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ABSTRACT: We have recently presented an Automated
Quantification Algorithm (AQuA) and demonstrated its utility
for rapid and accurate absolute metabolite quantification in 1H
NMR spectra in which positions and line widths of signals were
predicted from a constant metabolite spectral library. The AQuA
quantifies based on one preselected signal per metabolite and
employs library spectra to model interferences from other
metabolite signals. However, for some types of spectra, the
interspectral deviations of signal positions and line widths can be
pronounced; hence, interferences cannot be modeled using a
constant spectral library. We here address this issue and present an
improved AQuA that handles interspectral deviations. The
improved AQuA monitors and characterizes the appearance of
specific signals in each spectrum and automatically adjusts the spectral library to model interferences accordingly. The performance
of the improved AQuA was tested on a large data set from plasma samples collected using ethylenediaminetetraacetic acid (EDTA)
as an anticoagulant (n = 772). These spectra provided a suitable test system for the improved AQuA since EDTA signals (i) vary in
intensity, position, and line width between spectra and (ii) interfere with many signals from plasma metabolites targeted for
quantification (n = 54). Without the improvement, ca. 20 out of the 54 metabolites would have been overestimated. This included
acetylcarnitine and ornithine, which are considered particularly difficult to quantify with 1H NMR in EDTA-containing plasma.
Furthermore, the improved AQuA performed rapidly (<10 s for all spectra). We believe that the improved AQuA provides a basis for
automated quantification in other data sets where specific signals show interspectral deviations.

■ INTRODUCTION

Metabolomics analyses of biofluids are widely used to study
metabolic changes in relation to different pathophysiological
conditions in humans.1 Targeted 1H NMR-based metabolo-
mics can be used to quantitatively examine the metabolite
content in biofluid samples.2−4 NMR spectra from biofluids are
highly complex, and therefore quantification of metabolites
requires spectral processing that can discern signals of interest
and account for interference between signals originating from
different compounds.5 It is desirable to increase the
throughput of various steps in the workflow (especially in
large-scale studies), and efforts have been made to automate
processing systems that include, e.g., alignment of experimental
spectra, identification, and/or quantification.6−12 In contrast to
targeted methods, some quantification methods have been
designed for simultaneous identification (e.g., ASICS11 and
BAYESIL7). In targeted analyses, the quantification step is
considered to be a major bottleneck. Therefore, there is a need
for accurate and highly efficient processing of the experimental
spectra.13

We have recently introduced an automated quantification
algorithm, AQuA, that operates using spectral data extracted
from a library consisting of one standard spectrum per
metabolite.14 It was successfully implemented for rapidly
quantifying metabolites in plasma samples collected using
heparin as an anticoagulant. In this implementation, AQuA
used one preselected NMR signal per metabolite for
determining concentrations and accounted for interferences
between metabolite signals, assuming that specific signal
positions and line widths displayed small deviations between
spectra.
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Here, we introduce an improved AQuA that also includes a
feature that can automatically handle interspectral deviations of
signal positions and line widths for specific signals. We
evaluated this new feature of AQuA with a large data set from
human plasma samples that had been collected using
ethylenediaminetetraacetic acid (EDTA) as an anticoagulant.15

EDTA prevents coagulation by binding divalent cations, and its
presence in the samples yields many different NMR
signals.16,17 These high-intensity signals interfere with signals
from several plasma metabolites. Signals from free EDTA (H-
EDTA3−) are particularly problematic due to their pH
sensitivity, which can lead to interspectral deviations in signal
positions and line widths.16,18 Spectra containing EDTA
signals therefore provide an excellent test system for the
improved AQuA that aims at handling such issues automati-
cally. Using this test system and the AQuA quality indicators
that we have defined and validated previously, the accuracy and
speed of the improved AQuA were evaluated and compared
with quantifications that did not account for variable
interferences from EDTA.14

The improved AQuA strategy may also be used for
automated quantification in high-throughput 1H NMR-based
metabolomics of other samples that generate spectra in which
positions and line widths are not stable.

■ EXPERIMENTAL SECTION
In the present study, targeted 1H NMR-based metabolomics
analyses were performed on a large set of EDTA-containing
plasma samples. The analyses included sample preparation,
data collection, and spectral processing as described
previously.14 In addition, metabolite quantification was done
by developing an improved version of the automated
quantification algorithm (AQuA). The improvement included
a feature that handles interspectral deviation of signal position
and line widths. Both the improved AQuA and the AQuA
without improvement were implemented and evaluated in
EDTA-containing plasma.
Sample Preparation, Collection, and Spectral Pro-

cessing of 1H NMR Data. Human plasma samples from adult
residents in Sweden have been collected and stored for future
research purposes.19 Targeted 1H NMR-based metabolomics
was performed on 772 plasma samples collected using EDTA
as an anticoagulant. Macromolecules were removed from each
plasma sample (60 μL) by ultrafiltration14i.e., centrifugation
(10 000g, 4 °C) through a 3 kDa molecular weight cut-off filter
device (Amicon ultra 0.5 mL, Ultracel 3k, Merck Millipore
Ltd., Tullagreen, Carrigtwohill, Co. Cork, IRL). Prior to
ultrafiltration, glycerol was removed from each filter membrane
by washing with water (5 mL) using centrifugation (1000g, 36
°C). Preparation of NMR samples: mixing each filtrate with a
single solution containing H2O/D2O, phosphate buffer (pH
7.0), and trimethylsilyl-d4-propionic acid (TSP) as an internal
standard, and 1H NMR analyses were done as previously
described.14 All 1H NMR experiments were done on a Bruker
III Avance spectrometer (600 MHz) with a cryogenically
cooled probe. Each spectrum was recorded with 512 transients
at 25 °C using the zgesgp pulse sequence (Bruker BioSpin)
and the TopSpin software (version 3.1, Bruker BioSpin).
Each experimental spectrum was subjected to phase

correction, adjustment of shimming irregularities (to an
internal TSP signal line width of 1.10 Hz), and spectral
binning (0.0002 ppm/bin) in ChenomX NMR Suite (version
7.5, ChenomX Inc., Edmonton, Canada). The binned data

were imported to MATLAB (version R2012b, MathWorks
Inc.) for AQuA-based processing.

Improved AQuA Principle. As shown by Röhnisch et
al.,14 AQuA-based processing determines the concentration of
each targeted compound using the height of a preselected
target signal (with relative intensity y and position δy ppm) in
the experimental spectrum. This target signal is separated into
(1) a reporter signal contribution (x) that is directly
proportional to the compounds’ concentration (c) in the
NMR sample and (2) the interference contribution (y − x),
which is the sum of intensity contributions (≥0) from other
signals located in the same spectral region. Since AQuA-based
processing simultaneously considers the target signals from all
targeted compounds, the output will be a set of vectors (y̅n, δn̅,
x ̅n, and cn̅), where each element (yi, δyi, xi, or ci) represents the
value for compound i (i = 1, 2, ... k, if k different compounds
are targeted) in experimental spectrum/sample n. Additionally,
the relative interference (Δi elements) can be computed as (yi
− xi)/yi to yield a vector (Δ̅n). Each vector, x̅n, containing the k
reporter signals in spectrum n can be computed by solving the
following equation

y m xn n̅ = ̿ · ̅ (1)

where y̅n is the k target signals in spectrum n and m̿ is a
constant k × k matrix that describes the interferences between
the compounds. This interference matrix is derived from a
spectral library containing one calibration spectrum for each
targeted compound. Each calibration spectrum is normalized
so that its reporter signal height is 1. By only considering the
signal heights at the different target positions, each calibration
spectrum is reduced to a calibration vector with length k,
where each respective element represents the signal height at
one of the target positions. As a result, each normalized
calibration spectrum is converted to a calibration vector, where
one element is 1 (i.e., the reporter signal) and the other
elements are the relative signal heights (≥0) observed at the k
− 1 remaining target positions. These normalized vectors are
then organized as the columns of the interference matrix m̿.14

We demonstrated previously that the use of a constant
matrix is appropriate when signals located in the target signal
regions with interference display limited interspectral position-
al deviation (e.g., as shown for heparin-containing plasma).14

In the present work, we hypothesized that if some of these
signals display clear interspectral positional and/or line width
deviation, the use of a constant matrix is suboptimal. We
therefore introduced a strategy for improving AQuA to
account for positional and line width deviations. The improved
AQuA computation is done using the following equation

y m xn n n̅ = ̿ · ̅ (2)

where y̅n is the k target signals in spectrum n, and where m̿n, is
a variable k × k matrix, in which some portion of the matrix
elements is changed for each spectrum n. In order to derive an
interference matrix m̿n, specific for each spectrum n, the
spectral library must to some extent be adapted to the
spectrum n. The calibration spectrum of any given compound
in the spectral library can be envisioned as a basis for
identifying the signals originating from a compound in an
experimental spectrum. We developed an automated peak-
picking routine that can be guided to detect the signals of any
given compound and determine their exact positions, line
widths and heights (MATLAB script; Figure S1 in the
Supporting Information). Using this information and assuming
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Figure 1. Improved AQuA principle, y̅n = m̿n·x̅n, shown using a hypothetical example, where five compounds (1: blue, 2: orange, 3: green/red, 4:
gray, and 5: purple) are targeted for quantification. (A) Two superimposed spectra, where the signal from compound 3 shows interspectral
positional deviation (spectrum n = 1: green, spectrum n = 2: red). Target signals extracted from spectrum n are used in the nth AQuA computation
(spectrum n = 1: y̅1, spectrum n = 2: y2̅). (B) Normalized compound library divided into a constant part that includes all compounds (1: blue, 2:
orange, 4: gray, and 5: purple) with limited interspectral deviations and a variable part that includes the compound (3: green/red) with interspectral
deviation. The variable part changes according to the conditions in spectrum n, while the constant part remains unchanged. (C) Interference matrix
m̿n optimized for spectrum n. The elements are divided into two portions: a constant portion extracted from the constant part of the library and a
variable portion extracted from the variable part of the library. The variable portion changes according to the conditions in spectrum n, while the
constant portion remains unchanged. (D) Results obtained with the improved AQuA (top: reporter signals x̅1 for spectrum n = 1, bottom: reporter
signals x̅2 for spectrum n = 2).
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that the signals are described by Lorentzian functions, a
calibration spectrum with the appropriate characteristics for
the experimental spectrum n can be generated for any given
compound. With this procedure optimized target positions and
prediction of the elements in the interference matrix is
obtained even if the positions and line widths of some signals
vary between spectra. Hence, following the normalization
procedure described above an optimized m̿n matrix can be
derived rapidly in each AQuA computation (Figure 1).
AQuA Implementation. A total of 54 well-established

plasma metabolites were targeted for quantification (Table
S1).14,20,21 First, an AQuA implementation assuming only
interference between metabolite signals and a constant matrix,
m̿constant, for all spectra was established. Target signals were
selected as previously described.14 Automated peak-picking
(Figure S1 and Tables S2 and S3) was done to reduce each
experimental spectrum n to a yn̅ vector (54 target signal
elements). Data reduction and normalization of a metabolite
library (spectra from 54 metabolites optimized in silico,5 see
ref 14 for details) were done to yield a matrix m̿constant (54 ×
54), which described normalized metabolite interferences at
different target positions (mconstant,i,k∈[0,1]). The matrix
m̿constant and each yn̅ vector were then utilized in the AQuA
computation (eq 1), thereby yielding each x̅n vector (54
reporter signal elements). Each x̅n vector was converted to
metabolite concentrations (μM) in the NMR sample n.
Second, AQuA was implemented with the improved

approach to also include the signals from free EDTA (H-
EDTA3−) and two EDTA complexes (Ca−EDTA2− and Mg−
EDTA2−).16 The yn̅ vectors were thereby extended to include
one target signal also for each EDTA compound, respectively.
In total, each yn̅ vector contained 57 elements (54 from
metabolites and 3 from EDTA). The portion of m̿n related
only to interference between the established plasma metabo-
lites was kept constant for all spectra. Unlike most signals from
plasma metabolites, signals from EDTA may vary to a
significant degree in position and line width between
spectra.14,16,18 Hence, it may be suboptimal to set the portion
of the matrix elements related to the EDTA compounds
constant. As part of the improved AQuA algorithm, positions
and line widths (full width at half-maximum, FWHM) of
signals can be derived automatically (Figure S1), and for any

compound that displays clear interspectral deviation, the
improved approach can be employed to optimize the portion
of the matrix elements related to that compound each time the
AQuA computation is performed (Figure 1; eq 2). The
experimental signals from EDTA were monitored using this
feature. Ca−EDTA2− and Mg−EDTA2− signals appeared with
similar positions and line widths in all spectra, and hence, the
portion of the m̿n matrix that was related to Ca−EDTA2− and
Mg−EDTA2− was kept constant for all spectra. The signals
from free EDTA (H-EDTA3−) appeared with interspectral
deviation, and therefore a new calibration spectrum n was
created automatically using two Lorentzian functions, where
positions (ppm) and line widths (Hz) matched the positions
and line widths observed in spectrum n for free EDTA. Using
this calibration spectrum (and the optimized target position for
free EDTA), the portion of m̿n specifically describing the
interference related to free EDTA in spectrum n was derived
automatically. Each y̅n vector (57 target signal elements) and
each corresponding m̿n matrix (57 × 57) were used in the
improved AQuA computation (eq 2). The metabolite elements
in the x ̅n vectors (54 out of 57 elements) were converted to
metabolite concentrations (μM) in the NMR sample n. The
EDTA elements in the xn̅ vectors (3 out of 57 elements) were
not interpreted quantitatively. Details regarding the improved
AQuA implementation are shown in Figure S2 (flow chart),
Table S2 (algorithm and MATLAB code), Tables S3 and S4
(input and output data) and Figure S3 (proof-of-concept
figures).

■ RESULTS AND DISCUSSION

Targeted 1H NMR-based metabolomics was applied on human
plasma samples, which had been collected using EDTA as an
anticoagulant. The metabolomics analyses generated a data set
of 772 1H NMR spectra, in which 54 human plasma
metabolites were targeted for quantification with AQuA-
based processing. Prior to quantification by AQuA, the 1H
NMR signals from the anticoagulant (free EDTA as well as
EDTA bound to Ca2+ and Mg2+) were investigated. The
appearance (position and multiplicity) of EDTA signals in the
present data set (Figure 2) was in agreement with previous
observations.16

Figure 2. Average experimental 1H NMR spectrum (δ ca. 2.4−4.0 ppm) for the human plasma samples that had been collected using EDTA as an
anticoagulant (n = 772). Purple*: H-EDTA3− (δ 3.62); orange: H-EDTA3− (δ 3.23); green*: Ca−EDTA2− (δ 3.13); blue: Ca−EDTA2− (δ 2.55);
Mg−EDTA2− (δ ca. 3.21; not indicated by a colored dot); and brown*: Mg−EDTA2− (δ 2.69). *Selected target signals used in the improved
AQuA.
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The EDTA signals appeared in the same regions as many of
the plasma metabolite signals.16

Figure 3 shows the relative intensities, positions, and line
widths for different EDTA signals in the data set. The line

widths shown in Figure 3 are full width at half-maximum
(FWHM) values. The position of each signal is shown in
Figure 3 as a median absolute deviation (MAD) valuei.e.,
the absolute distance between the median position and the
actual position, where a one-step increase in the MAD value
(bin) corresponds to a positional deviation (from the median)
of 0.0002 ppm. It is seen in Figure 3 that the two signals from
free EDTA were generally of high intensity; however, the
intensities displayed large variation in the data set. The signals
from free EDTA displayed much larger deviation in line width
and position compared to signals from Ca−EDTA2− and Mg−
EDTA2− (Figure 3; for details, see Figure S4).
Hence, despite the addition of a buffer solution (during

sample preparation) to minimize pH differences between
samples, interspectral deviations could not be completely
avoided for free EDTA signals.16,18,22 The MAD values of up
to ca. 10 bins displayed in Figure 3 for free EDTA signals are
much larger than the positional deviations of ca. 1 bin, which we
previously reported as typical for plasma metabolites.14

As the free EDTA signals (Figure 2) appear close to many
metabolite signals16 and display high intensities and large
positional deviations (Figure 3) compared with typical plasma
metabolite signals,14 this data set is challenging for metabolite
quantification and therefore provides an excellent test system
for demonstrating how the improved AQuA can handle
interspectral deviation issues.
Quality Indicators. In our first report on AQuA, which

only accounted for interferences between metabolite signals in
the absence of EDTA signals (eq 1), the results from the
automated quantification were compared with a manual
procedure. This comparison showed excellent agreement for
most metabolites and also revealed which metabolites were
difficult to quantify accurately. Furthermore, we showed that

information on which metabolites are difficult to quantify
could be obtained directly from values generated in the AQuA
(i.e., yi, δyi, xi, and Δi) by analyzing the quality indicators
occurrence, positional deviation, and degree of interference
(Fq).

14 Hence, we extracted and employed these quality
indicators in the present study to evaluate the improved
AQuA, which also accounted for nonmetabolite signals
(EDTA) as well as interspectral deviations in signal positions
and line widths (eq 2).

Occurrence. The occurrence is the fraction of spectra in a
data set for which the corresponding reporter signal occurs
above the detection limit (xi > 3 × noise).14 A too low
occurrence disqualifies the metabolite for further quantitative
and statistical analysisi.e., the larger the occurrence the higher
is the potential for yielding useful quantitative information.
Here, the occurrence was computed for each metabolite (Figure
4A; see Table S5 for details). Most metabolites displayed 100%
occurrence.

Positional Deviation. The positional deviation is the value
(±bins) that accounts for 95% of the median-centered
distribution of target signal positions (δy) for a given
metabolite in a given data set.14 In agreement with our
previous report, most metabolites displayed a minor (within
±1 bins) positional deviation (Figure 4B; see Table S5 for
details). Free EDTA signals displayed much larger deviation
than ±1 bins (Figure 3).

Degree of Interference. The degree of interference is
derived from the interference distribution in a data set, and Fq
is the fraction of spectra in a data set where the interference for
a given metabolite i, Δi, exceeds a preset value q.14 The
interference of each target signal can be separated into two
parts: one part that originates from compounds that are
metabolites and one part that originates from compounds that
are nonmetabolites, such as those from EDTA (for details, see
Table S6). As the interference itself can be separated, its
distribution over the data set can also be separated into two
parts (one distribution for other metabolites and one for
nonmetabolites, respectively), whereby separate values of Fq
can be derived.
Figure 4C shows the degree of interference from other

metabolites (high: F0.50 > 0.50, intermediate: F0.50 ≤ 0.50
and F0.05 > 0.00, low: F0.05 = 0.00; see Table S5 for details).
Most metabolites displayed a low or intermediate degree of
interference (from other metabolite signals). AQuA quantifi-
cation can tolerate a higher degree of interference provided
that it occurs in a spectral region with minor positional
deviation.14 It is seen in Figure 4 that the metabolites with a
higher degree of interference typically displayed a low
positional deviation. Hence, even for these metabolites, there
is no severe quantification problem.
Figure 4D shows the degree of interference from EDTA (see

Table S5 for details). It is seen that several metabolites
displayed some degree of interference from EDTA signals. We
have previously shown that AQuA may be prone to
quantification errors if the degree of interference is too high
(i.e., F0.50 > 0.50).14 However, the degree of interference from
EDTA was rarely that high, except for dimethyl sulfone
(DMSO2) and carnitine (Figure 4D). Thus, our evaluation of
the degree of interference shows that AQuA-based processing
allows accurate quantification of metabolites also (i.e.,
acetylcarnitine and ornithine), which have previously been
deemed too difficult to quantify by 1H NMR in plasma samples
collected by using EDTA as an anticoagulant.16 Importantly, if

Figure 3. Relative intensities, positions (MAD; bin), and line widths
(FWHM, Hz) for different EDTA signals in the present data set (n =
772). Purple: H-EDTA3− (δ 3.62); orange: H-EDTA3− (δ 3.23);
green: Ca−EDTA2− (δ 3.13); brown: Mg−EDTA2− (δ 2.69); and
blue: Ca−EDTA2− (δ 2.55). Mg−EDTA2− (δ ca. 3.21) was not
evaluated due to interference with the high-intensity signal from the
free EDTA signal. Details on intensities, positions, and line widths for
the EDTA signals are presented in Figure S4.
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these interferences from EDTA had been ignored in the
implementation of AQuA, it would have resulted in inaccurate
concentration estimates for these metabolites.
Mean Sample Concentrations. In the present study, the

data set was analyzed with two implementations: (i) the
nonimproved AQuA that accounted only for interference
between metabolites (eq 1) and (ii) the improved AQuA that
also accounted for interferences from free EDTA, Ca−
EDTA2−, and Mg−EDTA2− (eq 2). The magnitude of the
concentration errors that would result if variable interferences
from EDTA had not been accounted for was computed by

comparing the resulting concentrations from the above two
implementations of AQuA. The red bars in Figure 5 show the
relative deviation of the mean (μ) concentration values for
each metabolite expressed as (μi − μii)/μii, where i is the
nonimproved AQuA and ii is the improved AQuA. The
metabolites in Figure 5 are grouped (top-down) in descending
order of Fq from EDTA. The nonimproved AQuA, which did
not account for interference from EDTA signals, overestimated
the concentrations of ca. 20 metabolites that showed some
degree of interference from EDTA (for details, see Table S7).

Figure 4. Evaluation of quality indicators in the present data set (n = 772) for the 51 metabolites with ≥5% occurrence. (A) Occurrence (lighter gray:
5% ≤ occurrence <90%, darker gray: occurrence ≥90%). (B) Positional (δ)deviation (lighter gray: δ deviation > 1 bin, darker gray: δ deviation ≤ 1 bin,
1 bin = 0.0002 ppm). (C) Fq values from metabolites (red: F0.50 > 0.50, yellow: F0.50 ≤ 0.50 and F0.05 > 0.00, green: F0.05 = 0.00). (D) Fq values
from EDTA (red: F0.50 > 0.50, yellow: F0.50 ≤ 0.50 and F0.05 > 0.00, green: F0.05 = 0.00). DMSO2: dimethyl sulfone, TMAO: trimethylamine-
N-oxide. Details on quality indicators for all 54 metabolites are presented in Table S5.
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It is seen in Figure 5 that the deviations (red bars) correlate
with the size of Fq.
We found that it could be instructive to compare the

concentration errors (observed when interferences from EDTA
were ignored) with some estimate of the biological variation.
The results from the improved AQuA implementation for the

present EDTA data set were therefore compared with
concentrations derived previously for a data set from 1342
human plasma collected with heparin as an anticoagulant.14

The two data sets originate from two different populations
(although they were generated with the same workflow for
sample preparation, data collection, and spectral processing,

Figure 5. Comparison of mean metabolite concentrations (μ). Red bars: comparison between two different implementations of AQuA (i: the
nonimproved AQuA, eq 1; ii: the improved AQuA, eq 2) employed on the EDTA data set (n = 772). Interference from EDTA: aF0.50 > 0.50, bF0.50
≤ 0.50 and F0.05 > 0.00, cF0.05 = 0.00. Blue bars: comparison between AQuAs optimized for the present EDTA data set and the heparin data set,14

respectively (EDTA: n = 772, eq 2; heparin: n = 1342, eq 1). Although included in the quantification model, alcohols are not shown since previous
analyses of quality control samples revealed them to have high coefficients of variation.14 Details are presented in Table S7.
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etc.). Hence, this comparison presumably reflects some
biological variations between the two datasets. For each
metabolite, we computed (μEDTA − μheparin)/μheparin,
where EDTA is the improved AQuA in the present EDTA data
set and heparin is the nonimproved AQuA in the heparin data
set (hence, without EDTA signals).14 These computed values
are also displayed in Figure 5 (blue bars; see Table S7 for
details). The values presented as blue bars in Figure 5 show no
correlation with the size of Fq. We note that the magnitude of
concentration errors that had occurred if the variable
interference from EDTA had not been accounted for in the
present study (red bars in Figure 5) would have exceeded the
magnitude of biological variation for many metabolites (blue
bars in Figure 5). These results indicate that improving AQuA
to account for the variable interferences from EDTA is
required to uncover biologically meaningful metabolite data in
EDTA-containing plasma.
Efficiency. We have reported previously that AQuA

computations are rapid.14 Here, we compared the time
required for the nonimproved AQuA computations that
employed a constant matrix m̿ (i) and the improved AQuA
computations that used a variable m̿n matrix (ii). It is seen in
Figure 6 that deriving a new matrix for each spectrum increases

the time required for the computations. However, the
improved AQuA was still very fast and required <10 s to
perform all 772 computations using a standard personal
computer.
Comparison with Other Automated Quantification

Approaches. The improved AQuA was also compared with
ASICS,11 an R-based package for automated identification and
quantification, which includes different approaches. For
example, library signals can be aligned differently, jointly
based on an entire data set or independently for each
experimental spectrum. For details on different approaches
tested, see Table S8. To facilitate a straightforward
comparison, the ASICS workflow employed differed somewhat
from the default. For example, instead of using the built-in
library, we utilized the same library spectra that had been used
in the improved AQuA (Table S8), and instead of applying a
constant sum normalization, the normalization was based on
the TSP signal (Table S8). ASICS was performed on both
experimental data and simulated spectra, representing known

concentrations of metabolites in mixtures (with and without
EDTA signals; Table S8). The use of the simulated data
revealed that it is inherently more difficult to quantify
metabolites in the presence of EDTA signals, particularly due
to the interspectral line width deviations of free EDTA signals
(see Figure S5A,B). Furthermore, concentration estimates
from the improved AQuA typically showed higher correlations
with joint rather than independent ASICS procedures in
experimental spectra from EDTA-containing plasma (Figure
S5C,D). More details on the outcome of the ASICS
computations are compiled in Table S9.

Limitations. Compounds not included in the quantification
model (e.g., potential trace contaminants16 or less common
EDTA complexes16) may cause interferences that remain
unaccounted for. Also, different sample preservation issues
(introduced during collection or preparation) can alter the
signals from, e.g., protein binding metabolites23 and
alcohols.3,14 It is difficult to assess the extent of errors
introduced by these uncertainties since the actual concen-
trations are unknown.
Furthermore, a targeted approach quantifies the same

metabolites in all spectra. This can potentially be an issue
since some metabolites are not detected in all spectra.
However, the use of one signal for the quantification of each
metabolite in AQuA results in a quantification model based on
signals with the highest possible signal-to-noise ratio.14

Evaluation of occurrences effectively reveals remaining
detection issues (Figure 4), and it is recommended to use
this information (e.g., for excluding data from statistical
analyses).

Utility of the Improved AQuA. Our results show that the
improved AQuA is an accurate (Figures 4 and 5) and rapid
(Figure 6) processing tool desired for the many clinical and
epidemiological studies that use EDTA as an anticoagu-
lant.16,24 Hence, AQuA can be an attractive alternative to
previous methods for analyzing EDTA-containing plasma
samples that, unlike AQuA, relies on multiple NMR experi-
ments (one-dimensional (1D) and two-dimensional (2D)) for
its quantification model25 or reduce interferences using the J-
resolved (JRES) NMR experiment16 (although quantification
using signals from JRES spectra can be difficult26).
The improved AQuA may also be applicable to spectra from

other types of EDTA-containing samples. For example, the use
of EDTA as a chelating agent has been established in sample
preparation protocols for plant extracts and urine, as chelation
of dications results in interspectral stabilization of signals from
some plant and urine metabolites.27−29 Stabilization of
metabolite signals was also observed in EDTA-containing
plasmae.g., histidine showed smaller positional deviation
here (Table S5) compared to our previous study.14 Therefore,
spectra from EDTA-containing plant and urine samples can be
potential areas of application for the improved AQuA.
Naturally, spectral libraries specific for plant extracts or urine
must be developed and employed together with the strategy for
improving AQuA.
Although the improved AQuA was demonstrated using

EDTA-containing plasma as a test system, the underlying
strategy may be applied to other (metabolite or non-
metabolite) compounds that display similar issues as free
EDTA showed in the present data set: (1) the compounds’
signals are located in complex regions of the spectrum where
many other compounds display signals (Figure 2) and (2) the
compounds’ signals display positional and/or line width

Figure 6. Time (seconds) required to perform the AQuA
computations when quantifying 54 metabolites in the EDTA data
set (n = 772). Blue: improved AQuA (eq 2), red: nonimproved AQuA
(eq 1), dots: time per spectrum, and lines: cumulative sum of time.
Peak-picking times are not included since the same strategy was used
in both implementations.14
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deviations between spectra (Figure 3). According to the
improved AQuA strategy, such compounds are recognized by
automated determination of their signal positions and line
widths in the data set, and this information is utilized to vary
the elements of the interference matrix accordingly in the
computations (eq 2). Interferences from such compounds are
thereby accurately accounted for despite interspectral deviation
issues (Figure 1). Hence, this strategy increases the flexibility
of AQuA and facilitates the processing of data sets with more
complex signal patterns.
Outlooks. It is desirable to increase the efficiency of the

entire workflow (not only the final quantification step).
However, the outcome of the quantification can vary
depending on how data are generated. For example, removal
of macromolecules during sample preparation or filtering out
their signals with the Carr−Purcell−Meiboom−Gill experi-
ment yield somewhat different spectra.23 Additional studies are
required to assess the most time/cost beneficial way to
generate data with a quality suitable for quantification.
Automated systems for processing generated data have been
presented based on other quantification models.6,7,11 In the
future, it could be possible to develop a completely automated
system for high-throughput data processing, where all prior
steps are streamlined for targeted quantification with the rapid
improved AQuA strategy.

■ CONCLUSIONS

The improved AQuA provides a means for handling
interferences despite varying positions and line widths between
spectra for specific signals. The algorithm performance was
demonstrated using a large set of 1H NMR spectra from
human plasma collected using EDTA as an anticoagulant (n =
772). Signals from EDTA vary in intensity, position, and line
width between spectra and interfere with signals from known
human plasma metabolites. The improved AQuA handled
these interferences and allowed quantification even of
metabolites such as acetylcarnitine and ornithine that display
severe interference from EDTA signals. The improved AQuA
implementation is suitable for high-throughput applications
since it required <10 s for the quantification of 54 plasma
metabolites in 772 spectra. We believe that the improved
AQuA is a desired processing tool for NMR data from clinical
and epidemiological studies that collects plasma with EDTA as
an anticoagulant. Beyond this, the improved AQuA provides a
basis for automated quantification in other types of samples
that may generate NMR spectra in which specific signal
positions and line widths are not stable between spectra.
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Elisabeth Müllner − Department of Molecular Sciences,
Swedish University of Agricultural Sciences, 750 07 Uppsala,
Sweden

Corine Sandström − Department of Molecular Sciences,
Swedish University of Agricultural Sciences, 750 07 Uppsala,
Sweden

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.0c04233

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by grants from FORMAS (222-2014-
1341). The authors would like to thank Dr. Peter Agback for
his help during the NMR experiments.

■ REFERENCES
(1) Medina, S.; Domínguez-Perles, R.; Gil, J. I.; Ferreres, F.; Gil-
Izquierdo, A. Curr. Med. Chem. 2014, 21, 823−848.
(2) Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.;
Knox, C.; Bjorndahl, T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P.;
Dame, Z. T.; Poelzer, J.; Huynh, J.; Yallou, F. S.; Psychogios, N.;
Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D. S. PLoS One 2013, 8,
No. e73076.
(3) Psychogios, N.; Hau, D. D.; Peng, J.; Guo, A. C.; Mandal, R.;
Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.;
Young, N.; Xia, J.; Knox, C.; Dong, E.; Huang, P.; Hollander, Z.;
Pedersen, T. L.; Smith, S. R.; Bamforth, F.; Greiner, R.; McManus, B.;
Newman, J. W.; Goodfriend, T.; Wishart, D. S. PLoS One 2011, 6,
No. e16957.
(4) Wishart, D. S.; Lewis, M. J.; Morrissey, J. A.; Flegel, M. D.;
Jeroncic, K.; Xiong, Y.; Cheng, D.; Eisner, R.; Gautam, B.; Tzur, D.;
Sawhney, S.; Bamforth, F.; Greiner, R.; Li, L. J. Chromatogr. B: Analyt.
Technol. Biomed. Life Sci. 2008, 871, 164−173.
(5) Weljie, A. M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.
M. Anal. Chem. 2006, 78, 4430−4442.
(6) Hao, J.; Liebeke, M.; Astle, W.; De Iorio, M.; Bundy, J. G.;
Ebbels, T. M. D. Nat. Protoc. 2014, 9, 1416−1427.
(7) Ravanbakhsh, S.; Liu, P.; Bjorndahl, T. C.; Mandal, R.; Grant, J.
R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, X.; Luchinat, C.;
Greiner, C.; Wishart, D. S. PLoS One 2015, 10, No. e0124219.
(8) Beirnaert, C.; Meysman, P.; Vu, T. N.; Hermans, N.; Apers, S.;
Pieters, L.; Covaci, A.; Laukens, K. PLoS Comput. Biol. 2018, 14,
No. e1006018.
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