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Abstract
Various fungal species continue to be one of the most difficult challenges faced by farmers, and hence societies in whole, 
when it comes to securing plentiful and wholesome food for a rapidly growing human population. Understanding the biology 
of pathogenic fungi in detail, both at the population and molecular levels, combined with continued emphasis on resistance 
breeding of important crops, offers the most obvious sustainable solution to this pressing problem. Here we present results 
of virulence testing and microsatellite analysis on a collection of Icelandic Rynchosporium commune isolates to test whether 
the previously demonstrated genetic diversity observed translated into functional diversity in the virulence of these isolates. 
Our results show considerable diversity in the virulence of the Icelandic R. commune samples with each isolate having a 
unique virulence spectrum on the 15 near-isogenic barley lines used for screening. Our findings have practical implications, 
showing that even with short continuous barley cultivation and isolation by geographical distance, breeding for Icelandic, 
and likely other remote or isolated locations, still needs to consider the importance of disease resistance in breeding deci-
sions and variation in local pathotypes. Moreover, our analysis is the first step to focused breeding for disease resistance for 
Icelandic conditions, an important step in the ongoing Icelandic barley breeding project.
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Introduction

Cultivated barley (Hordeum vulgare ssp. vulgare) is a 
diploid annual cereal grain of the family Poaceae and the 
domesticated form of the wild barley H. vulgare ssp. sponta-
neum (Stein and Muehlbauer 2018). Barley has been adapted 
to a great range of climates and daylengths and is cultivated 
from arid areas of North Africa (Bothmer et al. 1991) to sub-
arctic areas near the arctic circle (Hilmarsson et al. 2017). 

Worldwide in 2017 it ranked fourth of cereal crops for area 
of cultivation and quantity produced, with 47 million hec-
tares yielding 147 million metric tons, compared to 772 mil-
lion metric tons of wheat (FAOSTAT 2020).

When Iceland was settled in the ninth century CE the set-
tlers likely brought with them barley from Scandinavia and/
or the British Isles (Karlsson 2009). Barley cultivation was 
then practiced in Iceland for several centuries, but eventually 
decreased drastically or ceased completely. This most likely 
happened around the turn of the fourteenth century, pos-
sibly due to environmental changes or changes in the price 
of imported barley (Karlsson 2009) although other sources 
suggest that changes in population density led to the ces-
sation of barley cultivation in Iceland (Júlíusson 2018). It 
was not until 1923 that barley was successfully grown in 
Iceland again for several years in a row. Since 1991 bar-
ley production in Iceland has increased considerably, with 
around 5,000 hectares of land yielding up to 16,000 tons per 
year, an average yield of 3.2 t/ha (Hilmarsson et al. 2017).

Although several pathogenic fungi have been previously 
described on barley in Iceland (Hallgrímsson and Eyjolfsdottir 
2004; Stefansson and Hallsson 2011), only Rhynchosporium 
commune (syn. R. graminicola, previously R. secalis), the 
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causal agent of barley scald (Zaffarano et al. 2011), has been 
suggested as a serious pathogen of economic importance, with 
reports of up to 36% yield loss and 10–20% average yield loss 
(Hermannsson 2004).

R. commune, a haploid fungus found in all major barley-
growing regions of the world, is a serious disease in cool, 
semi-humid areas especially where leaves remain wet for 
long periods (Zhang et al. 1992). Scald symptoms appear as 
irregular shaped lesions, with the green color of the leave 
turning chlorotic with brown edges, as the infection develops 
the lesions can eventually merge. Yield losses are reported 
to range between 10 and 45% (Avrova and Knogge 2012). 
Studies on R. commune populations, from different coun-
tries, have revealed both genetic and pathogenic variation 
(Jorgensen and Smedegaard-Petersen 1995; McDermott et al. 
1989; McDonald 2015; McDonald et al. 1999; Mohd-Assaad 
et al. 2018; Salamati et al. 2007; Stefansson et al. 2012, 2013, 
2014; Tekauz 1991; Williams et al. 2003; Kequan Xi et al. 
2002). Methods used have included virulence tests (Araz 
and Maden 2006; Kequan Xi et al. 2002), ribosomal DNA 
(Newton et al. 2001), isozymes (Goodwin et al. 1993), and 
DNA marker analyses (Bouajila et al. 2007; Kiros-Meles et al. 
2005; McDonald et al. 1999). Isolates secured from differ-
ent scald lesions taken from the same plant or even different 
spores isolated from the same lesion may vary significantly 
for virulence and molecular markers (Brown 1985; McDonald 
et al. 1999). This pathogenic diversity means that R. commune 
populations can potentially change rapidly in response to 
selection exerted by the introduction of new resistance genes 
or fungicides (Zhan et al. 2008) and rapidly render them inef-
fective (Newton et al. 2001; Oxley et al. 2003; Kegnan Xi 
et al. 2003).

The source of the genetic diversity in R. commune has 
been the subject of several studies leading to suggestions 
including asexual genetic exchange (Forgan et al. 2007; 
Newman and Owen 1985), frequency-dependent selection 
(Goodwin et al. 1993; McDermott et al. 1989), spontaneous 
mutations and migration (Goodwin et al. 1994; Williams 
et al. 2003), and sexual reproduction (Linde et al. 2003; 
McDonald et al. 1999; Salamati et al. 2007). Additional fac-
tors influencing genetic diversity in R. commune populations 
could be a large effective population size (McDermott et al. 
1989), gene flow within regions by air-borne ascospores 
(Zhan et al. 2008), and gene flow between regions by seed 
trade (Zaffarano et al. 2007). Although a teleomorph has not 

yet been recognized research has shown gametic equilibrium 
of alleles within populations (Burdon et al. 1994; Salamati 
et al. 2007), but the degree of equilibrium can be used as 
an indirect measure of the significance of genetic exchange 
and recombination in presumably asexual populations (Chen 
and McDonald 1996; Linde et al. 2003). Linde et al. (2003) 
studied the frequency of mating type alleles in R. commune 
populations from six countries and found equal frequencies 
in most of the populations, suggesting frequency dependent 
selection consistent with sexual reproduction. Both mating 
types were frequently found occupying the same lesions or 
leaf, providing opportunity for isolates of opposite mating 
types to reproduce sexually (Linde et al. 2003).

Stefansson et al. (2012) have previously shown that Ice-
landic R. commune isolates are genetically polymorphic and 
distinct from populations in Scandinavia, but no virulence 
tests have been carried out with these Icelandic isolates. The 
aim of this study was to characterize virulence of Icelan-
dic isolates of R. commune, and compare those results to 
population structure using microsatellite markers. The viru-
lence tests were carried out on a set of near isogenic barley 
lines with resistance genes for R. commune, with the aim 
of informing further resistance breeding efforts in Iceland 
and beyond.

Materials and methods

Fungal isolates

Infected leaves with visual scald symptoms were collected 
from six locations in Iceland (Fig. 1 and Table 1) as pre-
viously described (Stefansson et al. 2012; Stefansson and 
Hallsson 2011). Each leaf was placed in a paper bag and 
dried at room temperature for 2–3 days. Leaves were then 
sterilized in 70% ethanol for 10 s and in 0.5% NaOCl for 
90 s, rinsed twice with distilled water and dried on filter 
paper. Sterilized leaf segments were placed on wheat germ 
agar (WGA) plates covered with aluminum foil and kept 
at room temperature in the dark for seven days. Mycelium 
from the lesions was transferred onto new WGA plates and 
kept in the dark at room temperature for another 14 days. 
Pieces of WGA with R. commune culture were transferred 
to Eppendorf tubes containing 0.75 mL distilled water, the 
tubes shaken, and contents poured onto WGA plates. When 
mycelium growth became visible through a microscope, 
single spore cultures were picked using a wire inoculation 
loop, dissolved in water, and spread onto new WGA plates 
and stored for 14 days in the dark at 18 °C. This yielded 39 
single spore R. commune isolates (Table 1) that were then 
used for both microsatellite analysis and greenhouse trials.

For inoculum preparation, conidia were scraped from the 
agar with a microscope glass and suspended in 10 mL of 

Fig. 1  Hierarchical clustering and genetic distance between Icelandic 
R. commune isolates. (A) A hierarchical cluster dendrogram for 14 
Icelandic R. commune isolates based on phenotypic data of 15 barley 
differential lines after seedling inoculation, the map shows sampling 
locations for the R. commune isolates and the distance between loca-
tions, (B) PCoA of genetic distances between individual R. commune 
samples, with fungal isolates used for virulence testing color coded 
as in (A)

◂
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distilled water. Conidia were counted using a hemocytome-
ter and the concentration adjusted to 1 ×  106 conidia per mL.

For fungal DNA extraction, single spore isolates were 
transferred on to WGA plates and incubated at 16 °C in 
the dark for 10 to 14 days. Fungal mycelium and spores 
were scraped off the plates and total DNA extracted using 
Microbial DNA isolation Kit (MoBio, cat. No. 12224). Fun-
gal species were identified as described by Stefansson and 
Hallsson (2011).

Plant material and greenhouse trials

Sixteen barley differential lines, consisting of 15 near- 
isogenic lines (NILs), each with a different resistance allele 
against R. commune, and the susceptible check ‘Annabell’, 
a German two rowed spring barley cultivar (Table 2), were 
used for virulence tests of 14 R. commune isolates (Goodwin 
et al. 1990; Patil et al. 2002). Two seeds per genotype were 
sown together with eight or nine genotypes per pot in two 
replications. Seeds were sown in nutrient supplemented peat 
and pots placed in the greenhouse at 18–20 °C during the 
day and 15 °C during the night with a 16 h/8 h photoperiod, 
with a relative humidity of 60–80%. Two weeks after sow-
ing, at the 2–3 leaf stage, plants were spray inoculated with a 
homogenized conidial suspension using 0.4 mL per genotype 
and 3.2 mL per pot. After inoculation, the pots were kept in 
closed plastic bags for 48 h, with a relative humidity of 100%. 
Subsequently the bags were opened and water sprayed three 
times per week. Leaf symptoms were scored on the second 
leaf 21 days after inoculation using the 0–4 scale of Jackson 
and Webster (1976), with 0: no symptoms, 1–2: very small to 
small lesions within leaf margin, 3: large coalescing lesions, 
4: collapse of leaf. Virulence patterns on a susceptible reac-
tion (score ≥ 2.5) were used to group isolates as pathotypes 
with a method adapted from Tekauz (1991). Dendrograms 
showing the clustering of both barley varieties and fungal 
isolates were rendered in ClustVis (Metsalu and Vilo 2015) 
using Euclidean distance and average linkage.

Table 1  Icelandic R. commune samples used for microsatellite analy-
sis and/or in virulence tests

a M Microsatellite analysis (37 samples), V Virulence test (15 sam-
ples)

Isolate ID Sampling location Analysisa Cultivar

1 KO2 Korpa (64°09’N, 21°44’W) M + V Kría
2 KO6 Korpa (64°09’N, 21°44’W) M Kría
3 KO9 Korpa (64°09’N, 21°44’W) M + V Kría
4 KO12 Korpa (64°09’N, 21°44’W) M + V Kría
5 KO15 Korpa (64°09’N, 21°44’W) M Olsok
6 KO18 Korpa (64°09’N, 21°44’W) M Olsok
7 KO19 Korpa (64°09’N, 21°44’W) M Olsok
8 KO21 Korpa (64°09’N, 21°44’W) M + V Olsok
9 KO23 Korpa (64°09’N, 21°44’W) M Olsok
10 KO24 Korpa (64°09’N, 21°44’W) M + V Olsok
11 KO27 Korpa (64°09’N, 21°44’W) M Olsok
12 KO29 Korpa (64°09’N, 21°44’W) M Olsok
13 KO32 Korpa (64°09’N, 21°44’W) M Olsok
14 KO38 Korpa (64°09’N, 21°44’W) M + V Kría
15 KO43 Korpa (64°09’N, 21°44’W) M Kría
16 KO44 Korpa (64°09’N, 21°44’W) M Kría
17 KO48 Korpa (64°09’N, 21°44’W) M Kría
18 MO25 Möðruvellir (65°46’N, 18°14’W) V Swå02220
19 SA2 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
20 SA3 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
21 SA4 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
22 SA12 Stóra-Ármót (63°59’N, 20°56’W) M + V Filippa
23 SA23 Stóra-Ármót (63°59’N, 20°56’W) M + V Filippa
24 SA24 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
25 SA28 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
26 SA31 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
27 SA34 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
28 SA37 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
29 SA46 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
30 SA59 Stóra-Ármót (63°59’N, 20°56’W) M Filippa
31 VH12 Vindheimar (65°30’N, 19°21’W) M + V Swå01448
32 VH16 Vindheimar (65°30’N, 19°21’W) M + V Erkki
33 VH20 Vindheimar (65°30’N, 19°21’W) M Olsok
34 VH53 Vindheimar (65°30’N, 19°21’W) M Ven
35 VH55 Vindheimar (65°30’N, 19°21’W) M + V Kría
36 SB1 Efri-Brúnavellir (64°02’N, 20°31’W) V Kría
37 SB2 Einarsstaðir (65°37’N, 15°03’W) M Kría
38 SB4 Hofstaðir (65°41’N, 19°22’W) M + V Kría
39 SB5 Gunnarsstaðir (66°09’N, 15°25’W) M Kría

Table 2  MacKey’s near-isogenic lines (recurrent parent ‘Ingrid’) 
with resistance to R. commune. Lines provided by NordGen (www. 
 nordg en. org)

*Adapted from Goodwin et al. (1990) and Patil et al. (2002)

NIL Cultivar Accession No. Resistance  type*

MacKey1 - - -
MacKey2 Hudson CI 8067 Rrs3 (Rh1)
MacKey3 Modoc CI 7566 Rh2, rh6
MacKey4 - CI 8162 Rh3, rh6
MacKey5 La Mesita CI 7565 Rh4, Rh10
MacKey6 Turk CI 14,400 Rh5, rh6
MacKey7 Brier CI 7157 Rh1, rh6
MacKey8 Abyssinian CI 668 Rh9, Rhx
MacKey9 Atlas 46 CI 7323 Rh2, Rh3
MacKey10 Hispont CI 8828 Rh (unknown)
MacKey11 Steudelli CI 2226 Rh6, Rh7
MacKey12 Quinn CI 1024 Rh (unknown)
MacKey13 Abyssinian CI 1233 Rh (unknown)
MacKey14 Nigrinudum CI 2222 Rh8
MacKey15 - - -
Annabell - - -
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Rhynchosporium commune microsatellite analysis

Thirty-seven of the 39 R. commune isolates were analyzed 
with 14 polymorphic microsatellite markers (Linde et al. 
2005) as previously described (Stefansson et  al. 2012). 
Due to a low recovery rate for SSR marker Rhyncho_14 
in the Icelandic population it was omitted from further 
analysis. For comparison to the Icelandic isolates, isolates 
from Norway, Sweden, Finland, and Switzerland were 
used (for details see Stefansson et al. 2012 and references 
therein). Genetic distances between both individual isolates 
and groups were calculated using GenAlEx 6.5 (Peakall 
and Smouse 2005, 2012) using the ‘Haploid-SSR’ option 
under “Genetic Distance”. A Principal Coordinates Analy-
sis (PCoA) was then used to visualize the results using the 
‘Covariance-Standardized’ option. Two samples used in the 
virulence testing (SB1 and MO25) failed in microsatellite 
typing and could therefore not be included in the genetic 
analysis.

Results

Virulence and population structure of Icelandic R. 
commune isolates

The susceptibility of the barley genotypes ranged from an 
average score of 0.1 for genotypes MacKey5 and MacKey10 
to an average score of 3.7 for ‘Annabell’. All genotypes were 
susceptible (max score ≥ 2.5; dotted line in Fig. 1A) to at 
least one isolate except genotypes ‘MacKey5’, ‘MacKey9’, 
and ‘MacKey10’. All genotypes were resistant (min 
score ≤ 2) to at least one isolate except genotypes MacKey13 
and ‘Annabell’ (Fig. 1A). Ten genotypes were considered 
resistant (average score ≤ 2) to the Icelandic R. commune 
isolates and six genotypes were considered susceptible.

The virulence spectrum of each of the R. commune iso-
lates was unique, however, the average virulence only ranged 
from 1.2 for the isolate SA12 to 2.1 for the isolate VH12. 
Each isolate was both completely virulent and non-virulent 
on genotypes of the differential set. Different virulence pat-
terns on a susceptible reaction (score ≥ 2.5) were used to 
group isolates as pathotypes resulting in eleven pathotypes, 
with isolates KO12, MO25 and SB1, and isolates KO24 and 
VH55 grouping together.

Hierarchical clustering separated R. commune isolates 
into three groups based on their virulence pattern (Fig. 1A). 
Group 1 (blue) comprised four isolates from three regions 
(Hofstaðir, Vindheimar, and Korpa). The second group 
(green) comprised only a single isolate from Stóra-Ármót 
(SA23). Group three (red) comprised the remaining nine 
isolates from three locations. Group three was the least 
virulent group of isolates with a mean virulence score of 

1.6 across all NILs, although the other two groups had only 
slightly higher average virulence scores of 2.0 (Fig. 1A). 
Group one was more virulent on lines MacKey4, MacKey6 
and MacKey7 (score 2.9) compared to groups two and three 
with mean scores of 1.5 and 0.2, respectively.

Analysis of genetic and geographical distances between 
the isolates tested did not reveal a separation between indi-
viduals in the three different virulence clusters (Fig. 1B).

Discussion

The fifteen NILs for differentiating R. commune isolates date 
back to 1977, when James MacKey started crossing 23 bar-
ley donor lines with partly known genes for scald resistance 
with the cultivar ‘Ingrid’ as a recurrent parent (Bjørnstad 
et al. 2002; Patil et al. 2002). Patil et al. (2002) screened 
nine of the 23 NILs along with their recurrent parent and 
donor lines with two fungal isolates (‘4004’ and ‘2’). Three 
NILs in this study where resistant (R) against both the iso-
lates used by Patil et al. (2002) and all 14 Icelandic isolates: 
MacKey5, MacKey9 and MacKey10, which are NILs of the 
donor lines ‘La Mesita’, ‘Atlas 46’, and ‘Hispont’, respec-
tively. It is interesting to note, that the resistance in these 
three lines, is based on different resistance genes, namely 
Rh4 and Rh10 in MacKey5, Rh2 and Rh3 in MacKey9 
and an unknown resistance gene in MacKey10 (Table 2). 
MacKey2 was R against ten Icelandic isolates, moderately 
resistant (MR) against one, and moderately susceptible (MS) 
against three, and showed MR against ‘4004’ and R against 
isolate ‘2’. NILs of ‘Modoc’ exhibited MR and R reactions 
against isolates ‘4004’ and ‘2’, respectively, with MacKey3, 
the corresponding line in the present study, R against eight 
isolates, MR against six isolates, and MS against one isolate. 
MacKey4 was R and MS to susceptible (S) against 9 and 5 
Icelandic isolates, MR against ‘4004’ and MR-MS against 
‘2’. MacKey6 was R against isolate ‘4004’ and ten Icelan-
dic isolates and S towards isolate ‘2’ and four Icelandic 
isolates. NILs of ‘Brier’ and corresponding line MacKey7 
were resistant towards ‘4004’ and ten Icelandic isolates, 
MR towards one Icelandic isolate and MS-S towards isolate 
‘2’ and three Icelandic isolates. NILs of ‘Abyssinian’ and 
respective line MacKey8 were R towards isolate ‘2’ and six 
Icelandic isolates, MR towards ‘4004’ and seven Icelandic 
isolates, and MS towards one Icelandic isolate.

Hierarchical clustering grouped the Icelandic R. com-
mune isolates into three groups, with groups 2 and 3 closely 
connected. Isolates belonging to group 1 were collected 
at locations in the North (Hofstaðir and Vindheimar) and 
the West (Korpa). No clear connections between location 
and pathotype can be seen in such a small sample, with 
four isolates in group 3 being collected at locations in the 
Northern, Western, and Southern parts of Iceland. Among 
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the 14 R. commune isolates eleven pathotypes were identi-
fied. Isolates KO12 (group 3), MO25 (group 3) and SB1 
(group 3) belonged to the same pathotype but were collected 
at different locations. Korpa (KO12) and Efri-Brúnavellir 
(SB1) in the western part of Iceland are about 80 km apart. 
Möðruvellir (MO25) is in the North and about 300 and 
350 km from Efri-Brúnavellir and Korpa, respectively. Iso-
lates KO24 and VH55 belonged to the same pathotypes and 
the same group (group 1). Korpa (KO24) and Vindheimar 
(VH55) are located about 200 km apart. Compared to the 
number of isolates, a very high number of pathotypes was 
detected. It shows that even when isolates were collected 
from the same regions or even within the same fields (see 
isolates from Korpa) they show a high variability in their 
pathogenicity. However, the same pathotypes can also occur 
at regions located far part from, concurrent with previous 
studies. For example, Tekauz (1991) tested 111 isolates 
from five locations in Canada on a set of 14 barley differ-
entials and identified 45 different pathotypes. With ‘CAN 
1’, the most common pathotype, found in all five regions. 
Xi et al. (2002) collected 256 isolates from nine locations 
in Alberta, Canada, and identified 52 pathotypes, many of 
which were comprised of only one isolate. RFLP analysis 
with 265 Australian isolates from five locations revealed 214 
distinct genotypes (McDonald et al. 1999). The same study 
was able to show that R. commune populations are highly 
variable, and most of the genetic variation is found within 
fields, which supports the findings in the present study. Con-
sidering the low total number of isolates tested here this 
study should not be considered a final word in the analysis of 
pathogenicity and diversity of scald in Iceland, rather a first 
step to better understanding a complex population structure 
dictated by various genetic and environmental factors, such 
as sexual reproduction, climate change, fluctuating weather 
conditions, and flow of genetic variation from outside of 
Iceland. Even considering the short-comings of the study 
presented her the practical implications of our findings are 
that even with short continuous barley cultivation and isola-
tion by geographical distance, breeding for remote locations, 
still needs to consider the importance of disease resistance 
and possible differences in pathotypes in localized breeding 
projects. Also, here we take the first steps to identify relevant 
resistance alleles that could be of use under Icelandic con-
ditions, an important step in the ongoing Icelandic barley 
breeding project. Based on our analysis a good starting point 
would be to take a closer look at the resistance alleles found 
in the MacKey 3, MacKey 5, MacKey 9, and MacKey 10 
NILs, as they show a broad resistance to all the Icelandic 
isolates tested here.
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