12842_2389 (_2490) and

MA_29357_4423) that were associated with BB, FD, and DBH and one independent

SNP (MA_63888_14494 (_14499)) that was associated with BB and FD were also found

associated with BB in the validated population (Additional file 1: Table S9).

Using our recently developed 50K SNP array developed from the whole genome se-

quencing data [20], we found that two SNPs in contig MA_12842 were in the SNP

array. The novel SNP MA_12842_2774 was associated with BB (P value, 1.15E−06), five

(33%) of the total 12 SNPs associated were located outside of the gene regions (Table S11),

comparable with 49% SNPs selected outside of the gene regions in the 50K SNPs array.

Identification of candidate genes underlying the associated SNPs

In total, there were 43 annotated genes located on 37 contigs underlying SNPs signifi-

cantly associated with 40 independent SNPs for BB (Additional file 1: Table S12).

Among these genes, 18, 24, and 21 candidate genes showed differential expression be-

tween early and late burst buds, among different sampling times, and different temper-

atures at sampling time, respectively (Additional file 1: Table S13 and Additional file 2:

Figure S9).

A total of five candidate genes were identified on the contigs holding SNPs associated

with FD (Additional file 1: Table S12). The four putative MAP3K15 genes (MA_

12842g0010, MA_12842g0020, MA_12842g0030, and MA_29357g0010) detected for

FD were also detected as candidate genes for BB and DBH. However, only the
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candidate gene MA_12842g0030 showed an expression difference with temperature in

five sampling times (Table S13).

We identified 12 SNPs, located in 10 contigs harboring ten genes, associated with the

wood quality traits including WD, MFA, and WS (Additional file 1: Table S7 and S12).

Those genes are expressed in different tissues (Additional file 1: Table S14). A SNP,

MA_10435921_15994, located in the intron of gene MA_10435921g0010 was associated

with MFA in the cluster NFE. MA_10435921g0010 was annotated to code an ENTH/

ANTH/VHS superfamily protein associated with phospholipid binding in Arabidopsis

thaliana. A SNP located in the intron of gene MA_40805g0010 (a homolog of gene

SIK 1 in A. thaliana) detected in cluster ALP for WD encodes serine/threonine kinase

and is involved in the regulation of cell population proliferation and cell expansion to

maintain organ growth [24].

For height, SNPs MA_10432234_28084 and MA_222324_1075 were located in an in-

tron and upstream of the genes and the third SNP, MA_40506_4499, was located in an

intergenic region (Additional file 1: Table S6 and S9). The two genes (MA_

10432234g0010 and MA_222324g0010) are expressed in different tissues (Additional file

1: Table S14). The SNP MA_10432234_28084 located in the intron of the candidate gene

MA_10432234 is annotated as a homolog of A. thaliana Golgi Nucleotide sugar trans-

porter 3 (GONST3) and explained 0.56% of the total genetic variance (Additional file 1:

Table S6 and S12). For DBH, GWAS identified five SNPs located within four contigs, har-

boring six genes (Additional file 1: Table S8 and S12). The SNP MA_10428754_23026 lo-

cated in the splice region of the candidate gene MA_10428754g0010, annotated as a

homolog of a lipid transporter in A. thaliana, explained 0.62% of total genetic variance.

The two tightly linked SNPs (MA_12842_2389 and MA_12842_2490), located on the

same contig MA_12842, were simultaneously associated with BB, FD, and DBH forming a

single independent signal (Additional file 1: Table S6, S7, and S8), indicating a potentially

shared genetic component for the three traits. This signal alone (6.7% of PVE for BB) in

the whole population also accounted for 5.2% of PVE for FD at the progeny population

(F1150) suggests a major gene for BB and FD (Fig. 4). The genotype GG has a mean FD

of 0.23 and an increase of 31.9% compared with homozygosity of CC (0.15). In contrast,

height and DBH at age 12 for genotype GG decreased by 6.3% and 7.4%, respectively.

The contig MA_12842 with a missense SNP MA_12842_2490 harbored three

candidate genes (MA_12842g0010, MA_12842g0020, and MA_12842g0030) (Additional

file 1: Table S12). We also found that only the candidate gene MA_12842g0030 showed

significantly different expression between early and late budburst trees at the first

sampling time with the lowest recording temperature (5.5°C) during budburst in spring

(Fig. 5). The expression level of candidate MA_12842g0030 decreased from the first

two sampling times (May 3, 2018) to the last (May 27, 2018) for both early and late

budburst samples (Fig. 5). The developmental response and differential expression be-

tween early and late BB samples highlighted MA_12842g0030, annotated as putative

mitogen-activated protein kinase kinase kinase 15 (MAPKKK15/MAP3K15), to be a

promising candidate gene for BB and FD.

Discussion
As genomic data are today much easier to obtain, the main limitation of GWAS has be-

come the availability of accurate phenotypic data. Breeding programs are one of the
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main sources of phenotypic data even though those tend to be limited to traits related

to production, have generally be accumulated over long periods from numerous experi-

mental plantations. However, such extensive data is not without its challenges, such as

its high heterogeneity. In the present study, we have attempted to use data originated

from the Swedish breeding program for Norway spruce to carry out one of the largest

scales GWAS for growth, phenology, and wood quality traits in woody plants. Below,

we discuss the potential and limitations of this approach and what can be done to rem-

edy the latter as well as some of the specific results of the present GWAS. It is import-

ant to note that in the present study our main aim was to identify highly significant

and reproducible QTLs with large effect. This remains one of the main goals of GWAS,

especially in applied fields, although, given the highly polymorphic nature of quantita-

tive traits, it may also be reasonable to be more liberal and focus instead of the distri-

bution of effects, independently of the size of those (e.g., in forest trees [14, 25])

Factors affecting the power of GWAS

Several factors affect the detection of loci controlling trait variation: sample size, minor

allele frequency, size of allelic effect, markers density, heritability, LD structure, and

population structure [26, 27]. The sample size required for detecting effective loci is af-

fected by the number and effect size of underlying QTLs, heritability, statistical power,

and significance level used. In typical forest tree species, assuming an ideal population

Fig. 4 Violin plots of pleiotropic locus effects. Effect of pleiotropic QTL (MA_12842_2490) of budburst stage
and frost damage on A adjusted phenotypic budburst stage, in which higher values means budburst
earlier, B estimated breeding values (EBVs) of frost damage at age 7, in which higher value means that bud
was damaged more severely, C EBVs of tree height at age 12, and D EBVs of tree diameter at age 12 in the
southern Swedish field plantation (F1150). CC, CG, and GG are genotypes of SNP MA_12842_2490. The
value in parenthesis is the number of individuals for that genotype
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without population structure where all causal variants have been genotyped, detecting

QTLs with 0.5 allele frequency that account for 12.0%, 6.6%, and 4.3% of the variation

of the trait would require a population size of approximately 300, 550, and 850 trees,

respectively. Such sample sizes were derived with further assumption of an 80% power

and a significance level (type I error rate) of 1×10-7 (Additional file 2: Figure S10, [26]).

Of course, no such population exists and the required population size will typically be

much larger.

Sample size

Here, we used more than 4000 genotypes (except for height of 3838, DBH of 2674, and

FD of 1428 trees, Table 1) to detect association for the seven quantitative traits and 1370–

1981 genotypes for verification of these traits. Despite this large sample size, the statistical

power was curtailed by population structure and the heterogeneity of the data and this ap-

parently large sample size is still not sufficient to detect loci that explained less than 0.9%

of the variation, as suggested by the simulations in Hall et al. [26]. Our data, however,

show that the statistical approach used could make a difference. For example, using the

CMLM method, we did not detect any loci with PEV < 0.68% (Additional file 1: Table

S10) in each specific genetic cluster. The skewness in allele frequency, low genotyping

density, and cost in correcting for confounding by population structure likely mean that

an even larger sample size would be required to detect additional loci with lower effect

size. However, using the recently developed multi-loci BLINK method, one could detect

Fig. 5 Difference in gene expression during budburst stages. The expression of RNA-Seq in transcripts per
kilobase million (TPM) for gene MA_12842g0030 (MAP3K) from six early bud burst and six late bud burst
clones, sampled five times in May 2018. The x-axis is the five sampling time points (T1–T5) and their
corresponding temperature of sampling time (°C). Ns represents non-significance between early and late
budburst clones at the same sampling time, and different letters (a, b, and c) represent the
significant difference between different sampling times
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loci explaining less than 0.9% of the total variation when more than 2674 genotypes were

available (e.g., DBH). The fact that the number of SNPs detected for most traits including

growth traits, BB, and FD in the whole population was much more than the number of

SNPs associated in genetic clusters clearly indicate that sample size matters and is prob-

ably the most important factor in detecting QTLs (Table S10). For example, 32 and 0–8

SNPs were detected for BB in the whole population and seven clusters, respectively. Our

results are similar to those obtained in human GWAS where the number of discovered

variants is strongly correlated with experimental sample size [3]. In human, sample sizes

of over 1 million individuals are now becoming a reality for some traits, but in trees, geno-

typing and phenotyping of more than 10,000 trees are still a challenging task due to the

costs and availability of reliable phenotypic data. Advances in statistical methods, e.g.,

multi-locus or multivariate models would be one possible option to improve the statistical

power without increasing the sample size too much [28]. Reducing the stringency of stat-

istical thresholds and using complementary approaches such as RNA-Seq or qPCR would

be another option [29]. However, as illustrated by GWAS in humans, limits to statistical

power are likely rooted in the nature and architecture of quantitative traits and there will

be inherent limits to the detection of SNPs associated with quantitative traits.

Minor allele frequency

In GWAS, the detection of true low-frequency alleles associated with complex traits is

also challenging as it also implies that large and genetically diverse populations are re-

quired [26]. Most of GWAS in tree species (particularly conifers) have employed only a

few hundred individuals to identify loci potentially linked to phenotypic traits [13, 26,

28, 30–32]. In the present study with a relatively large GWAS population and high

genotype quality, we used variants with minor allele frequencies as low as 0.03, instead

of 0.05 used in most of the GWAS in plant species. Since rare alleles play an important

role in both genetic regulations of traits in plant species [13, 33], this matters. One of

the hypotheses attributed to the missing heritability is the substantial amount of quan-

titative variation linked to the cumulative effect of rare alleles that may not be detected

in GWAS using a small sample size [34]. The predominance of alleles of small effects

could simply be due to the fact that mutations with large effects are purged or kept at

low frequency due to their deleterious effects [13, 35].

Number and nature of markers and heritability

To the best of our knowledge, we used the largest population in tree species for

GWAS, but only a few SNPs were detected for all traits, except for BB. There could be

many reasons for this. Firstly, exome captures only cover a small fraction of the coding

region (0.4% of the whole genome). In annual plants, however, a clear pattern has

emerged indicating that the association signal of common variants in large sample

sizes, although spread across the entire genome, is heavily concentrated in regulatory

DNA in open chromatin marked by deoxyribonuclease hypersensitive sites [36]. This

could also explain the missing heritability. By analyzing pedigree-based and SNP-based

heritability, both heritabilities are comparable for BB, which indicates most of the

causal variation for BB may be located in the exome region, but not for wood quality

traits, in which SNP-based relationships only explained 10 to 12% of phenotypic
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variance. For growth traits, we used dEBVs instead of phenotypic values for GWAS.

The model using GRM only explained 11 to 23% of dEBVs and only a few SNPs were

detected, indicating growth traits are more polygenic, in line with previous results [14].

Wood quality traits in Norway spruce are also considered to be highly polygenic traits

[37]. SNP heritability only explained a small proportion of pedigree heritability, and

therefore, only a few SNPs or even no SNPs were detected in our GWAS even though

we used more than 4000 samples. As for other traits, many causal variants for wood

quality traits may be located outside the exome region. This will be consistent with an

omnigenic model of inheritance of quantitative traits [5, 12].

Genotyping in the two most commercially important angiosperm tree species (poplar

and Eucalypts) is relatively well developed due to their small and high-quality reference

genomes (400–600 Mb) [38–41]. However, only draft versions of the genome are

available in a few important conifer species [19, 42, 43]. To obtain markers covering

the whole genome, one solution is to develop a genome-wide high-density SNP array [44,

45]. Recently, a large consortium organized construction of six 50K SNP arrays for

Norway spruce, loblolly pine (Pinus taeda L.) and radiata pine (Pinus radiata D. Don.)

[20, 46]. This will facilitate GWAS studies in the near future but is, however, unlikely to

be a game-changer since SNP-arrays usually do not capture well rare variants even using

imputation based on reference genomes [47]. Another alternative solution to increase the

marker density would be to perform whole-genome re-sequencing using a low coverage

and impute the missing genotypes to re-sequencing density, but this would require better

genome assembly and reference haplotype panel than those currently available.

Population genetic structure and structure of the phenotypic data

Two aspects that affect the power of a GWAS are the overall genetic structure of the

studied population and the genetic relationships among the tests from which the

phenotypic data originate. Ideally, GWAS are conducted on a set of unrelated individ-

uals that have been accurately phenotyped. In this respect, progeny field plantations in

tree species, particularly in conifers, are suitable because progenies are at the same age

and environmental variation is minimized through a proper field experimental design

[48]. Additionally, accurate phenotypic data have often been collected over several years

in the existing breeding programs. However, progeny plantations usually consist of only

100 to 400, rarely more than 1000, half-sib or full-sib families [49, 50]. The result is

that access to a large number of unrelated trees in the same environment, associated

with an existing breeding program, is difficult. One can, of course, gather data from

many progeny tests, but then, as in the present study, will be faced with the fact that

trees are grown in different environments and are not planted in the same year. In

addition, different sets of genetic material are planted at different sites with minimal or

no genetic linkage between sites. This creates a considerable challenge to link the dif-

ferent progeny tests. Provenance plantations (common gardens) may provide a larger

number of unrelated trees, but samples from provenance plantations are often struc-

tured. Clonal common gardens of elite trees are also an option. However, they have

their limitations since trees are often grafted and possible interaction between the root-

stock and the scion can make this type of plantation unsuitable, especially for low herit-

ability traits such as growth. Scion-rootstock interactions may be less influential for
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highly heritable traits such as wood quality and phenology traits [51]. Clonal common

gardens, however, also offer advantages, the trees are usually unrelated, are represented

by several ramets (i.e., copies of the same genotype), and numbers are in the range from

several hundred to thousands of trees. Another advantage of clonal common gardens is

that their phenotypes are often available as ranks (estimated breeding values, EBVs)

predicted from progeny plantations through multiple generations, ages, and sites.

Recently advances in the development of factor-analytic and spatial analyses offer the

possibility to obtain accurate breeding estimates in such meta-data analyses [52]. We

were able to remove the site, age, and spatial environmental variation and to overcome

the minimum genetic connection issue among many sites for the 120 field plantations

in this project. By implementing the factor-analytic and spatial analyses, more accurate

phenotypic values from such large breeding program were derived for the GWAS with

significant genes detected for phenology and wood traits. However, to further improve

the accuracy of phenotype for GWAS, future plantings should include greater genetic

linkage, particularly between southern and northern Swedish plantations (Additional file 1:

Table S15). The disconnection between the southern and northern plantations also moti-

vated us to perform GWAS within each cluster. Thus, we would recommend establishing

several large plantations in southern, central, and northern Sweden with a sufficient number

of common parents/elite trees, i.e., at least 10–20% common parents [49].

Population structure

The present analysis of population structure showed a strong systematic stratification

(Fig. 1), which is in agreement with previous studies using a subset of the data. BB

showed a strong cline with longitude and latitude [14]. As expected, we did not find

that wood quality trait showed a cline. Growth traits only showed a moderate cline with

latitude as reported in Milesi et al. (2019). This difference in the structure of the traits

has important implications. BB, in contrast to growth traits, does follow both longitu-

dinal and latitudinal gradients means that the GWAS for this trait is more affected by

the correction for population structure. Applying BLINK without fitting the PC as a co-

variate, we found the inflation factors for all the populations and traits in this study are

within 1.0 ± 0.05, except for the genetic cluster ROM with small population size (n=30)

and the trait BB for the whole population (IF=1.09). This means that BLINK which uses

putative QTNs as covariates in the model already control well for population structure.

In the CMLM method, 0–3 PCs were used to correct population structure. Based on

the QQ plot and IF (Additional file 2: Figure S6), we find that all models with 0–3 PCs

could control population structure for the GWAS, except for the cluster ROM. We also

observed that including the genetic clusters as a covariate could improve the conventional

genetic model and estimations of variance components (Additional file 1: Table S16).

Replication is possible in different genetic clusters

Replication will increase the confidence of GWAS association signals and is commonly

used in human genetics studies [53]. Replication rate is often low [54], especially for

GWAS in tree species based on relatively small sample size. For example, [28] reported

that none of the 22 SNPs detected using a large population of ca. 800 were replicated

in McKown et al. studies [55, 56]. In this study, based on a significantly larger sample,
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21% of the significant SNPs (12/55) with large effect size could be verified or replicated

in different genetic groups (Additional file 1: Table S8 and S10). Our most repeatable

SNPs are those associated with BB and FD and with a large PVE. This further confirms

that QTL detection for small effect of alleles is dependent on specific populations,

structure, and the size, but for major alleles with large effect, they are more repeatable.

This may explain why we did not find the same SNPs for wood quality traits which

were observed in a previous study of smaller population size (517 genotypes) in Norway

spruce [37]. However, in contrast to these results for wood quality traits, we success-

fully detected all independent SNPs (n=7) found in a previous study using a subset of

data (n=808) [14] and the same method (CMLM) for BB, except one filtered out by

variation in quality control in this study, but none for height and DBH. One major dif-

ference with growth traits is that BB varies mainly along the longitude and also latitude

whereas the growth traits vary along the latitude and are thereby strongly affected by

the correction for population structure [14]. It may also be that the genetic architecture

of BB differs from that of other traits, although further studies will be needed to unam-

biguously demonstrate it.

Only a few genes with large effects are indirectly validated using several datasets

A very important step in GWAS is to validate the candidate genes by the genetic trans-

formation if the studied species can be transformed. Unfortunately, in conifer, a genetic

transformation system is so far not developed and transformation in spruce itself has

seldom been used (but see Karlgren et al. [57]) and remains a major endeavor. So most

studies have simply attempted to replicate the identified QTLs in different datasets and

many failed [28, 55, 58]. In this study, in order to ascertain, our results as well as pos-

sible, we indirectly validated the identified candidate genes using three independent

datasets: (1) a full-sib progeny population located in two northern Swedish field planta-

tions with 1370 individuals, (2) a full-sib clonal population located in three southern

Swedish field plantations with 914 genotypes, and (3) RNA-seq data from early and

later burst buds. A few candidate genes with large effects were validated in the field

plantations. In particular, MAP3K was validated in several field plantations using both

exome capture and SNP array data. In addition, differential expression of MAP3K was

also shown in early and late buds. While this may not amount to a full validation, we

nonetheless feel that it lends significant support to our findings and indicates that

transformation of these candidates genes should be a priority.

MAP3K gene regulates the budburst stage and frost damage and enhances growth

To tolerate cold temperature, plants must be able to perceive a cold signal and trans-

duce it into downstream components that could induce appropriate defence mecha-

nisms [59]. In this study, we found that several candidate genes were associated with

FD and also showed a significant difference in gene expression among temperatures.

Contig MA_12842 harbors three putative frost tolerance genes MA_12842g0010, MA_

12842g0020, and MA_12842g0030 belonging to MAP3K cascades which respond to

cold stress [59, 60]. A typical MAP3K cascade contains three protein kinases: MAP kin-

ase kinase kinase (MAP3K), MAP kinase kinase (MAP2K), and MAP kinase (MAPK).

In our study, the contig MA_12842 may contain three putative MAP3K according to
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the current assembly, but it should be verified in the improved Norway spruce refer-

ence genome under development. However, all the three associated SNPs (MA_12842_

2476, MA_12842_2389, and MA_12842_2490) were located within the same candidate

gene MA_12842g0020. Based on strict filtering by 90% of the missing rate per locus in

the whole population, we found that all the SNPs in gene MA_12842g00030 were fil-

tered out. Here, to check if the existing of a strong LD between SNPs within two genes

MA_12842g00020 and MA_12842g00030, we therefore calculated LD values based on

a subset of data (ca.1000 genotypes) with a few missing genotypes for those two genes,

and discovered a strong LD between QTL MA_12842_2479 and some of the SNPs in

MA_12842g0030 (Additional file 2: Figure S11). Therefore, we putatively considered

that the two genes are in strong LD. In A. thaliana, MAP3Ks are induced by various

abiotic stresses, including cold and drought. In our study, the late budburst and less FD

trees all had a high expression level of the MA_12842g0030 in RNA-Seq data. We ob-

served that trees with less expression of MAP3K showed a decrease of more than 6%

for height and DBH in the long-term field plantation. Unfortunately, there is no ma-

tured conifer transformation system so far to further verify the role of MAP3K in con-

trolling budburst.

Based on predictions from climate modeling, increased growing season of plants in

the Northern Hemisphere from global warming may induce earlier budburst with more

frequent FD [61, 62]. Considered that with the increased temperature in Sweden, the

start of de-hardening and budburst was predicted to be earlier all over the country.

Therefore, improving the cold tolerance for Norway spruce and other Northern species

is becoming more important. In this study, the detection of SNPs and associated genes

underlying the variation of FD and late budburst may greatly improve genomic predic-

tion and genome-wide marker-assisted selection in future Norway spruce breeding.

Conclusions
In the present study, we used a large data set from 120 progeny tests and newly col-

lected data from clonal archives to carry out the largest association study in Norway

spruce. Through factor-analytic and spatial analyses, we made the combination of a di-

verse and heterogeneous dataset of different ages, sites, and pedigrees with a minimum

genetic connection possible to improve the accuracy of phenotypic value for GWAS.

While the total number of significant SNPs identified for growth and wood quality

traits was limited, we were able to detect more SNPs for phenology traits. It also shows

the value of ascertaining the identified SNPs through both replication and verification

steps. Indeed, our GWAS study succeeded in identifying, replicating, and verifying

through a gene expression study the association between the cold tolerance genes

MAP3K and bud burst. Since the SNPs associated with cold tolerance are also associ-

ated with tree growth and DBH, by improving cold tolerance, growth, and productiv-

ities of forests could be simultaneously increased.

Methods
Plant material

We used 483,424 progeny trees and their 5056 unrelated parents in the Swedish

Norway spruce breeding program to dissect the genetic basis of phenology, growth, and
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wood quality traits. These plantations belong to the breeding program managed by the

Forestry Research Institute of Sweden (Skogforsk) over the past 50 years which started

with elite tree selection and continued with the establishment of progeny tests. The 5056

parents were genotyped using exome capture and either phenotyped directly for some

traits or, for other traits, phenotypically characterized through their predicted breeding

values obtained from 482,054, predominantly open-pollinated progeny trees, at 120 pro-

geny tests across Sweden (Additional file 2: Figure S12 and Additional file 1: Table S17).

Finally, 1370 full-sib progeny trees from 55 parents (51 genotyped and overlapped with

the 5056 parents) planted at two different field plantations were genotyped by a standard

exome capture and phenotyped to validate the QTLs and 914 full-sib progeny trees from

49 parents (36 genotyped and overlapped with the 5056 parents) were genotyped by a re-

cently developed 50K SNP array [20] and phenotyped to validate the candidate genes as-

sociated with BB detected by GWAS, by checking whether any SNPs were detected in the

same gene region (Fig. 1). A detailed description of the studied material is given below.

Elite trees from the Swedish breeding program

The GWAS was based on 5056 unrelated Norway spruce elite trees, which are repre-

sentative of the whole species geographical range (Fig. 1a). These elite trees were

grafted in the 1980s in three clonally replicated common gardens located in southern,

central, and northern Sweden. The southernmost common garden is located at Ekebo

(55.56 °N, 13.06 °E) with ca. 3386 elite trees, the central common garden in Brunsberg

(59. 37 °N, 12.57 °E) and includes ca. 484 elite trees, and the northernmost common

garden at Sävar (63.89°N, 20.54°E) comprises ca. 1186 elite trees.

Progenies used to evaluate the elite trees performance across Sweden

The performance of groups of selected elite trees was evaluated in an extensive network

of half-sib, full-sib, and clonal field plantations across the different Swedish breeding

zones. Adjacent breeding zones share some materials and can therefore be connected, but

more distant ones are genetically disconnected. Here, we selected 483,424 progenies from

122 field plantations with well-documented phenotypes throughout 6–28 years’ field sur-

vey (Additional file 1: Table S5). These field plantations were developed ~20–47 years ago

and include different number of progenies [49]. The smallest plantation includes only 816

progenies obtained from 25 parental elite trees while the largest has 16,160 trees from

1359 parental elite trees. The selected progenies were sub-divided into three groups: the

first group includes 482,054 half/full-sib progenies evaluated at 120 field plantations from

which breeding values (EBVs) of parental elite trees were estimated. A second group with

1370 full-sib progenies was planted in two northern Swedish field plantations. This group

was sequenced previously [63] and was used here to validate the association signals de-

tected from the first group. The third group with 914 full-sib progenies was planted in

three southern Swedish field plantations. This group was used to validate the associated

signal for BB detected from the first group.

Sampling, DNA, and RNA extraction

In total, 6426 (5056+1370) and 914 trees were genotyped by exome capture and a re-

cently developed SNP array, respectively (Table 1). Buds and needles were collected
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from the selected trees; thereafter, total genomic DNA was extracted using the Qiagen

Plant DNA extraction protocol with DNA quantification performed using the Qubit® ds

DNA Broad Range Assay Kit (Qiagen, Oregon, USA). To validate the candidate genes

for the association signals underlying BB, differential expression analysis was performed

using RNA-Seq data from early and late budburst elite trees during five budburst stages

in the northern Sävar common garden. In total, we selected 12 genotypes for early and

12 for late budburst and a second tree (ramet) from a single genotype of the early and

late budburst categories as a biological replicate (i.e., 13 trees from 12 genotypes for

each category). Buds of those genotypes were sampled from the top of trees at 4 days

intervals (T1 to T5) from May 4 to May 24, 2018. Sampling time was between 11:00

and 15:00, and ambient temperature was recorded. The buds were kept in liquid nitro-

gen in the field and stored in −80°C before RNA extraction. Total RNA was extracted

using the miRNeasy Micro Kit (Qiagen) according to the manufacturer’s instructions.

RNA quantity and purity were assessed by NanoDrop 2000 spectrophotometer (Nano-

Drop Technologies, Wilmington, DE, USA), and RNA concentration was measured

using the Qubit RNA Assay kit Qubit 2.0 Fluorometer (Life Technologies, Carlsbad,

CA, USA). RNA integrity was analyzed on an Agilent 2100 Bioanalyzer with Pico chips

(Agilent Technologies, Waldbronn, Germany).

Genotyping by exome sequencing and SNP array

Sequence capture was performed using 40,018 probes previously designed [18], and

samples were sequenced to an average depth of 15x on an Illumina HiSeq 2500

platform by RAPiD Genomics (Gainesville, FL, USA). Raw reads were mapped to

the P. abies reference genome v1.0 using BWA-mem [64, 65]. SAMTools [66] and

Picard [67] were used for sorting and removal of PCR duplicates, and the resulting

BAM files were subsequently reduced to only include probe bearing scaffolds (24,

919) before variant calling. Variant calling was performed using the Genome Ana-

lysis Toolkit (GATK) HaplotypeCaller [67] in Genome Variant Call Format (gVCF)

output format. Samples were then merged into batches of ~200 before joint variant

calling.

The 914 genotypes that were used to evaluate the associated signals with BB were

generated using the Norway spruce 50K SNP chip [20].

Quality control of called SNPs

To improve the quality of called SNPs, several filtering steps were performed: (1)

removing indels, (2) keeping only bi-allelic sites, (3) marking sites with a genotype

quality (GQ) < 10 as missing, (4) removing sites with call rate (“missingness”) < 70%,

(5) removing sites with minor allele frequency (MAF) < 0.005, (6) removing SNPs with

an excess of heterozygotes and deviation from Hardy-Weinberg equilibrium test

(HWE-test) for the whole elite tree population (P value < 1.4e−7), and (7) removing in-

dividuals with call rate < 50%. After these filtering steps, a total of ~300K SNPs with

MAF > 0.005 were left for population structure analysis. In our previous study [63],

with filtering criteria of GQ < 6 and DP < 2 as missing, the averaged discordance esti-

mated from 148 technical replicates was less than 1%. Thus, we considered that such

filtering criteria were sufficient for downstream analysis.
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Genotype calling of the 50K Axiom array was performed using the Axiom analysis

suite (V4.0), following best practice with default parameters (a sample call using a

Dish-QC threshold [axiom_dishqc_DQC] ≥ 0.82 and an average SNP call rate cutoff

per sample [cr-cutoff] ≥ 0.97). After filtering the SNPs with MAF <0.05, 37819 SNPs

were kept for downstream analysis.

Genotype imputation and estimation of the imputation accuracy for exome sequencing data

We used Beagle v4.1 to impute the missing genotypes [68]. To estimate the imputation

accuracy, 216 trees were randomly selected and genotyped with a 450k pilot Axiom

SNP array [20]. After removing probes with poor quality, 15,601 SNPs with high confi-

dence calls were retained and further used as a basis to evaluate the imputation quality.

Accuracy score is calculated as the ratio of SNPs with the same call derived from array

genotypes and genotypes imputed from exome sequencing data. For SNP array, missing

loci were imputed by random imputation of the codeGeno function in the synbreed

package in R [69].

Population structure and origin assignation

To infer population structure among the sampled individuals, we used linkage disequi-

librium (LD)-trimmed SNPs by removing randomly one SNP from each pair of SNPs

when the squared pairwise correlation coefficients (r2) exceed 0.2 in blocks of 20 SNPs

using PLINK 2.0 [70]. This step yielded 200K independent SNPs for downstream ana-

lyses of population structure. EIGENSOFT v7.2.1 [71] was used to perform principal

component analysis (PCA) on the reduced set of independent SNPs. In this study, the

geographic origins of 2277 elite trees were unknown. We therefore used a random for-

est classification model from missForest function [72] in R package missForest to infer

their geographic origins based on genotype similarity on the first five principal compo-

nents of the PCA. The 2779 elite trees with known geographical origins were used as a

training set (Additional file 1: Table S1 and S2). Pairwise Fst index estimates among

subpopulations/genetic clusters defined by PCA and missForest function were esti-

mated using VCFtools [73].

Phenotyping

In total, we performed GWAS for seven traits, including two growth traits (height and

DBH), two phenology traits (BB and FD), and three wood quality traits, wood density

(WD), microfibril angle (MFA), and wood stiffness (WS). The three wood quality traits

and BB were measured directly on the elite trees in the three common gardens, and

GWAS were performed on adjusted phenotypic measurements after removing environ-

mental effects (see below). For the three remaining traits, height, DBH, and FD, esti-

mated breeding values (EBVs) of the elite trees were predicted from 120 progeny tests

across Sweden. Importantly, these progeny tests were unevenly distributed, depending

on the trait (see below). Furthermore, not all seven traits’ measurements were available

for the 5056 elite trees and the validation progeny population of 1370 trees. Table 1

gives a detailed description of the samples used for each trait. In summary, the GWAS

included a variable number of samples for each trait ranging from 1428 to 4138 trees

and the validation progeny population sample size ranged from 1067 to 1370 trees.
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Phenotyping height, DBH, and FD on 482,054 progenies to estimate breeding values for

GWAS on elite trees

For height, 330,966 progeny trees generated from 3838 parental elite trees and grown

in 115 progeny plantations were phenotyped at ages varying from 6 to 16 years. DBH

was measured on 213,931 progeny trees at age of 10 to 28 years. These progenies des-

cended from 2674 parents and were planted in 75 progeny tests. The 115 plantations

for height measurement were distributed across Sweden while 75 plantations (70 over-

lapped with height measurement) for DBH measurement were distributed in southern

and central Sweden (Additional file 1: Table S17). FD was scored as 0/1 in two half-sib

progeny tests (F1150 and F1215, Fig. 1a and Additional file 1: Table S17), in which the

progenies were from 1428 parental elite trees. Here, 1 represents susceptibility to frost

and 0 indicates resistance.

Phenotyping wood quality traits and BB on the elite trees for GWAS

Three wood quality traits and BB were measured in the three common gardens (Ekebo,

Brunsberg, and Sävar, Table 3). WD and MFA traits were measured directly on the elite

trees using the Pilodyn 6J Forest instrument (PROCEQ, Zurich, Switzerland) in 4127 elite

trees with ca. three ramets/clone (clonal copy of the same genotype) each and Hitman

ST300 instrument (Fiber-gen, Christchurch, New Zealand) in 4122 elite trees with ca.

three ramets each, respectively, in 2016. The WD was measured using depth of needle

penetration of the Pilodyn with a 2.0-mm diameter pin, without removing the bark; there-

fore, WD values represented by penetration depth would be lower when wood density is

higher. The MFA was determined by acoustic velocity from the Hitman ST300 measure-

ment. The third trait of WS, also called the modulus of elasticity, was estimated using the

equation by combining the Pilodyn penetration and acoustic velocity data [74]. The BB

was directly scored following criteria defined by Krutzsch [75] for 4138 elite trees with ca.

3 ramets each in the three common gardens (Tables 1, 3 and Fig. 1a).

Phenotyping height, three wood quality traits, and BB on 1370 progenies to replicate the

association signals

To validate the detected association signals from the parental population, we measured

five traits including height, three wood quality traits, and BB in 1370 progenies from

two northern Swedish full-sib field plantations (Fig. 1a).

Table 3 List of the phenotypes, their abbreviations, age of measurement, number of genotypes
used in GWAS, and measurement unit

Traits (abbreviation) Age No. genotypes Unit

Budburst stage (BB) 7–25 4138 Category

Tree height (height) 6–16 3838 cm

Diameter at breast height (DBH) 10–28 2674 mm

Frost damage (FD) 6–7 1428 Category

Wood density (WD) 23–31 4127 kg m-3

Microfibril angle (MFA) 23–31 4112 (km/S)

Wood stiffness (WS) 23–31 4121 (Gpa)
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Phenotyping BB on 914 genotypes to replicate the association signals

To validate the detected association signals from the parental population, we measured

BB in 914 genotypes, each with ca. three replicates (ramets) at each of three clonal

plantations (Table S17).

Preparing the response variables of GWAS for height, DBH, and FD

To improve the accuracy of response variables used for GWAS, we did three steps of

preparation for height, DBH, and FD. The three steps are as follows:

Adjusting environmental effects for height, DBH, and FD

We used spatial analysis to correct for environmental effects for height, DBH, and FD

traits [76]. The details of the spatial models are in Additional file 3: Supplementary

methods.

Estimating breeding values of the adjusted height, DBH, and FD

To predict the estimated breeding values (EBVs) [77] and adjust for plantation and age

effects, we employed a reduced parental/animal linear mixed model combined with fac-

tor analytic (FA) analysis for multi-environment analysis:

y ¼ Xτ þ 1
2
Fpuap þ e ð1Þ

where y is a vector of the spatially adjusted observations, τ is a vector of fixed effect,

including the grand mean, plantation, and age, uap is a vector of random additive genetic

effects for parents, e is a vector of random residual terms. X and Fp are known inci-

dence matrices for fixed effects and parents, respectively. The random effects in the

model are assumed to follow a multivariate normal distribution with mean and variance

defined by:

uap � Nð0; σ2aApp) and e � Nð0; σ2e IÞ
where 0 is a null vector; App is the numerator relationship matrix of parents; I is the

identity matrix, with order equal to the number of trees; and σ2aand σ2e are the additive

and residual variances, respectively. To provide a good parsimonious approximation to

the unstructured genotype-by-environment covariance matrix, the additive genetic ef-

fect i at plantation j can be expressed as follows:

uapij ¼ λa1 j f a1i þ λa2 j f a2i þ…þ λakj f aki þ δaij ð2Þ

which includes a sum of k multiplicative terms. Each term is the product of an addi-

tive genetic effect ( f ariÞ, which is known as a factor score, and an environment effect (

λarjÞ , which is known as loading. The k of the FA models is the number of factors

(multiplicative terms), and we denote an FA model with k factors as a FAk model. To

obtain main additive genetic effects for all parents and also additive genotype by envir-

onment effects, an additive effect uapij could be described as ua =m +me, where m is

the additive main additive genetic effect, and me is the additive genetic-by-environment

effect. var(ua) = var (m) +ɅɅT +Ψ, where Ʌ is a matrix of loadings and Ψ is a diagonal

matrix with diagonal elements referred to as specific variances. The model is referred
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to as the FAMK model [78], which is equivalent to a factor analytic model with (k+1)

factors, where the first set of loadings are constrained to be equal.

To predict EBVs of FD, a logit function was used to transform the binary variable,

FD and then a generalized linear mixed model was employed in ASReml V4.1 [79]. The

details of the model are shown in supplementary methods.

De-regressing breeding values of height, DBH, and FD

Using EBVs as phenotypes in genomic prediction may introduce bias and heterogeneity

[80]; thus, de-regressed estimated breeding values (dEBVs) for Height, DBH, and FD as

pseudo-phenotypes were used to perform GWAS. The dEBVs for individual i was ob-

tained as û�i ¼ ûi=r2i , where ûi is the estimated EBV and r2i is the reliability of EBVs

[80]. The resulting dEBVs were then weighted according to wi ¼ ð1−h2i Þ=½cþ ð1−r2i Þ=r2i
Þ h2i � , where h2i is the heritability of the trait estimated as the mean of heritability of

field plantations and c is the proportion of variance not accounted for by the markers

(here assumed to be 50%) [80].

Preparing the response variables of GWAS for BB and three wood quality traits

Two steps of preparation were used for BB and the three wood quality traits before

performing a GWAS. First, we performed a linear mixed model including blocks as

fixed effects to adjust for environment effects in each common garden. The model was

as follows:

y ¼ Xβþ 1
2
Zuþ e

where y is the vector of observations, X and Z are the incidence matrices related to

fixed effects (the grand mean and block effects) in vector β and random effects in vec-

tor u (genotype effects) assuming u � Nð0; σ2uIÞ , e is the vector of residual effects as-

suming e � Nð0; σ2e IÞ. Second, after adjusting for block effects, we used a simple linear

model to adjust for common garden effects.

Estimates of genetic parameters for all seven traits

Genetic parameters were estimated using ASReml V4.1 [79]. Details are given in sup-

plementary methods. The repeatability of the three wood quality traits was estimated in

each of the three common gardens. Repeatability of BB was only measured in the

Northern Sävar common garden. For growth traits including height and DBH, the

pedigree-based narrow-sense heritabilities were estimated [49]. In the present study, we

only estimated narrow-sense heritabilities and genetic correlations among growth and

wood quality traits in the two full-sib field plantations which were used for SNPs valid-

ation and in two half-sib field plantations in which the dEBVs of FD were estimated.

Pearson’s correlations and SNP-based genetic correlation among adjusted phenotypic

BB, wood quality traits, and dEBVs of height and DBH were estimated by cor function

in R 3.5.3 [81] and ASReml V4.1, respectively. To compare pedigree and SNP-based

narrow-sense heritabilities for FD, height, and DBH, the two plantations with FD data

were used to estimate both types of heritability. For BB and wood quality traits,

pedigree-based narrow-sense heritability was estimated from the two field plantations

Chen et al. Genome Biology          (2021) 22:179 Page 24 of 30



used for validation and the SNP-based heritability was estimated from the whole popu-

lation available using adjusted phenotypic values.

Screening for SNP association with phenotypic traits

To identify significant SNPs associated with each trait, GWAS was carried out for each

of the seven phenotypes using 134,605 SNPs (the MAF > 0.03 to account for the fairly

large size of the population) with two methods (BLINK and CMLM) for the whole

population and for the large genetic clusters defined by PCA.

One of the main aims of both BLINK and CMLM is to consider cryptic relationships

among individuals and control for false-positive detection risk. Thus, here we only

needed to consider the effect of population structure for GWAS. We tested both

methods without additional corrections than the ones inherently included in the

method, or by including 1 to 3 PCs to control for population structure confounding ef-

fect. To assess the efficiency of the methods used here in controlling for population

structure, we used the genomic inflation factor (IF). The latter expresses the deviation

of the observed p values compared with the distribution of the expected p values fol-

lowing a uniform distribution. We found that BLINK model with fitting one PC as a

covariate or even without fitting PCs is effective in accounting population structure (IF,

0.95< lambda <1.05) [82] and CMLM without correction or 1 to 3 PCs also could con-

trol population structure based on the previous criteria. The QQ plots and lambda for

all traits including 0 and 3 PCs for CMLM and 0 and 1 PC for BLINK are shown in

Additional file 2: Figure S2. Manhattan plots were made using the QQMAN R package

[83]. The LDheatmap function implemented in the R package LDheatmap [84] was

used to illustrate the pairwise LD between all genotyped SNPs, using allelic squared

correlation coefficient (r2). Independent SNPs were defined by pairwise SNPs in differ-

ent contigs or with LD r2 < 0.2 in the same contig. Proportion of variance explained by

a given SNP (PVE) and cumulative phenotypic variance (R2) explained by all associated

SNPs was calculated according to the method described in [85] using a linear mixed

model procedure with genomic relationship matrix to control the cryptic relationship

among individuals within sub-populations.

Replication of the GWAS signals using five progeny field plantations

The 1370 full-sib progenies from 55 parents/elite trees and established in two field

plantations (Vindeln and Hädanberg) in northern Sweden that were genotyped in a

previous study [63] were used for validation. Here, 51 parents (95%) belonged to the

1041 northern Swedish population (NFE) (Table 1). Genomic-based relationships be-

tween 51 parents and the remaining of NSE were shown in Additional file 2: Figure

S13. Approximate zero relationships were found between validation parents and other

parents in NSE, except for 16 parents. We employed a MLM method [85] with a rela-

tionship matrix to test whether SNP associated with BB, height, and the three wood

quality traits were also detectable in these two field plantations.

The 914 full-sib progenies from 32 control-pollinated families with 49 parents/elite

trees and established in three field plantations in southern Sweden that were genotyped

by the recently developed SNP array [20] were used for validation and check whether

the identified gene model using exome can be verified and how much percentage of
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associated signals were located outside of gene model. Thus, we employed the BLINK

method to test if SNPs associated with BB. After spatial analysis, we obtained the ad-

justed phenotypic values for each tree. The mean values of 914 genotypes were used as

phenotypic values in BLINK.

Annotation for significantly associated effects

Significantly associated SNPs at 5% false discovery rate (FDR) were annotated using

SnpEff 4.3 with default parameters [86]. The general transfer format (GTF) from

Ensembl was utilized to build the P. abies SnpEff database. To assess the variant effect

of the associated SNPs, annotation of the putative genes and their associated orthologs

was performed using the P. abies v1.0 genome on ConGenIE database (http://congenie.

org/). Candidate gene with an associated SNP inside was extracted from ConGenIE.

Due to the fast LD decay with averaged r2 values dropping to 0.2 at 37 base pairs (bps)

within all contigs and 67 bps within all contigs harboring associated SNPs (Additional

file 2: Figure S3), and a possible exception up to ca. 1.5 kb for some contigs (Baison

et al. 2019), candidate genes were selected from annotated genes that were associated

with SNPs inside the gene body only. Besides, the candidate genes located on the same

contig harboring a SNP associated with BB and FD, which showed an expression differ-

ence in the RNA-Seq experiment described later or had a similar functional annotation

were also extracted. For P. abies contigs that harbored significant SNPs without any an-

notated genes, nucleotide BLAST (BLASTN) searches, using the option for only highly

similar sequences (MEGABLAST) in the National Center for Biotechnology Informa-

tion (NCBI) nucleotide collection database (https://blast.ncbi.nlm.nih.gov/Blast.cgi),

were performed to manually evaluate possible candidate genes.

Identifying candidate genes using differential expression analysis on RNA-seq data

The pooled libraries were sequenced on the Illumina NovaSeq 6000 System (2*150 bp)

using the paired-end module. The raw reads were processed using fastp [87]. The aver-

age insert size for the paired-end libraries was 200–300 bps. The transcript abundances

were estimated using kallisto software [88]. Read counts using TPM (transcripts per

kilobase million) were normalized and variance stabilized transformed (VST) to obtain

gene expression values using the R package “sleuth” [89].
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