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A B S T R A C T   

Hydrological models have traditionally been used for the prediction in ungauged basins despite the related 
challenge of model parameterization. Short measurement campaigns could be a way to obtain some basic in-
formation that is needed to support model calibration in these catchments. This study explores the potential of 
such field campaigns by i) testing the relative value of continuous water-level time series and point discharge 
observations for model calibration, and by ii) evaluating the value of point discharge observations collected using 
expert knowledge and active learning to guide when to measure streamflow. The study was based on 100 gauged 
catchments across the contiguous United States for which we pretended to have only limited hydrological ob-
servations, i.e., continuous daily water levels and ten daily point discharge observations from different hypo-
thetical field trips conducted within one hydrological year. Water level data were used as a single source of 
information, as well as in addition to point discharge observations, for calibrating the HBV model. Calibration 
against point discharge observations was conducted iteratively by continually adding new observations from one 
of the ten field measurements. Our results suggested that the information contained in point discharge obser-
vations was especially valuable for constraining the annual water balance and streamflow response at the event 
scale, improving predictions based solely on water levels by up to 50% after ten field observations. In contrast, 
water levels were valuable to increase the accuracy of simulated daily streamflow dynamics. Informative 
discharge sampling dates were similar when selected with either active learning or expert knowledge and 
typically clustered during seasons with high streamflow.   

1. Introduction 

Many catchments that are of interest for research or practical pur-
poses are ungauged or poorly gauged even in regions with a relatively 
dense hydrological observation network. Yet streamflow information is 
critical for the design and management of water infrastructures. Hy-
drological models are a commonly used tool to predict streamflow and 
its temporal variation under both current and future conditions. 
Parameter values of hydrological models are typically adapted to a 
specific catchment by calibration and validation against observed 
streamflow. The prediction of streamflow in ungauged catchments, that 

is, catchments without any observed discharge, is one of the major 
challenges in hydrology. This long-standing challenge has received 
renewed, community-wide attention through the PUB (Prediction in 
Ungauged Basins) initiative launched by the IAHS (International Asso-
ciation of Hydrological Sciences) (Hrachowitz et al., 2013). 

Model calibration should ideally be based on long continuous 
discharge time series (Brath et al., 2004; Merz et al., 2009; Singh and 
Bárdossy, 2012; Tada and Beven, 2012; Vrugt et al., 2006). However, it 
has been demonstrated that much shorter time series between one and 
six months can lead to robust model parameter estimates (Brath et al., 
2004; Melsen et al., 2014; Sun et al., 2017). Others have shown that 
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some point discharge observations, taken at randomly chosen dates, can 
provide valuable information for model calibration (Kim and Kaluar-
achchi, 2009; Perrin et al., 2007). Collecting such individual discharge 
data points strategically by explicitly taking observations during peak 
flows or events and the subsequent recessions (Correa et al., 2016; 
McIntyre and Wheater, 2004; Pool et al., 2017; Seibert and McDonnell, 
2015), could further lower the number of data points needed to reach 
acceptable model parameterizations. Results indicate that even a small 
sample of ten to sixteen observations can be highly informative (Pool 
et al., 2017; Seibert and Beven, 2009; Seibert and McDonnell, 2015), 
especially when the natural variability in streamflow is well represented 
and there are observations when dominant hydrological processes are 
active (Harlin, 1991; Singh and Bárdossy, 2012; Sun et al., 2017; Tan 
et al., 2008; Vrugt et al., 2006; Yapo et al., 1996). These findings are in 
line with results from influence diagnostic statistics, which demon-
strated that the ten most influential observations cover a range of flow 
magnitudes (Wright et al., 2018), whereby the five most influential 
discharge observations have an order of magnitude more influence on 
model performance than any other observation in a ten-year time series 
(Wright et al., 2015). One potential solution to overcome the challenges 
related to predictions in data-scarce situations thus might be the 
collection of at least some hydrological data during field campaigns. 
However, such field campaigns are restricted by practicalities, such as 
the accessibility of the catchment, financial resources, or time, which 
make a careful choice of observation times essential. The expert 
knowledge gained from the previous studies could thereby provide 
guidance on the choice of sampling dates. 

Active learning methods provide an alternative option to investigate 
the value of short and discontinuous discharge time series for model 
calibration from an explorative point of view, rather than by testing 
hypotheses as has been done so far. Active learning is a subfield of 
machine learning that has been widely applied in the domains of text 
processing, remote-sensing, or chemoinformatics. These domains typi-
cally face the challenge of having large unlabeled datasets (i.e., datasets 
with a large number of unknown samples) that need to be classified with 
a prediction model. The training of the model is based on labelled 
samples, whereby labelling (i.e., assigning a value to an unknown data 
point) is expensive (Cawley, 2011). Active learning provides a method 
to select and label the most informative samples from the pool of un-
labeled data such that the most favourable model performance can be 
achieved with the smallest number of samples (Settles, 2012). Active 
learning is an iterative approach in which the model and the user 
regularly interact. Current model predictions of each sample are ranked 
by a performance criterion, and the user selects and labels the highest- 
ranked samples that are subsequently used to recalibrate the predic-
tion model (Crawford et al., 2013). A commonly used performance 
criterion is prediction uncertainty (Lewis and Gale, 1994), which means 
that high ranks are assigned to samples that have been predicted with 
the least confidence. It is thereby assumed that samples are most 
informative for model parameter estimation for points at which model 
simulations disagree most (Crawford et al., 2013). In hydrology, we face 
a similar challenge when gauging an ungauged catchment: a hydrologist 
needs to measure (i.e., label) the most informative discharge observa-
tions (i.e., samples) for model calibration from a future time series (i.e., 
unlabeled dataset) with the least possible effort. We, therefore, hy-
pothesize that active learning could be a powerful tool to decide on the 
timing of discharge observations for the calibration of hydrological 
models in previously ungauged catchments. Note that the term sample 
has different meanings in hydrology (Brunner et al., 2018), and is used 
here to refer to point discharge observations selected from an existing 
discharge time series. 

Seibert and Vis (2016) suggested that instead of performing 
discharge measurements at different points in time, it could be easier 
and less time consuming to install a water-level logger. Simulations for 
more than 600 catchments in the contiguous United States indicated a 
surprisingly high value of water-level time series for model calibration, 

especially in humid catchments. With increasing aridity, however, in-
formation on dynamics alone was not sufficient, and the lack of volume 
information steadily reduced model performance. Lebecherel (2015) 
proposed to combine water-level time series and point discharge ob-
servations to make the most out of field trips. Specifically, Lebecherel 
(2015) argues that a discharge observation at a given water level can be 
assumed to be representative for all occasions with a similar water level 
provided that the stage-discharge relationship is stationary and unique. 
Discharge time series created this way were successfully used to inform 
the regionalization of model parameters in 609 French catchments. 
While Lebecherel (2015) exclusively used discharge for calibration and 
disregarded water levels, Seibert and Vis (2016) proposed a simple 
method to use water levels for calibration without increasing the num-
ber of model parameters. Thus, combining continuous water-level time 
series and point discharge observations for calibration would allow the 
prediction of discharge in a previously ungauged basin with local in-
formation collected with a reasonable amount of effort. 

The aim of this study was to provide further guidance on the optimal 
collection of streamflow data at a limited number of observation times to 
improve the prediction in ungauged basins. This study extends previous 
work on the value of data in ungauged basins by explicitly comparing 
the value of water levels and point discharge observations, and by 
testing a machine learning approach for guiding the timing of point 
discharge observations. To evaluate the value of point discharge ob-
servations and water-level time series across a wide spectrum of 
hydroclimatic conditions, we used a set of 100 gauged catchments 
distributed over the contiguous United States. Treating the catchments 
as poorly gauged catchments with only a limited amount of field ob-
servations, allowed the following two main objectives to be addressed:  

1. Quantification of the relative value of individual point discharge 
observations, continuous water-level data, or a combination thereof 
for the calibration of hydrological models.  

2. Evaluation of the potential of active learning for providing guidance 
on the timing of the most informative discharge observations as 
opposed to a prior decision based on hydrological expert knowledge. 

2. Data and methods 

2.1. Study catchments 

In this study, data from 100 catchments across the contiguous United 
States were used. The catchments represent a wide range of topographic 

Table 1 
Statistics of catchment attributes of the 100 catchments used in this study. 
Climate indices and hydrological signatures were calculated for the hydrological 
years 1990–2009.  

Catchment 
attribute 

Minimum 5th 
quantile 

Median 95th 
quantile 

Maximum 

Area (km2) 14 39 339 2438 12,601 
Mean elevation (m 

a.s.l.) 
23 41 448 2729 3271 

Annual 
precipitation 
(mm yr− 1) 

267 532 1275 2640 3160 

Precipitation 
falling as snow 
(%) 

0 0 9 63 71 

Aridity index (–)a 0.24 0.27 0.75 1.77 3.68 
Annual specific 

discharge (mm 
yr− 1) 

28 84 524 2029 2678 

Baseflow (%)b 6 13 47 83 91  

a The aridity index was calculated as the ratio of the sum of potential 
evapotranspiration and the sum of precipitation (ETo/P). 

b Baseflow was calculated using the EflowStats R-Package from the U.S. 
Geological Survey (2014). 
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and hydroclimatic aspects (see Table 1 for statistics). They vary in size 
from 14 km2 to 12,601 km2, and their mean elevation ranges from 23 m 
a.s.l. up to 3271 m a.s.l. Annual precipitation is between 267 mm yr− 1 

and 3160 mm yr− 1, of which up to 71% falls as snow in some catch-
ments. While the majority of catchments are either humid (47%) or 
temperate (35%), 18% can be classified as somewhat arid or arid (as 
defined by Coopersmith et al., 2014). Annual specific discharge ranges 
between 28 mm yr− 1 and 2678 mm yr− 1 with baseflow contributing 6% 
to 91% to annual streamflow. 

The 100 catchments are a constrained-randomly selected subset of 
the Newman et al. (2015) dataset containing more than 600 U.S. 
catchments. The selection is consistent with a previous study (Pool et al., 
2018) and was necessary to reduce the computational costs of the 
modelling experiments conducted in this study. The dataset was 
compiled by Newman et al. (2015) and provides time series of daily 
discharge, precipitation and temperature for each catchment. Further-
more, the dataset contains time series of different meteorological vari-
ables that were used to compute monthly potential evapotranspiration 

using the Priestley-Taylor equation (Priestley and Taylor, 1972). The 
dataset also includes basic information on catchment boundaries. 
However, detailed elevation data were downloaded from the SRTM 
digital elevation database (Jarvis et al., 2008). Further information on 
catchment attributes, such as topographic information, climatic indices, 
and hydrological signatures were extracted from the CAMELS dataset 
(version 1.0; Addor et al., 2017). Climate indices and hydrological sig-
natures were recalculated for the hydrological years 1990–2009, which 
were used for model simulations in this study. 

The model calibration experiments were based on both discharge 
amounts at individual points in time and water level time series. Since 
water levels are not part of the Newman et al. (2015) dataset, synthetic 
water-level time series were created for each catchment. This was done 
by replacing the discharge values for each day by their respective rank in 
the time series. In other words, we created time series that contained 
only the information about the temporal dynamics but not quantitative 
information. These series correspond to the information contained in 
water-level time series in the case of stationary stage-discharge 

Fig. 1. Information used for model calibration with the lower and upper benchmark (LBWL and UBWL_365Q), the active learning-based data collection approaches 
(ALWL_10Q, ALWL_nQ, and AL10Q), and the expert knowledge-based data collection approach (HEWL_10Q). A snow-dominated catchment in the Rocky Mountains is used 
as an example to indicate the temporal distribution of point discharge observations after ten sampling iterations. Note that the same colour scheme is used in Figs. 3–5 
to differentiate the data collection approaches. 
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relationships. In cases where there were shifts in the (real) rating curves 
used, these shifts were implicitly considered by our approach as we 
based the ranking on the estimated streamflow and not directly on the 
observed water levels. 

2.2. Hydrological model 

Continuous daily streamflow was simulated with the HBV runoff 
model (Hydrologiska Byråns Vattenbalansavdelning; Bergström 1976, 
Lindström et al. 1997) using the software implementation HBV-light 
(Seibert and Vis, 2012). The HBV model is a bucket-type model with a 
conceptual representation of hydrological processes typically domi-
nating streamflow response at the catchment scale. Hydrological fluxes 
and state variables are represented by fourteen model parameters and 
four model routines, including a snow routine, soil routine, groundwater 
routine, and routing routine. Daily temperature and precipitation are 
used as input time series, together with long-term mean monthly po-
tential evapotranspiration estimates. In the snow routine, a degree-day 
method is used to calculate snow accumulation and snowmelt. Snow-
melt and rainfall supply water to the soil routine, in which simulated soil 
moisture content controls actual evapotranspiration and groundwater 
recharge. Recharge increases groundwater levels in the upper and lower 
reservoirs of the groundwater routine. The two reservoirs simulate the 
variable contribution of shallow and deep groundwater, or fast and slow 
runoff components, to total streamflow. Finally, in the routing routine, 
the sum of the three streamflow components is transformed by a trian-
gular weighting function to simulate the hydrograph at the catchment 
outlet. 

In this study, HBV was used in a semi-distributed way by dividing 
each catchment into elevation bands of 200 m. Computations in the 
snow and soil moisture routines were performed separately for each 
elevation zone, but using the same parameter values. The groundwater 
routine, on the other hand, was applied in a lumped way for the entire 
catchment. Daily temperature and precipitation input data were 
adjusted to each elevation band using lapse rates of 0.6 ◦C per 100 m 
(Wallace and Hobbs, 2006) and 10% per 100 m (Johansson, 2000), 
respectively. In contrast, monthly potential evapotranspiration values 
were assumed to be equal in all elevation bands. 

2.3. Data collection approaches 

We defined six data collection approaches representing different 
possible scenarios for the collection of streamflow information in a 
previously ungauged basin (see Fig. 1 for a visualization of the data 
collection approaches). The approaches mainly differ in the type of data 
measured, i.e., water-level time series or point discharge observations, 
and in the timing of the point discharge observations. The period 
considered for the collection of streamflow information was restricted to 
one hydrological year (October 1 to September 30) in each case, to 
reflect a situation as could be realistic in practice, where there is some 
limited time to collect data for a previously ungauged catchment. The 
data collection approaches were ‘simulated’ by selecting water level and 
discharge information from the observed time series of each catchment. 
A more detailed description of the approaches is provided in the 
following sections. 

2.3.1. Benchmark approaches 
A relatively simple data collection approach would be installing a 

water-level sensor for collecting continuous daily time series over an 
entire hydrological year (Fig. 1a). This approach calibrates the model 
against streamflow dynamics only and therefore served as a lower 
benchmark (LBWL) for more advanced methods. 

In contrast, the most data-rich approach would be the use of 
continuous water-level time series combined with discharge observa-
tions for each day of the hydrological year (Fig. 1b). Results from the 
calibration against the full dataset, including continuous water levels 

and continuous discharge, provide information about how good model 
simulations could be at best (see Section 2.4 for calibration details). 
These simulations, therefore, served as an upper benchmark 
(UBWL_365Q). 

2.3.2. Approaches based on active learning 
Active learning could guide the decision about when to measure 

discharge to obtain the most informative data for model calibration. The 
basic idea is that discharge observations are most valuable for con-
straining a hydrological model on days of high model simulation un-
certainty. In other words, we hypothesize that model parameterization 
needs most support from discharge observations when simulations 
disagree most. 

Active learning is an iterative process, in which model parameteri-
zation is improved by adding (discharge) information at each iteration. 
Here, we conducted a total of ten sampling iterations that represent ten 
individual field trips. The active learning approach adopted here fol-
lowed five main steps, whereby step two to five was repeated for each of 
the ten sampling iterations:  

• First, an initial set of 100 parameter sets was obtained by calibration 
against water levels (LBWL) or by a random selection of parameter 
values.  

• Second, the model was run using these 100 parameter sets, which 
resulted in a range of possible hydrographs for the same forcing 
input.  

• Third, simulation uncertainty was calculated at each time step using 
the difference between the 5th and 95th quantiles of the simulated 
discharge time series.  

• Forth, a discharge measurement was selected at the time step with 
the highest simulation uncertainty. We selected discharge observa-
tions alternating from the highest absolute uncertainty and the 
highest relative uncertainty to give similar weight to different flow 
conditions. For example, the absolute uncertainty was used in the 
first iteration, the relative uncertainty was used in the second iter-
ation, and so on.  

• Fifth, the hydrological model was recalibrated taking into account 
the discharge observation(s) obtained in step four. 

The information collected by active learning was used for model 
calibration in three different ways:  

• ALWL_10Q: Water-level time series and point discharge observations 
were used for model calibration (Fig. 1c). The date of the first 
discharge observation was defined from simulations with the lower 
benchmark only (LBWL).  

• ALWL_nQ: The same procedure was applied as for ALWL_10Q. However, 
the discharge time series was extended by assuming that an observed 
discharge value was representative for all time steps with a compa-
rable water level (Fig. 1d). Comparable water levels were defined as 
levels for which the corresponding discharge was within +/- 5% of 
the discharge observation on that day (note that water levels were 
derived from discharge time series as described in Section 2.1). 

• AL10Q: Only point discharge observations were used for model cali-
bration (Fig. 1e). The date of the first discharge observation was 
selected based on the uncertainty range of simulations with 
randomly selected parameter values. 

2.3.3. Approach based on hydrological expert knowledge 
Informative discharge days could alternatively be determined based 

on hydrological expert knowledge (Fig. 1f). Here we defined such an 
expert-based discharge collection strategy (HEWL_10Q) using findings 
from a previous study (Pool et al., 2017). The strategy consisted of ten 
discharge observations collected at the annual peak, the first three 
subsequent recession days, and six observations at the 15th of every 
other month. In case that the 15th of a month coincided with the annual 
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peak and its recession, we randomly selected an alternative day within 
that month. Model calibration was based on these point discharge ob-
servations and water-level time series, whereby discharge observations 
were iteratively added, starting with the peak flow information. 

2.4. Model calibration using point discharge observations and water-level 
time series 

The HBV model was calibrated for each study catchment using 
continuous daily meteorological input and streamflow information ac-
cording to the six data collection approaches. Independent calibrations 
were run with data from the ten hydrological years between 1990 and 
1999. The 33 months preceding the calibration periods were used for 
model warming-up to start model calibration from suitable initial state 
variables. 

Parameters values were optimized within predefined feasible ranges 
using a genetic algorithm (Seibert, 2000) that selected and recombined 
an initial random set of fifty parameter values over 3500 model runs 
(note that no local Powel runs were conducted). Calibration was based 
on the two performance metrics RNS_sqrtQ_adj and RS (Table 2). 
RNS_sqrtQ_adj is originally a bounded version of the Nash-Sutcliffe effi-
ciency RNS (Nash and Sutcliffe, 1970) that was proposed by Mathevet 
et al. (2006). RNS_sqrtQ_adj was used to minimize the error between 
simulated and observed square root-transformed discharge observa-
tions. Model optimization against water levels was based on the 
Spearman rank correlation RS (Spearman, 1904) as proposed by Seibert 
and Vis (2016). RS transforms the values of a time series into a sequence 
of ranks and thereby reduces the information of a continuous discharge 
time series to its dynamical aspects. Both calibration metrics used in this 
study can vary between − 1 and 1, with 1 representing a perfect fit. The 
two metrics were averaged arithmetically with equal weights for model 
calibrations against water levels and point discharge observation. 

For each calibration step, 100 independent calibrations were con-
ducted to account for parameter uncertainty, resulting in 100 possible 
hydrographs for the same forcing input. The described calibration 

procedure was repeated for each of the ten sampling iterations of the 
active learning and expert knowledge-based data collection approaches. 

2.5. Evaluation of the value of point discharge observations and water- 
level time series 

2.5.1. Characterization of point discharge observations 
As a first step of the analyses, we characterized the sample of 

discharge observations resulting from the data collection approaches in 
terms of seasonal distribution and representation of streamflow classes. 
The seasonal distribution of discharge observations was analyzed using 
circular statistics (Pewsey et al., 2013). Circular statistics use the unit 
circle as the basis for the calculation of trigonometric moments, such as 
measures of location and concentration. Following the theory in Pewsey 
et al. (2013, Ch. 3.1–3.4, p.21–29) and the hydrological example pro-
vided in Hall and Blöschl (2018), we first converted the date of discharge 
observations to angular values as measured in radian. The mean sam-
pling date (sample mean direction) and concentration index (sample 
mean resultant length) were then calculated to describe the sample 
distribution of the discharge observations from all ten sampling years. A 
concentration index of 1 indicates that discharge observations were 
tightly clustered around the mean sampling date. In contrast, smaller 
index values indicate a large spread of sampling dates (a uniform dis-
tribution around the year would result in a value of zero). For a more 
detailed description of circular statistics, we refer the reader to Pewsey 
et al. (2013). 

To gain insights into the distribution of discharge observations at the 
event scale, discharge observations were classified by streamflow class. 
Four streamflow classes were considered including the event peak, 
falling limb of an event, rising limb of an event, and baseflow between 
two events. The classification was based on the event definition of 
Sikorska et al. (2015) that was used in Swiss catchments representing a 
range of runoff regimes. An event was defined as the period that includes 
a peak flow day, i.e., a day at which the flow reaches a maximum within 
any moving window of fifteen days. The start of an event was then 
defined as the day with the minimum flow over five days before an event 
peak. The first day after the event peak with streamflow of less than 20% 
of peak flow was considered the end of an event. 

2.5.2. Model performance 
In the second part of the analysis, we evaluated the model perfor-

mance related to the six hypothetical data collection approaches. The 
approaches were thereby evaluated in an independent validation period 
covering the hydrological years 2000–2009. The continuous daily 
discharge simulations of the validation years were used to calculate five 
different performance metrics representing different aspects of the 
hydrograph (Table 2). RS and RVE were used to assess daily streamflow 
dynamics and annual volume separately. RNS calculated from untrans-
formed (RNS), square root-transformed (RNS_sqrtQ), and log-transformed 
(RNS_logQ) time series served to evaluate the daily dynamics and 
magnitude of high, mean, and low flows. 

In addition, each of the five performance metrics was input to the 
relative model performance metric R*. As suggested by Girons Lopez 
and Seibert (2016), R* was used as an indicator for the relative value of 
the active learning and expert knowledge-based data collection ap-
proaches compared to the lower and upper benchmarks. 

Overall, model performance related to the six data collection ap-
proaches was calculated for 100 model parameterization in 10 calibra-
tion years and 100 catchments. Unless stated differently, model 
performances for each catchment were aggregated by calculating the 
median of the 100 simulations and the 10 sampling years. 

Finally, the median model performance values were evaluated in 
terms of their spatial distribution. Maps of the value of water-level time 
series and point discharge observations, as quantified by the model 
performance improvement, were used to visually investigate which 
parts of the contiguous United States a particular type of data was most 

Table 2 
Performance metrics used for evaluating model performance in the validation 
period and metrics optimized during model calibration. The relative model 
performance metric R* was calculated using the performance with limited data 
(RD), the lower benchmark (RLB), and the upper benchmark (RUB). Abbreviations 
used in the equations refer to observed (obs) and simulated (sim) discharge (Q), 
time step i of a time series of length n, and the rank S of time step i within the 
time series.  

Metric Description Formula 

Evaluation metrics 
RNS Nash- 

Sutcliffe 
efficiency 

1 −

∑n
i=1(Qobs(i) − Qsim(i))

2

∑n
i=1

(
Qobs(i) − Qobs

)2 ;

additionally calculated using square root- 
transformed (RNS_sqrtQ) and log-transformed 
(RNS_logQ) discharge.  

RS Spearman 
rank 
correlation 

∑n
i=1

(
Sobs(i) − Sobs

)(
Ssim(i) − Ssim

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑n

i=1

(
Sobs(i) − Sobs

)2
)(

∑n
i=1

(
Ssim(i) − Ssim

)2
)√

RVE Volume error 
1 −

⃒
⃒
∑n

i=1(Qobs(i) − Qsim(i))
⃒
⃒

∑n
i=1(Qobs(i))

R* Relative 
model 
performance 

R* =
RD − RLB

RUB − RLB
100   

Calibration metrics 
RNS_sqrtQ_adj Bounded 

Nash- 
Sutcliffe 
efficiency 

RNS sqrtQ

2 − RNS sqrtQ  

RS Spearman 
rank 
correlation 

–  
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informative for. The interpretation of the maps was supported by 
calculating Spearman rank correlations between the model performance 
improvements and six hydroclimatic catchment attributes. Based on the 

studies of Berghuijs et al. (2014) and Addor et al. (2018), we selected 
aridity, the fraction of precipitation falling as snow, and precipitation 
seasonality as three important climatic indices. To quantify the 

Fig. 2. Seasonal distribution of point discharge observations resulting from the data collection approaches (a) ALWL_10Q (active learning with water levels and ten 
discharge observations), (b) ALWL_nQ (active learning with water levels and n discharge observations), (c) AL10Q (active learning with ten discharge observations), and 
(d) HEWL_10Q (hydrological expert knowledge with water levels and ten discharge observations). The colours indicate the mean sampling date of all discharge ob-
servations after ten iterations. A large (small) marker size indicates that observations were strongly (weakly) concentrated around the mean sampling date. The mean 
sampling date and the concentration index were calculated from the discharge sampling dates of all ten sampling years. 

Fig. 3. Streamflow classes represented in the 
point discharge observations resulting from the 
data collection approaches ALWL_10Q (active 
learning with water levels and ten discharge ob-
servations), ALWL_nQ (active learning with water 
levels and n discharge observations), AL10Q 
(active learning with ten discharge observations), 
and HEWL_10Q (hydrological expert knowledge 
with water levels and ten discharge observa-
tions). The y-axis indicates the percentage of 
discharge observations in a given streamflow 
class in iteration 1–10, whereby values represent 
an average over all 100 catchments. The last 
column indicates the mean frequency of a 
streamflow class over all ten iterations. The total 
number of discharge observations in the final 
iteration was ten for ALWL_10Q, AL10Q, and 
HEWL_10Q, and ranged from 32 to 303 for ALWL_nQ 
(average of all catchments was 67 discharge 
observations).   
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hydrological regime, we additionally selected the hydrological signa-
tures of mean daily discharge, runoff ratio, and baseflow index. Maps 
with information on the geographical regions, hydrological regimes, 
climatic indices, and hydrological signatures can be found in the ap-
pendix (Figs. A.1 and A.2) 

3. Results 

3.1. When are point discharge observations most informative? 

The characterization of discharge observations in terms of mean 
sampling date, seasonal concentration, and streamflow class allowed us 
to explore the timing of the most informative observations (Figs. 2 and 
3). Using active learning to decide on the timing of discharge observa-
tions resulted in a strong spatial variability in the mean sampling date 
that tended to follow the annual peak discharge season. Mean sampling 
dates were thus observed in fall and winter for the Pacific Northwest and 
the mountainous regions of the Atlantic Coast states, in spring and early 
summer in the Rocky Mountains, the adjoining Great Basins and the 
Great Lakes Region, and in fall along the Gulf Coast. The seasonality in 
sampling dates was indirectly reflected in the distribution of streamflow 
classes that indicated a tendency towards observations during the peak 
and falling limb of events. 

For ALWL_10Q and AL10Q, the concentration of informative discharge 

observation dates was most pronounced in snow-dominated catchments 
located in the Rocky Mountains, the Great Basins and the Great Lakes 
Region. As could be expected, discharge observations were spread across 
the year if an observation was assumed to exist at all time steps with a 
similar water level (ALWL_nQ). The number of observations collected 
after ten iterations with ALWL_nQ ranged from 32 to 303 (with an average 
of 67), whereby more observations were collected with increasingly arid 
conditions or with increasing importance of baseflow. 

The use of active learning (ALWL_10Q and AL10Q) or hydrological 
expert knowledge (HEWL_10Q) led to surprisingly similar selections of 
sampling dates as characterized by their mean. However, discharge 
observations were generally more distributed over the year with 
HEWL_10Q, which was a direct result of collecting a range of flow classes 
at different days of the year. 

3.2. Learning curves: change of model performance with increasing 
availability of point discharge observations 

Learning curves illustrate the learning effect of a model (here, 
change in model performance) as a function of the additional informa-
tion. These curves answer the practical question of how many sampling 
iterations are needed to reach a certain model performance. The 
learning curves in calibration and validation indicated that the iterative 
addition of point discharge observations for the calibration of HBV 

Fig. 4. Learning curves in the calibration period for the model performance metrics RS and RNS_sqrtQ_adj (calibration metrics) as a function of the point discharge 
observations collected at ten sampling iterations using the data collection approaches ALWL_10Q (active learning with water levels and ten discharge observations), 
ALWL_nQ (active learning with water levels and n discharge observations), AL10Q (active learning with ten discharge observations), and HEWL_10Q (hydrological expert 
knowledge with water levels and ten discharge observations). The learning curves are shown for a year with an average precipitation of a) a snow-dominated 
catchment in the Northeast (top row; a1 for RSand a2 for RNS_sqrtQ_adj) and b) a rain-dominated catchment in the Northwest (bottom row; b1 for RSand b2 for 
RNS_sqrtQ_adj). The points indicate the median performance of all 100 calibration runs and the lines range from the 5th to 95th performance quantile. Note that the y- 
axis limits are different for the two performance metrics. 
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generally increased model performance continuously. The added value 
of an additional observation decreased as the number of sampling iter-
ations increased (Figs. 4 and 5). 

Calibration results for two example catchments, one snow- 
dominated (Fig. 4a) and one rain dominated (Fig. 4b), suggest a more 
consistent performance over all 100 calibration runs with an increasing 
number of point discharge observations. This effect is stronger for cali-
bration against point discharge observations only (AL10Q) than for 
calibration against discharge observations and water levels (ALWL_10Q, 
ALWL_nQ, and HEWL_10Q). The effect is also more pronounced for 
RNS_sqrtQ_adj than for RS as the latter is by definition relatively well 
simulated by using continuous water level time series. 

Validation results for all 100 catchments indicate that the value of 
point discharge observations for model calibration varied considerably 
between catchments (grey area in Fig. 5). The variability was lowest 
when data were collected using active learning (as opposed to using 
hydrological expert knowledge) or when simulations were evaluated 

focusing on mean or high flows (RNS, RNS_sqrtQ, and RVE). Furthermore, 
the value of point discharge observations tended to become more similar 
across catchments for an increasing number of sampling iterations. 

The median performance for all catchments was used to analyze the 
learning curves for the relative model performance R* in the validation 
period (Fig. 6). Results indicated that the value of point discharge ob-
servations for improving water-level based model calibration was on 
average highest for annual volume estimates followed by high flows, 
mean flows and low flows. More specifically, model performance after 
ten sampling iterations improved by 58%-84% for R*VE, by 38%–93% 
for R*NS, by 22%–79% for R*NS_sqrtQ, and by 10%–83% for R*NS_logQ. 

The majority of the simulation results are encouraging for the 
approach of collecting a few point discharge observations, whereby as 
few as two to six observations are typically already (highly) beneficial 
for model calibration. However, it is important to note that a small 
number of observations could, in some cases, also be disinformative for 
model calibration. This was especially the case for the collection of 

Fig. 5. Learning curves in the validation period for the model performance metrics RS, RVE, RNS_sqrtQ, RNS, and RNS_logQ as a function of the point discharge ob-
servations collected at ten sampling iterations using the data collection approaches ALWL_10Q (active learning with water levels and ten discharge observations), 
ALWL_nQ (active learning with water levels and n discharge observations), AL10Q (active learning with ten discharge observations), and HEWL_10Q (hydrological expert 
knowledge with water levels and ten discharge observations). The coloured line indicates the median performance of all 100 catchments and the grey shaded area 
represents the 25th and 75th performance quantile. Note that the y-axis limits are different for different performance metrics. Some values extend below the lower 
limit of the y-axis and are plotted onto the x-axis. 
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discharge based on hydrological expert knowledge, where a calibration 
with less than five point discharge observations negatively affected the 
simulation of mean and low flows (Fig. 6). A further exception were 
simulations evaluated with RS, for which model performance decreased 
when adding any discharge observations to a previous calibration 
against water levels (Fig. 5; note that this was expected since a cali-
bration against water levels was based on RS). 

3.3. Relative value of point discharge observations and water-level time 
series 

By looking at the relative value of discharge and water levels for 
model calibration, we analyzed for which hydrograph aspects (repre-
sented by the evaluation performance metrics) and for which catch-
ments the two different types of data were more informative. The 
analysis was based on the validation model performance for each 
catchment after ten sampling iterations (Fig. 7). Spatial differences in 
the value of discharge and water levels are presented with a focus on the 
performance metric that showed the highest benefit of a certain data 
type (Figs. 8 and 9). 

3.3.1. Value of point discharge observations 
The comparison of performance metrics between ALWL_10Q and LBWL 

suggested that point discharge observations inform model calibration 
with information on streamflow volumes that is missing when only 
water levels were available (Fig. 7a). Point discharge observations were 
beneficial for all performance metrics (except for RS), whereby the effect 
was most pronounced for RNS (high flows). While simulated high flows 
were improved in the majority of catchments all over the contiguous 
United States, calibration against water levels and discharge was most 
valuable in (semi-) arid catchments (Figs. 8a and 9). 

Point discharge observations collected with both ALWL_10Q and 
HEWL_10Q generally improved model performance. Yet the choice of the 
data collection approach could make a difference in the effectiveness of 
point discharge observations when evaluating simulations in terms of 
RNS and RNS_logQ (Fig. 7b). In arid catchments as well as in baseflow- or 
snowfall-dominated catchments low flows were better simulated when 
point discharge observations were selected based on HEWL_10Q. In 
contrast, observations from ALWL_10Q were more informative in these 
catchments for the simulation of high flows (Figs. 8b and 9). In relatively 
humid or rain dominated catchments RNS and RNS_logQ were not 
distinctly different if point discharge observations were selected based 
on HEWL_10Q or ALWL_10Q. 

Fig. 6. Learning curves in the validation period for the relative model performance metrics R*VE, R*NS_sqrtQ, R*NS, and R*NS_logQ as a function of the point discharge 
observations collected at ten sampling iterations using the data collection approaches ALWL_10Q (active learning with water levels and ten discharge observations), 
ALWL_nQ (active learning with water levels and n discharge observations), AL10Q (active learning with ten discharge observations), and HEWL_10Q (hydrological expert 
knowledge with water levels and ten discharge observations). The curves show the median performance for all 100 catchments. Note that values below the lower 
limit of the y-axis are plotted onto the x-axis. 
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3.3.2. Value of water-level time series 
The value of water-level time series for model calibration was first 

evaluated by comparing simulations based on water levels and discharge 
(ALWL_10Q) with simulations based on discharge only (AL10Q). Results 
demonstrated that water levels improved the simulation of streamflow 
dynamics (RS) in all catchments (Fig. 7c). Also, model performance for 
metrics sensitive to the dynamics of flow magnitudes (in particular RNS 
and RNS_sqrtQ) could often be slightly improved from the combined use of 
water levels and discharge. Spatially, water levels were most informa-
tive for model calibration in catchments with rather dry conditions and 
summer rainfall (Figs. 8c and 9). 

Finally, the use of water-level time series to extend the observed 
discharge time series (ALWL_nQ) led to an increased model performance 
for all metrics that evaluate volume-related hydrograph aspects 
(Fig. 7d). Thereby, low-flow simulations improved the most, especially 
in catchments with prolonged periods of relatively constant (low) flow 
conditions, such as arid or snow-influenced catchments (Figs. 8d and 9). 

4. Discussion 

4.1. Value of point discharge observations and water-level time series 

Our results indicated that the collection of water-level and discharge 
data during a limited number of field visits could be highly valuable for 
predicting streamflow in previously ungauged catchments. Results 
thereby confirm earlier findings suggesting that a few months of 

continuous discharge observations (Brath et al., 2004; Melsen et al., 
2014; Sun et al., 2017), or a small number of strategically timed 
discharge observations (Correa et al., 2016; McIntyre and Wheater, 
2004; Pool et al., 2017; Seibert and McDonnell, 2015), can be very 
informative for model calibration. 

Assuming that there is the opportunity to perform a number of 
streamflow observations, one needs to decide on when to measure which 
variable, i.e., discharge or water levels (Seibert and McDonnell, 2015). 
Our findings suggested that the combination of both types of data is 
advantageous over the use of either water levels or discharge. While 
continuous water-level time series provided information about stream-
flow dynamics, selected point discharge observations helped to link 
these dynamics to streamflow volumes. 

As demonstrated by Seibert and Vis (2016), volume information is 
essential for the prediction of discharge in (semi-) arid catchments. In 
these catchments, the annual water balance is sensitive to actual 
evapotranspiration, and the corresponding model parameters could only 
be constrained if some information on volumes was also available. In-
dependent of the hydroclimatic context, volume information was also 
found to be important at the event scale. While including point 
discharge observations in calibration improved the simulation of all flow 
conditions, model performance improved the most for annual volume 
estimates (RVE). The improvement was furthermore larger for high flows 
than for low flows. This was likely because both active learning and 
hydrological expert knowledge resulted in the collection of a consider-
able number of observations at the peak and the falling limb of events, 

Fig. 7. Relative value of point discharge observa-
tions and water-level time series for model calibra-
tion. The relative value corresponds to the 
performance difference (ΔR) in the validation 
period between two data collection approaches after 
ten sampling iterations for each catchment. Positive 
values indicate an increased performance if (a) point 
discharge observations were used in addition to 
water-level time series, (b) hydrological expert 
knowledge was used to select point discharge ob-
servations as opposed to the use of active learning, 
(c) water-level time series are used in addition to 
point discharge observations only, and (d) point 
discharge observations were assumed to be repre-
sentative for all dates with a similar water level. 
ALWL_10Q is active learning with water levels and ten 
discharge observations, ALWL_nQ is active learning 
with water levels and n discharge observations, 
AL10Q is active learning with ten discharge obser-
vations, HEWL_10Q is hydrological expert knowledge 
with water levels and ten discharge observations, 
and LBWL is the lower benchmark with water levels. 
Note that the lower boxplot whisker extends to 
− 0.47 in the case of RNS_logQ in subplot (c) (marked 
by *).   
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which better constrained model parameters, influencing the intensity of 
the streamflow response to a given precipitation event. 

Our results suggested that the installation of a water-level logger at 
the beginning of a field campaign is beneficial for two reasons. First, as 
opposed to a calibration exclusively based on point discharge observa-
tions, considering water-level information improved the simulation of 
any hydrograph characteristic related to streamflow dynamics in most of 
the catchments. This was likely due to the high temporal resolution of 
the water-level time series used for model calibration. The benefit of 
water levels was therefore especially pronounced in catchments where 
active learning and hydrological expert knowledge led to a temporally 
concentrated collection of point discharge observations. Second, as 
demonstrated by Lebecherel (2015), using water-level time series to 
extend the observed discharge time series could be an effective way to 
reduce the number of field trips, in particular, if a catchment is char-
acterized by prolonged periods of similar flow conditions. However, 
results reported here have to be considered as optimistic, because model 
calibration for ALWL_nQ was based on the actual discharge values and not 
on values approximated by the originally ‘observed’ value. 

4.2. Value of active learning for the collection of point discharge 
observations 

A main objective of this study was to explore the value of active 
learning for selecting the most informative points in time for discharge 
observations as opposed to a decision based on hydrological expert 
knowledge. The use of active learning and hydrological expert knowl-
edge resulted in surprisingly similar mean sampling dates. These sam-
pling dates were typically aligned with hydrologically ‘active’ season(s). 
As a consequence, sampling dates were most concentrated in catchments 
with a pronounced annual peak flow, such as snow-dominated or winter- 
precipitation dominated catchments. Our results thereby indicate that 
active learning (i.e., model uncertainty) could guide the timing of point 
discharge observations towards hydrologically meaningful periods, 
which are generally in agreement with an expert’s decision on the 
timing of informative sampling dates. Furthermore, the results 
confirmed the importance of observations during subperiods of high 
parameter sensitivity (Harlin, 1991), especially when constraining 
model parameters with limited data. 

The set of point discharge observations collected with active learning 
is the result of minimizing prediction uncertainty with the least number 
of observations. For this reason, the timing of such observations is 
typically model-specific (Crawford et al., 2013). For hydrological 

Fig. 8. Spatial distribution of the relative value of point discharge observations and water-level time series for model calibration. The relative value corresponds to 
the performance difference (ΔR) in the validation period between two data collection approaches after ten sampling iterations for each catchment. Positive values 
indicate an increased performance if (a) point discharge observations were used in addition to water-level time series, (b) hydrological expert knowledge was used to 
select point discharge observations as opposed to the use of active learning, (c) water-level time series are used in addition to point discharge observations only, and 
(d) point discharge observations were assumed to be representative for all dates with a similar water level. ALWL_10Q is active learning with water levels and ten 
discharge observations, ALWL_nQ is active learning with water levels and n discharge observations, AL10Q is active learning with ten discharge observations, HEWL_10Q 
is hydrological expert knowledge with water levels and ten discharge observations, and LBWL is the lower benchmark with water levels. Note that the colour scales 
are different in (a) to (d). 
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applications, this not only means that results could be different for 
different models, but also that the timing of the final set of point 
discharge observations collected by active learning is subject to model 
uncertainty and input uncertainty (in particular disinformative events; 
Beven and Westerberg, 2011). In contrast, the timing of point discharge 
observations based on hydrological expert knowledge is defined a priori, 
and their selection is therefore not directly affected by model uncer-
tainty and input uncertainty. However, in the context of this study, 
active learning and hydrological expert knowledge were applied to the 
same hydrological model under identical forcing input. Results pre-
sented here for active learning and hydrological expert knowledge 
should therefore be directly comparable. 

In this study, we applied active learning for the collection of point 
discharge observations during a hydrological year without respecting 
the temporal sequence of the observations. Results, and in particular 
model performance from calibrations with active learning, therefore 
provide an indication of how valuable active learning could be at best. 
Given the conceptual advantages and the practical limitations of active 
learning, we argue that active learning is especially valuable for com-
plementing the collection of data based on expert knowledge. More 
specifically, expert knowledge could be used to decide on the timing of 
the first few field observations. Subsequently, active learning could 
guide the timing of additional measurements by providing information 
on flow situations that would be most informative. 

4.3. Limitations of the study set-up 

Our findings provided evidence that the prediction of streamflow in a 
previously ungauged basin can be greatly improved by the collection of 
a relatively small amount of local hydrological information. These 
encouraging results are based on a number of idealized assumptions that 
might be challenged when moving from a modelling study into practice. 

The first major assumption made in this study was the perfectly 
known forcing time series. In practice, uncertain weather forecasts can 
lead to a too early or a delayed collection of point discharge observa-
tions. Results from previous studies with a limited number of streamflow 
or water level information suggested that a good coverage of a range of 
flow conditions is likely more important than the exact timing of ob-
servations (Etter et al., 2020; Pool et al., 2017). However, the impor-
tance of timing might depend on the flow regime of a catchment. Wright 

et al. (2015) thereby showed that the influence of single discharge ob-
servations on model performance could be considerably larger in an arid 
catchment than in a humid catchment. The effect of a mismatch in the 
timing of observations might also differ among flow classes. We expect 
that the importance of an accurate timing in observations is strongest for 
peak flows as they indicate the reactivity of a catchment to precipitation. 
In contrast, the timing might be less relevant during event recessions or 
baseflow conditions when similar hydrological processes dominate over 
a longer period. The sensitivity of model performance to the timing of 
point discharge observations is probably similar for active learning and 
expert knowledge because both data collection approaches led to a 
similar frequency of streamflow classes. 

A further simplification of this study is the use of mean daily 
streamflow values as opposed to the use of instantaneous measurements 
taken during field visits. The difference between instantaneous 
discharge (discharge reported at 15-minutes interval) and mean daily 
discharge of the CAMELS dataset was small during recession and low- 
flow periods, but could be considerable during peak flows. This differ-
ence is expected to be most pronounced for either catchments or days 
with high streamflow variability and probably requires some attention 
when such field observations are used for model calibration. 

Another basic assumption of this study were time-invariante rating 
curves. In practice, rating curves can change considerably due to 
changes in the cross-section of a river, backwater, or hysteresis effects 
(McMillan and Westerberg, 2015). Such changes can affect our model-
ling results in two ways. First, water-level time series were derived from 
discharge time series (see Section 2.1) and substantial intra-annual 
changes in the rating curve could mislead model parameterization. 
Second, the success of the active learning approach in which point 
discharge observations were assumed to be valid for all time steps with 
comparable water level (ALWL_nQ) relies on a time-invariant rating 
curve. The value of ALWL_nQ might therefore be overestimated in 
catchments with considerable rating curve changes within a hydrolog-
ical year. 

5. Conclusions 

Long continuous discharge time series representing a variety of hy-
drological conditions are usually seen as a requirement for model cali-
bration. In practice, many catchments have no, or only limited, 

Fig. 9. Spearman rank correlation between catchment attributes and the relative value of point discharge observations and water-level time series for model 
calibration. The relative value corresponds to the performance difference (ΔR) in the validation period between two data collection approaches after ten sampling 
iterations for each catchment. Positive values indicate an increased performance if (a) point discharge observations were used in addition to water-level time series, 
(b) hydrological expert knowledge was used to select point discharge observations as opposed to the use of active learning, (c) water-level time series are used in 
addition to point discharge observations only, and (d) point discharge observations were assumed to be representative for all dates with a similar water level. 
ALWL_10Q is active learning with water levels and ten discharge observations, ALWL_nQ is active learning with water levels and n discharge observations, AL10Q is active 
learning with ten discharge observations, HEWL_10Q is hydrological expert knowledge with water levels and ten discharge observations, and LBWL is the lower 
benchmark with water levels. 
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discharge data. Understanding which, and how much data is most 
valuable for model calibration, is essential to improve the prediction in 
ungauged basins. In this study, we contributed to an improved under-
standing by explicitly comparing the relative value of water-level time 
series and point discharge observations for model calibration, and by 
testing a machine learning approach to determine when to collect such a 
limited number of discharge observations. Based on results from simu-
lation experiments for 100 hydroclimatically diverse catchments, the 
following conclusions can be drawn: 

• A small number of point discharge observations contained, surpris-
ingly, a lot of information, and can considerably improve model 
calibrations based on water-level time series with respect to annual 
and event-scale streamflow volumes. While model performance 
continuously improved as the number of observations increased, the 
incremental improvements were most considerable for the first two 
to six observations. The value of point discharge observations was 
highest for (semi-) arid catchments and for the simulation of annual 
volumes.  

• Continuous water-level time series provided valuable information 
for the simulation of daily streamflow dynamics. Furthermore, 
water-level time series could reduce the number of field trips if a 
point discharge observation was assumed to exist at all time steps 
with a similar water level. Such an extension of the number of 
discharge observations was most effective in catchments with pro-
longed periods of relatively constant flow conditions.  

• Choosing the date of point discharge observations based on active 
learning led to similar sampling dates as the selection of dates ac-
cording to hydrological expert knowledge. In both cases, most ob-
servations were selected for the seasons with the highest flows. 

Our findings encourage the approach to gauge an ungauged catch-
ment with discharge observations on strategically selected dates. Inde-
pendent of the geographic region, the most informative sampling dates 
are typically expected to take place during hydrologically active periods, 
such as the annual peak discharge, other discharge peaks, and recession 
situations. Two to six observations during these periods can be already 
very informative. However, increasing the number of observations to ten 
allows the collection of additional discharge observations in periods of 
more constant flow conditions, which is beneficial for a more balanced 
evaluation of different flow conditions during model calibration. The 
exact timing of the first few discharge observations could be defined 
with hydrological expert knowledge, active learning could then be 
valuable for guiding the timing of the additional observations. 
Combining such a small number of point discharge observations with 
(short) continuous water level time series is a promising way towards 
improved predictions in ungauged basins. 

Author contributions 

SP and JS designed this study; SP performed the hydrological sim-
ulations; SP and JS analyzed and discussed the results; writing of the 
paper was led by SP with contributions of JS. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. A1. Hydrological regimes across different regions of the contiguous United States. The regimes are shown for a selection of catchments representative for the 
100 study catchments. The regimes were calculated as the mean daily discharge of each day of the hydrological years 1990–2009, whereby daily values were 
smoothed by calculating a moving average over 15 days. The regimes were normalized by their mean streamflow value. The regions are delineated according to 
NOAA (2020). 
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