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Abstract: Biobased carbon materials (BBC) obtained from Norway spruce (Picea abies Karst.) bark
was produced by single-step chemical activation with ZnCl2 or KOH, and pyrolysis at 800 ◦C for one
hour. The chemical activation reagent had a significant impact on the properties of the BBCs. KOH-
biobased carbon material (KOH-BBC) had a higher specific surface area (SBET), equal to 1067 m2 g−1,
larger pore volume (0.558 cm3 g−1), more mesopores, and a more hydrophilic surface than ZnCl2-
BBC. However, the carbon yield for KOH-BBC was 63% lower than for ZnCl2-BBC. Batch adsorption
experiments were performed to evaluate the ability of the two BBCs to remove two dyes, reactive
orange 16 (RO-16) and reactive blue 4 (RB-4), and treat synthetic effluents. The general order model
was most suitable for modeling the adsorption kinetics of both dyes and BBCs. The equilibrium
parameters at 22 ◦C were calculated using the Liu model. Upon adsorption of RO-16, Qmax was
90.1 mg g−1 for ZnCl2-BBC and 354.8 mg g−1 for KOH-BBC. With RB-4, Qmax was 332.9 mg g−1 for
ZnCl2-BBC and 582.5 mg g−1 for KOH-BBC. Based on characterization and experimental data, it was
suggested that electrostatic interactions and hydrogen bonds between BBCs and RO-16 and RB-4
dyes played the most crucial role in the adsorption process. The biobased carbon materials showed
high efficiency for removing RO-16 and RB-4, comparable to the best examples from the literature.
Additionally, both the KOH- and ZnCl2-BBC showed a high ability to purify two synthetic effluents,
but the KOH-BBC was superior.

Keywords: biobased carbon materials; meso- and microporous carbons; dye adsorption; chemical
adsorption; electrostatic interactions

1. Introduction

Biomass is a renewable and widespread resource that, if utilized sustainably, can
help to reduce the emission of carbon dioxide that directly affects global warming [1].
Agricultural and forestry residues and by-products from biobased industries can be used as
feedstock for energy production and material applications to replace fossil fuel sources [2,3].

Norway spruce (Picea abies (L.) Karst.) is one of the most common and economically
valuable trees for the European forest industry as it is widely distributed from central to
boreal and eastern Europe [4]. Together with pine and birch, spruce is the most common tree
species in Sweden; these three combined comprise more than 90% of standing volume [4].
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The Swedish annual forest harvest amounts to approximately 90 Mm3 standing volume [5],
and they are economically very important for sawmill and paper and pulp industries.
However, in the production of sawn timber, pulp, and paper, only the stem wood is used—
the remaining components can be considered industrial by-products. Around 10–15% of
the feedstock volume delivered to the forest industries consists of bark currently mainly
utilized as fuel and other low-value applications [5,6]. Consequently, research to employ
bark as a precursor for value-added and eco-friendly material products is motivated.

Using biomass to produce biobased carbon materials (BBC) such as biochar (BC),
activated carbon (AC), carbon composite materials (CCM) is an application with great
potential. It reduces fossil carbon use and can provide new types of functionalities [6–14].
BBC is the oldest, most common, and efficient material for removing pollutants from aque-
ous media [7–13]. Besides its chemical stability, surface functionalities, high porosity, and
specific surface area are essential characteristics for efficient application in the adsorption
process [8–16]. However, high-purity activated carbons are expensive; therefore, the use of
other biobased carbon materials can be explored as adsorbents for the removal of pollutants
and micropollutants [8,10–16].

Adsorption is seen as one of the most suitable treatment methods for tackling pollu-
tants from contaminated water and wastewaters due to its simple operating conditions,
high efficiency, and low-cost employment. To design a very efficient adsorption process,
the BBC must be prepared to achieve suitable properties.

The BBC properties are highly dependent on pyrolysis conditions and activation
methods [14,17]. For instance, chemical activation can create carbon materials with ultra-
high BET surface area (SBET) and porosities because of extensive micro and mesoporosity
development. Each pore structure has a specific role in the adsorption process, e.g., the
micropore structure contributes significantly to the SBET values and the adsorption of small-
sized contaminants (e.g., metallic species and small organic molecules) [13,17]. Mesopores
are essential as vectors to the surface areas within the carbon material particle, and their
respective quantities are primarily dependent on the pyrolysis conditions and activation
method. The mesopore structure is vital for larger-molecule adsorption, which is the case
for dyes and colored effluents.

It is estimated that over 10,000 different dyes and pigments are used in the food,
leather, cosmetics, and textile industries, e.g., only the textile industry consumes up to
200,000 tons of dyes yearly, thereby generating large amounts of colored effluents [18].
These colored effluents are, if not adequately treated, discharged into the environment,
where they are potentially harmful to the aquatic systems and ecosystem integrity. Besides,
many dyes are reported as mutagenic and carcinogenic [19]. Therefore, these effluents
must be treated before their discharge into the environment, and the adsorption process
using biomass-activated carbon is one the most suitable treatment process [12–16].

The purpose of this study was to investigate the potential of spruce bark residues
as a precursor to producing efficient carbon-based materials by pyrolysis, using KOH
(KOH-BBC) and ZnCl2 (ZnCl2-BBC) as chemical activators. The effect of the chemical
reagents on the BBC characteristics such as morphology, specific surface area and porosity,
surface chemistry, BBC composition, hydrophobicity index, carbon yield, and adsorption
of two dyes and different synthetic effluents were evaluated.

2. Materials and Methods
2.1. Preparation of BBCs

Norway spruce (Picea abies Karst.) bark was delivered from a pulp and paper mill
in northeast Sweden and prepared at the Biomass Technology Centre (BTC), Swedish
University of Agricultural Sciences, Umeå, Sweden. The wet bark was dried in a custom-
made plane drier at 40 ◦C, shredded with a screen size of 15 mm (Lindner Micromat
2000, Lindner-Recyclingtech Gmbh), hammer-milled with a screen size of 4 mm (Büh-
ler DFZK 1, Bühlergroup), representatively sampled according to ISO 18135:2017, and
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cutting-milled with a screen size of 200 µm using a Fritsch Pulverisette 14 mill (FRITSCH
GmbH, Germany).

The pyrolysis was done in a single pyrolysis-step preparation according to a previously
reported procedure [20–24]. First, 15.0 g of the spruce bark was mixed in a weight ratio
of 1:1 with each chemical activation agent (KOH and ZnCl2). During the mixing, about
40.0 mL of water was added to form homogeneous pastes. These two pastes were dried in
an oven at 105 ◦C for 24 h. The dried pastes were placed in a metallic crucible and treated
thermally in a conventional high-temperature oven under a nitrogen flow of 600 mL min−1.
They were heated from 20 to 800 ◦C at a rate of 10 ◦C min−1 and held at 800 ◦C for 60 min.
The oven was turned off to cool down the pyrolyzed samples while the nitrogen flow was
kept, and when the temperature dropped to 200 ◦C, the nitrogen flow was shut off. The
pyrolyzed materials were milled with a screen size of 200 µm and completely leached out
by conventional leaching using 0.1 M HCl, under reflux, for 2 h for KOH-BBC and using
1.0 M HCl, under reflux, for 2 h for ZnCl2-BBC [13,15–17]. The BBC preparation procedure
is summarized in Figure 1.
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Figure 1. The BBC preparation procedure.

2.2. BBC Characterization
2.2.1. Textural Properties

The adsorbent’s textural properties, especially for biobased carbon materials, are
crucial for evaluating their applications and potential application efficiencies. Common
BBCs are almost always heterogeneous, having an unknown range of pore sizes and a
range of pore shapes, blocked and network pores [12,14,15].

The samples’ surface morphology was observed with scanning electron microscopy
(SEM) (55-VP, Supra, Zeiss), using an acceleration voltage of 20 kV and magnification
ranging from 100 to 20,000.

N2 adsorption/desorption isotherm analysis (Tristar 3000 apparatus, Micrometrics
Instrument Corp., Norcross, GA, USA) was performed to quantify the porosity (by DFT
method) and surface area (BET method). Before the analysis, the sample was degassed at
180 ◦C for 3 h in an N2 atmosphere. The specific surface area was calculated in the relative
pressure interval of 0.05–0.3 using the Brunauer–Emmett–Teller (BET) method [16,22].
Mesopore size and distribution were calculated by the Barrett–Joyner–Halenda (BJH)
method from desorption curves while the micropore area values were calculated by the
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t-plot method [16,20,22]. The percentage of the mesopore and micropore areas were
calculated based on the SBET values [22].

2.2.2. Elemental Analysis, Yield (%), Raman Spectroscopy, and Zeta Potential

The elemental analysis was carried out to evaluate the volatiles and fixed carbon
contents and quantify the elemental composition of the BBCs, respectively. The analysis
was made using a CHN Perkin Elmer M CHNS/O Analyzer, model 2400.

The yield (%) was calculated from the dry matter quota of the biomass precursor after
and before activation.

Raman spectroscopy is widely applied to characterize BBCs. It is applied to obtain
structural information on the bulk of carbon materials. Raman spectra were recorded on a
Renishaw inVia Raman spectrometer (Renishaw, Kingswood, UK) at 633 nm HeNe laser.

Zeta-potential was performed to obtain the charge (whether positive or negative) of
the BBCs. It was determined at pH 7 using a potential analyzer (Zetasizer Nano ZS90,
Malvern Panalytical, Malvern, UK).

2.2.3. Water Vapor Sorption and Hydrophobicity/Hydrophilicity

The BBCs’ water vapor sorption isotherms and the hydrophobicity/hydrophilicity
index (HI) are used to determine the properties of the BBC/water interface and the water
molecules’ ability to attach to the BBC surface, which both may influence dye adsorption.

The BBCs’ H2O vapor adsorption isotherms were determined by dynamic vapor
sorption (DVS Advantage, Surface Measurement Systems) at 25 ◦C, where RH was varied
from 0 to 95% and back in 5% steps. The hydrophobicity/hydrophilicity index (HI) was
performed according to a method previously reported in the literature [23]: 0.3 g of each
BBC was placed into 5 mL beakers and inserted into plugged 1.5 L E-flasks with saturated
atmosphere solvent vapor (water or n-heptane) using 80 mL of each solvent. The beakers
were placed in the center of the E-flasks to avoid contact with the flask walls. After 24 h,
the beakers were removed and weighed. The weight gained was used to calculate the
maximum vapor adsorption.

2.3. Dye Adsorption Analysis
2.3.1. Batch Adsorption Studies

Aliquots of 20.00 mL of 30.00–1000.0 mg L−1 of RB-4 and RO-16 were added to
50.0 mL Falcon flat tubes containing 30 mg (dosage of 1.5 g L−1) of each BBC [20,24,25]. The
Falcon tubes containing RB-4 or RO-16 and BBCs were agitated in a shaker model TE-240
between 0.1–12 h to obtain the kinetics data. Afterward, to separate the dyes and BBCs,
the flasks were centrifuged. After adsorption, the residual solutions of RB-4 and RO-16
were quantified using a UV-Visible spectrophotometer (Shimadzu 1800) at a maximum
wavelength of 595 and 494 nm, respectively.

The amount of RO-16 adsorbed by the BBCs and the percentage of removal were
calculated using Equations (1) and (2), respectively [20,24,25]:

q =

(
C0 − C f

)
m

·V (1)

% Removal = 100·

(
C0 − C f

)
C0

(2)

where q is the amount of selected dye uptake by the BBCs (mg g−1); C0 is the initial dye
concentration in contact with BBCs (mg L−1), Cf is the final concentration (mg L−1) after
adsorption, V is the volume of dye solutions (L) in contact with the BBCs, and m is the
BBC mass (g).
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2.3.2. Adsorption Kinetics and Equilibrium Analysis

Adsorption kinetics provides information on the adsorption rate, the adsorbent’s
performance, and the mass transfer mechanisms [20,23–25]. Knowing the adsorption
kinetics is crucial for designing efficient adsorption systems.

The RO-16 adsorption kinetics of the KOH-BBC and ZnCl2-BBC samples were evalu-
ated at two initial concentrations: 500 and 700 mg L−1. The suitability of different models
for predicting the adsorption kinetics was assessed by analyzing R2

adj and SD values.
Pseudo-first-order (PFO) model, pseudo-second-order (PSO) model, and general order
models were used to evaluate the kinetic adsorption process [23–25].

The mathematical representations of pseudo-first-order, pseudo-second-order, and
general order are shown in Equations (3)–(5), respectively.

qt = qe·[1− exp(−k1·t)] (3)

qt =
k2·q2

e ·t
1 + qe·k2·t

(4)

qt = qe −
qe[

kN ·(qe)
n−1·t·(n− 1) + 1

]1/(n−1)
(5)

Equilibrium isotherms are used to determine the adsorption affinity and dye removal
mechanisms of the adsorption systems [8,23–25]. Each adsorption system (individual
adsorbent material and adsorbate) has a unique isotherm, and the quantity of adsorbed
adsorbate on an adsorbent depends on both the BBC’s and the solution’s properties.
Therefore, equilibrium studies are mandatory to evaluate and establish adsorbent efficiency.

The equilibrium process was analyzed by Langmuir, Freundlich, and Liu’s models.
The fit quality was assessed through statistical indicators such as R2, R2

adj, and SD. See
further details about these indicators in references [13,14,20,23].

Langmuir, Freundlich, and Liu’s models are shown in Equations (6)–(8), respectively.

qe =
Qmax.KL.Ce

1 + KL.Ce
(6)

qe = KF.C1/nF
e (7)

qe =
Qmax.(Kg.Ce)

nL

1 + (Kg.Ce)
nL (8)

Detailed information about all these equations can be found in the literature [10,23,24].

2.3.3. Preparation of the Dyeing Synthetic Effluents

De-ionized water was used for the preparation of all solutions used in the dye ad-
sorption experiments. RB-4 (C23H14N6Cl2O8S2) and RO-16 (C20H17N3O10S3Na2) were
obtained from Sigma Aldrich, Sweden. The stock solution was prepared by dissolving the
dye in distilled water to 2.00 g L−1. Working solutions were obtained by diluting the dye
stock solution to the required concentrations without adjusting the pH.

Synthetic effluents with different compositions (see Table 1) were prepared to test the
BBCs’ applicability for treating real effluents.

2.3.4. Analytical Control of the Measurements and Statistical Evaluation of
Nonlinear Models

The adsorption equations were fitted using the nonlinear approach obtained by
the Simplex method and the successive interactions of the Levenberg–Marquardt algo-
rithm [10,15–17,21]. This fitting was acquired by the nonlinear fitting facilities of the
Microcal Origin 2020 software, and they were used to fit the kinetic and equilibrium
data. The determination coefficient (R2), adjusted determination coefficient (R2

adj), and the
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standard deviation of the residues (SD) were employed to analyze the suitability of the
models [10,15–17,21–25].

Table 1. Effluent compositions and concentrations.

Compounds Concentration (mg L−1) λmax (nm)

Effluent A B
RO-16 50 50 494
RB- 4 50 50 595

Methylene Blue 50 50 668
Bismarck Brown 50 - 468

Crystal Violet 50 - 590
Methyl Red - 50 507

Methyl Orange - 50 522
Phenol Red - 50 550

Sodium Dodecyl 25 25 -
Sodium sulfate 25 25 -

Ammonium chloride 20 25 -
Sodium acetate 20 25 -

pH 5.1 4.9 -

Residual standard deviation measures the difference between the theoretical and
experimental amounts of dyes removed from solutions. The R2, R2

adj, and SD are given in
Equations (9)–(11), respectively [21–25].

R2 =

∑n
i

(
qi,exp − qi,exp

)2
−∑n

i
(
qi, exp − qi, model

)2

∑n
i

(
qi,exp − qi,exp

)2

 (9)

R2
adj = 1−

(
1− R2

)
.
(

n− 1
n− p− 1

)
(10)

SD =

√(
1

n− p

)
.

n

∑
i

(
qi, exp − qi, model

)2 (11)

where qi,model represents the individual theoretical q value predicted by the model. qi,exp
represents each experimental q value. qexp is the average of the experimental q values. n
and p represent the number of experiments and model parameters, respectively.

3. Results and Discussion
3.1. BBC Characteristics
3.1.1. Textural Properties and Porosity

The SEM images show remarkable differences between both microstructures (see
Figure 2). The ZnCl2-BBC has a dense structure, with more elongated cavities and holes
of different sizes and shapes (Figure 2A,C) that should have been formed during the
leaching step with 6.0 mol L−1 HCl. Additionally, it is observed that ZnCl2-BBC presents a
rough surface.

KOH-BBC (Figure 2B,D) presents ordered macropore structure and holes with lower
diameter in its surface, which should be attributed to the lower concentration of HCl
(1.0 mol L−1) used in the leaching step. Both BBC presents irregular particle size and
rough surface.

The ZnCl2-BBC was prepared by catalyzed dehydration and elimination of carbonyl
and hydroxyl groups during the heat treatment [26,27], and that the ZnCl2 (due to its
low melting point at 290 ◦C and the boiling point at 732 ◦C) is fused into the biomass
matrix, thereby creating a denser structure and a microporous network [27,28]. On the
other hand, KOH activation provokes the breakage of C–O–C and C–C bonds, creating
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pores and well-developed porosity [26]. Additonally, an uneven distribution of KOH in
the bark matrix can promote hyperactivation during the pyrolysis process, resulting in
pore wall demolition and widening of the micropores into mesopores [26]. These structural
transformations are beneficial for the BBC’s physical adsorption of RB-4 and RO-16 and
effluents treatment.
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The N2 isotherms for ZnCl2-BBC and KOH-BBC (Figure 3) can be ascribed to a
type I isotherm. A type I isotherm (also mentioned as Langmuir isotherm) is typical
for microporous materials (with pore diameter <2 nm) [16]. Higher amounts of N2 are
adsorbed at low relative pressures for microporous materials, and when it is close to 1, the
curve may reach a limiting value or rise if larger pores are present [16].

Although both BBCs exhibited a Type I isotherm, the adsorbed N2 volumes dif-
fered significantly (Figure 3). The KOH-treated BBCs had an almost 30% higher SBET
(1067 m2 g−1) than the ZnCl2-BBC (754 m2 g−1) (Table 2). The external surface area and
the micropore and mesopore volumes agree with these results. Hence, it can be concluded
that KOH-activation produced a BBC with better textural properties and better adsorption
performance than ZnCl2-activation. The percentage of mesopores in KOH-BBC (49.29%) is
higher when compared with the ZnCl2-BBC sample (43.51%), while the share of micropores
is higher in ZnCl2-BBC (56.49%) when compared to KOH-BBC (50.71%) (See Table 2). How-
ever, both micro and mesoporous materials are highly efficient to adsorb organic molecules
with small sizes and, therefore, suitable for adsorption of RB-4 (size of 1.59 nm) and RO-16
(size of 1.68 nm).
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Table 2. Textural properties of the activated carbons.

Samples ZnCl2-BBC KOH-BBC

Parameters
SBET (m2 g−1) 754 1067

External surface area (m2 g−1) 328 526
% of mesopore area (%) 43.51 49.29

t-plot Micropore area (m2 g−1) 425.8 541.2
% of micropore area (%) 56.49 50.71

Total pore volume (cm3 g−1) 0.4205 0.5585
t-plot micropore volume (cm3 g−1) 0.2172 0.2776

% of micropore volume (%) 51.65 49.70
Volume of mesopores (cm3 g−1) 0.2033 0.2809

Average pore size (nm) 2.231 2.093
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The pore size distributions derived from the BJH plots of both BBC samples are
displayed in Figure 3B. The chemical activation seemed to affect the pore structure of the
BBC samples. BBC-KOH showed a much higher distribution of the pores in the range of
large micropores or small mesopores, 1.72–2.24 nm (see the line with squares). According
to the BJH plots, both samples possess large quantities of micropores and homogeneous
and small mesopores. The creation of large micropores and small mesopores enhanced the
BBC-KOH sample, which is in good agreement with the porosity data.

Literature data reveals significant variance in SBET values depending on the type of
biomass and preparation conditions (Table 3). For instance, Sipola et al. [8] prepared acti-
vated carbon from scots pine (Pinus sylvestrus) and spruce (Picea spp.) barks for wastewater
purification and found specific surface areas ranging from 200 to 600 m2 g−1. In another
work [9], the spruce bark porous materials were produced and employed in methylene
blue dye adsorption. The materials presented SBET ranging from 351 to 1275 m2 g−1 and
were successfully employed in the dye removal from aqueous solutions. In addition, a
specifically high SBET (2330 m2 g−1) was achieved with rice plant residue as a biomass
precursor. However, in that case, a highly complex preparation procedure was required:
First, pre-carbonization at 500 ◦C for one hour followed by NaOH washing; Secondly, BBC
was mixed with KOH at a ratio of 1:4 (biomass: KOH) and pyrolyzed at 800 ◦C for 30 min
and then, followed by HCl washing to remove the inorganic compounds. Consequently,
due to the cumbersome procedure, the high SBET comes with a high cost. The SBET values of
the ZnCl2− and KOH-activated Norway spruce bark BBCs are comparable with BBCs from
several other biomass precursors, but in this case, the manufacturing method is simple,
and the feedstock material highly available and cheap.

Table 3. Comparison of KOH-BBC and ZnCl2-BBC preparation methods and SBET for a variety of biomass precursors.

Adsorbent Activation Reagent Preparation Conditions SBET
(m2 g−1) Ref.

Scots pine bark Steam + N2

Firstly, the biomass was carbonized using slow
pyrolysis at 475 ◦C for 3 h. Afterward, heated at 800 ◦C
for 3.5 h under steam activation [steam (30 and 40%) +

N2 (66 and 300 L/h)].

539–603 [8]

Norway spruce bark Steam + N2

Firstly, the biomass was carbonized using slow
pyrolysis at 475 ◦C for 3 h. Afterward, heated at 800 ◦C
for 3.5 h under steam activation [steam (30 and 40%) +

N2 (66 and 300 L/h)].

187– 369 [8]

Norway spruce bark Steam + N2
The biomass was heated at 600 ◦C for 2 h under steam

activation (steam + N2). 351 [9]

Norway spruce bark ZnCl2

A mixture of ZnCl2 and biomass powder at ratio 2.0:1.0
(ZnCl2:biomass) and pyrolyzed at 600 ◦C for 2 h.

Afterward, it was washed with HCl to remove the
inorganic compounds.

1495 [9]

Tea leave residue KOH

A mixture of KOH and tea powder (2:1) and pyrolyzed
at 900 ◦C for 60 min. Afterward, it was washed with

HCl to remove the potassium compounds and further
pyrolyzed at 1200 ◦C.

912 [28]

Palm shell KOH+ ZnCl2

Pre-carbonization of biomass at 400 ◦C for 2 h.
Afterward, a mixture of biomass and both KOH (75%)
and ZnCl2 (25%) at the final ratio of biomass: chemical

activator 1:4. The mixture was then pyrolyzed at
850 ◦C for 1 h and washed with HCl.

1295 [29]

Garlic peel KOH
First, it was hydro-carbonized and then chemically

activated by KOH (ratio 2:1, KOH: biomass) and
pyrolyzed at 600 ◦C at 4 ◦C/min under N2 flow for 2 h.

947 [30]
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Table 3. Cont.

Adsorbent Activation Reagent Preparation Conditions SBET
(m2 g−1) Ref.

Rice plants KOH

The biomass was Pre-carbonized at 500 ◦C for 1 h,
followed by NaOH washing. Afterward, the pyrolyzed

BBC was mixed with KOH at ratio 1:4. The mixture
was then pyrolyzed at 800 ◦C for 30 min and then

washed with HCl.

2330 [31]

Brazil nutshells ZnCl2

A mixture of ZnCl2 and biomass powder at ratio 1.5:1.0
(ZnCl2:biomass) and pyrolyzed at 600 ◦C for 30 min.
Afterward, it was washed with 6.0 M HCl to remove

the inorganic compounds.

1457 [32]

Sewage sludge ZnCl2

A mixture of ZnCl2 and biomass powder at ratio 0.5:1.0
(ZnCl2:biomass) and pyrolyzed at 500 ◦C for 15 min.
Afterward, it was washed with HCl to remove the

inorganic compounds.

679 [33]

Coconut shell ZnCl2

Blending coconut shell powder and ZnCl2 at ratio 1:3
in 50 mL of 3 M FeCl3 solution. Afterward, heated at

900 ◦C for 1 h under an inert atmosphere. Afterward, it
was washed with HCl to remove the

inorganic compounds.

1874 [34]

Norway spruce bark ZnCl2

ZnCl2 and biomass powder mixture at ratio 1.0:1.0
(ZnCl2:biomass) and pyrolyzed at 800 ◦C for 60 min.
Afterward, it was washed with 6.0 M HCl to remove

the inorganic compounds.

754 This
work

Norway spruce bark KOH

A mixture of KOH and biomass powder at ratio 1.0:1.0
(KOH: biomass) and pyrolyzed at 800 ◦C for 60 min.
Afterward, it was washed with 1.0 M HCl to remove

the inorganic compounds.

1067 This
work

3.1.2. Elemental Analysis, Carbon Yield, Raman Spectroscopy, Zeta-Potential, and FTIR

The carbon content of the spruce bark ZnCl2- and KOH-activated BBCs was 94.8%
and 91.6%, respectively (see Table 4). These values are very high compared to literature;
Correa et al. [35] produced several BBCs from different biomasses, and the carbon content
varied from 76.9 to 87.8%, while Duan et al. [36] obtained 82.66% of carbon content in BBC
made from coconut shells. High carbon content can reflect good adsorption efficiency be-
cause hydrophobic interactions of the aromatics of BBC can interact with organic molecules.
In addition, high carbon content means less ash content, and ashes in the BBC reduce SBET
and functional groups, which hinder the adsorption process. Concerning the oxygen con-
tent, KOH-BBC presented higher content when compared to ZnCl2-BBC; this can positively
influence the carbons’ hydrophilicity index and the water/dye adsorption behavior [35].

HI =
amount o f water vapor (mg)

mass o f BBC (g)
amount o f h−heptane vapor (mg)

mass o f BBC (g)
(12)

The BBC yield from pyrolysis and KOH activation was approximately one-third of
the ZnCl2 treatment (Table 4). This result indicates a strong reaction between bark and
KOH during the pyrolysis process. Via breakage of C–O–C and C–C bonds, KOH can
play a catalytic role in the material’s volatilization, leading to a low carbon yield [37].
Impregnation with ZnCl2 results in degradation of the cellulosic material that, combined
with the dehydration during carbonization, leads to charring and aromatization of the
carbon skeleton. These pyrolytic conditions inhibit the formation of tar and reduce mass
loss [38]. As a result, BBC production by ZnCl2 activation generally provides higher yields
than when using other chemical reagents [38].
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Table 4. Properties and elementary analysis of activated carbons.

Samples ZnCl2-BBC KOH-BBC

Parameters
HI (H2O/n-heptane) 1.19 1.29
Zeta potential (mV) −19.4 −20.5

pH 5.1 6.0
Carbon content (%) 94.8 91.6

Nitrogen content (%) 0.51 0.29
Hydrogen (%) 1.2 1.6

Oxygen (%) 2.5 5.3
Ash (%) 0.99 1.21

BBC yield (%) 38.1 14.2

The Raman spectra of the ZnCl2- and KOH-BBCs are shown in Figure 4. The D and G
bands indicate the degree of defective structure and the activated carbons’ graphitization,
respectively [28,30]. These bands’ position, area, and intensity can also show differences
in the structural characteristics [34,39]. Both samples’ D- and G-bands are located at
around 1340 and 1593 cm−1, corresponding to the defect/disorder-induced structures
in the BBCs’ graphite layers and the vibration of sp2-bonded carbon atoms in a two-
dimensional hexagonal lattice, respectively [28,34]. The relative strength intensity (ID/IG)
represents the degree of defect in the BBCs—higher values indicate more defects [30]. The
obtained ID/IG values were 1.1 and 0.99 for ZnCl2-BBC and KOH-BBC, respectively, i.e.,
the graphitization level in the KOH-BBC was slightly higher than in the ZnCl2-BBC [28,30].
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Figure 4. Raman spectra of BBC samples.

The Zeta-potential of both BBCs were negative, with a slightly higher value for the
KOH-BBC (see Table 4). The negative charging comes from COO–, –COH–, and –OH–
functionalities that can positively affect the adsorption process [40].

FTIR was employed to identify the presence of the functional groups on BBCs samples.
The FTIR spectra of the BBC samples are presented in Figure 5. It is possible to identify
that the different chemical treatments affected the chemical functionalities on the BBCs.
In KOH-BBC, the presence of peaks in between 4000–3600 cm−1 represents the O–H
stretching vibration in carboxyl and phenol groups [10–12,15]. The sample treated with
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KOH also exhibited a sharper and broader transmittance band at 3410–3535 cm−1 when
compared with the ZnCl2-treated sample, which is assigned to the O–H stretching mode
of hydroxyl groups and adsorbed water [11,12,15]. The peaks at 2948 cm−1 (asymmetric)
and 2875 cm−1 (symmetric) are related to the CH– stretching and appeared only in the
sample treated with ZnCl2. A new peak at 2373 cm−1 is observed only in KOH-BBC, which
is assigned to hydrogen-bonded OH. The peaks at around 1542–1574 cm–1 are assigned to
the asymmetric stretching of O=C of carboxylates. The band at 1138–1160 cm−1 are related
to CO– of alcohols, and at around 963–1009 cm−1 to the OCC—-a stretch of an ester is
identified [10–12,15]. These functional groups on BBCs surfaces are often related to a good
adsorption efficiency process [10–12,15].
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3.1.3. Water Vapor Adsorption Isotherms, Hydrophilicity Index (HI)

Water vapor adsorption isotherms for both BBCs are shown in Figure 6. According to
the IUPAC classification [41], both isotherms are very close to type V, characterized by low
levels of water uptake at low relative pressures and the presence of a hysteresis loop over
the majority of the pressure range. Adsorption of water vapor was higher for KOH-BBC
than for ZnCl2-BBC (see Table 4), indicating a more hydrophilic surface for KOH-BBC than
ZnCl2-BBC.
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Figure 6. Water sorption isotherms for KOH-BBC and ZnCl2-BBC samples at 25 ◦C.

The N2 and H2O isotherms differ both in type and shape. Although there is a non-
existing correlation between these two techniques, it is worth pointing out that N2 ad-
sorption generated type I isotherms, while H2O adsorption yields isotherms of type V.
Different on isotherm curves may be because the process is complex and does not depend
only on the porosity. The adsorption of water vapor on biomass materials is known to be
dependent on surface chemistry. BBC materials have plenty of surface functional groups,
which initiate predominant water adsorption through the hydrogen bonding between a
water molecule and surface functional groups.

3.2. Dye Adsorption Analysis
Adsorption Kinetics

The kinetic curves and their parameters are shown in Figure 7 and Table 5, respectively.
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Figure 7. Kinetics of adsorption curves for uptake of RO-16 onto ZnCl2-BBC (A) and uptake of
RO-16 onto KOH-BBC (B), uptake of RB-4 onto ZnCl2-BBC (C), uptake of RB-4 onto KOH-BBC (D).
Initial pH of 5.5 and 4.0 for RO-16 and RB-4, respectively, the adsorbent dosage of 1.5 g L−1. The
temperature was 22 ◦C.
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Table 5. Kinetic parameters of RO-16 and RB-4 adsorption onto the BBC samples.

Model

RO-16 Initial Concentration
(1000 mg L−1)

RB-4 Initial Concentration
(1000 mg L−1)

ZnCl2-BBC KOH-BBC ZnCl2-BBC KOH-BBC

Pseudo-first order
q1 (mg g−1) 74.71 307.5 84.01 301.7
k1 (min−1) 0.4529 3.502 0.7381 2.489

R2 0.9639 0.9606 0.8502 0.8182
R2

adj 0.9614 0.9573 0.8408 0.8068
SD (mg g−1) 5.107 20.22 11.79 46.03

Pseudo-second order
q2 (mg g−1) 89.96 332.7 92.62 329.1

k2 (g mg−1 min−1) 0.00566 0.01539 0.01277 0.009700
R2 0.9783 0.9963 0.9102 0.9019

R2
adj 0.9768 0.9960 0.9046 0.8958

SD (mg g−1) 3.957 6.217 9.126 33.81
General order
qn (mg g−1) 78.98 356.3 136.6 355.2

kn (min−1 (g mg−1)n−1) 1.114 × 10−6 4.140 × 10−4 4.964 × 10−7 2.595 × 10−5

n (-) 22.69 2.6270 33.08 40.08
R2 0.9852 0.9985 0.9629 0.9799

R2
adj 0.9838 0.9983 0.9580 0.9831

t0.5 (hour) 1.46 0.24 1.57 0.43
T0.95 (hour) 6.00 2.98 6.95 3.21

SD (mg g−1) 3.311 4.049 8.861 10.22

The general order model had the highest R2
adj and lowest SD values for both dyes on

both BBCs (Table 5) and was, therefore, considered as the most suitable model type. The
general order kinetic equation gives different values for n (order of adsorption rate) when
both dyes—RB-4 and RO-16—concentrations change. Hence, it is hard to make an accurate
comparison of the model’s kinetic parameters. Therefore, t0.5 and t0.95 were utilized to
compare the RO-16 and RB-4 adsorption kinetics on the ZnCl2-BBC and KOH-BBC carbons.
The t0.5 and t0.95 represent the time (h) when 50% and 95% of saturation (qe) is achieved,
respectively [23–25]. For RO-16 on the ZnCl2-BBC and KOH-BBC samples, t0.5 was 1.46
and 0.24 h, respectively, while t0.95 was 6.00 and 2.98 h. For RB-4 on the ZnCl2-BBC and
KOH-BBC samples, t0.5 was 1.57 and 0.43 h, respectively, while t0.95 was 6.95 and 3.21 h,
respectively (Table 5).

Due to the BBCs’ textural properties and chemical surface features, the KOH-BBC
had faster kinetics compared to ZnCl2-BBC (Table 5), when the values of t0.5 and t0.95
are considered. KOH-BBC exhibited a much higher SBET and higher amount of micro
and mesopores (see Table 2), and this could also be the reason for the better efficiency in
the adsorption process. The RB-4 and RO-16 have molecular sizes of 1.59 and 1.68 nm
(see Figure 3B), respectively, and are, therefore, readily adsorbed in micro- (<2 nm) and
mesopores (2–50 nm). KOH-BBC also has a more hydrophilic surface (Table 2 and Figure 6),
which increases the bulk solution’s dispersion and the contact between the dyes and
available adsorption sites on the KOH-BBC surface.

The adsorption work was further continued by establishing the contact times such
as 6.5 and 3.5 h for ZnCl2-BBC and KOH-BBC for RO-16, respectively; and 7.5 and 3.6 h
for ZnCl2-BBC and KOH-BBC for RO-16, respectively. The established contact times were
slightly higher than the t0.95 to ensure that the adsorption process had enough time to reach
the equilibrium between the dyes and the BBCs.

3.3. Equilibrium of Adsorption

The equilibrium curves and their parameters are shown in Figure 8 and Table 6,
respectively.
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Figure 8. Isotherms of adsorption for RO-16 onto ZnCl2-BBC (A) and KOH-BBC (B) and for RB-4
onto ZnCl2-BBC (C) and KOH-BBC (D). Contact time 6.5 and 3.5 h for ZnCl2-BBC and KOH-BBC for
RO-16, respectively; and 7.5 and 3.6 h for ZnCl2-BBC and KOH-BBC for RO-16, respectively; Initial
pH of 5.5 and 4.0 for RO-16 and RB-4, respectively; the adsorbent dosage of 1.5 g L−1.

Table 6. Equilibrium parameters of RO-16 and RB-4 onto KOH-BBC and ZnCl2-BBC.

Model
Samples

ZnCl2-BBC KOH-BBC ZnCl2-BBC KOH-BBC

Langmuir RO-16 RB-4
Qmax (mg g−1) 90.04 358.2 59.00 339.15

kL (L mg−1) 0.05004 2.579 0.02698 0.005491
R2 0.8386 0.8614 0.9534 0.9905

R2
adj 0.8225 0.8488 0.9488 0.9896

SD (mg g−1)2 13.77 57.72 4.794 13.93
Freundlich

kF ((mg g−1) (mg L−1)−1/nF) 34.37 257.1 11.10 14.25
nF (dimensionless) 6.7123 16.24 3.906 1.859

R2 0.8480 0.8467 0.9889 0.9818
R2

adj 0.8328 0.8328 0.9878 0.9799
SD (mg g−1)2 13.36 60.71 2.399 19.31

Liu
Qmax (mg g−1) 123.1 354.9 332.9 582.5

kS (mg L−1) 0.02017 1.943 0.007468 0.004040
nL (dimensionless) 0.3850 1.780 0.2913 0.8848

R2 0.8498 0.8646 0.9891 0.9911
R2

adj 0.8164 0.8375 0.9899 0.9891
SD (mg g−1)2 13.99 59.84 2.344 14.21

For both BBCs and dyes, the Liu isotherm had the best fit. It was, therefore, used to
describe the RO-16 and RB-4 removal for both BBCs.
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Liu’s model assumes that the adsorption has a heterogeneous behavior due to different
active sites acting simultaneously and with different free adsorption energies [23,24].
However, a saturation of the adsorbent takes place, attaining the maximum adsorption
capacity (Qmax).

For RO-16 on the ZnCl2-BBC and KOH-BBC samples, Qmax was 90.1 and 354.8 mg g−1,
respectively, while RB-4 was 332.9 and 582.5 mg g−1 (Table 6). Thus, the KOH-BBC
adsorbed almost three times more RO-16 and 60% more RB-4 than the ZnCl2-BBC. Its
higher SBET value and lower hydrophobicity can explain the better performance of KOH-
BBC when compared to ZnCl2-BBC, already discussed earlier.

For both BBCs, RB-4 presented higher Qmax when compared to RO-16. Both dyes
are water-soluble and carry two anionic sulfonic groups in their molecules and remain
anionic in aqueous solutions [42]. On the other hand, both BBCs have their surfaces
positively charged (see Table 4, pH are 5.1 and 6.0 for ZnCl2-BBC and KOH-BBC samples,
respectively). While the adsorption process is happening, the pH of the solution loaded
with the BBCs is around 5.8–6.2; this leads to the presence of H+ in the solution, which leads
to the protonation of cationic groups such amino groups present on BBCs surfaces [42–44].
This enhances the adsorption of both dyes RO-16 and RB-4 dyes due to electrostatic
interactions [42–44].

Additonally, as mentioned in the kinetic discussion, the RB-4′s smaller molecule size
may facilitate the diffusion of the RB-4 molecules into the BBC’s micro and mesopores.

3.4. Mechanism of Adsorption

Taking into account the porosity data such as SBET, pore size distribution, HI, the
chemical nature of the adsorbents, initial pH solution, kinetics of adsorption, and equi-
librium studies result for the RB-4 and RO-16 dyes onto BBCs samples, it is possible to
suggest the primary mechanisms of adsorption for both dyes on BBCs (see Figure 9).
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The adsorption process takes place through different physical interactions between
BBC surfaces and dyes such as hydrogen bonding, hydrophobic interactions, and π-π and
n-π interactions of the aromatic ring of the BBCs with the aromatic rings of the dyes [45].
Donor-acceptor interactions (n-π interaction) occur among aromatic rings in the BBC
structures that act as an electron acceptor (see Figure 9). In addition, the aromatic rings of
both RB-4 and RO-16 molecules interact with the C=O, OH, COOH, and phenyl groups of
the BBCs that act as adsorption sites (see Figure 9) [45].

Another mechanism that takes place on the RB-4 and RO-16 adsorption process onto
BBCs is the pore-filling due to the highly developed porosity and high SBET values. The
pore-filling can be the most prominent process that contributes to the high adsorption
efficiency for both dyes onto highly porous BBCs (see Figure 9).

3.5. Adsorbent Performance: Comparison with Literature

The spruce bark ZnCl2-BBC and KOH-BBC performances were compared with other
adsorbents’ literature data (Table 7). Assuming that the literature data displays optimized
conditions for each BBC, the KOH-BBC is the second most efficient, having the second-
highest adsorption capacity (Qmax) for RO-16 removal and the highest for RB-4.

Table 7. Comparison of KOH-BBC and ZnCl2-BBC concerning the reported literature in terms of capacity.

Adsorbent pH Dosage (g L−1) T
(◦C)

Qmax
(mg g–1) Ref.

RO-16
BBC-KOH-800 5.5 1.5 22 354.8 This study
BBC-ZnCl2-800 5.5 1.5 22 90.1 This study

Chitosan/sepiolite composite 6.5 2.0 30 190.96 [46]
Fish scales Mesoporous BBC 6.0 1.0 50 114.2 [47]
BBC Brazilian-pine fruit shell 2.5 2.5 50 314.0 [48]
BBC Brazilian-pine fruit shell 2.5 2.5 50 470.0 [48]

BBC from rice husk ash 11 2.5 30 13.32 [49]
Phosphoric BBC from biomass 6.2 0.4 30 58.54 [50]

Psyllium seed powder biosorbent 4.0 2.0 30 206.6 [51]
Paper sludge activated carbon 2.0 1.0 30 178.0 [52]
Ananas Comosus leaves BBC 2–3 1.0 30 147.05 [53]

Sewage sludge BBC 2.0 10.0 25 114.7 [54]
Coffee husk-based BBC 4.0 2.0 30 66.76 [55]
Coffee husk-based BBC 4.0 2.0 50 76.57 [55]

RB-4
BBC-KOH-800 4.0 1.5 22 582.5 This study
BBC-ZnCl2-800 4.0 1.5 22 332.9 This study

Multi-walled carbon nanotubes 2.0 1.5 25 502.5 [42]
Single-walled carbon nanotubes 2.0 1.5 25 567.7 [42]
Chitosan hydrogel beads (CHB) 4.0 1.0 30 317 [43]

CHB modified with hexadecylamine 4.0 1.0 30 454 [43]
Enteromorpha prolifera BBC 6.0 - 27 131 [56]

Mg–Al layered double hydroxide 2.0 0.75 22 328 [57]
Cotton grafted with chitosan 4.0 10 25 180 [58]

It is worth highlighting that the spruce bark KOH-BBC’s Qmax for RB-4 is comparable
to that of the single-walled carbon nanotubes studied by Machado et al. [58] (582.5 vs.
567.7 mg g−1), but the production cost of carbon nanotubes is substantially higher when
compared to KOH-BBC. Additionally, Table 7 shows and compares the spruce bark BBCs
with different adsorbents reported in the literature. It is shown that BBC Brazilian-pine
fruit shell [47] exhibited the highest Qmax for RO-16; however, the adsorption conditions
were very different when compared to this work, e.g., the temperature was higher (50 ºC vs.
22 ºC) as well as the adsorbent dosage (66.6% more adsorbent than was used by this work),
which means increasing the costs involved in the adsorption process. This also needs to
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be considered when the effectiveness of adsorbent material is evaluated and compared
with others.

Thus, it can be concluded that both BBCs (especially KOH-BBC) are suitable adsor-
bents for the elimination of dyes with competitive and efficient adsorption capacities.

3.6. Treatment of Synthetic Dye Effluents

According to the adsorption data (kinetic and equilibrium), both BBCs were very
efficient for removing RB-4 and RO-16 from aqueous solutions, indicating that these BBCs
could also be employed to treat real effluents. Therefore, both BBCs were tested for the
treatment of two synthetic dyeing effluents. The BBCs’ removal percentage of dye mixture
in the effluents was evaluated from UV–vis spectra of the untreated and treated effluents
(see Figure 10).
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ZnCl2-BBC removed 88.2% and 90.4% for the effluent A and B, respectively, while
KOH-BBC removed 91.9% and 95.6% at an adsorbent dosage of 1.5 g L−1 (Figure 10A,B).

With KOH-BBC, only 2.0 g L−1 was needed to remove almost 100% of all compounds
in both effluents (Figure 10C,D). ZnCl2-BBC removed 69.7% and 76.5% at a dosage of
3.5 g L−1. These differences agree with the previously reported adsorption data and
discussed in the work where the KOH-BBC had better adsorption properties than ZnCl2-
BBC. Still, a good removal percentage was achieved for both BBCs. However, it should
point out that the KOH activation could be considered a more interesting method because
zinc salts (e.g., ZnCl2) are more expensive and toxic [59] when compared to KOH, which is
a corrosive chemical reagent [60]; therefore, it would be preferable to use a cheaper and
non-toxic reagent, such as KOH, for BBC preparation.

4. Possible Application of Used BBC after Adsorption of Dyes

The re-use or final disposal of the BBC materials loaded with the selected adsor-
bate is an important question when designing an adsorption system or new adsorbent



Coatings 2021, 11, 772 19 of 22

materials. BBC can be regenerated and reused many times without losing adsorption
performance [7,29]. However, after being fully saturated, its final disposal or other uti-
lization must be considered once they no longer can be regenerated for water treatment
application [7]. The main employed methods to manage used BBC are landfill disposal
and incineration [23,24]. However, in some cases, used adsorbents are used as soil fer-
tilizer [23,24], depending of the type of the adsorbate loaded on the BBc surface. These
methods are influenced by some factors such as, cost of the adsorbent, type and toxicity of
the pollutant, costs involved with the methods including the cost of the combustion and
incineration plant, and fees for disposal. Although landfills have typically been used for
the disposal of sorbents, as well as soil fertilizers, these methods might have subsequent
pollution risk when toxic compounds leach from adsorbents into the soil.

5. Conclusions

The spruce bark BBCs were produced using ZnCl2 and KOH as the activation agents.
The BBC characteristics were strongly dependent on the type of activating agent. KOH-BBC
had a higher SBET (1067.2 m2 g−1) and a larger pore volume (0.5584 cm3 g−1) than ZnCl2-
BBC. However, the KOH-BBC had a more developed aromatic structure. KOH treatment
generated a BBC with a more well-developed porosity and a higher number of mesopores
than ZnCl2-BBC. Additionally, KOH-BBC had a less hydrophobic surface and a higher H
and O content than ZnCl2-BBC. However, the carbon yield for KOH-activation was 63%
lower than for ZnCl2-activation. For both dyes’ adsorption on both BBCs, the general-order
model and the Liu model exhibited the best fitness for adsorption kinetics and equilibrium,
respectively. The equilibrium Qmax at 22 ◦C was for RO-16 on KOH-BBC and ZnCl2-BBC
354.8 and 90.1 mg g−1, respectively, and for RB-4 582.5 and 332.9 mg g−1. Based on
characterization and experimental data, it was suggested that electrostatic interactions
and hydrogen bonds between BBCs and RO-16 and RB-4 dyes played the most important
role in the adsorption process. In an analysis of removing two synthetic effluents, both
BBCs had good outcomes in the percentage; the BBC made with KOH had much better
performances. We have shown that efficient and low-priced BBCs can be produced from
Norway spruce bark through simple activation procedures. These results call for further
studies on underlying mechanisms and how to optimize the treatment procedures for
different applications.
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