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Design-based sampling methods for environmental monitoring
Abstract

Efficient strategies for environmental monitoring are proposed with an emphasis on
the importance of using available information. In environmental monitoring, it is
common to use area frames covering the assumed spread of the population of inter-
est. By using such a frame, a sample unit is usually not a unit in the population,
rather a point on a surface. The population unit of environmental surveys exits in a
spatial context where nearby units often have similar values to each other. When this
is the case, we can estimate the unknown population parameters more efficiently if
the sample is well spread over the population. Spatially balanced sampling is sam-
pling designs that employ available auxiliary variables to select well-spread sam-
ples. When applying such a design with equal inclusion probabilities, we match the
sample distribution to the population distribution of the auxiliary variables, which
can improve the estimation of the state of the population. Paper I presents a new
sampling strategy for the Swedish national forest inventory using spatially balanced
sampling designs for an area frame. When estimating change, we wish to update
the sample at the following occasions using the most recently available information.
When updating the sample, we also want to have a certain degree of overlap between
the successive samples. By doing so, we can get more precise estimates for states
and the change between two states simultaneously. Therefore, there is a demand for
selecting well-spread and partially overlapping samples over time. In Papers II and
III, the focus is on such samples, and more specifically, on positively coordinated and
spatially balanced samples. In Paper II, a sampling strategy of selecting positively
coordinated and spatially balanced samples is proposed for monitoring the change of
environmental variables, while the objective of Paper III is to estimate the variance
of an estimator of change using such samples. When a single survey does not provide
sufficient quality of estimates for some domain, we can plan for a complementary
survey or combine existing surveys to improve the quality. When multiple surveys
are combined, there is a risk of introducing bias to the estimators. Combining several
surveys to use all available information when estimating the population parameters
thus becomes a challenge. In Paper IV, we investigate the possibility of producing
less biased or unbiased estimators when combining several independent surveys of a
finite population.
Keywords: auxiliary variables, sampling strategy, area frame sampling, inclusion
probabilities, spatially balanced sampling designs, the local pivotal method, spatially
correlated Poisson sampling, sample coordination, combining samples.
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1 Introduction

Environmental monitoring should provide reliable information that is nec-
essary for taking proper decisions on the management of natural resources.
Since the population is often very large, it is unrealistic to observe the entire
population in practice. A sample survey is usually applied for selecting some
parts of a population instead. The sample will then be observed to obtain
estimates of the unknown population characteristics or parameters. A vari-
able of interest is often called a target variable. The unknown parameters are
functions of the target variables. They can be, for example, totals or means of
the target variables. The values of the target variables are not available before
a survey.

A sample survey can be either design-based or model-based. The differ-
ences between these two approaches are given in, e.g. Särndal et al. (1992)
and de Gruijter et al. (2006). For this thesis, the focus is on the design-based
approach. A design-based approach requires probability sampling, where a
sample should be selected by a random mechanism. This random mechanism
is called a sampling design. In probability sampling, every unit in the pop-
ulation has a chance to be selected. It provides an objective way of sample
selection and yields estimates whose uncertainty can be evaluated. To pro-
duce a proper estimate of the unknown population parameter, we also need
an estimator, i.e., a formula that can be used to calculate the estimated value
based on the observations in the sample.

The combination of a sampling design and an estimator is defined as a
sampling strategy. The choice of sampling strategy should attempt to produce
estimates as close as possible to the unknown parameters, taking into account
the available information about the population. To know if a sampling strat-
egy is efficient or not, we need to study the problem of choosing a sampling
design and an estimator. The main challenge in constructing a good sampling
strategy lies in using available information about the population wisely. This
thesis deals with this issue and aims at proposing new sampling methods for
environmental monitoring that take advantage of the available information.

There are times when information is available for the whole population.
A variable that is known for every unit in the population is called an auxiliary
variable. The auxiliary variables usually have some connection with the target
variables, i.e. they can explain the variations in the target variables to some
extent. Therefore, they can be employed to improve the sampling design or
to enhance the estimation of the population parameters.

Sampling designs that apply auxiliary variables are, for example, pps
sampling, Poisson sampling, stratified sampling, and balanced sampling, etc.
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Including the auxiliary variables in the design normally reduces the need for
including the same variables in the estimators and can then allow for more
straightforward estimation and analysis. If the auxiliary variables explain
some of the variation in the target variables, then we can improve the esti-
mation of the population parameters by using these auxiliary variables in the
sampling design.

Natural resources share a general feature of our environment, which is
that nearby things often are more similar than distant things. This feature is
also known as Tobler’s first law of geography. As a result, when sampling
an environmental population, the selection of nearby units should be avoided
to ensure that we capture the variation of the population in the sample. The
geographical position of the sample units is important, e.g., in agricultural
and environmental surveys, because the units themselves are defined using
spatial criteria. Spreading the sampling effort evenly across the study area is
an effective strategy for environmental monitoring. One of the popular meth-
ods which take advantage of the spatial nature is called generalized random
tessellation Stratified (GRTS) design proposed by Stevens & Olsen (2004).

Recently, it has been shown that it will be more efficient to make sure
that the sample is well spread, both geographically and in other available
auxiliary variables, see, e.g., Grafström & Schelin (2014). The local pivotal
method (LPM) (Grafström et al., 2012) and the spatially correlated Poisson
sampling (SCPS) (Grafström, 2012) are two sampling designs that can select
well-spread and representative samples in multiple dimensions. We need to
notice that a representative sample does not need to be a probability sam-
ple, but only a probability sample allows for proper design-based inference.
A sample that consists of approximately 80% spruces and 20% pines will
be representative if we know that the population consists of 80 spruces and
20 pines. The selection of representative samples in multiple dimensions
means that we match as closely as possible the sample distribution of a set of
auxiliary variables to the population distribution of the set of auxiliary vari-
ables. According to Grafström & Schelin (2014), equal inclusion probabili-
ties should be applied in the case of selecting a representative and well-spread
probability sample. A sampling design that uses auxiliary variables to select
representative samples is particularly useful for multipurpose environmen-
tal monitoring programs, such as National forest inventories(NFIs). When
several target variables are of interest, there is a need to spread the samples
evenly with respect to all target variables. Sampling designs such as GRTS,
LPM, and SCPS are called spatially balanced sampling designs.

In environmental monitoring, a common focus is to track the change in a
population over time. Therefore, a survey of the population commonly needs
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to be repeated over time. For environmental surveys, a question of whether
we should use independent samples, a permanent sample, or partially over-
lapping samples over time arises. To judge whether the strategy of monitor-
ing change is efficient or not, we can compare the variance of an estimator
of change for different strategies and different populations. It is well known
that the variance of an estimator of change equals the sum of the variance of
the two state estimators minus two times the covariance between them. For
independent samples, we do not need to consider the covariance, thus simpli-
fying the estimation problem. However, it will not be the best strategy to use
independent samples when estimating change. This is because the variance
of the change estimator becomes about twice the variance of the estimator
of the state when using independent samples if the samples selected use the
same design and sample size. When the time between surveys is short and
the target variables have not changed much, a permanent sample might be
employed to reduce the variance of an estimator of change. However, as the
values of the target variables are likely to change over time, a permanent sam-
ple is not likely to be as representative as it used to be as the time between
surveys increases. Thus, we then tend to have a larger variance of the state
estimator at the second time occasion for permanent samples. Even if the
covariance between the two state estimators becomes large by having fully
overlapping samples, it is not guaranteed that the variance of change will be
reduced. There is a need for updating the sample at the next time occasion
to account for changes while retaining as many units as possible from the old
sample. By doing so, we can improve the estimation of change.

Since spatially balanced sampling designs are often more efficient than,
e.g., simple random sampling, it will be too conservative to apply the tra-
ditionally used variance estimators e.g., Berger 2004; Hájek 1964; Hartley
& Rao 1962; Horvitz & Thompson 1952; Yates & Grundy 1953. There-
fore, there is a need to develop variance estimators which are more suitable
to be applied under spatially balanced sampling designs where no unbiased
variance estimator already exists. Grafström & Schelin (2014) proposed a
local mean variance estimator which was shown to perform well under such
sampling designs. For repeated surveys, researchers have also paid a lot of
attention to the estimation of covariance. Tam (1985) was one of the earli-
est studies that considered covariance estimation with overlapping samples.
Qualité (2009, ch.5) derived covariance estimators based on two overlapping
samples by considering sampling designs that can obtain rotating panels. Un-
der such a design, only part of the sample in the previous occasion will be
maintained in the sample at the next time occasion. New units will be se-
lected in the sample at the next time occasion to replace the discarded units.
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In paper III, inspired by the variance estimator in Grafström & Schelin (2014)
and the covariance estimator in Qualité (2009, ch.5), we further develop a lo-
cal mean covariance estimator which is suitable when estimating the change
with spatially balanced and partially overlapping samples.

When merging available information to improve the estimation of popu-
lation characteristics, there is also a need to produce unbiased or less biased
estimators. An estimator is called an unbiased estimator if on average (over
all possible samples) the estimator is equal to the population parameter. In
presence of several independent probability samples from a finite popula-
tion, if we estimate the population total by a linear combination of separate
independent estimators, then the estimator can be biased as the separate es-
timators of the population totals can be highly correlated to their respective
variance estimators. Thus, we need to find alternative ways to improve es-
timation when combining information from multiple samples. In Paper IV,
we propose to estimate the population total based on either a pooled linear
combination or on an unbiased estimator of the combined sample.

For a finite population, since we often have a list frame covering the pop-
ulation, the sample units are often the units in the population. It is straightfor-
ward to select and observe a sample that consists of the units of the popula-
tion, thus making the inference easier. However, for environmental surveys,
we seldom know the number of units in the population, which makes it im-
possible to construct a list of all units in the population.

Instead, an area frame that covers the population will be employed for the
sample selection. One scenario may be to tessellate the area and construct a
finite number of cells. Another way is to treat the area as a continuous pop-
ulation with an infinite number of points. For both scenarios, a sample unit
is not a population unit anymore, it becomes an area or a point. Each sample
unit may contain a different number of population units. In the first scenario,
each population unit belongs to only one sample unit. Note that, in the sec-
ond scenario, a point may represent a cluster, i.e. we select points within the
area frame, then put one cluster centered on each selected point. The clusters
can have different shapes and sizes, within the frame they have positions and
may also have orientations (de Gruijter et al., 2006). In this case, each pop-
ulation unit may belong to an infinite number of points, because the clusters
may overlap. All of this in general makes sampling natural resources very
complex.

Traditionally, the design-based method focused on sampling from finite
populations, and therefore the representation of the universe is discrete in this
approach. To apply the methods for a finite population when sampling from
an area frame, we can convert the continuous population to a finite popula-
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tion. An area frame may consist of a finite number of area segments, e.g., the
frame can be discretized by a fine grid of which the centers of the grid cells
represent the possible sample locations. Since the population becomes the
collection of the centers of these grid cells, we get a list frame. The methods
for finite population sampling can thus be applied. Sampling from an area
frame can also be accomplished by randomly selecting points and then ob-
serving the segments of an area with the points as the area center, which is
also the method we use throughout the thesis. In Papers I and II, we applied
a double (two-phase) sampling approach, where the samples are selected in
two steps. In the first step, a very large initial sample with independent points
is selected from an area frame, then auxiliary information is extracted from
the initial sample. For the second step, methods for finite population sam-
pling are applied. We used the auxiliary information and applied LPM or
SCPS to select a well-spread subsample as our final sample. In Paper IV,
sample points are selected directly by using three commonly used sampling
designs. To combine several samples and find unbiased variance estimators,
the sample properties are derived for the finite population units.
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2 Sampling from a finite population

Let U = {1,2, ..., i, ...,N} denote a population of size N. A variable of interest
y has the value yi for unit i. We want to select a probability sample S of size
n from the population to estimate a population parameter. For a probability
sample, every unit in the population has a nonzero probability of being se-
lected, and the probability must be known for at least the selected units. The
sample S can be selected with or without replacement. A sample selected
without replacement is always a subset of U , whereas for a with replacement
sampling design the same units may be selected multiple times in a sample. A
possible realization of a with replacement sample can be, e.g., s = (3,1,3,6),
where the unit 3 is selected two times in the sample. Denote the collection
of all possible samples to obtain with a sampling procedure (with or without
replacement) as the set S = {s1,s2, ...,sm}.

2.1 Sampling design and inclusion probabilities

A sampling design is a probability distribution on S. Under probability sam-
pling, there exists a function p(·) such that p(s) is the probability of selecting
the sample s ∈ S, i.e. Pr(S = s) = p(s) for any s ∈ S. The function p(·) is
called the sampling design. It has the properties p(s) > 0 for any s ∈ S and
∑s∈S p(s) = 1.

Given a sampling design p(·), the inclusion of unit i in a probability sam-
ple S is indicated by a random variable Ii. We call Ii an inclusion indicator of
unit i. It takes the value Ii = 1 if i ∈ S and Ii = 0 otherwise. The probability
that a unit i will be sampled is defined as

πi = Pr(Ii = 1) = E(Ii) = ∑
s∈S

I(i ∈ s)p(s).

Here πi is called a first-order inclusion probability of unit i. The inclusion
probabilities can be equal for all units in the population or proportional to an
auxiliary variable. For sampling designs which select a sample with fixed size
n, we have ∑i∈U πi = n. The probability that two units i and j are included in
the sample is denoted as

πi j = Pr(Ii = 1, I j = 1) = E(IiI j) = ∑
s∈S

I(i ∈ s)I( j ∈ s)p(s),

and πi j is called a second-order inclusion probability.
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2.2 Estimators and their properties

We can estimate the population parameter by using the observations of the
units in a sample. The rule (function) of calculating an estimate of a popu-
lation parameter based on the observations in a sample is known as an esti-
mator. Suppose the population parameter that we want to estimate is θ , the
estimator of θ is then denoted by θ̂ . The expected value of θ̂ is E(θ̂) and
under a sampling design p(·) we have

E(θ̂) = ∑
s∈S

θ̂(s)p(s),

where θ̂(s) is the value of θ̂ given the sample s. Under the same design the
variance of θ̂ can be expressed as

V (θ̂) = ∑
s∈S

(
θ̂(s)−E(θ̂)

)2
p(s).

Suppose the population parameter that we want to estimate is the popu-
lation total Y = ∑i∈U yi. Then Y can be estimated by the Horvitz-Thompson
(HT) estimator (Horvitz & Thompson, 1952)

Ŷ = ∑
i∈U

yi

πi
Ii. (1)

It is also named as the single-count (SC) estimator in paper IV. If the sampling
design is without replacement, then (1) can be written as

Ŷ = ∑
i∈S

yi

πi
.

The variance of (1) can be shown to be

V (Ŷ ) = ∑
i∈U

∑
j∈U

(πi j−πiπ j)
yi

πi

y j

π j
. (2)

An estimator of the variance (2) is

V̂ (Ŷ ) = ∑
i∈S

∑
j∈S

(πi j−πiπ j)

πi j

yi

πi

y j

π j
. (3)

Under a general sampling design, a unit may be included multiple times
in a sample. Let Si denote the number of inclusions of unit i in the sample S.
For any sampling design, the population total Y can be estimated by Hansen-
Hurwitz (HH) estimator (Hansen & Hurwitz, 1943)

Ŷ = ∑
i∈U

yi

µi
Si, (4)
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Where µi is the expected number of inclusions and µi = E(Si). When having
a without-replacement sampling design, we have µi = πi. The estimator (4)
is also called the multiple-count (MC) estimator in paper IV.

The variance of (4) is

V (Ŷ ) = ∑
i∈U

∑
j∈U

(µi j−µiµ j)
yi

µi

y j

µ j
, (5)

where µi j = E(SiS j) is the second-order of expected inclusions. An estimator
of (5) is

V̂ (Ŷ ) = ∑
i∈U

∑
j∈U

(µi j−µiµ j)
yi

µi

y j

µ j

SiS j

µi j
. (6)

Sometimes we need to estimate the change of the population total be-
tween two time occasions ∆ = Y2−Y1, where Yt is the population total at
time t. The estimator of ∆ is given by ∆̂ = Ŷ2− Ŷ1 where Ŷt represents the
estimator of the population total at time t. To know the precision of the es-
timation, we also need to estimate the variance of the estimator of change.
This variance is given by

V (∆̂) =V (Ŷ1)+V (Ŷ2)−2C(Ŷ1,Ŷ2), (7)

where V (Ŷt) is the variance of the estimator of the population total at time t
and C(Ŷ1,Ŷ2) is the covariance between the estimators. The covariance be-
tween two HT-estimators of two population totals is given by

C(Ŷ1,Ŷ2) = ∑
i∈U

∑
j∈U

(
π

12
i j −πi1π j2

) yi1

πi1

y j2

π j2
, (8)

where π12
i j = Pr(i ∈ S1, j ∈ S2) is the probability of including unit i at time 1

and including unit j at time 2, St is the sample selected at time t, yit is the
value of y for unit i at time t.

Equation (7) implies to estimate the variance of the estimator of change,
we need to estimate the variance of the separate state estimators and the co-
variance between the two estimators. The variance of the state estimator
V (Ŷt) can be estimated by (3) or (6). The estimator of the covariance C(Ŷ1,Ŷ2)
can be expressed as

Ĉ(Ŷ1,Ŷ2) = ∑
i∈S1

∑
j∈S2

(
π12

i j −πi1π j2

)
π12

i j

yi1

πi1

y j2

π j2
. (9)

Two common measures to assess the performance of an estimator are
bias and mean squared error (MSE). Bias can be used to describe how much
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an estimator deviates from the population parameter on average. For θ̂ it is
defined as

Bias(θ̂) = E(θ̂)−θ .

When Bias(θ̂) = 0 we say that θ̂ is an unbiased estimator of θ . The HT-
and the HH-estimators are such estimators. Under a without replacement
sampling design, when πi j > 0 for all pairs {i, j} ∈U , the variance estimator
(3) is an unbiased estimator of the variance of the HT-estimator (2). When
µi j > 0 for all pairs {i, j} ∈ U , the variance estimator (6) is also unbiased
of (5). Similar to the variance estimators, the covariance estimator (9) is
unbiased for (8) provided the π12

i j are strictly positive for all i, j.

If E(θ̂) 6= θ , the estimator θ̂ is said to be biased. Bias(θ̂) > 0 means θ̂

tends to overestimate θ and Bias(θ̂) < 0 means θ̂ tends to underestimate θ .
When comparing different estimators, it is also useful to relate the size of the
bias of an estimator to the value we are estimating. The ratio between the bias
of an estimator and the value we are estimating is called relative bias (RB).
For θ̂ , it is denoted as

Relative Bias(θ̂) =
Bias(θ̂)

θ
·100%.

The MSE measures the average squared difference between the estimator and
the true parameter value. For θ̂ it is defined as

MSE(θ̂) = E
(
(θ̂ −θ)2

)
=V (θ̂)+

(
Bias(θ̂)

)2
.

If θ̂ is unbiased for θ , we get MSE(θ̂) = V (θ̂). As we can see from the
expression, the MSE incorporates both the variance and the bias of the esti-
mator, thus it can be used to check the efficiency of an estimator. The smaller
value of MSE implies a better estimator. As the MSE has a squared unit of
measure, it is sometimes difficult to interpret. Instead, we can use the root
mean squared error (RMSE) when interpreting the results, and we have

RMSE(θ̂) =
√

MSE(θ̂).

Similar to the relative bias, we may want to relate the size of the RMSE to the
value we are estimating. The ratio between the RMSE of an estimator and the
value we are estimating is called relative root mean squared error (RRMSE).
It is defined as

RRMSE(θ̂) =
RMSE(θ̂)

θ
·100%.
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2.3 Sampling strategy and the nature of a good sampling strat-

egy

A sampling strategy is the combination of a sampling design and an estimator.
According to Royall (1970), a sampling strategy {p : θ̂} will be said to be
better than strategy {p′ : θ̂ ′}, if

MSE({p : θ̂})< MSE({p′ : θ̂
′}). (10)

When the two sampling strategies employ unbiased estimators, the contribu-
tion to the MSE from the bias of the estimator will be zero in both sides in
equation (10). Thus we say a sampling strategy {p : θ̂} is more efficient than
strategy {p′ : θ̂ ′}, if

V ({p : θ̂})
V ({p′ : θ̂ ′})

< 1, (11)

where θ̂ and θ̂ ′ are two unbiased estimators of θ . The ratio between the two
variances is called the design effect. To ensure a fair comparison, we often
require that the two strategies should select samples with the same expected
sample size or same expected cost (Särndal et al., 1992).
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3 Sampling from a continuous population

Suppose that a finite population Ut has its units scattered on a surface FU ,
where FU is a subset of the Euclidean plane R2 with its surface area `(FU).
An example of such a population can be trees in a forest stand. In such an
area frame, we often do not have a list frame covering the population of trees.
Thus, it is impossible, or at least not cost-efficient to sample the population
units (trees) directly. For such a population, we can select a sample of points
in the area frame. Then use an area with a fixed shape and size centered at
the sample point in the field inventory.

The response of a target variable for a point x ∈ FU can be denoted as
y(x), we have y(x) = 0 if the point x is outside the frame FU . The popula-
tion total of the response for the target variable can hence be expressed as
Y =

∫
FU

y(x)dx. In the area frame, we can introduce the sampling intensity
function π(x) which describes the expected number of sample points at loca-
tion x (Cordy, 1993). We have

∫
FU

π(x)dx= n, π(x)> 0 for any point xk ∈FU

and π(x) = 0 for points outside FU . Denote the random sample of n locations
within FU as S = {x1, ...,xn}. The sampling intensity function is then given
by π(x) = ∑

n
k=1 fk(x), where fk(x) is the marginal probability density func-

tion of xk. The second-order sampling intensity function can be expressed as
π(x,x′) = ∑

n
k=1 ∑l 6=k fkl(x,x′), where fkl(x,x′) is the joint probability density

function for the pair of sample points {xk,xl}. The sampling intensity plays
the same role as the inclusion probabilities play in finite population sampling.

According to Cordy (1993), the continuous version of the unbiased HT
estimator of Y is given by

Ŷ = ∑
x∈S

y(x)
π(x)

.

When sample size is fixed, the variance of the estimator in Sen-Yates-Grundy
form is

VSY G(Ŷ ) =
1
2

∫∫
FU

(
π(x)π(x′)−π(x,x′)

)( y(x)
π(x)

− y(x′)
π(x′)

)2

dxdx′. (12)

An unbiased estimator of (12) is

V̂SY G(Ŷ ) =
1
2 ∑

x∈S
∑

x′ 6=x

π(x)π(x′)−π(x,x′)
π(x,x′)

(
y(x)
π(x)

− y(x′)
π(x′)

)2

,

provided that y(x) is bounded,
∫

FU
1/π(x)dx < ∞ and π(x,x′) > 0 for all

points x′ 6= x on FU .
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Figure 1: Example of inclusion zone. The green circles connected with dots
represent a cluster of eight circular plots. The inclusion zone Ki for the unit
i consists of the yellow circles. Any tract with its center x within Ki, such
as the one in (a), includes unit i in one of the plots. If the point x does not
fall into the inclusion zone Ki of the unit, as the case in (b), the tract will not
include the unit.

As mentioned previously, the sample points may represent an area with
a fixed size and shape. Such an area is often called a tract. When sampling
tracts, each unit in the population has an inclusion zone. The inclusion zone
Ki of a unit i is the collection of all points that lead to the inclusion of the
unit. The unit will be included if a point falls within its inclusion zone. In the
case of fixed area plots, the inclusion zones are usually of the same shape and
size as the sample plot but centered at the units’ locations. Figure 1 shows the
inclusion zone of a unit for fixed area tracts. The inclusion zone is related to
the response function and the shape of tract determines the response function.
Denote the area of the inclusion zone for a population unit i as `(Ki), the
density function y(x) of the target variable at point x is then given by

y(x) = ∑
i∈Ut

Ii(x)yi

`(Ki)
, (13)

where Ii(x) = 1 if x is within the inclusion zone of element i and Ii(x) = 0 oth-
erwise. By using this expression, the continuous total is then corresponding
to the finite population total. Because

Y =
∫

FU

y(x)dx =
∫

FU
∑
i∈Ut

Ii(x)yi

`(Ki)
dx = ∑

i∈Ut

yi

`(Ki)

∫
FU

Ii(x)dx = ∑
i∈Ut

yi.
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The above equality means we can get an unbiased estimator of Y by applying
the response function (13).

As we can see from Figure 1, units near the border of FU have parts of
their inclusion zone outside FU . This makes the estimation complicated. To
simplify the problem, we can add a buffer zone around FU , such that each
population unit has an identical inclusion zone. The width of the buffer
should be at least as big as the radius of the tract. By doing so, the sampling
frame expands from FU to F . Ideally, the sampling frame should provide
full coverage and can uniquely identify all target population units. Accord-
ing to Särndal et al. (1992), there is a problem of frame imperfection under
some circumstances. In this thesis, we assume that the area frames are always
perfect.

We can convert the problem of sampling from a continuous population to
sampling from a finite population. When using sampling designs that select
samples of independent points, like the three designs in Paper IV, we can
derive the inclusion probabilities and the expected number of inclusions of
the units by a set of sample points and derive an unbiased estimator of Y
as sampling from the finite population. However, it becomes more difficult
to select samples with independent sample points, if we want to capture the
spatial features of the environmental populations by using some auxiliary
variables. In this case, we can apply a double sampling approach to select
samples in two steps, see Papers I and II.
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4 Some commonly used sampling designs

A probability sample can be selected in different ways and the sampling de-
sign describes the randomness included in the selection. Various sampling
designs can be applied when monitoring environmental variables. Among
others I will give details of the designs that are applied in this thesis.

4.1 Simple random sampling with replacement (SIR)

In SIR, we make independent selections of the units in the population and
each unit has the same probability to be selected each time. Thus, it was also
called i.i.d. sampling design in Paper IV. To use the sampling design in the
sampling frame, we generate points uniformly on a rectangle that contains the
area frame, if a point falls into the frame, we will accept it as a sample point.
Note that, SIR is a special case of i.i.d when using equal inclusion probability
πi = n/N (or constant sampling intensity π(x) = n/`(F)).

4.2 Systematic sampling

In systematic sampling, there is an ordered list frame and a predefined sam-
pling interval k. The first unit in the sample is drawn from a uniform distribu-
tion (randomly and with equal probability) among the first k elements in the
list frame. The rest of the sample is decided by systematically choosing every
kth unit from the list. There is only one random draw in the sample selection,
which makes the design simple and thus easy to apply in practice. Note that,
the sample size is in general not fixed under systematic sampling. When ap-
plying the design in F , we should define fixed distances dx and dy between
sample points on two mutually perpendicular axes. We can select a fixed
point, then generate two random numbers rx ∼ U(0,dx) and ry ∼ U(0,dy)
and add the numbers to the x and y coordinates of the fixed point to random-
ize the position. The rest of the sample points will be given by the distances
dx and dy. By doing so, the entire grid is randomly shifted with the uniform
distribution.

4.3 Stratified sampling

Stratified sampling is a sampling method that employs auxiliary information.
Because of its efficiency, it is widely used in practice. By stratification, the
population is partitioned into several nonoverlapping strata according to one
or some auxiliary variables. From each stratum, a random sample is selected
independently. Often the same sampling design and estimation methods are
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used in all strata. Nevertheless, different sampling and estimation methods
can also be applied within strata which makes the method flexible.
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5 Use of available information

Two ways of using available information to improve the estimation are con-
sidered in this thesis. In Papers I, II and III, the efficiency of spatially bal-
anced sampling designs which employ auxiliary variables to spread the sam-
ple are studies. The focus of Paper IV is to merge several available indepen-
dent samples to produce more efficient estimators.

5.1 Spatially balanced sampling designs

A spatially balanced sampling design is a sampling design that selects spa-
tially balanced samples. A spatially balanced sample is a sample which is
well spread in some auxiliary variables. Well spread means we avoid the
selection of units that have similar values on the auxiliary variables. The in-
tuition behind spatial balancing is that the auxiliary variables are related to
the target response to be assessed. By spreading the sample in the auxiliary
variables, we can select samples whose empirical distribution matches the
population distribution of the auxiliary variables. Such samples are spatially
balanced in the auxiliary space, leading to an approximate balance for any
target y well explained by those auxiliary variables (Grafström & Lundström,
2013). Thus, for such targets we achieve Ŷ ≈Y , and hence can get more pre-
cise estimates than designs that do not produce spatially balanced samples.

5.1.1 Spatial balance

Spatial balance is a measure to check the spread of a spatial sample. The
measure is based on Voronoi polytopes (Stevens & Olsen, 2004). For a sam-
ple of size n, we need to construct n polytopes. For each i ∈ S, the polytope
ρi includes all units in the population closer to i than to any other sample
unit j ∈ S, j 6= i. The distance used when we construct the polytopes is the
Euclidean distance on standardized variables. Ideally, if the sample is well
spread, the total probability mass within ρi equals to 1. The spatial balance
of a sample is expressed as

B =
1
n ∑

i∈S
(vi−1)2 , (14)

where vi = ∑ j∈ρi π j is the total probability mass within the polytope. Because
B is a measure of the variance of the total probability mass within the poly-
topes, the smaller the value of B the better the spread of the sample is. To
measure how well a design succeeds in selecting spatially balanced samples,
simulation to find the expected value of B under the design is needed.
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5.1.2 The Local Pivotal Method

The local pivotal method (LPM) is a spatially balanced sampling method
proposed by Grafström et al. (2012), it has been shown to be one of the
most effective methods for spreading the sample in the auxiliary space, e.g.
(Benedetti et al., 2015, ch.7). When applying the LPM, spatial balance is
achieved by successively updating the inclusion probabilities for nearby units
until they become inclusion indicators, i.e. 0’s and 1’s, where the 0’s indicate
the exclusion of the units and 1’s indicate the inclusion of the units. In one
step of the LPM, we randomly select one unit i and find its nearest neighbor
j. The pair of nearby units will compete with the (possibly updated) inclusion
probabilities 0 < πi < 1 and 0 < π j < 1. The winner takes as much inclusion
probability as possible from the loser. Thereafter, the winner has an updated
inclusion probability πW = min(1,πi +π j) while the loser has the new inclu-
sion probability πL = πi +π j−πW . Thus, if πi +π j ≥ 1, then πW = 1, and
the winner is included in the sample. If πi+π j ≤ 1, then the loser is excluded
from the sample. A final decision is made for at least one unit each step. The
procedure for the competition is given by

(π ′i ,π
′
j) =

{
(πW ,πL) with probability πW−π j

πW−πL

(πL,πW ) with probability πW−πi
πW−πL

, (15)

where (π ′i ,π
′
j) denotes the new and updated probabilities for the pair. When

nearby units compete for inclusion they are unlikely to be included simul-
taneously, which forces the sample becoming well spread. Figure 2 shows
an example of the competition procedure for one step in a two-dimensional
space.

5.1.3 Spatially correlated Poisson sampling

SCPS derived by Grafström (2012) is a list-sequential sampling method of se-
lecting spatially balanced samples. It is a fixed size π ps design that achieves
a good spread of the selected samples by using auxiliary variables. Same as
the LPM, it is guaranteed by creating a strong negative correlation between
the inclusion indicators of nearby units. It is assumed that we have a list U
of the units to be sampled. The sampling outcome is first decided for the first
unit in the list and then for the second, etc. After each sampling decision,
the inclusion probabilities for the remaining units in the list are updated. De-
note the prescribed inclusion probability of each unit i as πi, i = 1,2, ...,N,
with ∑

N
i=1 πi = n. Then, we have a starting vector of inclusion probabilities

(π1, ...,πN). In the end of the algorithm, we will get a vector of inclusion in-
dicators by gradually updating the vector of inclusion probabilities in a max-
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Figure 2: One step in the LPM for a pair of nearby units i and j. The intensity
of the colour correlates with the inclusion probability. If πi + π j ≥ 1 (case
a), then the winner receives probability 1 and will definitely be included. If
πi +π j ≤ 1 (case b), then the loser receives probability 0 and will definitely
be excluded.

imum of N steps. The updating can be illustrated as

πππ(0) : π1 π2 π3 π3 · · · πN

πππ(1) : I1 π
(1)
2 π

(1)
3 π

(1)
4 · · · π

(1)
N

πππ(2) : I1 I2 π
(2)
3 π

(2)
4 · · · π

(2)
N

πππ(3) : I1 I2 I3 π
(3)
4 · · · π

(3)
N

...
...

...
...

...
. . .

...
πππ(N) : I1 I2 I3 I4 · · · IN

. (16)

The first unit is included with probability π
(0)
1 = π1. If the first unit is in-

cluded, we set I1 = 1, otherwise I1 = 0. The sampling outcome at each step
is decided by comparing the inclusion probability of the step unit with a ran-
dom number associated with the unit. Denote the random number associated
with the unit i ∈U as ri, with r1,r2, ...,rN i.i.d. U(0,1). When the values for
I1, ..., I j−1 have been decided for the first j−1 units in the list, the step unit j
is included in the sample S, i.e. I j = 1, if r j < π

( j−1)
j , and I j = 0 otherwise.

The inclusion probabilities for the rest of the units in the list are updated
according to

π
( j)
i = π

( j−1)
i −

(
I j−π

( j−1)
j

)
w( j)

i , (17)

where i = j + 1, ...,N and i ≥ 2, π
(0)
i = πi, w( j)

i is the weight received by
unit i from the step unit j, ∑

N
i= j+1 w( j)

i = 1. The weight w( j)
i , depends on the

31



sampling outcomes of the first j− 1 units. To make sure that 0 ≤ π
( j)
i ≤ 1

holds, the weights need to satisfy the following restrictions

−min

1−π
( j−1)
i

1−π
( j−1)
j

,
π
( j−1)
i

π
( j−1)
j

≤ w( j)
i ≤min

 π
( j−1)
i

1−π
( j−1)
j

,
1−π

( j−1)
i

π
( j−1)
j

 . (18)

In the SCPS, the decision (including or not) is always made for the step
unit j, i.e. the outcome of I j is decided in step j. From (18), we can see that it
is possible for the weights to be negative. However, to achieve spatial balance,
the weights need to be positive. When updating the inclusion probability for
unit i, the weight it receives depends on the distance between i and the step
unit j. If the inclusion indicator for the step unit is 1, then based on the
inclusion probability in step j−1, the unit j needs to “steal” more probability
from its nearby units. The closer the unit to the step unit, the more probability
mass will be “stolen" by the step unit until the updated inclusion probability
of the step unit becomes 1, i.e. the nearest unit to j will receive as much
weight as possible from j, then as much as possible weight will received
by the second nearest unit from j, etc. By contrast, if the step unit has an
inclusion indicator equal to 0, it will give away all its probability mass to its
neighbours in a similar way. The above strategy is called maximal weight
strategy. Thus, with the restriction of the maximum weight of each unit and
the sum of the weights equal to 1, we will have a sample of a fixed size.

5.2 Double sampling approach

Double sampling is also called two-phase sampling. It is a sampling method
exploiting the correlation between auxiliary variables and the target variables.
As the name implies, by applying two-phase sampling, the sample will be
selected in two steps. In the first phase, a relatively large first phase sample is
taken, in which only the auxiliary variables are derived. In the second phase,
a subsample is taken from the first phase sample with the help of the auxiliary
variable(s) derived in the first phase, and the target variable is measured only
on this subsample. It can be applied to convert a continuous population to a
finite population and apply the available auxiliary information to select well-
spread samples, see papers I and II.

5.3 Sample coordination

Sample coordination is a method to statistically control the overlap of suc-
cessive samples. Various sampling strategies have been developed based on
sample coordination (e.g. Patterson, 1950; Keyfitz, 1951; Kish & Scott, 1971;
Ernst, 1999). There are two kinds of coordination: positive coordination and
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negative coordination. They intend to maximize or minimize the overlap of
two or more samples, respectively. The focus is only on positive coordina-
tion in order to produce good estimates of change for this thesis. The positive
coordination method is based on permanent random numbers (PRNs). These
PRNs are used to decide the the inclusion or exclusion of a unit at each time
point. We assign a uniformly distributed random number on the interval [0,1]
to each unit in the frame (as in the algorithm of SCPS), and these numbers
remain with the units over time. Such a number is called a PRN.

The positive sample coordination method was applied together with
SCPS in Papers II and III to select partially overlapping and spatially
balanced samples when monitoring change over time. By doing so, we
update the sample at a second time occasion by using the updated auxiliary
information and meanwhile keep a certain degree of overlap with the sample
selected on the previous time occasion.

5.4 Combining environmental surveys

Sometimes an existing survey is not sufficient to produce good estimators.
An example is when applying a national environmental survey to obtain es-
timators in the regional level. In such a case, one or several complementary
surveys are often needed to improve the estimation to reach specific accuracy
(Christensen & Ringvall, 2013). We should not discard the national survey
when planning an extra sampling effort. It will be beneficial to use all avail-
able information to produce the best possible estimators.

When combining different surveys, an important consideration is the vari-
ance estimation. It is well known that, the linear combination of independent
estimators Ŷ1,Ŷ2, ...,Ŷk with the smallest variance is

Ŷl = α1Ŷ1 +α2Ŷ2 + ...+αkŶk, (19)

where αi = V−1(Ŷi)/∑
k
j=1V−1(Ŷj) and it is common that variance estimates

are used when calculating the αi. Since the separate estimators of the popula-
tion total can be highly correlated to their respective variance estimators, the
linear combination estimator based on the estimated variances can produce
large bias. Alternative methods are needed to overcome the problem of linear
combination with estimated variances.
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6 Swedish national forest inventory

The Swedish NFI started in 1923 and it is a sample-based multipurpose in-
ventory. It provides regional and national level statistics, and in addition also
produces national full-coverage forest maps by combining field and remote
sensing data (Fridman et al., 2014). It is an annual sample inventory of the
country’s forests carried out by the Department of Forest Resource Manage-
ment at SLU. The main purpose of the NFI is to describe the state and change
of the Swedish forest. The inventory covers all types of land, but it is on
productive forest land as the most comprehensive description is made.

In the Swedish NFI, Sweden was divided into five strata with decreasing
sampling intensity towards the north. Within each stratum, clusters of cir-
cular plots are sampled. The clusters are quadratic or rectangular in shape,
with a side length varying from 300 to 1800 m between different parts of
the country. Along the sides of the clusters, circular plots were located with
fixed distance between plots. The within-stratum distance between plots is
fixed and it increases with latitude. The design was motivated by the as-
sumed autocorrelation for relevant forest variables such as stem volume. In
other words, the landscape changes more rapidly in the south compared to
the north. In the south we have an overall higher anthropological influence
coupled with higher variation in species and fertility, while the coniferous
forests in the north are more homogenous. Thus, longer distances between
plots was needed in the north to obtain new information. Two kinds of clus-
ters are used: temporary ones and permanent ones. The temporary clusters
are mainly intended to capture the current state of the forest and are only
surveyed once, whereas permanent clusters primarily aim to capture changes
and are resurveyed regularly (Tomppo et al., 2010). The sample selection in
different strata are independent, and the estimation of target variables is re-
quired at the stratum level. A sample of the survey clusters distributed over
the whole country is measured annually. A five-year inventory cycle is used,
using five consecutive yearly inventories, and the estimates are calculated as
a five-year moving average. Separate estimators are used for each year and
each cluster type, and a weighting is used to calculate the averages of both
cluster types. Details about the estimators used in the Swedish NFI can be
found in e.g. Fridman et al. (2014).
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7 Summary of the papers

Four papers are included in this thesis with a focus on design-based sampling
methods for environmental monitoring. A short summary of each paper is
included in this section.

7.1 Paper I: A new sampling strategy for forest inventories ap-

plied to the temporary clusters of the Swedish national forest

inventory

In this paper, a new sampling strategy for forest inventories is presented. The
strategy is developed for an area frame and the sample is selected through
the double sampling approach. In the first phase, a very large number N of
clusters is selected by randomly and independently placing cluster centers in
the sampling frame F with the sampling intensity N/`(F). For each cluster,
the auxiliary information of the cluster mean is derived. According to the
Glivenko-Cantelli theorem and its multivariate generalisations, the empirical
distribution of the auxiliary variables in the first phase sample converges uni-
formly almost surely to the population distribution as the size of the sample
increases. In the second phase, the LPM is applied with equal inclusion prob-
abilities n/N. Then we achieve a representative and well spread sample with
a sampling intensity n/`(F).

The potential of implementing the new strategy for temporary clusters
within the Swedish national forest inventory is evaluated with five auxiliary
variables derived from remote sensing data: geographical coordinates, ele-
vation, predicted tree height, and predicted basal area. By comparing with
two reference strategies (independent observations and geographically well-
spread observations), through a Monte-Carlo simulation, we show that the
new strategy succeeds in producing precise or improved estimates. For this
reason, we conclude that the new strategy has a great potential to achieve
large improvements in estimation of many important forest attributes. The
encouraging results of this study have led to a decision to implement this
sampling strategy in all regions for the selection of temporary tracts within
the Swedish NFI since 2018.

7.2 Paper II: A sample coordination method to monitor totals of

environmental variables

We propose a design-based sampling strategy for environmental monitoring.
Two concepts are combined in the strategy, spatially balanced sampling and
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coordination of samples over time. By employing this strategy, the selected
samples are partially overlapping and spatially balanced.

We show how sample coordination can be applied within a continuous
population framework by using a double sampling approach. Where the sam-
ple selected at the first phase is treated as a permanent but dynamic popula-
tion. The second phase sample is selected by SCPS. The algorithm for the
new strategy, where the SCPS and sample coordination based on PRNs are
also illustrated by examples.

The strategy was evaluated by the same NFI example as Paper I (with
added another time occasion). Compared with four reference strategies

(
(i)

a strategy that uses permanent geographical-spread samples; (ii) a strategy
that employs permanent well-spread samples; (iii) a strategy with indepen-
dent well-spread samples; (iv) a strategy that applies a split-panel design

)
,

the superiority of the new strategy is illustrated by a forest inventory appli-
cation. By using Monte-Carlo simulations, we show that the new strategy
can outperform the reference strategies for both state and change estimators
of the auxiliary variables. This implies that we can potentially produce good
estimates for the target variables that are related to the auxiliary variables.

7.3 Paper III: Estimation of change with partially overlapping and

spatially balanced samples

This paper is a follow-up to Paper II. The advantage of a strategy which em-
ploys partially overlapping and spatially balanced samples is verified in Paper
II. However, the problem of estimating the variance of the estimator of change
under the strategy was left open. In this paper, we try to solve the problem by
proposing a local mean estimator for partially overlapping and spatially bal-
anced samples for the variance of an estimator of the change. The estimator
is derived by modifying an estimator for partially overlapping samples with
independent observations. Through simulations, we illustrate that for par-
tially overlapping and spatially balanced samples the proposed local mean
estimator is a viable option, compared to a reference estimator.

7.4 Paper IV: Combining Environmental Area Frame Surveys of

a Finite Population

In this paper, new ways to combine data from multiple environmental surveys
of a finite population are introduced. We derive two methods to reduce the
bias of the combined estimator. The first approach is to derive design compo-
nents for the combined design. The second approach uses a pooled variance
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estimator to estimate the variance of each separate estimator by using infor-
mation from all surveys. We derive the design components needed at unit
level of the finite population to combine multiple surveys for the sampling
designs in Section 4. We show how to produce an unbiased estimator using
data from multiple surveys, and how to reduce the risk of introducing sig-
nificant bias in linear combinations of estimators from multiple surveys. If
separate estimators and variance estimators are used in linear combinations,
then there is a risk of introducing negative bias. By using pooled variance es-
timators, the bias of a linear combination estimator can be reduced. Through
simulation, we show that the proposed methods are either unbiased or yield
small bias, compared to traditionally used methods. Our results can be used to
combine data from different surveys with improved accuracy and efficiency.
If an existing survey did not provide sufficiently good estimators, then the
results can also be used when planning a complementary survey that can be
combined with the existing survey.
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8 Conclusions and remarks

In this thesis, the main focus is the design stage of the sampling strategies.
This is why the HT/HH-estimator is always applied for the estimations. For
multi-purpose surveys, such as environmental monitoring, it is difficult to find
an optimal sampling strategy. The optimization of the sample for one variable
may decrease the precision of other variables. In such a situation, the model-
assisted approach may be more efficient than the pure design-based approach
if the models used in the estimation are adequate. Because it can borrow
strength from the auxiliary variables twice, once at the design stage and once
in the estimation. But, if the information has been used to spread the sample,
then the improvement will be small by using the same information again in
the estimation. However, if new information has become available after the
sample has been selected, then by using the new auxiliary information in the
estimation we may get a larger improvement.

For spatially balanced sampling designs, the distance measure we used
to verify if units are nearby or not is important. It is a way of describing
what it means for elements in some space to be “close to", or “far away from"
each other. We applied the standardized Euclidean distance in the LPM and
SCPS, i.e., all auxiliary variables are equally important when spreading the
sample. The reason of standardization is to balance out the contributions of
different variables. This is essential for multipurpose environmental surveys.
Without standardization, it may happen that a single variable dominates in
the calculation of the distances.

When domain estimates are required in large national environmental sur-
veys, there is a need for adequate resources of the domains to get estimates
with acceptable precision. There is sometimes a demand for additional sam-
ples of such domains to complement the sparse national level samples. By
combining different samples as we did in Paper IV, the restriction is that the
samples are independent probability samples selected from the same popula-
tion. It basically means that the samples should be observed at the same time
point. However, it is seldom the case in practise. As a result, when apply-
ing the methods proposed, we need to assume that the population does not
change within the time that the samples are observed.

The proposed sampling methods have a great potential to be applied in
large-scale environmental monitoring programs. In fact, some of the methods
developed in this thesis have already been applied within the Swedish NFI
and within the National Inventory of Landscapes in Sweden. When using
the spatially balanced samples, we can increase the efficiency of current state
estimation. When using partially overlapping and spatially balanced samples,
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the precision for both state and change estimators can be improved. We no
longer need to compromise between having good estimates of the state and
good estimates of change. The methods proposed in Paper IV can be applied,
if we want to produce more efficient estimators when combining a large-scale
environmental survey with one or several complementary surveys.
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ARTICLE

A new sampling strategy for forest inventories applied to
the temporary clusters of the Swedish national forest inventory
Anton Grafström, Xin Zhao, Martin Nylander, and Hans Petersson

Abstract: A new sampling strategy for forest inventories is presented. The most important difference from the traditional
sampling strategies is that auxiliary variables from remote sensing are incorporated into the sampling design. The sample is
selected to match population distributions of the auxiliary variables as well as possible. This is achieved by a double sampling
approach, where auxiliary variables are extracted for a large first-phase sample. The second selection is done by the local pivotal
method and produces an even thinning of the first-phase sample. Thus, we make sure that the selected second-phase sample
becomes much more representative of the population than what is possible by the use of traditional designs. The potential of
implementing the new strategy for the temporary clusters within the Swedish national forest inventory is evaluated with five
auxiliary variables: the geographical coordinates, elevation, predicted tree height, and predicted basal area. The increased
representativity that we achieve with the new strategy induces up to 95% reduction of the variance of the sample means of the
remote sensing auxiliary variables compared with traditional designs. For this reason, we conclude that the new strategy that
will be implemented in the forthcoming Swedish national forest inventory has a great potential to achieve large improvements
in estimation of many important forest attributes.

Key words: continuous population, double sampling, local pivotal method, remote sensing, sampling design.

Résumé : Nous présentons une nouvelle stratégie d’échantillonnage pour les inventaires forestiers. La différence la plus
importante par rapport aux stratégies d’échantillonnage traditionnelles est l’incorporation dans le plan d’échantillonnage de
variables auxiliaires de télédétection. L’échantillon est sélectionné de manière à correspondre autant que possible à la distribu-
tion de la population des variables auxiliaires. Cela est accompli grâce à une méthode de double échantillonnage, où les variables
auxiliaires sont extraites pour un grand échantillon lors de la première phase. La deuxième sélection est effectuée avec la
méthode du pivot local et produit une réduction uniforme de l’échantillon de la première phase. Ainsi, nous nous assurons que
l’échantillon sélectionné lors de la deuxième phase devient beaucoup plus représentatif de la population que le permet
l’utilisation des modèles traditionnels. Le potentiel de mise en œuvre de la nouvelle stratégie pour les grappes temporaires
de l’inventaire forestier national suédois est évalué à l’aide de cinq variables auxiliaires : les coordonnées géographiques, l’altitude,
la hauteur prédite des arbres et la surface terrière prédite. La représentativité accrue, que nous obtenons avec la nouvelle
stratégie, entraîne jusqu’à 95 % de réduction de la variance des moyennes d’échantillonnage des variables auxiliaires de
télédétection par rapport aux modèles traditionnels. Pour cette raison, nous concluons que la nouvelle stratégie, qui sera mise
en œuvre dans le prochain inventaire forestier national suédois suédois, a de fortes chances d’améliorer grandement
l’estimation de nombreux attributs forestiers importants. [Traduit par la Rédaction]

Mots-clés : population continue, double échantillonnage, méthode du pivot local, télédétection, plan d’échantillonnage.

Introduction
National forest inventories (NFIs) have evolved and developed,

in some cases more than 100 years, and the need for accurate
national-level information is more requested than ever (Tomppo
et al. 2010, chap. 1). Still the NFI designs normally rest on tradi-
tional area-based sampling, which spreads the sample units over
the landscape. Often the sample units are systematically distrib-
uted and organised in clusters of circular plots. NFIs in general
have a very low sampling intensity due to the large areas that need
to be covered. In such a situation, it is inevitable that forest attri-
butes vary rapidly across the landscape with respect to the low
sampling intensity. This means that spreading the sample only
geographically is not sufficient to ensure that the sample is rep-
resentative of the population. With the intention of providing a
more effective sampling design and thereby increasing the preci-

sion of estimates of forest attributes, we present a strategy for
obtaining a more representative sample by using auxiliary infor-
mation from remote sensing in the planning phase of a forest
inventory. In recent years, for example, assessments using LiDAR
techniques (light detection and ranging) can provide quite up to
date wall-to-wall coverage of remote sensing data. In some coun-
tries, such data are available even at the national scale and may be
used for distributing sample units efficiently for NFIs.

Even though NFIs have been well developed overtime, it is still
imperative for NFIs to adopt new strategies to be cost-efficient and
increase the precision of estimates (Fridman et al. 2014). Despite
the fact that auxiliary variables from remote sensing are becom-
ing increasingly available, they are rarely used in the sampling
designs. In the Swedish NFI, for example, clusters have been dis-
tributed more or less evenly across the landscape without the use
of additional auxiliary variables.
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Auxiliary variables can be used in different ways in a sampling
design. Common use includes stratification (e.g., Särndal et al.
2003, chaps. 3 and 12), balancing (e.g., Deville and Tillé 2004), and
using unequal probabilities or achieving a good spread of the
sample (e.g., Stevens and Olsen 2004). Including the auxiliary vari-
ables in the design normally reduces the need for including the
same variables in the estimators and can allow for a simpler anal-
ysis. A sampling design that uses auxiliary variables to spread the
sample is particularly useful for multipurpose inventories, such
as NFIs (Grafström and Schelin 2014). When a multipurpose inven-
tory is planned, the choice of a robust design is especially impor-
tant. Tillé and Wilhelm (2017) discussed principles for choice of
sampling design and stated that “Indeed, if the response variable
is correlated with the auxiliary variable, then spreading the sam-
ple on the space of auxiliary variables also spreads the sampled
response variable. It also induces an effect of smooth stratification
on any convex set of the space of variables. The sample is thus
stratified for any domain, which can be interpreted as a property
of robustness.” As demonstrated by for example, Grafström and
Ringvall (2013), use of auxiliary variables in an estimator can only
partly compensate for neglecting the use of the same variables in
the design.

Grafström and Ringvall (2013) and Grafström et al. (2014) have
recently introduced different sampling designs for forest invento-
ries that are able to select spatially balanced samples, which
means that the samples are well spread in some space. We have
now developed this theoretical framework further to meet the
specific needs of forest inventories. Our framework includes us-
ing the continuous population approach, which was first pro-
posed for forest inventories by Mandallaz (1991); see also Eriksson
(1995), Barabesi (2003, 2004), Mandallaz (2007, chap. 4), and
Gregoire and Valentine (2008, chap. 10). Following Cordy (1993),
we can in this framework use a general sampling design for selec-
tion of clusters of any shape and with any prescribed sampling
intensity function. However, we focus on the selection of repre-
sentative samples, which means that we match as closely as pos-
sible the sample distribution of a set of auxiliary variables to the
population distribution. This is achieved through a double (or
two-phase) sampling, where auxiliary responses are extracted for
a very large first-phase sample of clusters. For the second-phase
sample selection, we use the local pivotal method (LPM) by
Grafström et al. (2012) to spread the sample. When using a con-
stant sampling intensity, the LPM produces representative sam-
ples (Grafström and Schelin 2014). Different implementations of
the LPM can be found in the R package ‘BalancedSampling’
(Grafström and Lisic 2016).

The new strategy is illustrated with an application, where we
select the temporary clusters for the Swedish NFI. As auxiliary
variables, we use a digital elevation model and a recent nation-
wide forest attribute map of Sweden predicted using airborne
laser scanning data and field data from the NFI (Nilsson et al.
2017). When compared with two reference strategies (indepen-
dent observations and geographically well-spread observations),
through a Monte-Carlo simulation, it is evident that the new strat-
egy succeeds in producing representative samples.

The new sampling strategy
For the new sampling strategy, a continuous population ap-

proach with double sampling is employed. In the first-phase sam-
ple, a very large number N of clusters is selected by randomly and
independently placing cluster centers in the region. For each clus-
ter, the auxiliary information of the cluster mean is derived. Ac-
cording to the Glivenko–Cantelli theorem and its multivariate
generalisations, the empirical distribution of the auxiliary vari-
ables in the first-phase sample converges uniformly almost surely
to the population distribution as the size of the sample increases
(Wolfowitz 1954; Dehardt 1971). Then, a smaller sample of size n is

selected from the N clusters by the LPM in such a way that the
distribution of the auxiliary variables in the second-phase sample
matches the distribution in the large first-phase sample very
closely. Thus, by using a very large first-phase sample, we make
sure that the distribution of the auxiliary variables in the second-
phase sample is very close to the corresponding distribution in
the population, which means that we obtain a sample that is
representative of the auxiliary variable space. In this section, the
new strategy as well as an example to illustrate the superiority of
the new strategy to the reference strategies are presented. The
general framework and the notation of a sampling strategy for
continuous populations are provided. The subsequent subsec-
tions show the framework and the notation of using auxiliary
information in a double sampling approach, introduce the defini-
tions of spatial balance, focus on the LPM that we emply for the
second-phase sample selection, and finally, provide an illustra-
tive example of the proposed strategy.

A sampling strategy for continuous populations
Consider a surface F that is assumed to be a subset of the Eu-

clidean plane R2 with its surface area ℓ(F). For a finite population
consisting of NT objects (e.g., trees) located in F, the NT objects are
represented by points. Let U = {1, …, i, …, NT} be the identifiers for
the NT objects, and let ST � U denote the probability sample of
identifiers for the selected objects. The inclusion probability of ob-
ject i to be sampled is defined as �i = Pr(i � ST). The variable of
interest, which is generally nonnegative and bounded, is denoted by
yi. An important objective of a forest inventory is the estimation of
the population total Y � �i�Uyi. For forest inventories, since the
sampling frame is indeterminable for the units in U, the objects
cannot be sampled directly. Instead, we select our sample from a
continuous population on F as described in, e.g., Mandallaz (2007).

A sampling design on F is defined by a joint distribution of n
random variables. Denote the random sample of n locations
within F as SF � �X1, X2, ..., Xn�. The (prescribed) sampling inten-
sity is ��X� � � i�1

n fi�X�, where fi�X� is the marginal probability
density function of Xi and moreover, ��X� � 0 for X � F and
��·� � 0 outside F. The sampling intensity plays the same role as
the inclusion probabilities play in finite population sampling. We
have n � �F ��X�dX for a design of a fixed size n.

When using clusters with a given configuration and a fixed
orientation, the inclusion zone Ki � F for a tree i on location Xi can
be expressed as Ki � K�Xi� � �X � F : Xi � C�X��, where C�X� is a clus-
ter centered on X. Figure 1 shows an example of the inclusion zone
of a tree close to the forest boundary.

Fig. 1. An example of an inclusion zone. The inclusion zone K for
the tree consists of the darker circles intersected by the surface of
the forest; the circles connected with dots represent a cluster. Any
cluster C�X� with its center X within K, such as the one in the figure,
includes the tree in one of the plots. [Colour online.]
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There exist several ways to formulate the density function Y�X�
of the target variable. For this article, we define the density func-
tion as a weighted sum of yis over the objects that are selected:

(1) Y(X) � �
i�U

Ii(X)yi

ℓ(Ki)

where the weight is the inverse of the area of the inclusion zone of
the tree, Ii�X� � 1 if X � Ki and 0 otherwise. The density function 1
has been used by, e.g., Mandallaz (2007). The density function is
constructed in such a way that Y � �F Y�X�dX is identical to the
corresponding finite population total Y ��i�U yi, which follows from

(2) Y � �
F

Y(X)dX � �
F
�
i�U

Ii(X)yi

ℓ(Ki)
dX � �

i�U

yi

ℓ(Ki)
�

F

Ii(X)dX � �
i�U

yi

Cordy (1993) proposed a continuous version of the Horvitz—
Thompson estimator of the population total Y as well as the vari-
ance of the estimator in Sen–Yates–Grundy form. They are given by

Ŷ � �
X�SF

Y(X)
�(X)

VSYG(Ŷ) �
1
2��

F

[�(X)�(X′) � �(X, X′)] × �Y(X)
�(X)

�
Y(X′)

�(X′)
	2

dXdX′

where ��X, X′� is the second-order sampling intensity for a pair of
points �X, X′�.

Double sampling approach to achieve spatial balance and
select representative samples

If Y�X� is well explained by the auxiliary variables, then it is
efficient to select a sample whose empirical distribution of the
auxiliary variables matches the population distribution of the
auxiliary variables. By well explained, we mean that points with a
small distance in auxiliary space in general have more similar
values on the target variable than points farther apart.

Normally, auxiliary information from remote sensing is avail-
able at a grid-cell level with different resolutions. To utilize such
auxiliary information for the selection of spatially balanced sam-
ples, we need to implement double sampling.

To obtain the prescribed sampling intensity ��X� � n/ℓ�F� and a
spatially balanced second-phase sample of size n, we first select a
large sample SF1

of size N with independent observations over F,
where N �� n, with the sampling intensity �1�X� � N/ℓ�F�. Then we
extract the auxiliary variables for each cluster. For the second
selection, we propose the use of the LPM with equal probabilities
n/N. Then we achieve a representative and well-spread second-
phase sample with the prescribed sampling intensity ��X�.

Suppose we have p auxiliary variables available from any source
that provides wall-to-wall data. They are defined as Z′�X� �


Z1
′�X�, …, Zp

′�X��T � Rp. Let Z′�X� be the single point response for
the auxiliary variables (i.e., the value for the grid cell that contains
the point). Thus, all single point responses within one grid cell
have the same value for the auxiliary variable. To preserve the
relationship between the auxiliary and the target variables, it is
ideal to derive the auxiliary response in a similar way as Y�X�.

The point response of the cluster C�X� is here defined as

(3) Z∗(X) � �
X′�F

I[X′ � C(X)]Z′(X′)

ℓ[K(X′)]
dX′

Then, in a similar way as for the target variable (e.g., see eq. 2), we
obtain

(4) �
X�F

Z∗(X)dX � �
X�F

�
X′�F

I[X′ � C(X)]Z′(X′)

ℓ[K(X′)]
dX′dX

� �
X′�F

Z′(X′)

ℓ[K(X′)]
�

X�F

I[X′ � C(X)]dXdX′� �
X′�F

Z′(X′)dX′

Equation 4 means that the total of the cluster response equals
the total of the single point response.

Measuring the spatial balance for continuous populations
When the auxiliary space is multidimensional, spatial balance

can be used as a measure to check if the empirical distribution of
a sample fits the sampling distribution. Stevens and Olsen (2004)
proposed to use a statistic based on Voronoi polytopes to describe
the spatial balance. The polytope pi for a point Xi in the sample
includes all points in the population closer to Xi than to any other
sample point Xj, j ≠ i. If a sample is well spread, there should be an
approximately equal amount of probability mass in each poly-
tope. This implies that if a constant intensity is applied, then all
polytopes should optimally be of equal size. The spatial balance of
a sample from a continuous population can be expressed as

B �
1
n �

i�s

(vi � 1)2

where vi � �pi
��X�dX is the total probability mass within the

polytope pi. Additionally, all the vis should be close to 1 for a
spatially balanced sample. Hence, B is a measure of the variance of
the total probability mass within the polytopes. Obviously, the
smaller the value of B is, the better the sample fits the sampling
distribution. A simulation to find the expected value of B under a
design reveals how well the design succeeds in producing spa-
tially balanced samples.

Local pivotal method
The LPM has been shown to be one of the most effective meth-

ods in regards to spreading the sample in auxiliary space (e.g.,
Benedetti et al. 2015, chap. 7). By employing the LPM, we can select
samples whose empirical distribution matches the population
distribution of the auxiliary variables. Such samples are spatially
balanced in the auxiliary space, leading to an approximate bal-
ance for any target Y�X� well explained by those auxiliary vari-
ables (Grafström and Lundström 2013). Thus, for such targets, we
achieve Ŷ ≈ Y. When applying the LPM, spatial balance is achieved
by successively updating the inclusion probabilities for nearby
units until they become inclusion indicators, i.e., 0=s and 1=s,
where the 0=s indicate exclusions of the units and the 1=s indicate
inclusions of the units.

In one step of the LPM, we randomly select one unit i and find its
nearest neighbour j. The pair of nearby units will compete with
the (possibly updated) inclusion probabilities 0 < �i < 1 and
0 < �j < 1. The winner takes as much inclusion probability as
possible from the loser. Thereafter, the winner has an updated
inclusion probability �W = min(1, �i + �j), while the loser has the
new inclusion probability �L = �i + �j – �W. Thus, if �i + �j ≥ 1, then
�W = 1 and the winner is included in the sample. If �i + �j < 1, then
�L = 0 and the loser is excluded from the sample. A final decision
is made for at least one unit each step. The procedure for the
competition is given by

Grafström et al. 1163

Published by NRC Research Press



��i
′, �j

′� � �(�W, �L) with probability
�W � �j

�W � �L

(�L, �W) with probability
�W � �i

�W � �L

where ��i
′, �j

′� denote the new and updated probabilities for the
pair. When nearby units compete for inclusion, they are unlikely
to be included simultaneously, which forces the sample becoming
well spread. Figure 2 shows an example of the competition proce-
dure for one step in a two-dimensional space.

Example for a one-dimensional auxiliary space
To illustrate the proposed strategy, we provide an example for a

one-dimensional auxiliary variable space. Let the auxiliary vari-
able distribution be Z � N(0,1). We perform a simulation of 1000
random samples of size n = 350 with independent observations
and compare with 1000 first-phase samples of size N = 100 000
with independent observations followed by a selection of second-
phase samples of size n = 350 using the LPM with probabilities �i =
n/N, i = 1, 2, …, N.

The results of the comparisons are presented in Fig. 3 for vari-
ation of sample mean, spatial balance, and maximum distance.
The maximum distance is the maximum distance between the
empirical distribution function and the reference distribution,
which was calculated by employing the one-sample Kolmogorov–
Smirnov test.

For the LPM with a second-phase sample of size 350, the vari-
ance of the sample mean corresponded approximately to the vari-
ance of the sample mean of 35 000 independent observations.
Thus, for the mean of the auxiliary variables, such balanced sam-
ples of size 350 are as good samples of size 35 000 with indepen-
dent observations. The mean of the spatial balance of the LPM was
0.065 and the mean of the maximum distance was 0.007 com-
pared with 0.499 and 0.046 for independent random sampling
(IRS), respectively.

As we can see from Fig. 3, the sampling method that has a lower
value of spatial balance also has a lower value of maximum dis-
tance. In fact, for the 1000 selected samples, even the “worst”
samples resulting from the LPM fit the sampling distribution
much better than the “best” samples selected by IRS. When the
auxiliary variable space is multidimensional, we can use the spa-
tial balance to measure how well a sample represents the sam-
pling distribution (and hence the population in the case of a
constant sampling intensity).

An approximate variance estimator of the LPM was derived by
Grafström and Schelin (2014). The continuous version of the esti-
mator can be expressed as

V̂LPM(Ŷ) �
1
2 �

X�SF

�Y(X)
�(X)

�
Y(X′)

�(X′)
	2

In the auxiliary space, X′ is the nearest neighbour to X in the
random sample with n locations SF. The nearest neighbours are
identified by the Euclidean distance on standardized variables.

Swedish NFI and the current sampling strategy
The current Swedish NFI follows the strategy developed by

Ranneby et al. (1987). The country was divided into five strata with
decreasing sampling intensities towards the north. Within each
stratum, clusters of circular plots are sampled. The clusters were
quadratic or rectangular in shape, with a side length varying from
300 to 1800 m between different parts of the country. The circular
plots were located along the sides of the cluster with fixed dis-
tance between plots within stratum. The within-stratum fixed
distance between plots increased by latitude. The design was mo-

tivated by assumed autocorrelation for relevant forest variables
such as stem volume. In other words, the landscape changes more
rapidly in the south with mixed species forests, while the boreal
conifer forests in the north are more homogenous and often dom-
inated by one species. Thus, longer distances between plots was
needed in the north to obtain new information.

Two kinds of clusters are used: temporary ones and permanent
ones. The temporary clusters are mainly intended to capture the
current state of the forest and are only surveyed once, whereas
permanent clusters primarily aim to capture changes and are
resurveyed regularly (Tomppo et al. 2010, chap. 35). The selections
in different strata are independent, and the estimation for target
variables is required at the stratum level. A sample of the survey
clusters, systematically distributed over the whole country, is
measured annually from early May to mid-October. A 5 year in-
ventory cycle is used, using five consecutive yearly inventories,
and the estimates are calculated as a 5 year moving average. Sep-
arate estimators are used for each year and each cluster type, and
a weighting is used to calculate averages of both cluster types.
Details about the estimators used in the Swedish NFI can be found
in Ranneby et al. (1987) and Fridman et al. (2014, appendices A–C).

The current sampling strategy (2013–2017) of temporary clusters
is based on the R Package “spsample” using an unaligned system-
atical sampling design. This specific systematic design is used
mainly to spread the sample geographically and thus also avoid
the risk of overlapping sample units.

Implementation of the new strategy in Sweden
To evaluate the potential improvement in efficiency by intro-

ducing the new sampling strategy in Sweden, a simulation was
performed for selecting the positions of temporary clusters of the
Swedish NFI. The efficiency of alternatively using two reference
sampling strategies was compared with the new sampling strat-
egy. The new sampling strategy, denoted LPM-5 (LPM using five
auxiliary variables), is in many ways similar to the previous strat-
egy. We use the same geographical stratification and the same
number of clusters. The main difference is that the new strategy
uses auxiliary information in the sampling design to ensure that
the selected clusters are more representative. As the first refer-
ence sampling strategy, we use IRS where the clusters are ran-
domly and independently distributed over the area. The second
reference sampling strategy (LPM-xy) is the LPM with geographical
spread, which represents a proxy for the current strategy. The
reason for including IRS is that we then can see also the effect of
geographical spread.

We selected Region 3 in the middle of Sweden as our study
region (see Fig. 4). In this region, the clusters consist of 12 circular
plots of 7 m radius. The plots in a cluster are placed along a square

Fig. 2. One step in the local pivotal method for a pair of nearby
units i and j. The intensity of the colour correlates with the
inclusion probability. (a) If �i + �j > 1, then the winner receives
probability 1 and will definitely be included. (b) If �i + �j < 1, then
the loser receives probability 0 and will definitely be excluded.
[Colour online.]
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formation with a side length of 1500 m and with 500 m between
plots. Five auxiliary variables were used simultaneously with
equal weights to spread the sample for the new strategy. These
variables were geographical coordinates of the cluster center, the
mean elevation of the cluster, the cluster mean tree height, and
the mean basal area. Elevation was derived from a digital eleva-
tion model, while tree height and basal area were derived from
remote sensing information from airborne laser scanning data,
which were collected between 2009 and 2015. The forest variables
were estimated by regression models combining NFI plot data
with airborne laser scanning data metrics and were available on a
nationwide map (Nilsson et al. 2017).

For the first-phase sample, a 100 000 clusters were indepen-
dently selected. For each such cluster of plots, the cluster response
of the five auxiliary variables was derived. Then a subset of size
360 of clusters was selected by the LPM-5 and the two reference
designs, respectively. Spatial balance, design effects, and estima-
tors for the auxiliary variables were compared by a Monte-Carlo
simulation.

Equation 3 can be employed to calculate the value of auxiliaries
for the point response of a cluster. However, it is unpractical to
use the expression of Z∗�X� directly, since it is difficult to integrate
the function in the equation. As we match the distribution of the
derived auxiliary response, we are free to introduce any approxi-
mation to the auxiliary response.

The inclusion zones for a point within a plot vary less than they
vary within a cluster. Hence, it is natural to set an equal value of
the area of the inclusion zone for all points in the same plot. Then,
the response of the cluster can be calculated by a weighted sum

over the plots. To achieve this, we introduce an approximation
by assuming all points in a plot have the same inclusion zone as
the plot center. The cluster response 3 can then be approxi-
mated as

Z∗(X) � �
i�1

nC �
X′�Ci(X)�F

Z′(X′)

ℓ[K(X′)]
dX′ ≈ �

i�1

nC

1
ℓi(X) �

X′�Ci(X)�F

Z′(X′)dX′ � Z(X)

where Ci�X� is plot i in the cluster centered at X, nC is the number
of plots in a cluster, and ℓi�X� is the surface area of the inclusion
zone of the center point of plot i in the cluster. The integral

Fig. 3. Results for the one-dimensional example. Box plots for sample mean, spatial balance, and maximum distance for independent
random sampling and the local pivotal method, respectively. All of the results are based on a simulation of 1000 samples of size 350, and for
the local pivotal method, we used a first-phase sample of size N = 100 000. [Colour online.]

Fig. 4. Illustration of the selected region. [Colour online.] Fig. 5. Illustration of how we derive the plot total of auxiliaries for
a 7 m radius plot. Each cell receives a weight proportional to the
area of its intersection with the plot, which correlates with the
intensity of the colour in the figure. (a) An example for the tree height
and the basal area, which are available on a 12.5 m × 12.5 m grid. (b) An
example for elevation, which is available on a 2 m × 2 m grid.
[Colour online.]

Table 1. Design effect for five auxiliary variables with respect
to reference designs.

Auxiliary variable

Design effect

V̂LPM-5/VIRS V̂LPM-5/V̂LPM-xy V̂LPM-xy/VIRS

x-coordinate 0.030 5.104 0.006
y-coordinate 0.032 5.107 0.006
Elevation 0.036 0.303 0.121
Tree height 0.036 0.061 0.589
Basal area 0.035 0.059 0.603

Note: First-phase sample size is 100 000, second-phase sample
size is 360, and 10 000 samples were generated. LPM-5, local pivotal
method with all five auxiliary variables; LPM-xy, local pivotal method
with only xy-coordinates; IRS, independent random sampling. The
variance ratios presented are called design effects.
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(5) �
X′�Ci(X)�F

Z′(X′)dX′

is the total of the single point response on plot i in the cluster. We
obtain this plot total if we multiply cell values with respect to
intersected area of the plot. Figure 5 is an example of how we
weight the grid cells to calculate equation 5 of auxiliary variables
derived from airborne laser scanning and digital elevation model,
respectively. The values of auxiliary variables for each grid cell
were available beforehand (e.g., see Nilsson et al. 2017). The reso-
lution of the grid cell is 12.5 m × 12.5 m for the airborne laser
scanning data and 2 m × 2 m for the elevation. The radius of each
plot is 7 m.

Table 1 and Fig. 6 demonstrate variance for the estimator of the
five auxiliary variables with respect to the three designs. Com-
pared with IRS, the reduction of the variance was more than 95%
for all five auxiliary variables when using LPM-5. We have also
reduced variance by more than 90% for mean tree height and
mean basal area, even compared with the design that spreads
geographically (LPM-xy). We can clearly see from the table, if we
just spread the samples geographically, that the reduction of the
variance was less than 45% of mean tree height and mean basal
area compared with IRS. The mean of the spatial balance was
0.144, 0.242, and 0.306 for LPM-5, LPM-xy, and IRS, respectively.

Conclusion and discussion
We proposed a new sampling strategy that uses auxiliary infor-

mation in the sampling design in a continuous frame. Based on a
simulation study, we illustrated that the new strategy performed
better than the reference strategies for selecting the temporary
clusters within the Swedish NFI. For the new NFI design (LPM-5),
each selected sample is representative of the auxiliary space. The
spatial balance indicates a very good fit of the multivariate distri-
bution, and as a consequence, the variances for the sample means
of the auxiliary variables are significantly reduced (which implies
the potential to reduce the variances for the target variables re-
lated to the auxiliary variables).

The approximation Z�X� introduces only very slight distur-
bance to the auxiliary response (and only for the response close to
the forest borders). Far enough from the boundary, all points in a
plot have the same inclusion zone, which means that there is no
approximation for such a cluster, i.e., Z�X� � Z∗�X�. The overall
approach is purely design based and provides unbiased estimators
for the target variables, no matter how the auxiliary variables are
derived. We want to derive them in a similar way as the targets to
not lose strength in the possible relationship and thus maximize
the efficiency for estimation of target variables related to the
auxiliary variables.

For the application study of the new strategy in Sweden, the
auxiliary variables that we used for the sampling design are re-
lated to most of the target variables of NFIs. Therefore, adapting
the NFI to the proposed strategy will lead to visible improvements
for the estimation of the related target variables. If a variable is
not related to the auxiliaries, the new strategy will not make their
estimation worse.

The observed potential of using the new sampling strategy con-
firms the claims from earlier studies. In the article by Grafström
and Ringvall (2013), another sampling design called the local cube
method confirmed the advantages of selecting spatially balanced
samples. However, the LPM tends to produce slightly better spread
than the local cube method, and we chose to prioritize a better
spread due to the multipurpose nature of NFIs.

According to Henttonen and Kangas (2015), the optimal sam-
pling strategy depends heavily on the purpose of the inventory;
thus, prioritizing the forest characteristics is also needed if an
optimal strategy is to be determined. For multipurpose forest
inventories, when the number of characteristics of interest is large,
the task becomes more complicated. To choose a proper sampling
strategy while using the auxiliary variables in the design, we need
to consider the relationship between the auxiliary variables and
the target variables, e.g., balanced samples are optimal for linear
relationships and spatially balanced samples perform better for
nonlinear relationships (Grafström and Lundström 2013). The en-
couraging results of this study have led to a decision to implement

Fig. 6. Box plots of spatial balance and estimators for the five auxiliary variables. LPM-5, local pivotal method with all five auxiliary variables;
LPM-xy, local pivotal method with only xy-coordinates; IRS, independent random sampling. [Colour online.]
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this sampling strategy in all regions for the selection of temporary
tracts within the Swedish NFI, starting from 2018.
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Abstract
A new sampling strategy for design-based environmental monitoring is pro-
posed. It has the potential to produce superior estimators for totals of envi-
ronmental variables and their changes over time. In the strategy, we combine
two concepts known as spatially balanced sampling and coordination of sam-
ples. Spatially balanced sampling can provide superior estimators of totals, while
coordination of samples over time is often used to improve estimators of change.
Compared with reference strategies, we show that the new strategy can improve
the precision of the estimators of totals and their change simultaneously. A forest
inventory application is used to illustrate the new strategy and the results can be
summarized as (i) using auxiliary information to spread the sample can improve
the estimators of totals; (ii) a positive coordination of the samples reduced the
variance of the estimator of change by more than 37% compared with inde-
pendent samples; and (iii) a high overlap between successive samples does not
guarantee a good estimator of change. The presented strategy can be used to
develop more efficient environmental monitoring programs.

K E Y W O R D S

positive sample coordination, spatially balanced samples, spatially correlated Poisson sampling

1 INTRODUCTION

Environmental monitoring is defined as the observation and study of the environment (Awange, 2012, ch. 1). The
approach for environmental monitoring is to collect and analyze a subset that represents the environment in space and
time (Artiola, Pepper, & Brusseau, 2004, ch. 2). In the whole process, sampling is usually employed as a tool to select
a representative portion from the population in order to do the analysis. As an important component of environmental
monitoring, it provides the foundation of data required for assessments of environmental variables.

In this article, we propose a design-based sampling strategy for monitoring totals of environmental variables. Two
concepts are combined in the strategy, spatially balanced sampling and coordination of samples over time. Spatially bal-
anced sampling designs can provide representative samples, and sample coordination is a method to statistically control
the overlap of successive samples. Spatially correlated Poisson sampling (SCPS) and sample coordination based on per-
manent random numbers (PRNs), introduced by Brewer, Early, and Joyce (1972), are used in the algorithm for the new
strategy. SCPS was first presented by Grafström (2012) as a spatial sampling method for selecting well-spread samples

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Environmetrics published by John Wiley & Sons Ltd.
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from finite populations. We show how sample coordination can be applied within a continuous population framework
by using a double (two-phase) sampling approach. Auxiliary information is derived for a very large first-phase sample,
and from the finite first-phase sample we select well-spread and positively coordinated samples using SCPS with the aid
of the auxiliary variables.

Two common objectives of environmental monitoring are to characterize the current state of some resource as
well as the change or trend in the state over time and space (Marker & Stevens Jr., 2009). Here, we consider only
states that can be expressed as totals of environmental variables. Good estimators of such states can be achieved by
using representative samples of the population at different time occasions, which means that states are generally best
detected by updating the samples according to the current population. A high degree of overlap level between succes-
sive samples can produce more precise estimators of change over time (see Qualité & Tillé, 2008; Sen, 1973). Permanent
samples have traditionally been used to address this issue. The samples are then often systematically distributed over the
landscape (Scott, 1998).

Huge amount of financial resources are spent on environmental monitoring all over the world and it is very important
to apply more efficient sampling strategies that can increase the quality of estimates while potentially saving a con-
siderable amount of costs. McDonald (2003) provided a very detailed review of different survey designs for large-scale
environmental monitoring programs, and the split panel designs proposed by Kish (1983, 1986) were recommended
among many other designs.

One feature of environmental populations is that they exist in a spatial context. Commonly, the responses of nearby
locations tend to be more similar than the responses of locations which are farther apart. Thus, the spatial distribution
of these populations can be used as important information when designing the sample. Several efficient spatial sampling
methods have recently been developed for sampling from georeferenced populations. One of the first and the most widely
used method is called Generalized Random Tessellation Stratified (GRTS) design proposed by Stevens and Olsen (2004).
This method uses a random mapping to map the two-dimensional locations into one dimension while preserving some
spatial relationship. Then the systematic 𝜋ps sampling is applied and the sample is mapped back to the two-dimensional
original space. Using this design the samples can be spread evenly over the geographical space. Robertson, Brown,
McDonald, and Jaksons (2013) extended the idea of GRTS to a new design called balanced acceptance sampling (BAS). To
select a spatially balanced sample using BAS, we need first to specify a d-dimensional hyperrectangular box that encloses
the population. For example, it could be a rectangle that encloses a two-dimensional geographical study area. Then a
two-dimensional random start Halton sequence with uniformly spread points in the rectangle is generated. The first n
points that are observed in the study area will constitute the sample of size n. An alternative design to BAS which is called
Halton iterative partitioning (HIP) was introduced by Robertson, McDonald, Price, and Brown (2018) to overcome some
drawbacks of BAS for finite populations.

Another feature of environmental population is that there are often some auxiliary information (other than geograph-
ical coordinates) available. Nowadays, there is a wealth of remotely sensed information available from satellite, aerial
photography, or laser scanning that can be used to efficiently distribute the sample units. Therefore, we shall take the full
advantage of the available auxiliary information and the properties of the environmental populations when we derive the
sampling strategies. The local pivotal method (LPM) and SCPS proposed by Grafström (2012) and Grafström, Lundström,
and Schelin (2012) are two spatial sampling designs that employ auxiliary variables (often including geographical coor-
dinates plus several other attribute variables) to spread the samples based on distances. By adding more variables that are
related to the target variables when spreading the samples, we may get more representative samples and then improve
the precision of the estimators. Since the samples are spread in all of the auxiliary variables, they will also provide a good
basis for model-based inference.

Grafström (2012) and Benedetti, Piersimoni, and Postiglione (2015, ch. 7) showed that SCPS was more efficient than
GRTS when the auxiliary variables were only the geographical coordinates. Robertson et al. (2013) argued that the sta-
tistical performance of BAS was comparable with LPM and SCPS when we only spread the samples in the geographical
space. Compared with GRTS and BAS (HIP), the biggest advantage of the LPM and SCPS designs is that they can be used
with any type and any number of auxiliary variables. Different from BAS (HIP), the selections are based on distances. By
applying LPM and SCPS, we can spread the samples in the auxiliary variables even if they do not constitute dimensions
of the population (Grafström & Matei, 2018a).

For environmental monitoring programs that cover large areas, many target variables usually vary rapidly over the
landscape with respect to the low sampling intensity (Dobbie, Henderson, & Stevens, 2008). This means that geograph-
ically spread samples over the landscape may not optimally capture the distribution of the target variables (Grafström,
Zhao, Nylander, & Petersson, 2017). A sample which is well spread in auxiliary variables implies that the sample has the
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potential to be well spread also for the target variables that are related to the auxiliary variables. Moreover, a sampling
design that uses auxiliary variables to spread the sample is particularly useful for multipurpose monitoring programs
(Grafström & Schelin, 2014). To avoid misunderstanding, we would like to clarify that a well-spread sample in this article
means that the sample is well spread in the auxiliary variables.

Various sampling strategies have been developed based on sample coordination (e.g., Ernst, 1999; Keyfitz, 1951;
Kish & Scott, 1971; Patterson, 1950). There are two kinds of coordination: positive coordination and negative coordina-
tion. They intend to maximize or minimize the overlap of two or more samples, respectively. We will focus only on positive
coordination in order to produce good estimators of change.

Consider sampling from a dynamic population, the coordinated samples selected at different time occasions are
dependent. The degree of coordination is measured by the expected size of the overlap between samples. In essence,
the positive coordination method based on PRNs consists of assigning a uniformly distributed random number on
the interval [0,1] to each unit in the frame. The numbers assigned remain with the units over time, and such a
number is called a PRN. These PRNs are used to decide the sampling outcomes (inclusions or exclusions) at each
time point.

As the population changes over time, there is a need to update the sample to account for the changes in the auxiliary
variables. If we use independent well-spread samples at different time occasions, we can have good estimators of states.
However, since the variance of the estimator of change equals the summation of the variances for the two state estima-
tors minus two times their covariance, the estimator of change may not be the best as the covariance between the state
estimators will be zero. A permanent sample has a major drawback, as new auxiliary information cannot be entered into
the design. A sample that matches the distribution for “today” will be unlikely to match the distribution for “tomorrow.”
This is because the developments of the sample and the population may be different over time. Thus, if we select a sam-
ple that is good at the time of selection, the quality of such a sample is likely to deteriorate over time, which impacts both
state and change estimators. Therefore, we need to have an adaptive design that update the sample to maintain the rep-
resentativeness of the changing population. When a new sample is selected, we want to have overlap (common units)
between the new and the previous samples, so that we also improve estimators of change.

Compared with four reference strategies, (i) a strategy that uses permanent geographical-spread samples; (ii) a strategy
that employs permanent well-spread samples; (iii) a strategy with independent well-spread samples; (iv) a strategy that
applies a split-panel design), the superiority of the new strategy is illustrated by a forest inventory application. By using
Monte-Carlo simulations, we show that the new strategy can outperform the reference strategies for both state and change
estimators.

This article is mainly intended for those with a solid background in statistics and those who work with survey designs
related to environmental monitoring. The rest of the article is organized as follows. In Section 2, a continuous sampling
framework and the double sampling approach are introduced, sample coordination for a finite population is explained,
and spatial balance is defined. Details about the new strategy are presented in Section 3. In Section 4, we use a simulation
study to compare the new strategy against the four reference strategies. Conclusions and comments are given in Section 5.

2 SAMPLING FRAMEWORK

Let F denote the continuous population that we sample from, and F is assumed to be a bounded open subset of the
Euclidean plane R2, with surface area 𝓁(F). The set F is considered to be fixed over time. The response of a target variable
for a point x ∈ F at time t is denoted as yt(x). The population total of the response for the target variable at time t can hence
be expressed as Y (t) = ∫Fyt(x) dx. The sampling design of size n(t) on F at time t is specified by a joint distribution of n(t)
random variables x1,… , xn(t). The sampling intensity at time t is given by 𝜋t(x) =

∑nt
i=1 fti(x), where fti(x) is the marginal

probability density function of xi at time t. We have ∫F𝜋t(x) dx = n(t).

2.1 Double sampling approach

To use auxiliary information in the sampling design, a double sampling approach can be employed for the continu-
ous population. In the first-phase sample, a large number N of locations are selected independently using a constant
sampling intensity, 𝜋(x) = N∕𝓁(F). We let U be the indexes of the geographical locations, U = {1,… , i,… ,N}. Then U
serve as a dynamic (but permanent with respect to locations and indexes) frame over time. Auxiliary information is then



4 of 14 ZHAO and GRAFSTRÖM

derived for each unit from U at different time occasions. According to the Glivenko–Cantelli theorem and its multivariate
generalizations, the empirical distribution of the auxiliary variables in the first-phase sample converges uniformly almost
surely to the population distribution as the size of the sample increases (see Dehardt, 1971; Wolfowitz, 1954). Because of
the large sample size, the empirical distribution of any variable in the first-phase sample U will closely match the popula-
tion distribution. The realization of the first-phase sample of size N can be treated as a permanent frame over all repeated
surveys. Then, we select the second-phase samples S(t) at different time occasions, S(t) ⊂ U. Denote the first-phase sam-
ple of N random locations as S = {x1,… , xN}. Conditioned on S, the inclusion probability of unit i ∈ U to be included in
S(t) is denoted as 𝜋i(t). We define the target variable as yi(t) = yt(xi)∕𝜋(xi), for i ∈ U. Then, the total of the target variable
in the first-phase sample at time t can be written as YU (t) =

∑
i∈U yi(t). Moreover, let Ii(t) denote the inclusion indicator

for unit i at time t, so that Ii(t) = 1 if i ∈ S(t) and Ii(t) = 0 otherwise.
To preserve the relationship between the auxiliary variables and the target variables, we define the response of the

auxiliary variables as zi(t) =
(

z1i(t),… , zhti(t)
)T ∈ Rht , and zi(t) = zt(xi)∕𝜋(xi), where zt(xi) is the auxiliary response for

the point xi at time t. The target responses are observed for the locations in the second-phase sample in order to estimate
the state Y(t). The unbiased Horvitz–Thompson (HT) estimator is then defined as

Ŷ (t) =
∑

i∈S(t)

yi(t)
𝜋i(t)

=
∑

i∈S(t)

yt(xi)
𝜋t(xi)

, (1)

where 𝜋t(xi) = 𝜋(xi) ⋅ 𝜋i(t). The estimator Ŷ (t) is conditionally unbiased for YU(t) and unconditionally unbiased
for Y(t).

As N is supposed to be much larger than the sample sizes, we allow ourself to do estimation and variance estimation
conditioned on the first-phase sample. In that case, the variance of the HT-estimator (1) can be expressed as

var(Ŷ (t)) =
N∑

i=1

N∑
j=1

(
𝜋ij(t) − 𝜋i(t)𝜋j(t)

) yi(t)
𝜋i(t)

yj(t)
𝜋j(t)

, (2)

where 𝜋ij(t) = Pr (i ∈ S(t), j ∈ S(t)) is the second-order inclusion probability for a pair of points (i, j) at time t. An estimator
of (2) is

v̂ar(Ŷ (t)) =
N∑

i=1

N∑
j=1

(
𝜋ij(t) − 𝜋i(t)𝜋j(t)

) yi(t)
𝜋i(t)

yj(t)
𝜋j(t)

Ii(t)Ij(t)
𝜋ij(t)

. (3)

The estimator (3) is unbiased for (2) provided that all second-order inclusion probabilities are strictly
positive.

We define the change of the states between two time points as ΔY (1, 2) = Y(2) − Y(1) and its estimator as Δ̂Y (1, 2) =
Ŷ (2) − Ŷ (1). Since Ŷ (t) is unbiased at any time t, the estimator of change is unbiased as well. When estimating the variance
of change from one time occasion to another time occasion, say Occasion 1 and 2, we are also interested in estimating the
covariance cov(Ŷ (1), Ŷ (2)). The variance of the change estimator is

var
(
Δ̂Y (1, 2)

)
= var

(
Ŷ (2)

)
+ var

(
Ŷ (1)

)
− 2 cov

(
Ŷ (1), Ŷ (2)

)
. (4)

The covariance term in (4) is given by

cov(Ŷ (1), Ŷ (2)) =
N∑

i=1

N∑
j=1

(
𝜋ij(1, 2) − 𝜋i(1)𝜋j(2)

) yi(1)
𝜋i(1)

yj(2)
𝜋j(2)

, (5)

where 𝜋ij(1, 2) = Pr (i ∈ S(1), j ∈ S(2)). It is possible to construct the HT-estimator of (5) based on the two samples, that is,

ĉov(Ŷ (1), Ŷ (2)) =
N∑

i=1

N∑
j=1

(
𝜋ij(1, 2) − 𝜋i(1)𝜋j(2)

) yi(1)
𝜋i(1)

yj(2)
𝜋j(2)

Ii(1)Ij(2)
𝜋ij(1, 2)

. (6)

The estimator (6) is unbiased for (5) provided that the 𝜋ij(1, 2) are strictly positive for all i, j.
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F I G U R E 1 The general
framework of the strategy for two time
occasions. F is the continuous
population frame. U stands for the
first-phase sample with N = 10, 000. S(1)
and S(2) represent the positively
coordinated second-phase samples,
n(1) = n(2) = 100. The overlapped
sample points are marked with solid
circles, and the points that are on
different locations are marked with
triangles and crosses for S(1) and S(2),
respectively

2.2 Sample coordination for a finite population

The general framework of sample coordination was summarized by Grafström and Matei (2015). Here, we only consider
the situation where we select samples from the same population U at different time occasions. Consider only two time
occasions, that is, Occasion 1 and 2, the overall sampling design p is defined on U × U, with marginal designs p1 and
p2. A random sample of n(1) locations selected at time Point 1 is denoted by S(1), and a random sample of size n(2)
selected at time Point 2 is denoted by S(2). The overall sampling design is said to be coordinated if the joint probability
of selection of two samples is not equal to the product of the probabilities of selecting each separate sample, that is, if
p (s(1), s(2)) ≠ p1 (s(1)) p2 (s(2)) (see Cotton & Hesse, 1992; Mach, Reiss, & Şchiopu-Kratina, 2006).

Our aim of coordination is to maximize the overlap between several samples drawn successively from U. There-
fore, the selection of a new sample will depend on the samples previously drawn. In order to obtain a larger or a
smaller overlap of the samples, a dependence between the samples must be introduced. This dependence will deter-
mine the expected number of common units in the selected samples. Let  denote the random variable “size of
the overlap,”  =

∑
i∈U Ii(1)Ii(2). The coordination degree between two samples is measured by the expected size of

the overlap

E() = ∑
i∈U

E (Ii(1)Ii(2)) =
∑
i∈U

𝜋i(1, 2), (7)

where 𝜋i(1, 2) = Pr (i ∈ S(1) ∩ S(2)) is the probability for unit i to be included in both S(1) and S(2). According to
Mach et al. (2006), the expected size of the overlap may also have impact on the precision of the change estima-
tors between two occasions. Figure 1 is an illustration of how we construct the finite framework from F and how we
select positively coordinated samples from U for two time occasions. In this example, percentage of overlap of the two
samples is 74%.

2.3 Spatial balance

Spatial balance is a measure to check the spread of a spatial sample. It is often used when the auxiliary space is multi-
dimensional. The measure is based on Voronoi polytopes (Stevens & Olsen, 2004). For a sample of size n(t), we need to
construct n(t) polytopes. For each i ∈ s(t), the polytope 𝜌i(t) includes all units in the population closer to i than to any other
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sample unit j ∈ s(t), j ≠ i. The distance used when we construct the polytopes is the Euclidean distance on standardized
variables. Spatial balance of a sample at time occasion t can be measured by

B(t) = 1
n(t)

∑
i∈s(t)

(vi(t) − 1)2, (8)

where vi(t) =
∑

j∈𝜌i(t)
𝜋j(t) is the total probability mass within the polytope at time occasion t. Spatial balance can be inter-

preted as a measure of the variance of the total probability mass within the polytopes. A small value of B(t) indicates the
sample is well spread at time t. If the sample is spread perfectly, the total probability mass within 𝜌i(t) equals to 1. To
measure how well a design succeeds in selecting spatially balanced samples, simulation to find the expected value of B(t)
under the design is needed.

3 SAMPLE COORDINATION FOR SPATIALLY BALANCED SAMPLES

By using well-spread samples at each point in time, we are likely to reduce the variances of the state estimators. Increas-
ing the expected size of the overlap between the samples, by a coordinated sample selection, may lead to a higher
positive covariance between the state estimators. As Duncan and Kalton (1987) said, the reason for the increased
covariance is that many sample units are the same in the two samples and their values tend to be similar at the two
time occasions. Thus, by also introducing coordination, we will most likely achieve a smaller variance of the change
estimator.

Under our framework of coordination for two (or more) samples, the first time occasion sample S(1) and the second
time occasion sample S(2) have fixed sample sizes n(1) and n(2), respectively. The sample overlap S(1, 2) = S(1) ∩ S(2)
contains n(1, 2) units and n(1, 2) is not fixed. We would like to achieve a high degree of overlap without loosing the spatial
balance compared with independent selection of samples.

3.1 Spatially correlated Poisson sampling

With the aid of the auxiliary variables derived from the first-phase sample at time occasion t, we select a second-phase
sample S(t) of size n(t) from the large first-phase sample. We would like to select a second-phase sample whose
distribution of the auxiliary variables matches the distribution of the first-phase sample, and thus also match the pop-
ulation distribution at time t. Assuming the dependence between sampling units decrease as the distance between
them increase, to minimize the sampling variance, we should select the sampling units so that we maximize the
distance between them (Benedetti et al., 2015, ch. 7). In other words, the sample should be well spread over the
auxiliary variables.

SCPS is a list-sequential sampling method of selecting well-spread samples. The method was first derived as a spa-
tial application of correlated Poisson sampling, proposed by Bondesson and Thorburn (2008). It is a fixed size 𝜋ps
design that achieves a good spread of the selected samples by using the auxiliary variables. The main idea of SCPS is
motivated by a generalization of Tobler's first law of geography. According to that law, geographically nearby locations
tend to have more similar properties than locations farther apart. As the distance measure applied in SCPS's algorithm
is the standardized Euclidean distance in the space of the auxiliary variables, we can call it “law of auxiliary vari-
ables” instead. If the auxiliary variables have high explanatory power for the target variables, then two units with a
small distance in the auxiliary space will tend to have more similar values on the target variables than two units far-
ther apart. Generally, in SCPS, the selection of nearby units is avoided to the furthest extent possible, which creates
well-spread samples. This is guaranteed by creating a strong negative correlation between the inclusion indicators of
nearby units.

3.2 Algorithm of SCPS

It is assumed that we have a list U of the units to be sampled. The sampling outcome is first decided for the first unit in
the list and then for the second, and so forth. After each sampling decision, the inclusion probabilities for the remaining
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units in the list are updated. Denote the prescribed inclusion probability of each unit i at time t as 𝜋i(t), i = 1, 2,… ,N, with∑N
i=1 𝜋i(t) = n(t). Then, we have a starting vector of inclusion probabilities (𝜋1(t),… , 𝜋N(t)). In the end of the algorithm,

we will get a vector of inclusion indicators by gradually updating the vector of inclusion probabilities in maximum of N
steps. The updating can be illustrated as

𝝅(0)(t) ∶ 𝜋1(t) 𝜋2(t) 𝜋3(t) 𝜋4(t) … 𝜋N(t)
𝝅(1)(t) ∶ I1(t) 𝜋

(1)
2 (t) 𝜋(1)

3 (t) 𝜋(1)
4 (t) … 𝜋

(1)
N (t)

𝝅(2)(t) ∶ I1(t) I2(t) 𝜋
(2)
3 (t) 𝜋(2)

4 (t) … 𝜋
(2)
N (t)

𝝅(3)(t) ∶ I1(t) I2(t) I3(t) 𝜋
(3)
4 (t) … 𝜋

(3)
N (t)

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝝅(N)(t) ∶ I1(t) I2(t) I3(t) I4(t) … IN(t)

. (9)

The first unit is included with probability𝜋(0)
1 (t) = 𝜋1(t) at time occasion t. If the first unit was included, we set I1(t) = 1,

otherwise I1(t) = 0. The sampling outcome at each step is decided by comparing the inclusion probability of the step unit
with a random number associated with the unit. Denote the random number associated with the unit i ∈ U at time t as
ri(t), with r1(t), r2(t),… , rN(t) i.i.d. U(0, 1). When the values for I1(t),… , Ij−1(t) have been decided for the first j − 1 units
in the list at time occasion t, the step unit j is included in the sample S(t) at time t, that is, Ij(t) = 1, if rj(t) < 𝜋

(j−1)
j (t), and

Ij(t) = 0 otherwise. The inclusion probabilities for the rest of the units in the list are updated according to

𝜋
(j)
i (t) = 𝜋

(j−1)
i (t) −

(
Ij(t) − 𝜋

(j−1)
j (t)

)
w(j)

i (t), (10)

where i = j + 1,… ,N and i ≥ 2, 𝜋(0)
i (t) = 𝜋i(t), w(j)

i (t) is the weight received by unit i from the step unit j at time t,∑N
i=j+1 w(j)

i (t) = 1. The weight w(j)
i (t) depends on the sampling outcomes of the first j − 1 units. To make sure that 0 ≤

𝜋
(j)
i (t) ≤ 1 holds, the weights need to satisfy the following restrictions

−min
⎛⎜⎜⎝

1 − 𝜋
(j−1)
i (t)

1 − 𝜋
(j−1)
j (t)

,
𝜋
(j−1)
i (t)

𝜋
(j−1)
j (t)

⎞⎟⎟⎠ ≤ w(j)
i (t) ≤ min

⎛⎜⎜⎝
𝜋
(j−1)
i (t)

1 − 𝜋
(j−1)
j (t)

,
1 − 𝜋

(j−1)
i (t)

𝜋
(j−1)
j (t)

⎞⎟⎟⎠ . (11)

In the SCPS, the decision (include or not) is always made for the step unit j, that is, the outcome of Ij(t) is decided
in step j. From Equation (11), we can see that it is possible for the weights to be negative. However, to achieve spatial
balance, the weights need to be positive. When updating the inclusion probability for unit i, the weight it receives depends
on the distance between i and the step unit j. If the inclusion indicator for the step unit is 1, then based on the inclusion
probability in step j − 1, the unit j needs to “steal” more probability from its nearby units. The closer the unit to the step
unit, the more probability mass will be “stolen" by the step unit until the updated inclusion probability of the step unit
becomes 1, that is, the nearest unit to j will receive as much weight as possible from j, then as much as possible weight
will received by the second nearest unit from j, and so forth. By contrast, if the step unit has an inclusion indicator equal
to 0, it will give away all its probability mass to its neighbors in a similar way. The above strategy is called maximal weight
strategy. Thus, with the restriction of the maximum weight of each unit and the sum of the weights equal to 1, we will
have a sample of a fixed size. The algorithm as well as an example of updating the inclusion probabilities of the SCPS can
be found in Grafström (2012).

3.3 Positive coordination under SCPS

Coordination of well spread samples using the SCPS was introduced for finite populations by Grafström and Matei
(2018b). A coordination method based on PRN is used in the algorithm, where the random number associated
with each unit in the algorithm of SCPS remains over time, that is, ri(1) = ri(2) = ri for two time occasions. Posi-
tive coordination is achieved by using the same comparison rule for all time occasions at each step, that is, Ij(t) = 1,
if rj < 𝜋

(j−1)
j (t), and Ij(t) = 0 otherwise. The implementation of positive coordination using SCPS can be found in

the R package “BalancedSampling” (Grafström & Lisic, 2019). The algorithm for two time occasions is illustrated
in Example 1.
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Unit zi(1) zi(2) 𝝅i(t) ri

1 5 5 3/4 0.9821

2 3 1 1/2 0.6782

3 6 7 1/2 0.8060

4 8 2 1/4 0.6342

Note: zi(t) is the value of the auxiliary variable of unit i at time t.
𝜋i(t) represents the prescribed inclusion probability of unit i at
time t, it does not change from Time 1 to Time 2 in this example.
ri is the permanent random number associated with unit i.

T A B L E 1 Auxiliary variables, prescribed inclusion probabilities, as well as
the random numbers associated with the units for two time occasions in
Example 1

F I G U R E 2 The distances between units of the auxiliary
variable for two time occasions in Example 1

Example 1. Suppose we have a population of size N = 4, we want to select two positively coordinated samples of
size n = 2 using SCPS at two time occasions. Table 1 presents the auxiliary value, prescribed inclusion probabil-
ity as well as the random number associated with each unit at two time occasions. Besides the random number,
the prescribed inclusion probability for each unit is also same at each time. According to Table 1, the distances
between different units at both time occasions can be calculated, and they are illustrated by Figure 2. At each
time occasion, the distance between units is calculated by comparing the value of the auxiliary variable for each
unit. The smaller the differences for the values, the closer the units will be. The visiting order is chosen to be
1, 2, 3, 4, the decision is made for each unit according to the same order at both time occasions. The updating
of inclusion probabilities for the units at both time occasions for positive coordination of SCPS is illustrated by
Figure 3. The maximum weight and the updated inclusion probability for each unit at each step is calculated by
using (10) and (11) at both time occasions. According to Figure 3, the overlap for the selected samples is 50% in
the example.

When it comes to estimation under positively coordinated samples selected with SCPS, we may use the unbiased
HT-estimator (1). However, for designs that produce well-spread samples, many of the second-order inclusion probabil-
ities may be zero. Hence, it is not possible to have a design-based unbiased variance estimator. Based on squared local
deviations, Grafström and Schelin (2014) derived an approximate variance estimator for the HT-estimator, under spatially
balanced sampling. It can be expressed as

v̂ar(Ŷ (t)) = 1
2

∑
i∈S(t)

(
yi(t)
𝜋i(t)

−
yi′ (t)
𝜋i′ (t)

)2

, (12)

where i′ is the nearest neighbor to i in S(t) at time t. The distance measure we apply to find i′ is the same as we used when
selecting the sample.

Estimation of the covariance between successive state estimators is difficult. The estimator (6) is only unbiased
for (5) provided the 𝜋ij(1, 2) are strictly positive for all i, j. However, that requirement does not hold in general
for positively coordinated and spatially balanced samples. The reason is that it is likely that inclusion of a unit i
at Time 1 often imply inclusion of unit i at Time 2 and hence also exclusion of neighboring units at Time 2. In
such a case, the 𝜋ij(1, 2) cannot be guaranteed to be strictly positive for all i, j. Finding a suitable estimator for
the covariance (5) under positively coordinated and spatially balanced samples remains a challenging problem for
the future.
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F I G U R E 3 Sampling procedure
for positively coordinated samples
selected using spatially correlated
Poisson sampling in Example 1. At each
time and step, the order for updating the
inclusion probabilities for the remaining
units is decided by the distance between
the step unit and the remaining units.
The distances are measured in auxiliary
variables

4 A FOREST INVENTORY APPLICATION

In forest inventories, we usually sample circular plots or clusters of circular plots. The field inventories are based on the
samples selected. Before each survey, the field staff need to find the center of the plots (clusters), then survey each plot
with a fixed radius (survey each cluster with a fixed configuration). Since we lack a list frame for the individual objects,
the continuous sampling framework can be applied in forest inventories (see e.g. Mandallaz, 2007, ch. 4; Grafström,
Schnell, Saarela, Hubbell, & Condit, 2017). Suppose we have a finite population U(t) of objects (e.g., trees) at time t,
U(t) = {1,… ,N(t)}. The number of objects can be different at different time occasions because there will be births and
deaths. As the finite population cannot be partitioned into circular plots, it is impractical to sample the objects directly.
Thus, we need to construct a continuous framework from the original finite framework, then do the sample selections
based on the continuous framework.

In this section, the new strategy is compared with four reference strategies by a Swedish National Forest Inventory
(NFI) example using simulation. The new sampling strategy as well as the four reference strategies are listed here.

• Strategy 1: The new strategy, which employs well-spread and positively coordinated samples selected by SCPS over
time.

• Strategy 2: The first reference strategy. Use a permanent geographical-spread sample over time.
• Strategy 3: The second reference strategy. A sampling strategy that uses a permanent sample selected by SCPS, which

is well spread at the first time occasion.
• Strategy 4: The third reference strategy, which uses independent well-spread samples selected by SCPS over time

without sample coordination.
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• Strategy 5: The last reference strategy. Use split-panel designs to split the sample into two parts: a panel with a perma-
nent geographical-spread sample and a panel with well-spread samples. This strategy is similar to the current strategy
of the Swedish NFI.

A region in the middle of Sweden is selected as our study region. In this region, each cluster consists of 12 circular
plots of 7-m radius. Plots in a cluster are placed along a square formation with a side-length of 1,500 m and with 500 m
between plots. Denote the response of target at time t as 𝜉i(t), then the population total at time occasion t can be expressed
as Y (t) =

∑
i∈U(t)𝜉i(t). When sampling clusters with a given configuration and a fixed orientation over time, the inclusion

zone for an object i on location xi is the collection of potential sample points, which lead to inclusions of the object.
Mathematically, it can be denoted by Ki ⊂ F, Ki = K(xi) = {x ∈ F ∶ xi ∈ (x)}, and (x) is the cluster centered on x. Any
cluster (x) with its cluster center x within Ki includes the object in one of its plots. Details about inclusion zone and
the cluster configuration of the study region can be found in Grafström, Zhao, et al. (2017). Different formulations for
the density function of the target variable have been discussed by Grafström, Schnell, et al. (2017). For constructing the
continuous framework of the NFI application, the density function at time t can be expressed as

yt(x) =
∑
i∈Ut

Iti(x)𝜉i(t)
𝓁 (Ki)

, (13)

where Iti(x) = 1 if x ∈ Ki at time t, and 0 otherwise, 𝓁 (Ki) is the area of the inclusion zone for object i. By using the
expression (13), the continuous population total is identical to the corresponding finite population total. This is because

Y (t) = ∫F
yt(x) dx = ∫F

∑
i∈U(t)

Iti(x)𝜉i(t)
𝓁 (Ki)

dx =
∑

i∈U(t)

𝜉i(t)
𝓁 (Ki)∫F

Iti(x) dx =
∑

i∈U(t)
𝜉i(t). (14)

Once we have constructed the continuous framework, we can easily employ the general framework in Section 2 for
our example.

First, a number of 100,000 clusters were independently selected as an initial first-phase sample, then a subset of size
10,000 clusters were selected using SCPS as the first-phase sample, since the algorithm is quite computationally intensive.
(This is only needed to do the simulation, we use the initial first-phase sample as the first-phase sample in reality because
we only select the second-phase sample once.) Then, from the first-phase sample, a sample of size 100 was selected as the
second-phase sample for both time occasions, respectively, using different strategies.

The auxiliary variables we used were the geographical coordinates, the mean tree height, the mean basal area, and
the mean elevation. Denote the five auxiliary variables at the plot level as qk(t) =

(
qxk (t), qyk (t), qhk (t), qbk (t), qek (t)

)T ∈ R5.
According to Grafström, Zhao, et al. (2017), we only had auxiliary information for one time occasion. Stand-level growth
models were applied to generate the 5-year's growth in the plot level for the mean tree height and the mean basal area.
The growth models were based on data from permanent samples of the Swedish NFI established during 1983–1987 and
reinventoried three to four times between 1988 and 2010 (Fridman, Holm, Nilsson, Ringvall, & Ståhl, 2014). We also
applied a clear cutting with a rate of 5% for the second time occasion. First, 20% of the plots who had the highest mean
tree height values were selected as the potential plots. Then, 1/4 of the plots among them were randomly selected for clear
cutting. Based on the growth and the clear cutting, we got the mean tree height and the mean basal area at the next time
occasion with a 5-years' time difference. The geographical coordinates as well as the elevation remained the same at time
Occasion 2.

The 5-years' growth models are expressed for the mean tree height and the mean basal area in the plot level in
Equations (15) and (16), respectively.

Δqhk = a0 + a1qhk (1) + a2log
(

qhk (1)
)
+ a3qbk (1) + 𝜀hk , (15)

Δqbk = b0 + b1qbk (1) + b2log
(

qbk (1)
)
+ b3qhk (1) + 𝜀bk , (16)

where 𝜀hk ∼ N(0, 𝜎hk ) and 𝜀bk ∼ N(0, 𝜎bk ). Before employing the auxiliary information to the sampling design, we aggre-
gated the plot level auxiliary information qk(t) to cluster-level zi(t). Whether a plot contributes to the aggregated cluster
value or not depends on if the plot center is inside of the region or not.
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T A B L E 2 Example National Forest Inventory

St B(1) B(2) Overlap V
(
̂Zh(1)

)
V
(
̂Zh(2)

)
V
(
�̂�Zh(1,2)

)
V
(
̂Zb(1)

)
V
(
̂Zb(2)

)
V
(
�̂�Zb(1,2)

)

1 0.129 0.127 62 0.809 0.744 0.978 0.017 0.017 0.022

2 0.239 0.238 100 10.311 10.165 2.130 0.233 0.242 0.048

3 0.129 0.171 100 0.809 2.475 1.969 0.017 0.058 0.043

4 0.129 0.128 1 0.809 0.776 1.608 0.017 0.018 0.035

P28 0.197 0.167 20 3.157 1.115 4.169 0.071 0.026 0.094

P55 0.224 0.209 50 4.694 2.122 5.986 0.106 0.050 0.138

P73 0.236 0.228 70 6.486 4.111 7.370 0.148 0.098 0.171

P82 0.241 0.236 80 7.869 6.125 7.411 0.177 0.144 0.170

Note: The first-phase sample size is N = 10, 000, the second-phase sample size is n(1) = n(2) = 100, the repetition time is 10,000. For tree height, the
sample mean for the two occasions is 100.27 and 101.50 dm, respectively. The percentage of change for the auxiliary is 95.17% and correlation of the two
time occasions for the auxiliary is .9186. For basal area, the sample mean is 13.76 and 14.64 m2/ha, respectively, for the two time occasions. The percentage
of change is 95.17% and correlation coefficient of the two time occasions for the auxiliary variable is .9205. B(i) is the mean of spatial balance for the

sample selected at time occasion i. Overlap is the mean of the percentage of overlap for the sample units selected at two time occasions. V
(
̂Zi(t)

)
represents the empirical variance of the estimator for the mean of the auxiliary variable. V

(
Δ̂Zi(1,2)

)
stands for the variance of the estimator of change. Pij

is the split panel design, the value of i corresponding to the percentage of the permanent sample and value of j corresponding to the percentage of
temporary sample. For example, P28 means the permanent panel is 20% and the temporary panel is 80%.

We applied the growth models since we would like to generate more realistic auxiliary variables at the second time
occasion. Separate research can be done within this topic. Since we do not have any target variable in the simulation,
results are only presented for auxiliary variables. As a multipurpose inventory, there are a wide range of target variables in
the Swedish NFI, some examples can be the proportions of different land types, volume and number of trees per hectare,
mean age, damages, amount of different berries, and so forth. Among them, most of the variables are related to the selected
auxiliary variables.

The simulation results of the example is shown in Table 2 for the new strategy and the four reference strategies.
According to Dobbie et al. (2008), the optimal panel design depends on the balance between needing to detect trend and
report on the states, four different partition schemes are applied for Strategy 5 to test if there is an optimal way to split
the two panels. The mean of spatial balance for samples at two time occasions, the percentage of overlap, the empirical
variances of the estimator of the two states as well as change are listed for mean tree height and mean basal area.

We can clearly see that both state and change estimators obtained by employing the new strategy (Strategy 1) are
better than what are possible by using reference strategies. There is no any optimal combination of the two panels for
the current Swedish NFI strategy. The higher the proportions of the permanent panels, the worse the estimators will be.
The main results can be summarized from two aspects: effect of using spatially balanced sampling designs and effect of
the amount of overlap.

Strategies 1 and 4 that apply spatially balanced sampling designs produce the best estimators for states. Theoretically,
the values of the estimators tend to be the same for the two strategies when the number of repetitions in the simulation
is large enough. Strategy 2, which only spreads the sample in the geographical space, leads to the worst estimators for
states. This confirms the importance of spreading the samples also in auxiliary variables other than the geographical
space. Comparing Strategies 1 and 4 against Strategy 2, reduction of variances of the state estimators for both auxiliary
variables is more than 92%, and the decrease in width of confidence intervals for both auxiliary variables is more than
70%. For Strategy 3, the quality of the state estimators reduced at the second time occasion, since the permanent sample is
not as well spread anymore at that time point. For the strategy that applies split panel designs, the value of the variances
for state estimators reduced as we increased the proportions of the well-spread panel.

Comparing Strategy 1 against Strategy 4, the reduction of variances for the estimators of change is more than 37%,
and the decrease in width of confidence intervals is more than 20% for both auxiliary variables. This is because we get a
much higher overlap (62%) between the samples selected at both time occasions using Strategy 1, which leads to higher
covariances between the two state estimators compared with Strategy 4. For mean tree height, the estimate for covariance
is 0.288 and −0.012 for Strategy 1 and Strategy 4, respectively. For mean basal area, the values are 0.006 and 8.21 × 10−5,
respectively. Based on Equation (4), when fixing the state variances, the strategy that has the larger covariance will
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produce a smaller variance for the estimator of change. At first glance, results produced by Strategy 5 do not seem to be
reasonable in terms of the estimators of change. It appears to be a contradictory statement that the variances of estima-
tors of change increase as the percentages of overlap increase. However, by careful observations, we can find that the
reason for the increased variances of change estimators is not because we do not have higher values of the covariances.
For tree height, the covariance between two state estimators increased from 1.115 to 3.291 when we increased the over-
lap from 20% to 80%. For basal area, the covariance increased from 0.001 to 0.075. The reason of the increased variances
of the change estimators are the increased values of variances for state estimators. According to Equation (4), when the
increase in covariance cannot compensate the increase in the two variances of state estimators, the variance of estimator
of change will still increase, even if we have a very high percentage of overlap.

5 CONCLUSION AND DISCUSSION

We proposed a new sampling strategy with its main focus on monitoring totals of environmental variables. In practice, it
is not restricted to monitor only the totals, it can also be applied for parameters such as quantiles (Grafström & Schelin,
2014). Positive coordination is studied by using SCPS within a continuous population framework. Based on an appli-
cation, with settings similar to the Swedish NFI, we illustrated that the proposed new strategy performed better than
all reference strategies. When matching the sample distribution of the auxiliary variables to the population distribution
and at the same time use positively coordinated samples, we improve the precision for both the state and the change
estimators.

If we use a sample, which is well spread only at the first time occasion as a permanent sample, then there is a big risk
that the sample evolves differently from the population. The sample may become less balanced over time and, as a result,
the state estimators also become less efficient over time. Although the sample overlap is 100% for a permanent sample,
the estimator of change will also gradually become worse over time as the sample can differ more and more from the
population in terms of the distributions of the auxiliary variables (and hence the target variables).

For the current Swedish NFI, two different types of clusters are used: permanent clusters and temporary clusters. In
fact, the Swedish NFI design that combines temporary and permanent clusters has almost become an international stan-
dard toward which NFIs in other countries' aim (Fridman et al., 2014). The permanent clusters primarily aim to increase
the accuracy of change estimation, and they are resurveyed regularly, whereas temporary ones are mainly intended to
capture the current state of the forest and are only surveyed once (Tomppo, Gschwantner, Lawrence, & McRoberts, 2010,
ch. 35). In the NFI example, we use positively coordinated and spatially balanced samples to target change and the
current states of two time occasions simultaneously. Based on the simulation, we can see that the new strategy success-
fully improves the precision of the estimator for both state and change for the auxiliary variables. Thus, it has potential
to also improve the precision of the estimators for the target variables that are related to the auxiliary variables. For
those target variables that are not related to the selected auxiliary variables, by spreading the samples in the auxiliary
variables, we get similar results as independent sample selections. Therefore, there is a potential to change the cur-
rent design of the Swedish NFI. Instead of using the complex and less efficient combination of the permanent and the
temporary samples, employing positively coordinated and well-spread samples can achieve both goals within a single
sampling strategy.

A planner has plenty of options in choosing a sampling strategy. The main properties considered often include pre-
cision, unbiasedness, cost-efficiency, and simplicity to apply. As Scott (1984) mentioned, when estimating both state and
change, a combination of remeasured (matched) plots, plots not remeasured (unmatched), and replacement (new) plots
is generally the most cost-effective alternative. With the suggested strategy, at each point in time, the sample is a sam-
ple of the SCPS design with the prescribed inclusion probabilities. Thus, we make no compromise on the level of spatial
balance of the different samples. Yet, we achieve a quite high degree of positive coordination. As the sample size can be
varied over time, the strategy is also flexible for budget changes over time. With auxiliary variables available, they can be
seen as proxies for the target variables. The sampling strategy that is superior for estimating the state and change for the
auxiliary variables is likely to be superior for estimating the state and change of target variables related to those auxiliary
variables.

Many spatially balance sampling designs can improve the state estimators compared with traditional designs
(Benedetti et al., 2015, ch. 7). We focus only on SCPS among others, since it is efficient and easy to apply when it
comes to positive sample coordination. The main reason of not including the GRTS or BAS designs as reference strate-
gies in the application is because we have additional auxiliary variables beside the geographical coordinates, which are
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not dimensions of the population. If we add an auxiliary variable such as elevation to the geographical coordinates,
then we get a surface with zero three-dimensional volume. By enclosing the surface in a three-dimensional rectan-
gular box and generate random points in the box, there is a zero probability to get points that lie on the surface.
Thus, for example, BAS fails to use the additional information and can only spread the sample in the geographical
coordinates.

The sample coordination method presented here is a probabilistic way for SCPS to define panels. This means by using
this method we cannot fix the panels beforehand as we could do by using the traditional panel designs. The overlap
between the successive samples at two time occasions depends on the change in the auxiliary variables between the two
time occasions. Further studies on how to select well-spread samples with a prescribed percentage of overlap is of a great
interest to us.
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Abstract

Spatially balanced samples are samples that are well-spread in some available auxiliary
variables. Selecting such samples has been proven to be very efficient in estimation of
the current state (total or mean) of target variables related to the auxiliary variables.
As time goes, or when new auxiliary variables become available, such samples need to
be updated to stay well-spread and produce good estimates of the current state. In
such an update, we want to keep some overlap between successive samples to improve
the estimation of change. With this approach, we end up with partially overlapping
and spatially balanced samples. To estimate the variance of an estimator of change, we
need to be able to estimate the covariance between successive estimators of the current
state. We introduce an approximate estimator of such covariance based on local means.
By examples, we show that it can be applied in the estimation of the variance of an
estimator of change based on partially overlapping and spatially balanced samples.
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1 Introduction

In repeated surveys, a common focus is to monitor the change between population totals
over time. The estimation of the variance of an estimator of change is essential to judge
whether the observed change is statistically significant. It is well known that, when estimat-
ing the variance of an estimator of change, we need to estimate the variance of the two state
estimators as well as the covariance between them. To reduce the variance of the estimator
of change, we can either make the variance of the two state estimators smaller or attempt to
create a high positive covariance between the two state estimators or try both of them. The
question of whether we should use independent samples, a permanent sample or partially
overlapping samples over time arises.

For independent samples, we do not need to consider the covariance. Then, the variance of
change depends only on the variance of the estimators at each time occasion. This simplifies
the estimation problem. However, it will not be the best strategy to use independent samples
when estimating changes over time. This is because the variance of the change estimator
becomes about twice the variance of the estimator of the state when using independent
samples. When the time between surveys is short and the values of the target variables have
not changed much, a permanent sample might be employed to reduce the variance of an
estimator of change. However, as the population changes over time, the permanent sample
will not be as representative as it used to be at the following time occasion. If the sample
changes in a different way than the population, which is out of our control, then there is a risk
of a much larger variance of the state estimator at the following time occasion. Thus, even if
the covariance between the two state estimators becomes large by having fully overlapping
samples, it is not guaranteed that the variance of change will be reduced. There is a need
for updating the sample at the next time occasion to account for changes while retaining as
many units as possible from the old sample.

For environmental surveys, the units to be observed often have some spatial features
which are represented by a set of auxiliary variables. In general, nearby units in the space
spanned by the auxiliary variables tend to have more similar values than units that are
farther apart. Especially, this is true if the auxiliary variables have some explanatory power
for the target variables in the survey. It is well known that we should incorporate the
geographical locations of the populations when selecting samples, see, e.g., Stevens & Olsen
2003; Grafström 2012. Spatially balanced samples are more efficient than, for instance,
samples selected by simple random sampling, e.g. Stevens & Olsen (2004). Recently, Zhao &
Grafström (2020) illustrated further that it is efficient to use spatially balanced and partially
overlapping samples for monitoring the change of environmental variables. By employing
spatially balanced samples, we can reduce the variance of the state estimators. When using
also positively coordinated samples, we can reduce the variance of the change estimator. In
Zhao & Grafström (2020), the advantages of this strategy were verified by comparison with
several other strategies. However, the problem of estimating the variance of the estimator
of change under the proposed strategy was left unsolved.

A large number of variance estimators (approximations) have been proposed under dif-
ferent sampling designs (e.g., Horvitz & Thompson 1952; Yates & Grundy 1953; Hartley &
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Rao 1962; Hájek 1964; Berger 2004). For repeated surveys, researchers have also paid a lot
of attention to the estimation of covariance. Tam (1985) was one of the earliest studies that
considered covariance estimations from overlapping samples. Qualité (2009, ch.5) derived
covariance estimators based on two overlapping samples by considering sampling designs
that are essentially applicable to obtain rotating panels, i.e., panels where only a part of the
sample at a previous time occasion is maintained, and the rest of the units in the sample are
replaced by new units at a next time occasion.

As a result of better spread of the samples when employing spatially balanced sampling
designs, it may not be optimal to apply conservative variance or covariance estimators, like
the ones for simple random sampling. Grafström & Schelin (2014) introduced a local mean
variance estimator under spatially balanced sampling designs. Instead of using the global
mean, a local mean is adopted in the expression. In the variance estimator, only the nearest
neighbours of a sample unit and the unit itself will be included in the computation of the
local mean. The authors also considered the case that there will be equal distances between
units. Therefore, the local neighbourhood size of each sample unit will not be fixed in the
variance estimator. We modify this variance estimator by introducing a fixed size of the local
neighbourhoods of all sample units. Starting from the settings in Qualité (2009, ch.5), we also
derive a local mean covariance estimator and obtain a variance estimator for the estimator
of change. By simulation, we illustrate that the proposed local mean estimators are stable
and less biased compared to the estimators that do not employ local means. Therefore, the
local mean variance and covariance estimators can be applied when estimating the variance
of the estimator of change with partially overlapping and spatially balanced samples.

The rest of the paper is structured as follows. We begin with notations for estimating
change with general designs in Section 2. In Section 3, we introduce an efficient sampling
strategy for monitoring the change of environmental variables. In Section 4, starting from
a local mean variance estimator, we derive a local mean covariance estimator for partially
overlapping and spatially balanced samples. In Section 5 , two examples are considered to
evaluate the estimators. Finally, Section 6 is dedicated to discussion and comments.

2 Estimation of change with general designs

Suppose we have a shared list frame U = {1, ..., i, ..., N} over time. From U , a sample St

can be selected at time t with a sample size nt. Denote the target variable for unit i at time
t as yit. The total can be expressed as Yt =

∑
i∈U yit. Let πit = Pr(i ∈ St) be the prescribed

inclusion probability of unit i at time t. The Horvitz-Thompson (HT) estimator of Yt can
be expressed as

Ŷt =
∑
i∈St

yit
πit
. (1)

Our goal is to estimate the change of the population total between two occasions ∆ =
Y2 − Y1 by using ∆̂ = Ŷ2 − Ŷ1. To know the precision of the estimation, we also need to
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estimate the variance of the estimator of change. This variance is given by

V (∆̂) = V (Ŷ1) + V (Ŷ2)− 2C(Ŷ1, Ŷ2). (2)

This means we need to estimate the variance of the separate state estimators and the covari-
ance between the two estimators. The variance of the state estimator (1) can be expressed
as

V (Ŷt) =
∑
i∈U

∑
j∈U

(πitj − πitπjt)
yit
πit

yjt
πjt

, (3)

where πijt = Pr (i ∈ St, j ∈ St) is the second-order inclusion probability for a pair of points

(i, j) at time t. An estimator of V (Ŷt) is

V̂ (Ŷt) =
∑
i∈St

∑
j∈St

(πijt − πitπjt)
πijt

yit
πit

yjt
πjt

. (4)

Estimator (4) is unbiased for (3) if all second-order inclusion probabilities πijt are strictly
positive.

The covariance between two HT-estimators of two population totals can be expressed as

C(Ŷ1, Ŷ2) =
∑
i∈U

∑
j∈U

(
π12
ij − πi1πj2

) yi1
πi1

yj2
πj2

, (5)

where π12
ij = Pr (i ∈ S1, j ∈ S2). It is also possible to construct the HT-estimator of (5)

based on the two samples, i.e.

Ĉ(Ŷ1, Ŷ2) =
∑
i∈S1

∑
j∈S2

(
π12
ij − πi1πj2

)
π12
ij

yi1
πi1

yj2
πj2

. (6)

Similar to the variance estimator (4), the estimator (6) is unbiased for (5) provided the π12
ij

are strictly positive for all i, j. By employing (4) and (6) we can easily obtain the estimator
of the variance for the estimator of change, provided that we have known positive second
order probabilities.

3 An efficient sampling strategy to monitor the change

of environmental variables

In environmental surveys, the spatial pattern of units is important, because the units them-
selves are defined using spatial criteria. To achieve good estimates of population charac-
teristics, the spatial pattern of the sample should be similar to the spatial pattern of the
population. Often, we do not know the spatial pattern of the target variable before the sam-
ple is selected. Instead, we have full access to some auxiliary variables that are related to
the target variables. Stevens & Olsen (2004) introduced the generalized random tessellation
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stratified (GRTS) design and coined the phrase “spatially balanced sampling”. They also
proposed a statistic that measures the spatial balance of a sample using Voronoi polygons.
The local pivotal method (LPM) and spatially correlated Poisson sampling (SCPS) proposed
by Grafström et al. (2012) and Grafström (2012) are two spatially balanced sampling de-
signs that employ auxiliary variables (often including geographical coordinates plus several
other attribute variables) to spread the samples based on distances. Grafström & Lundström
(2013) illustrated that when the target variables are smooth functions of auxiliary variables,
it is sufficient to spread the samples in the auxiliary variables. Because we get well spread
and balanced samples by spreading in such auxiliary variables, we thus improve the precision
of the estimators.

In spatially balanced sampling designs, auxiliary variables which are related to the target
variables are often applied to spread the samples. There is a general assumption when using
these designs, that nearby units are more similar than units that are farther apart. Intu-
itively, more information could then be obtained if the random sample avoids the selection
of nearby units. The distance is measured over the auxiliary variables. In other words, the
samples should be well spread over the auxiliary variables. It has been confirmed that, by
using these designs, we gain in efficiency of design–based estimators of the totals of target
variables (see e.g., Benedetti et al., 2017). Regarding the monitoring of change, we need to
be cautious about the determination of whether a sampling strategy is an efficient strategy
or not. As we can see from (2), the variance of the estimator of change equals the sum of
the separate variances of the state estimators minus two times the covariance between them.
Therefore, to get a smaller variance of the estimator of change we can either reduce the
variance of each state estimator or produce a high covariance between them, given the same
variance of each estimator, or aim for both of them.

Zhao & Grafström (2020) proposed an efficient sampling strategy for monitoring the
change of environmental variables. In this strategy, the concept of spatially balanced samples
and positive sample coordination are combined. The spatially balanced samples are selected
by the SCPS. When applying the SCPS, a set of auxiliary variables that are related to the
target variables should be used to spread the sample. We choose the same set of auxiliary
variables (with different values) at different time occasions. The positive sample coordination
is achieved by assigning the same random number to each sample unit in the algorithm of
SCPS. In this way, we will get partially overlapping and spatially balanced samples. Figure 1
illustrates two such samples selected by SCPS.

By using this strategy, we can reduce the variance of the state estimators and often achieve
a large covariance between the state estimators at the same time. In Zhao & Grafström
(2020), the empirical impact of using positively coordinated and spatially balanced samples
was studied. In the next section, we will focus on the estimation problem and will provide a
reasonable variance estimator for the estimator of the change under the sampling strategy.
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Figure 1: Illustration of two samples selected by the strategy

4 Estimation of change when samples are overlapping

and well spread

Under a spatially balanced sampling design, it is often difficult to obtain πijt and π12
ij . More-

over, many second-order inclusion probabilities may be zero. It will likely not be possible to
use design-based unbiased variance estimators such as (4) and (6) under spatially balanced
sampling designs. Even if it is possible, it will generally not be recommended as such vari-
ance estimators can become highly unstable when some second-order inclusion probabilities
are very small.

4.1 Variance estimators for spatially balanced samples

Matérn (1947) introduced a variance estimator for systematic sampling from a regular grid
of sample locations. In Matérn’s variance estimator, the sample locations are split into
several nonoverlapping groups of neighbours. A local variance is first constructed for each
group, then an average over groups is calculated as the variance estimator. Motivated by this
estimator, Grafström & Schelin (2014) also proposed a local mean variance estimator which
was shown to perform well under spatially balanced sampling. In their variance estimator,
the local neighbourhood for each sample unit i depends only on i and its nearest neighbours.
The size of the local neighbourhood depends on the number of nearest neighbours of each
unit in the sample. Their variance estimator can be applied in situations where units have
many nearest neighbours. For well-spread environmental samples, it is rare for a sample
unit to have equidistant neighbours. In environmental sampling, we often spread the samples
geographically. Moreover, the geographical coordinates are different for each unit. Therefore,
we usually get unique distances between sample units. Hence, there is no need to consider
the case of equal distances in the local neighbourhood in the variance estimator for such
samples. In principle, by only including the unit i and its nearest neighbour in the local
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neighbourhood, we often have two units in the local neighbourhood when estimating the
variance with well-spread samples.

In Stevens & Olsen (2003), the authors recommended using four sample units in the local
neighbourhood. This is because they found that their local mean variance estimator became
unstable when including fewer sample units in the local neighbourhood. We consider their
suggestion and modify the local mean variance estimator in Grafström & Schelin (2014) by

using a neighbourhood size proportional to the sample size. For V
(
Ŷt

)
, the local mean

variance estimator can be expressed as

V̂SB(Ŷt) =
nlt

nlt − 1

∑
i∈St

(
yit
πit
− 1

nlt

∑
j∈Sit

yjt
πjt

)2

, (7)

where Sit ⊆ St is the local neighbourhood of a sample unit i at time t. The neighbourhood
Sit contains the unit i as well as its nearby units in the sample, the size nlt is equal to plnt

(rounded to the nearest integer). The proportion pl can be chosen such that nlt can be
any integer between two and nt. The same proportion pl is suggested in estimation of the
variance of Ŷt for all t. Then, for a fixed pl, the number of neighbours included in the local
neighbourhood depends only on the sample size.

Suppose all sample units are independently selected with the same set of drawing prob-
abilities pi > 0, i = 1, 2, ..., N , with

∑N
i=1 pi = 1. For a sample St with sample size nt,

the expected number of inclusions of unit i is then πit = ntpi. When enlarging the local
neighbourhood to the full sample, i.e., if Sit = St, (7) becomes

V̂ (Ŷt) =
1

nt(nt − 1)

∑
i∈St

(
yit
pi
− 1

nt

∑
i∈St

yit
pi

)2

. (8)

The estimator (8) corresponds to the unbiased variance estimator under the probability
proportional to size (pps) sampling design. Furthermore, if we apply a constant inclusion
probability πit = nt/N , we get

V̂ (Ŷt) =
∑
i∈St

N2

nt(nt − 1)

(
yit −

1

nt

∑
i∈St

yit

)2

=
N2

nt

S2
t , (9)

where S2
t = (nt−1)−1

∑
i∈St

(
yit − n−1t

∑
i∈St

yit
)2

. Equation (9) is equivalent to the unbiased
variance estimator under simple random sampling with replacement (SIR) design.

4.2 Covariance estimator for partially overlapping and spatially
balanced samples

As illustrated in Section 4.1, the variance estimator (7) is a local mean version of the variance
estimator for sampling with independent observations. In the case of overlapping samples, we
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can introduce also a local mean version of an estimator of the covariance. As a starting point,
we introduce the setting with independent observations. Let pi > 0, i = 1, 2, ..., N , with∑N

i=1 pi = 1 be the drawing probabilities for units in U . First n1 independent observations
are drawn from U to S1, and a subsample S12 of S1 is retained as a part of S2, with n12 ≥ 2
observations. Next, an additional number of n2 − n12 independent observations are drawn
from U to S2 according to the drawing probabilities pi, i = 1, 2, .., N . Now, the two samples
S1 and S2 share n12 observations in the sample S12. In this setting, we estimate the total
Yt =

∑
i∈U yit with Ŷt =

∑
i∈St

yitn
−1
t p−1i for t = 1, 2. Moreover, the covariance between Ŷ1

and Ŷ2 is

C
(
Ŷ1, Ŷ2

)
= n12

∑
i∈U

pi

(
yi1
n1pi

− Y1
n1

)(
yi2
n2pi

− Y2
n2

)
. (10)

The covariance (10) can be estimated using S12 by the simple expansion (see e.g. Qualité,
2009, ch.5)

Ĉ
(
Ŷ1, Ŷ2

)
=

n12

n12 − 1

∑
i∈S12

(
yi1
n1pi

− Ŷ ′1
n1

)(
yi2
n2pi

− Ŷ ′2
n2

)
, (11)

where Ŷ ′t =
∑

i∈S12
yitn

−1
12 p

−1
i is the estimator of Yt based on the sample S12. Even though

Ŷ ′t is not the best estimator of Yt as it only uses information of the shared observations in
S12, it is recommended. Using information outside of S12 can lead to undesired effects and
is for that reason considered bad practice, see Qualité (2009, ch.5).

In the case of two overlapping and spatially balanced samples, we replace the expected
number of inclusions ntpi with the inclusion probabilities πit and introduce local means. The
estimator (11) then becomes

ĈSB

(
Ŷ1, Ŷ2

)
=

nl12

nl12 − 1

∑
i∈S12

(
yi1
πi1
− yi1

)(
yi2
πi2
− yi2

)
, (12)

where yi1 = n−1l12

∑
j∈Si1

yj1π
−1
j1 , yi2 = n−1l12

∑
j∈Si2

yj2π
−1
j2 and Sit is the local neighbourhood

for unit i in S12 at time t. The neighbourhood size nl12 is chosen as pln12 (rounded to
the nearest integer) and the same proportion pl as in the local mean variance estimator is
recommended. Since n12 ≤ nt, it is reasonable to decide the proportion by the size of the
overlap when estimating the variance of the estimator of change, i.e, pl = nl12n

−1
12 , where nl12

can be any integer between two and n12. Then we make sure that nlt = round(plnt) ≥ nl12.
If the size nl12 = n12, we get back to the estimator (11). The estimator (12) of covariance

under spatially balanced sampling is consistent with the estimator V̂SB

(
Ŷt

)
of variance, i.e.

ĈSB

(
Ŷt, Ŷt

)
= V̂SB

(
Ŷt

)
. This is important for estimating the variance of an estimator of

change. Combining (7) and (12), the expression of the variance estimator for the estimator
of change with partially overlapping and spatially balanced samples follows.

Different from the sampling plans in Qualité (2009, ch.5), the size of overlap is random
when using the strategy in Zhao & Grafström (2020). For the current algorithm in the
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strategy, it is not possible to fix the size of the overlap and select a well-spread sample at a
second time occasion. That is to say, we do not know how many sample units from S1 that
will also be selected into S2 before we get the full sample on the second time occasion. The
percentage of overlap between two samples depends mainly on the change over time of the
auxiliary variables that we use to spread the samples. Similar to the variance estimator (7),
the covariance estimator (12) is proposed as a general estimator for spatially balanced sam-
ples. In the next section, we study the performance of the proposed variance and covariance
estimators, specifically under the strategy in Zhao & Grafström (2020).

5 Evaluation of the estimators

To evaluate the proposed estimators for positively coordinated and spatially balanced sam-
ples, two examples are considered. In the examples, we take different sizes of neighbourhoods
into account to check how they will affect the estimators. Estimators which apply the full
samples/overlap in the neighbourhoods are incorporated in the simulations as well. For each
example, the empirical variance and covariance, the mean of the variance and covariance
estimators are presented. We calculate the mean coverage rates for the 95% confidence in-
tervals when using the variance estimators. The relative bias(RB) as well as the empirical
relative root mean square error (RRMSE) for the estimators are also compared for different
estimators. It is worth noting that, the samples selected at the two time occasions are well
spread and positively coordinated in both examples.

Example 1. We use a surface to define the target variable at each time occasion. In the
simulations, the samples are spread in geographical coordinates. We set the population
size N = 2500, sample size at the first time occasion is n1 = 100, a smaller sample size
with n2 = 50 is used at time 2. The number of repetitions is 10000, and equal inclusion
probabilities πit = nt/N are applied at each time. The surfaces are displayed in Figure
2. The simulation results are listed in Table 1 for estimators that use neighbourhoods of
different sizes.

Example 2. In this example, the same data set as in Zhao & Grafström (2020) is applied to
evaluate the estimators. It is an application of the Swedish national forest inventory. In Zhao
& Grafström (2020), five different auxiliary variables (geographical coordinates, elevation,
tree height, and basal area) were employed to spread the samples and the performance of the
strategy was only evaluated for the auxiliary variables. Because tree height and basal area
are strongly correlated, we here choose the basal area as our target variable and spread the
samples using the rest of the variables to learn the performance of the proposed estimators
for a possible target variable. In the simulation, we have a population size of N = 10000,
sample size n1 = n2 = 100, equal inclusion probabilities πt = nt/N = 0.01 and the number
of repetitions is 10000. The results are illustrated for the basal area in Table 2.

Simulation results of both examples are also illustrated in Figure 3 for all estimators.
From the figure and the tables, we can see that all estimators are generally conservative.
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Table 1: Simulation results of Example 1. The correlation coefficient between the target
variables at the two time occasions is 0.9550. The total of the target is 72861.65 at time
1 and 104398.8 at time 2. The mean of percentage of overlap 2E (n12) / (n1 + n2) between
samples at the two time occasions is 43.35%.

y

nl12 = 2 nl12 = 4 nl12 = 6 nl12 = n12

E
m

p
ir

ic
a
l V

(
Ŷ1

)
5603276

V
(
Ŷ2

)
24663288

C
(
Ŷ1, Ŷ 2

)
2348328

V (∆̂) 25563549

E
st

im
at

ed V̂ SB

(
Ŷ1

)
18307756 (0.999) 29398474 (1) 34905003 (1) 51394294 (1)

V̂ SB

(
Ŷ2

)
59566510 (0.995) 80948404 (0.999) 95541122 (0.999) 150657134 (1)

ĈSB

(
Ŷ1, Ŷ2

)
19688631 22676798 25939517 38593385

V̂ SB(∆̂) 38497004 (0.960) 64993281 (0.996) 78567092 (0.999) 124864658 (1)

R
el

at
iv

e
b
ia

s RB
V̂ SB(Ŷ1)

2.267 4.247 5.229 8.172

RB
V̂ SB(Ŷ2)

1.415 2.282 2.874 5.109

RB
ĈSB(Ŷ1,Ŷ2)

7.384 8.657 10.046 15.434

RB
V̂ SB(∆̂)

0.506 1.542 2.073 3.885

R
R

M
S
E RRMSE

V̂ SB(Ŷ1)
2.308 4.290 5.270 8.213

RRMSE
V̂ SB(Ŷ2)

1.501 2.350 2.935 5.171

RRMSE
ĈSB(Ŷ1,Ŷ2)

7.964 9.140 10.535 16.042

RRMSE
V̂ SB(∆̂)

0.782 1.652 2.162 3.963
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Table 2: Simulation results of Example 2. For basal area, the total is 137487.4 m2/ha and
146575.3 m2/ha, respectively for the two time occasions. Correlation coefficient between
basal area at time 1 and 2 is 0.9225 and for tree height it is 0.9201. The correlation coefficient
between basal area and tree height is 0.9494 and 0.9568 respectively at the two time occasions.
The mean of the overlap is 64.05%.

yb

nl12 = 2 nl12 = 4 nl12 = 6 nl12 = n12

E
m

p
ir

ic
a
l V

(
Ŷ1

)
4450984

V
(
Ŷ2

)
4117761

C
(
Ŷ1, Ŷ 2

)
1973211

V (∆̂) 4622964

E
st

im
at

ed V̂ SB

(
Ŷ1

)
5371933 (0.965) 6443658 (0.980) 8161177 (0.991) 34256433 (1)

V̂ SB

(
Ŷ2

)
5131544 (0.970) 6209523 (0.983) 7935950 (0.992) 34776755 (1)

ĈSB

(
Ŷ1, Ŷ2

)
2152611 3225581 4338479 23229975

V̂ SB(∆̂) 6198256 (0.975) 6202019 (0.974) 7420169 (0.986) 22573238 (1)

R
el

at
iv

e
b
ia

s RB
V̂ SB(Ŷ1)

0.207 0.448 0.834 6.696

RB
V̂ SB(Ŷ2)

0.246 0.508 0.927 7.446

RB
ĈSB(Ŷ1,Ŷ2)

0.091 0.635 1.199 10.773

RB
V̂ SB(∆̂)

0.341 0.342 0.605 3.883

R
R

M
S
E RRMSE

V̂ SB(Ŷ1)
0.278 0.486 0.859 6.716

RRMSE
V̂ SB(Ŷ2)

0.312 0.544 0.952 7.465

RRMSE
ĈSB(Ŷ1,Ŷ2)

0.334 0.718 1.255 10.858

RRMSE
V̂ SB(∆̂)

0.437 0.432 0.676 3.985
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Figure 2: Target surfaces in Example 1

Comparing the estimators which apply the full samples/overlap in the neighbourhood, we
can reduce the bias by using local neighbourhood estimators. The smaller the neighbourhood
size, the less biased the estimator tends to be. The coverage rate of the confidence intervals
also increases as the neighbourhood size grows. Note that, in each iteration we can only fix
the neighbourhood size of the local mean covariance estimator. The size of the neighbourhood
of the local mean variance estimator varies according to the size of the overlap. If the aim is
to estimate the variance of the estimator of the total at each time occasion, we can fix the
neighbourhood size directly.

6 Discussion

Thus far, we have evaluated the proposed estimators by using well-spread samples and equal
inclusion probabilities (representative samples). The use of equal probabilities is, however,
the most common case in multipurpose environmental surveys. As the strength of the
relation between different target variables and the auxiliary variables that we use to spread
the samples are not the same for different target variables, it is safer to spread the samples
with equal inclusion probabilities.

More examples have been investigated to verify the performance of the estimators. The
conclusions we get from other examples are in accordance with the two examples that are
presented in the manuscript. We find that if we apply the same number of units to both
the variance and covariance estimators, the overestimation by the local mean covariance
estimator will become bigger than the overestimation by the local variance estimators. In
such a case, it may produce a negative bias for the variance of the estimator of change. This
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Figure 3: Comparing the estimators for different neighbourhood sizes. The bold black
vertical lines represent the empirical variances/covariances.
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is because the local covariance estimator is based only on the overlap, and the neighbours
tend to have larger distances, thereby causing bigger differences in the overlap than in
the full sample. Therefore, the more the neighbours in the neighbourhood, the bigger the
difference between the value of unit i and its local mean will be, thus the larger positive bias
it will produce. By the method we proposed, fewer neighbours are used in the local mean
covariance estimator than the separate variance estimators. Therefore, we reduce the impact
of the distance in the estimation of the variance of the estimator of change.

Besides the distance, the performances of the local mean covariance estimators are also
affected by the rate of overlap. The bias tends to become bigger for a small percentage of the
overlap. We need to notice that, for repeated surveys that are carried out with more tight
time intervals, permanent samples are likely to be better. Especially when we only want
to reduce the variance of the estimator of change in the short run. In that case, the best
strategy is probably to use a permanently well-spread sample (the sample S1 is well-spread
in the first survey, thereafter the same sample will be applied in the second survey). At
short intervals, if S2 is only partially overlapping with S1, it will lead to a smaller covariance
compared to a permanent sample. Although we reduce the variance of the state at the second
time occasion by updating the sample, the reduction of the variance may not compensate
for the reduction of the covariance. In the long run, it will be preferable to apply the new
strategy, because the quality of S1 is likely to become worse over time. The reduction of the
variance will then compensate for the reduction of the covariance compared to a permanent
sample. Thus, the planner needs to be aware of these trade-offs when dealing with complex
surveys.
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Combining Environmental Area Frame
Surveys of a Finite Population

Wilmer Prentius, Xin Zhao, and Anton Grafström

Newways to combine data frommultiple environmental area frame surveys of a finite
population are being introduced. Environmental surveys often sample finite populations
through area frames. However, to combine multiple surveys without risking bias, design
components (inclusion probabilities, etc.) are needed at unit level of the finite population.
We show how to derive the design components and exemplify this for three commonly
used area frame sampling designs. We show how to produce an unbiased estimator using
data from multiple surveys, and how to reduce the risk of introducing significant bias
in linear combinations of estimators from multiple surveys. If separate estimators and
variance estimators are used in linear combinations, there’s a risk of introducing negative
bias. By using pooled variance estimators, the bias of a linear combination estimator can
be reduced. National environmental surveys often provide good estimators at national
level, while being too sparse to provide sufficiently good estimators for some domains.
With the proposed methods, one can plan extra sampling efforts for such domains,
without discarding readily available information from the aggregate/national survey.
Through simulation, we show that the proposed methods are either unbiased, or yield
low variance with small bias, compared to traditionally used methods.

Key Words: Combining data sources; Combining estimators; Environmental
monitoring; Linear combination estimator; Sample design properties.

1. INTRODUCTION

For a traditional finite population survey, one often think of some well-structured list
frame covering the population of interest, from which a statistician can draw a sample
according to some procedure, in order to produce an efficient and unbiased estimator of
some population parameter. When conducting environmental surveys, however, this is often
not the case.

Environmental surveys often lack well-structured, comprehensive list frames to sample
from. In such settings, it is common to use area frames covering the assumed spread of
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the population of interest. Examples of environmental surveys using such area frames are
national forest inventories (Axelsson et al. 2010), agricultural inventories (Fecso et al. 1986),
landscape inventories (Allard 2017), among others. By using area frames, a sample unit
becomes a point from a continuous population—the area surface—why there is a need to
map the sample properties for the sampled points to the indirectly sampled units in the
population of interest.

Other desirable outcomes in environmental surveys are domain estimates, or their coun-
terparts, estimates created by aggregating domain estimates. In the first case, primary surveys
are seldom planned with domain estimates in mind, why complementary surveys are often
considered. The latter case may especially be considered when dealing with rare popula-
tions, or wanting to incorporate a previously conducted domain survey into an aggregate
survey (Benedetti et al. 2015).

Scenarios like these, or when dealing with two samples with different designs, connect
to the multiple-frame research area. When combining such samples, an optimal linearly
combined estimator should be weighted by the variance (Lohr and Rao 2006). Since true
variances are most likely not available, variance estimates are often used instead. However,
environmental surveys conducted using area frames often have target variables with highly
skewed distributions, since the units in the population of interest might be absent in large
parts of the area frame. Under such circumstances, the estimators and the variance estimators
are susceptible to correlation, which can introduce significant bias into linearly combined
estimates using variance estimates as weights (Grafström et al. 2019).

In order to reduce the bias of a combined estimate, we propose two methods: The first
approach is a generalization of the combining samples approach derived by Grafström et al.
(2019), which combines unit sample properties from an arbitrary number of designs into
design components for the combined design. The second approach uses a pooled variance
estimator to estimate the variance of each survey’s estimator by using all available informa-
tion from the surveys.

The targeted applications are primarily environmental surveys andmonitoring, where it is
common to use area frames. Several countries have national landscape and forest monitoring
programs that may not be enough to produce regional or domain level estimates, and thus
need be complemented on some level to reach specific accuracy targets (Christensen and
Ringvall 2013).

With the methodology presented in this paper, there might be a need to link surveys
relating to different definitions of statistical units. Hence, this is something that should be
planned for from start. We need be able to detect if the same population unit is included in
more than one sample (ormultiple times in the same sample). However, inmost applications,
the size of the area being sampled is likely to be very large compared to the area covered
in the samples, which makes overlap not particularly common. In area-based surveys, we
are likely to have geographical coordinates for at least the statistical unit. These coordinates
can easily be used to detect possible overlap between different surveys. In the rare case of
possible overlap, it may be difficult identify exactly which population unit that is included
multiple times. If this is thought to be an issue, then it may be needed to use markings of
coordinates and/or population units in the field to make such identification easier.
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In some cases, e.g., for unbiased variance estimation using a combined sample, we need
at least partial knowledge of the geographical coordinates of the sampled population units.
Such knowledge can be included by the use of accurate satellite-based positioning systems,
as is done, e.g., for permanent sample plots in the Swedish national forest inventory (Fridman
et al. 2014).

In Sect. 2, we provide a general procedure to produce unit sample properties for a discrete
population sampled using an area frame. Through Sect. 2.1, we show examples on unit
sample properties for a discrete population sampled through three different, commonly
used area frame designs. In Sect. 3, we recall the single and multiple count estimators that
are used to estimate population totals. Then, in Sect. 4, we present the theory for combining
samples, and for combining estimators using pooled variance estimators. In Sect. 5, we use
a simulation to compare a naive linear combination with the combined sample and the linear
combination using pooled variance estimates. Finally, we discuss the results in Sect. 6.

2. UNIT SAMPLE PROPERTIES FOR GENERAL DESIGNS

Assume that there is a finite, but unknown population U , represented by fixed points on
an area of interest FU , that has some measurable properties of interest. If a sample point
X

(k), with probability density function (pdf) f (k)(x), falls within the inclusion zone A(k)
i of

an unit i ∈ U , the unit is included in the sample.
Let P be the set of independent but not necessarily equally distributed sample points.

For any sample point X(k) ∈ P , and units {i, j} ∈ U , we make the following definitions:

S(k)
i := I

(
X

(k) ∈ A(k)
i

)
, (1)

π
(k)
i := Pr

(
S(k)
i > 0

)
=

∫

A(k)
i

f (k)(x)dx, (2)

π
(k)
i j := Pr

(
S(k)
i > 0, S(k)

j > 0
)

=
∫

A(k)
i ∩A(k)

j

f (k)(x)dx, (3)

E (k)
i := E

[
S(k)
i

]
= π

(k)
i , (4)

E (k)
i j := E

[
S(k)
i S(k)

j

]
= π

(k)
i j , (5)

where I (·) denotes the indicator function, S(k)
i is the number of inclusions of unit i by sample

point X(k), π(k)
i is the first-order inclusion probability of unit i by sample point X(k), i.e.,

the probability of unit i being included into the sample by a sample point X(k), π(k)
i j is the

second-order inclusion probability for units i, j to be included in the sample simultaneously
by sample point X(k), E (k)

i is the (first-order) expected number of inclusions of unit i by

X
(k), and E (k)

i j is the second-order expected number of inclusions of units i, j by X
(k).

For the set of independent sample points P , we extend the definition in (1) to

S(P)
i :=

∑

X
(k)∈P

S(k)
i . (6)
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Expanding the definition of (4) to the first-order expected number of inclusions for unit i
by the set of sample points P , we have

E (P)
i := E

[
S(P)
i

]
=

∑

X
(k)∈P

E (k)
i , (7)

while it can be shown (see “Appendix” for further details), that the expected number of
inclusions of the second-order for units i, j by the set of sample points P can be extended
from (5) to

E (P)
i j :=E

[
S(P)
i S(P)

j

]
=E (P)

i E (P)
j +

∑

X
(k)∈P

(
E (k)
i j −E (k)

i E (k)
j

)
. (8)

Moreover, the inclusion probabilities of the first and second-order of units i, j by the set
of sample points P can be expressed similarly to (2) and (3) as

π
(P)
i := Pr

(
S(P)
i > 0

)
= 1 −

∏

X
(k)∈P

(
1 − π

(k)
i

)
, (9)

π
(P)
i j := Pr

(
S(P)
i > 0, S(P)

j > 0
)

= π
(P)
i + π

(P)
j

−
⎛
⎝1 −

∏

X
(k)∈P

(
1 − π

(k)
i − π

(k)
j + π

(k)
i j

)⎞
⎠ . (10)

For any set of sample points P to be used to make an unbiased estimator of a parameter of
U , we require that all units in the population have positive inclusion probabilities, equivalent
to ensuring that a sampling design satisfies

∀i ∈ U ∃X(k) ∈ P : π
(k)
i > 0. (11)

For an unbiased estimator of variance by any set of sample points P , we require that all
pairs of units {i, j} ∈ U have positive second-order inclusion probabilities, equivalent to
ensuring that a sampling design satisfies

∀{i, j}∈U ∃{X(k),X(k′)}∈ P, k �=k′ : π
(k)
i j +π

(k)
i π

(k′)
j >0. (12)

While the requirements in (11) and (12) are necessary and sufficient for positive inclusion
probabilities of the first and second-order, they are in reality often not assessable if the units
in U are unknown. Instead, sufficient counterparts with respect to FU can be formulated as

∀x ∈ F ∃X(k) ∈ P : f (k)(x) > 0, (13)

∀{x, x′}∈F ∃{X(k),X(k′)}∈ P, k �=k′ : f (k)(x) f (k′)(x′)>0, (14)

where F , the sample frame, is connected to FU so that
∫
FU \F dx = 0, assuming reasonably

defined inclusion zones. It holds that (14) is sufficient for (13).
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2.1. SAMPLE PROPERTIES FOR THREE COMMON DESIGNS

Provided the derived sample properties, it is easy to show the sample properties for three
common designs—i.i.d., one point per stratum stratified, and systematic—given uniform
sample point distributions. Assuming that unit i’s inclusion zones are identical for all sample
points within a specific design, i.e., A(k)

i = Ai for allX
(k)
d , we define F as the area enclosing

all possible inclusion zones, aF as the area of F , ai as the area of Ai , and ai j as the area of
Ai ∩ A j .

An i.i.d. design defined by P1 implies that f (k)
1 (x) = f (k′)

1 (x) for every pair of sample

points X(k)
1 ,X

(k′)
1 . The inclusion probabilities for units i, j by a single sample point X(k)

1
can thus be described as

π
(k)
i =

∫

Ai

f (k)
1 (x)dx = ai

aF
,

π
(k)
i j =

∫

Ai∩A j

f (k)
1 (x)dx = ai j

aF
.

From this, it follows that the first-order sample properties for unit i are

π
(P1)
i =1 −

(
1 − ai

aF

)n1
, E (P1)

i =n1
ai
aF

,

with the second-order sample properties for units i, j

π
(P1)
i j = π

(P1)
i + π

(P1)
j −

(
1 −

(
1 − ai + a j − ai j

aF

)n1)
,

E (P1)
i j = n1(n1 − 1)

aFaF
aia j + n1ai j

aF
,

where n1 denotes the cardinality of P1, i.e., the number of sample points in the design.
A systematic design with uniform pdf’s, and a repeating pattern in the inclusion zones

defined by the stratification (exemplified in Fig. 1), is a special case of the i.i.d. design where
only one point is sampled. Thus, for the systematic design, the sample properties for units
i, j are π

(P2)
i = E (P2)

i = ai/aF and π
(P2)
i j = E (P2)

i j = ai j/aF .
The final example is the one point per stratum stratified design defined by P3, where one

point is sampled from each of a fixed number of disjoint strata. Let the stratum for sample
point X(k)

3 be given as F (k) = {x : f (k)
3 (x) > 0}, a(k)

F be the area of F (k), a(k)
i denote the

area of Ai ∩ F (k), and let a(k)
i j denote the area of Ai ∩ A j ∩ F (k). The inclusion probabilities

for units i, j by X(k)
3 , given uniform pdf’s, can then be described as

π
(k)
i =

∫

Ai

f (k)
3 (x)dx = a(k)

i

a(k)
F

,

π
(k)
i j =

∫

Ai∩A j

f (k)
3 (x)dx = a(k)

i j

a(k)
F

,
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Figure 1. Examples of a i.i.d., b stratified, and c systematic frames and inclusion zones. The outer areas represent
the sample frames (F), the inner areas represents the areas of interest (FU ), and the circles represents the inclusion
zones (A) for units. In both a and b, the sample frame expands around the area of interest so that the largest of
the inclusion zones will always be fully within the area frame. In b four disjoint strata of unequal sizes and shapes
are exemplified through the dashed lines. c shows inclusion zones for two units, where dashed circles and x’es
indicate the units’ positions. These types of inclusion zones would exemplify systematic plot sampling.

from which the results in (7), (8), (9), and (10) follows. In the case of equally sized and
disjoint strata, a(k)

F = aF/n3, where n3 represent the number of strata/sample points.

3. SINGLE AND MULTIPLE COUNT ESTIMATORS

The sample properties derived in Sect. 2 are needed for two common estimators used
when estimating the population total Y = ∑

i∈U yi of a finite population U . The first of
these two estimators is the single-count (SC) Horvitz–Thompson estimator (Horvitz and
Thompson 1952), defined as

ŶSC =
∑
i∈U

yi
πi

I (Si > 0) ,

where Si denotes the number of inclusions of unit i , πi = Pr (Si > 0) denotes the inclusion
probability for unit i , i.e., the probability for unit i to be included in the sample, and I (·)
denotes the indicator function. The variance of ŶSC can be shown to be

V
(
ŶSC

)
=

∑
i∈U

∑
j∈U

yi
πi

y j
π j

(
πi j − πiπ j

)
,

where πi j = Pr
(
Si > 0, S j > 0

)
denotes the second-order inclusion probability, i.e., the

probability for units i, j to be included in the sample simultaneously. Given that the second-
order inclusion probabilities are strictly positive for all pairs {i, j} ∈ U , an unbiased variance
estimator for ŶSC is

V̂
(
ŶSC

)
=

∑
i∈U

∑
j∈U

yi
πi

y j
π j

(
πi j − πiπ j

)

× I (Si > 0) I
(
S j > 0

)

πi j
.
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The second estimator to be used in this paper is the multiple-count (MC), or Hansen–
Hurwitz, estimator (Hansen and Hurwitz 1943), defined as

ŶMC =
∑
i∈U

yi
Ei

Si ,

where Ei = E [Si ] denotes the expected number of inclusions for an unit i . The variance of
ŶMC is

V
(
ŶMC

)
=

∑
i∈U

∑
j∈U

yi
Ei

y j
E j

(
Ei j − Ei E j

)
,

where Ei j = E
[
Si S j

]
denotes the second-order expected number of inclusions for two

units i, j . Given that the second-order expected number of inclusions are strictly positive
for all pairs {i, j} ∈ U , an unbiased variance estimator of ŶMC is

V̂
(
ŶMC

)
=

∑
i∈U

∑
j∈U

yi
Ei

y j
E j

(
Ei j − Ei E j

) Si S j

Ei j
.

As by the requirements in (13) and (14), the variance estimators presented here are not
applicable when using a one-per-stratum stratified or systematic sample design such as those
presented in Sect. 2.1. However, when combining two or more independent samples, these
criteria will be evaluated on the combined sample.

4. COMBINING SAMPLES

LetD = {Pd}d denote a combined sample, i.e., a set of independent sets of sample points
Pd . By extending the definition of (6) to the number of inclusions by the combined sample
as

S(D)
i :=

∑
Pd∈D

S(Pd )
i , (15)

the inclusion probability of unit i by a combined sample D becomes

π
(D)
i = 1 −

∏
Pd∈D

(
1 − π

(Pd )
i

)
, (16)

similar to (9). Comparable to (7), (8), and (10), the rest of the necessary sample properties
for units i, j by a combined sample D follows as

π
(D)
i j =π

(D)
i + π

(D)
j

−
⎛
⎝1 −

∏
Pd∈D

(
1 − π

(Pd )
i − π

(Pd )
j + π

(Pd )
i j

)⎞
⎠ , (17)

E (D)
i =

∑
Pd∈D

E (Pd )
i , (18)
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E (D)
i j =E (D)

i E (D)
j +

∑
Pd∈D

(
E (Pd )
i j − E (Pd )

i E (Pd )
j

)
. (19)

By using these combined sample properties, the estimators in Sect. 3 can be applied directly.
When combining samples, for example in amultiple frame setting, the individual designs’

sample frames do not need to be identical, nor do they need to individually cover the area of
interest. The requirements in (11) and (12) needs to be fulfilled with respect to the sample
points in∪d Pd , i.e., the necessary condition for positive second-order inclusion probabilities
and positive expected number of inclusions for all pairs in the combined sample D is

∀{i, j} ∈ U ∃{X(k)
d ,X

(k′)
d ′ } ∈ ∪d Pd ,

(k, d) �= (k′, d ′) : π
(k)
i j + π

(k)
i π

(k′)
j > 0, (20)

with sufficient counterpart

∀{x, x′} ∈ F ∃{X(k)
d ,X

(k′)
d ′ } ∈ ∪d Pd ,

(k, d) �= (k′, d ′) : f (k)
d (x) f (k′)

d ′ (x′) > 0, (21)

both ofwhich imply positive first-order inclusion probabilities and positive expected number
of inclusions for all units by the combined sample D.

If sample frames are extended in ways similar to those in Fig. 1, or if combining multiple
frames, there will be some oversampling. In such cases, it will be required to be able to
identify objects not part of the population of interest.

These results are not limited to area frames. As per an example in Lohr and Rao (2006),
it is possible to combine, for example, a sample taken from an area frame with full coverage
of the population of interest, and a list frame with unknown coverage of the population of
interest, as long as it is possible to identify units in the list frame that are not part of the
population of interest, and units sampled from the area frame that are also present in the list
frame.

4.1. COMBINING ESTIMATORS BY LINEAR COMBINATIONS

When combining a set of unbiased estimates formed of the samples in D by linear
combinations, the form

Ŷ (D)
L =

∑
Pd∈D

α(Pd )Ŷ (Pd )

is often considered, since it will yield an unbiased result. Often the inverse variance propor-
tion is used as the weight in order to increase accuracy. However, as described by Grafström
et al. (2019), if true variances are not available, using variance estimates may in certain
cases introduce bias to such a linear combination, especially when the variance estimator is
correlated with the estimator of the population parameter. We denote a linear combination
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using variance estimates as

Ŷ (D)
L∗ =

∑
Pd∈D

α̂(Pd )∗ Ŷ (Pd )∗ , α̂(Pd )∗ =
V̂

(
Ŷ (Pd )∗

)−1

∑
Pd′ ∈D V̂

(
Ŷ

(Pd′ )
∗

)−1 ,

with ∗ for either SC (single-count) or MC (multiple-count).
To overcome the issue with biased variance estimators, we propose a pooled variance

estimator, using all available information to estimate the separate variances. We denote the
linear combination estimator using such pooled variance estimates as

Ŷ (D)
LP∗ =

∑
Pd∈D

α̂
(Pd )
P∗ Ŷ (Pd )∗ , α̂

(Pd )
P∗ =

V̂P

(
Ŷ (Pd )∗

)−1

∑
Pd′ ∈D V̂P

(
Ŷ

(Pd′ )
∗

)−1 , (22)

where

V̂P

(
Ŷ (Pd )
SC

)
=

∑
i∈U

∑
j∈U

yi

π
(Pd )
i

y j

π
(Pd )
j

(
π

(Pd )
i j − π

(Pd )
i π

(Pd )
j

)

×
I
(
S(D)
i > 0

)
I
(
S(D)
j > 0

)

π
(D)
i j

,

V̂P

(
Ŷ (Pd )
MC

)
=

∑
i∈U

∑
j∈U

yi

E (Pd )
i

y j

E (Pd )
j

(
E (Pd )
i j − E (Pd )

i E (Pd )
j

)

× S(D)
i S(D)

j

E (D)
i j

,

are both unbiased estimators of the variances of the single and multiple count estimators,
given∀{i, j} ∈ U, π

(D)
i j > 0 and∀{i, j} ∈ U, E (D)

i j > 0.Note that thefinal fractions for both
variance estimators for a design Pd assures that all available information are used through
S(D)
i , π

(D)
i j and E (D)

i j , as defined in (15), (17) and (19). However, if many second-order
design properties are positive, but small, the variance estimators might produce negative
and unstable estimates, making them unsuitable for combinations.

5. SIMULATION

In order to evaluate the proposed combinations of samples and estimates, a simulation
study was performed. The simulation sampled 10,000 times from a simulated population
generated from the SLU (Swedish University of Agricultural Sciences) Forest Map (Reese
et al. 2003). The SLU Forest Map, previously known as kNN-Sweden, has extensive infor-
mation about Swedish forest land and is based on satellite and field data from the Swedish
national forest inventory (NFI). The map contains information about age, height, species
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Figure 2. Location and the total biomass volume (m3/ha) for the area used as a boilerplate for simulating the
population. Darker colors indicate higher volumes (Color figure online).

Figure 3. Total biomass volume (m3/ha) per species for the simulated population. Darker colors indicate higher
volumes (Color figure online).

of wood and woodland for the country’s forest land. The basic format is raster data with a
resolution of 25 × 25 square meters.

From the SLU Forest map, an area of 1000 × 1000 square meters of southern Sweden
was cropped to represent the area of interest. Figure 2 illustrates the location as well as the
total volume of the stand for the cropped area. Using individual tree data variables from the
Swedish NFI, the three dominating tree species—birch, pine, and spruce—were randomly
added to the population according to species-specific volume maps of the cropped area. In
the resulting population, the number of trees for each species is 7411 (13%), 24,428 (41%)
and 27,212 (46%), respectively. The resulting population is presented in Fig. 3, color-coded
by volume intensity.

For each of the 10,000 simulation runs, four samples were generated from the sample
frame using uniform densities—two i.i.d. samples, one systematic sample, and one stratified
sample. Each design used circular inclusion zones of common sizes per design, correspond-
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Table 1. Sample designs used in the simulation study

Design n Radius (m) Sample frame (m2) Stratum size (m2) Sampled area (m2)

i.i.d. 1 10 10 1020 × 1020 3142
i.i.d. 2 40 5 1010 × 1010 3142
Systematic 16 8 1016 × 1016 254 × 254 3217
Stratified 16 8 1016 × 1016 254 × 254 3217

n Sample size; Radius Radius of inclusion zones

ing to plot sampling. In order to have equal first-order expected number of inclusions for all
units, the sample frames were expanded around the area of interest in each direction by the
size of the inclusion zone radius, guaranteeing that all inclusion zones are fully within the
sample frames. In Table 1, the designs are described in further detail.

For each sample and combination, single (SC) and multiple count (MC) estimates were
calculated. To show the effect of different ways of combining data, we compared the esti-
mators using combined samples, with sample properties derived through (16), (17), (18)
and (19), with the estimators based on linear combinations of estimates using estimated
variances and pooled variance estimates as in (22).

As mentioned in Sect. 3, for variance estimators to be unbiased, we require positive
second-order sample properties for all pairs in the population. While the systematic and
stratified designs fulfills the requirements in (20) and (21) in combination with each other
or any of the i.i.d. designs, they do not fulfill (12) and (14) individually, while also being
prone to negative and unstable pooled variance estimates due to small second-order design
properties, making them unsuitable to use in a linear combination. In environmental surveys,
one often deal with this by using a more conservative variance estimator, for example by
using the i.i.d. variance estimator (Benedetti et al. 2015). However, using the i.i.d. variance
estimator might be too conservative, i.e., reducing the assumed efficiency of the stratified
and systematic designs.

For this simulation, second-order design properties were calculated as if they were sam-
pled using a i.i.d. design, when calculating the linear combination of estimates using pooled
variances. For the naive combination, plot variance estimates in the linear combination

V̂Plot

(
Ŷ (Pd )
MC

)
= 1

nd(nd − 1)

∑

X
(k)
d ∈Pd

(
y(k)
d − ŷd

)2
,

ŷd = 1

nd

∑

X
(l)
d ∈Pd

y(l)
d ,

were used, where y(l)
d is the plot l estimate of the total. In order to reduce the efficiency

impact of the stratified and systematic designs, plot variances were calculated using a variant
of the local mean variance estimator proposed by Grafström and Schelin (2013)
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Table 2. Results from 10,000 simulations for the i.i.d. 1 (i), systematic (sy), and stratified (st) designs showing
[empirical relative bias] and relative root-mean-squared error (RRMSE) for birches and all species in
percent

SC MC LPlot LPSC LPMC

Birches
i 50.22 50.14 – – [–] – [–] –
sy 42.79 42.79 [–] – [–] – [–] –
st 41.76 41.76 [–] – [–] – [–] –
i / sy 32.77 32.83 [-13.92] 36.79 [-0.70] 32.21 [-0.76] 32.19
i / st 32.49 32.55 [-13.92] 36.36 [-0.90] 31.90 [-0.96] 31.88
sy / st 30.01 30.05 [-12.32] 33.65 [-0.26] 30.05 [-0.27] 30.05
i / sy / st 25.95 26.01 [-18.98] 33.81 [-0.69] 25.64 [-0.73] 25.63

All species
i 28.53 28.49 [–] – [–] – [–] –
sy 21.62 21.62 [–] – [–] – [–] –
st 19.69 19.69 [–] – [–] – [–] –
i / sy 17.88 17.91 [-2.48] 18.83 [-0.83] 17.44 [-0.89] 17.44
i / st 17.23 17.25 [-2.40] 17.46 [-0.78] 16.55 [-0.84] 16.54
sy / st 14.71 14.69 [-2.44] 15.95 [-0.35] 14.69 [-0.35] 14.69
i / sy / st 13.63 13.65 [-3.32] 14.91 [-0.70] 13.25 [-0.74] 13.25

SC Single-count estimator; MC Multiple-count estimator; LPlot Linear combination weighted by plot variances;
LPSC Linear combination weighted by pooled SC-variances; LPMC Linear combination weighted by pooled
MC-variances

V̂Plot

(
Ŷ (Pd )
MC , n∗) = n∗

n∗ − 1

∑

X
(k)
d ∈Pd

(
y(k)
d − ŷ∗

d (k, n
∗)

)2
,

ŷ∗
d (k, n

∗) = 1

n∗
∑

X
(l)
d ∈P∗

d (k)

y(l)
d ,

where P∗
d (k) is the set of n∗ sample points of design d closest to X

(k)
d . For this simulation,

the fixed number of neighbors was set to n∗ = 4.
The results, presented in Table 2, show that while any combination reduced the variance

in the estimator, the combination based on plot variance estimates introduced bias at least
three times of that generated by the pooled variance estimates. Because of the relatively
small probability of two sample points sampling the same tree, the SC and MC estimators
perform similarly.

In Table 3, bias, MSE, and variance estimates are presented for the i.i.d. 1 and 2 designs,
and the combinations of the two. Comparing the combined samples versus the combined
estimates, one can observe the trade-off between unbiased estimates and estimates with
reduced variances.

6. DISCUSSION

In Table 2, we showed that combined samples and linear combinations based on pooled
variances (pooled combination) will probably always be preferable to linear combinations
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Table 3. Results from 10,000 simulations for the i.i.d. 1 and 2 designs showing [empirical relative bias] in percent,
mean variance estimates, and empirical mean-squared error (MSE) for birches and all species

Estimator Rel. bias Mean var. (104) MSE (104)

Birches
i.i.d. 1 SC [–] 26.08 26.02

MC [–] 26.16 25.95
i.i.d. 2 SC [–] 13.91 14.25

MC [–] 13.96 14.21
i.i.d. 1 / 2 SC [–] 9.93 10.07

MC [–] 9.99 10.12
LMC [-12.61] 6.63 12.15
LPSC [-3.83] 8.71 9.08
LPMC [-3.97] 8.74 9.07

All species
i.i.d. 1 SC [–] 1675.85 1716.50

MC [–] 1671.77 1711.94
i.i.d. 2 SC [–] 640.74 646.99

MC [–] 639.36 645.09
i.i.d. 1 / 2 SC [–] 573.51 589.58

MC [–] 573.24 591.06
LMC [-2.03] 437.48 538.30
LPSC [-2.03] 454.02 506.76
LPMC [-2.19] 453.07 507.65

SC Single count estimator; MC Multiple count estimator; LMC Linear combination weighted by estimated vari-
ances;LPSCLinear combinationweighted by pooled SC-variances;LPMCLinear combinationweighted by pooled
MC-variances

based on individual variances (naive combination), given that the target variable has a skewed
distribution. Even if no correlation exists between the estimator and its variance estimator,
the pooled combination should be more efficient than the naive combination, as more infor-
mation is used. The main drawback of the pooled combination is the need to compute
additional second-order design properties, which may be difficult if positional data is not
available or accurate enough to map the sample properties of the designs. Furthermore, for
some designs the pooled variance estimator might be unstable, which makes it an unsuitable
choice for such designs. However, the combined samples approach will function sufficiently
in most cases, as its estimate is not dependent on second-order design properties, why the
impact of absence of reliable positional data should be small, for most designs.

While the results from the simulation are conditional to the simulated population, we
expect the bias to be proportional to the heterogeneity of the population, why we may
draw some general conclusions. We believe both of these methods to be useful for domain
estimates. For the domain estimate of a primary survey, the target variable will have a
skewed distribution, even if the target variable over the domain is not. It is thus expected
that significant bias will be introduced by using the naive combination.

Another scenario where both presented methods might be useful are when combining
designs like those used in the simulation here, where it is not possible to get an unbiased
variance estimator for one or more of the individual designs. The pooled combination is
unbiased if the combined second-order sample properties are positive for all units in the
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population, whereas the naive combination needs positive second-order sample properties
for all units and all designs. Furthermore, the combined samples approach has none of these
restrictions and is also more relaxed in terms of first-order sample properties.

Table 3 provides results regarding MSE and variance estimates for i.i.d. designs. These
results highlight the bias–variance trade-off between the pooled combination and the com-
bined sample approaches. The combined samples approach produces unbiased estimators,
however, in the simulation, with larger empirical mean-squared errors than the pooled com-
binations. A statistician deciding between these two approaches should thus know to what
extent the end product needs to be accurate or reliable.

In Tables 2 and 3, we see that the bias is, as expected, more apparent when dealing with
skewed target variables, as the volume of birch. It is not uncommon to reach acceptable
MSE’s for some dominant or aggregate target variable in a primary survey, here represented
by the total wood volume, while needing complementary surveys to study some target
variable with a more skewed distribution. The results of the simulation show that different
methods of combination will affect the reliability of the combined estimates.

Further research would study the effects of errors in the positioning of units, to see how
previously describedmismatchingwould affect the estimates. For plot sampling procedures,
that are commonly used in forest inventories, one can assume two types of mismatching to
be common: One where there is a difference between the location of the studied plot and
the sampled location, and one where the positioning of units within a plot are inaccurate.
Depending on designs, these errors will have different effects.
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APPENDIX: UNIT DESIGN PROPERTIES

LetU be a finite, unknown population, representable by fixed points on an area of interest
FU . If a sample point X(k), with probability density function (pdf) f (k)(x), falls within the
inclusion zone A(k)

i of unit i ∈ U , the unit is included in the sample.
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Let P be the set of independent sample points. For any sample point X(k) ∈ P , and units
{i, j} ∈ U , we make the following definitions:

S(k)
i := I

(
X

(k) ∈ A(k)
i

)
, (23)

π
(k)
i := Pr

(
S(k)
i > 0

)
=

∫

A(k)
i

f (k)(x)dx, (24)

π
(k)
i j := Pr

(
S(k)
i > 0, S(k)

j > 0
)

=
∫

A(k)
i ∩A(k)

j

f (k)(x)dx, (25)

E (k)
i := E

[
S(k)
i

]
= π

(k)
i , (26)

E (k)
i j := E

[
S(k)
i S(k)

j

]
= π

(k)
i j , (27)

where I (·) denotes the indicator function, S(k)
i is the number of inclusions of unit i by

sample point X(k), π
(k)
i is the first-order inclusion probability of unit i by sample point

X
(k), i.e., the probability of unit i being included into the sample by a sample point X(k),

π
(k)
i j is the second-order inclusion probability for units i, j by sample point X(k), E (k)

i is the

(first-order) expected number of inclusions of unit i by X
(k), and E (k)

i j is the second-order

expected number of inclusions of units i, j by X
(k).

For a set of independent but not necessarily equally distributed sample points P , we
extend the definitions to

S(P)
i :=

∑

X
(k)∈P

S(k)
i , (28)

π
(P)
i := Pr

(
S(P)
i > 0

)
, (29)

π
(P)
i j := Pr

(
S(P)
i > 0, S(P)

j > 0
)
, (30)

E (P)
i := E

[
S(P)
i

]
, (31)

E (P)
i j := E

[
S(P)
i S(P)

j

]
. (32)

It follows quite clearly from (31), (28), and (26) that

E (P)
i =

∑

X
(k)∈P

E (k)
i =

∑

X
(k)∈P

π
(k)
i ,

and by expanding (29), we can express it in terms of (24)

π
(P)
i = 1 − Pr

(
S(P)
i = 0

)
= 1 − Pr

( ⋂

X
(k)∈P

S(k)
i = 0

)

= 1 −
∏

X
(k)∈P

(
1 − π

(k)
i

)
.
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Through some work, we can get the second-order expected number of inclusions for
units i, j by the set of sample points P

E (P)
i j = E

[∑

X
(k)∈P

S(k)
i

∑

X
(k′)∈P

S(k′)
j

]
=

∑

X
(k)∈P

E
[
S(k)
i S(k)

j

]

+
∑ ∑

X
(k)∈P, X(k′)∈P

k �=k′

E
[
S(k)
i S(k′)

j

]

=
∑

X
(k)∈P

E (k)
i j +

∑∑

X
(k)∈P, X(k′)∈P

k �=k′

E (k)
i E (k′)

j = E (P)
i E (P)

j

+
∑

X
(k)∈P

(
E (k)
i j − E (k)

i E (k)
j

)
,

due to the independence of sample points in P . For the second-order inclusion probability
for units i, j by the set of sample points P , we start by showing that

π
(P)
i j = Pr

(
S(P)
i > 0

)
+ Pr

(
S(P)
j > 0

)

−Pr
(
S(P)
i > 0 ∪ S(P)

j > 0
)

= π
(P)
i + π

(P)
j −

(
1 − Pr

(
S(P)
i = 0, S(P)

j = 0
))

. (33)

Through the independence between sample points in P , the following equality holds

Pr
(
S(P)
i = 0, S(P)

j = 0
)

=
∏

X
(k)∈P

Pr
(
S(k)
i = 0, S(k)

j = 0
)
,

and conversely, apparent from (33), we have

Pr
(
S(k)
i = 0, S(k)

j = 0
)

= 1 + π
(k)
i j − π

(k)
i − π

(k)
j ,

leading to

π
(P)
i j =π

(P)
i +π

(P)
j −

⎛
⎝1 −

∏

X
(k)∈P

(
1 − π

(k)
i − π

(k)
j + π

(k)
i j

)⎞
⎠.
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