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Abstract
Microplastic (plastic particles measuring <5mm) pollution is ubiquitous. Unlike in other 
well-studied ecosystems, for example, marine and freshwater environments, micro-
plastics in terrestrial systems are relatively understudied. Their potential impacts on 
terrestrial environments, in particular the risk of causing ecological surprise, must be 
better understood and quantified. Ecological surprise occurs when ecosystem behav-
ior deviates radically from expectations and generally has negative consequences for 
ecosystem services. The properties and behavior of microplastics within terrestrial 
environments may increase their likelihood of causing ecological surprises as they 
(a) are highly persistent global pollutants that will last for centuries, (b) can interact 
with the abiotic environment in a complex manner, (c) can impact terrestrial organisms 
directly or indirectly and (d) interact with other contaminants and can facilitate their 
transport. Here, we compiled findings of previous research on microplastics in terres-
trial environments. We systematically focused on studies addressing different facets 
of microplastics related to their distribution, dispersion, impact on soil characteristics 
and functions, levels of biological organization of tested terrestrial biota (single spe-
cies vs. assemblages), scale of experimental study and corresponding ecotoxicological 
effects. Our systematic assessment of previous microplastic research revealed that 
most studies have been conducted on single species under laboratory conditions with 
short-term exposures; few studies were conducted under more realistic long-term field 
conditions and/or with multi-species assemblages. Studies targeting multi-species as-
semblages primarily considered soil bacterial communities and showed that micro-
plastics can alter essential nutrient cycling functions. More ecologically meaningful 
studies of terrestrial microplastics encompassing multi-species assemblages, critical 
ecological processes (e.g., biogeochemical cycles and pollination) and interactions 
with other anthropogenic stressors must be conducted. Addressing these knowledge 
gaps will provide a better understanding of microplastics as emerging global stressors 
and should lower the risk of ecological surprise in terrestrial ecosystems.
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1  |  INTRODUC TION

Ecological surprise occurs when observed ecosystem response de-
viates from anticipated behavior (Christensen et al., 2006; Filbee-
Dexter et al., 2017; Holling, 1996). The rapid and irreversible 
environmental changes associated with some ecological surprises 
can seriously disrupt ecosystem functioning and potentially threaten 
human well-being (Boyd, 2008; Christensen et al., 2006; Walters & 
Maguire, 1996). Recent examples of catastrophic ecological surprise 
include the collapse of North Atlantic cod stocks (Walters & Maguire, 
1996) and coastal fisheries around the world (Hilborn et al., 2003), 
as well as forest dieback in the Amazon (Boyd, 2008) and elsewhere 
(Doak et al., 2008). Despite the vast literature on microplastics, it is 
still not clear whether they pose a significant environmental threat 
(see, e.g., Burton, 2017; Leslie & Depledge, 2020; Wardman et al., 
2020). This lack of clarity may be a precursor to ecological surprise.

Doak et al. (2008) identified four causes of ecological surprise: 
(1) complex webs of interaction within real ecological communities; 
(2) community variability in time and space; (3) the multi-dimensional 
nature inherent to ecosystems that are interlinked by feedback mech-
anisms and (4) the cascading effects of shifting abiotic conditions in 
altering species distributions and their subsequent interactions. To 
reduce the potential for undesirable ecological surprise associated 
with microplastics in the terrestrial environment, we must move be-
yond an exclusive focus on short-term single species testing under 
controlled conditions to a new paradigm emphasizing the quantifica-
tion of ecologically meaningful effects on multi-species assemblages 
in realistic natural conditions and over longer time scales (Rillig & 
Lehmann, 2020). This transition to more ecologically relevant stud-
ies is needed if we are to adequately account for the multiple possi-
ble interactions and interconnections occurring between the abiotic 
and hierarchical biotic structures that gradually increase in complex-
ity from individual species to communities and ecosystem processes 
and functions (Rillig & Lehmann, 2020; Rykiel, 1985).

Microplastics, all small plastic particles measuring less than 
5 mm (including nano scale plastics <0.1 µm), are ubiquitous in soils 
(Nizzetto et al., 2016). The potential for microplastic pollution to lead 
to ecological surprises is related to their widespread distribution and 
high abundance (Hale et al., 2020). Microplastics alter soil physical 
and chemical properties and have been identified as an emerging 
threat (Boots et al., 2019; de Souza Machado, Lau, et al., 2018; Liang 
et al., 2019; Liu et al., 2017; Zang et al., 2020). They can readily be 
ingested by organisms (Thompson et al., 2004) and can act as a novel 
substrate for deleterious organism groups (e.g., antibiotic-resistant 
bacteria; Bartkova et al., 2021; Imran et al., 2019), thus raising con-
cerns for potential negative effects on biodiversity and ecosystem 
functioning (Browne et al., 2007; Reid et al., 2019; Rillig & Lehmann, 
2020; Sutherland et al., 2010). To date, our understanding of possible 

terrestrial ecosystem-level effects of microplastics is minimal as the 
vast array of possible interactions occurring between and within 
abiotic and biotic components of the soil environment (Figure 1) hin-
der meaningful predictions at the ecosystem level (Girardello et al., 
2019; Tscharntke et al., 2005).

Microplastics were first documented in the Sargasso Sea by 
Carpenter and Smith (1972). However, the interest of the scientific 
community to investigate their potential effects on marine organ-
isms came later and was inspired by the study of Thompson et al. 
(2004). Since then, attention has spread to freshwater (de Sá et al., 
2018; Hoffman & Hittinger, 2017; Li et al., 2018) and terrestrial envi-
ronments (de Souza Machado, Kloas, et al., 2018; Rillig & Lehmann, 
2020; Windsor et al., 2019). Microplastic research in the terrestrial 
environment is still at an early stage, despite multiple lines of evi-
dence indicating terrestrial systems as the major sinks of microplas-
tics (Büks & Kaupenjohann, 2020; Evangeliou et al., 2020; Nizzetto 
et al., 2016). The development of terrestrial microplastics research 
has followed a similar trajectory to work on aquatic ecosystems. 
Researchers attempted first to quantify the scale of contamination 
(Corradini et al., 2019; Huerta Lwanga, Mendoza Vega, et al., 2017; 
Nizzetto et al., 2016; Piehl et al., 2018). Subsequently, they investi-
gated possible deleterious effects on biota (de Souza Machado et al., 
2019; de Souza Machado, Lau, et al., 2018; Huerta Lwanga et al., 
2016; Rillig, Ziersch, et al., 2017; Zhou, Liu, et al., 2020) and used ec-
otoxicological approaches to reveal potential modes of toxic action 
(Rillig & Lehmann, 2020). Studies reported oxidative stress (Jiang 
et al., 2019; Prendergast-Miller et al., 2019; Zheng et al., 2019), re-
productive impairment (Judy et al., 2019; Lahive et al., 2019; van 
Gestel & Selonen, 2018) and behavioral changes (Huerta Lwanga 
et al., 2016; Song et al., 2019) in terrestrial organisms (e.g., earth-
worms, snails and plants); similar responses were also observed in 
aquatic biota exposed to microplastics (de Sá et al., 2018; Lusher, 
2015). Recent studies suggesting the effects of microplastics on soil 
carbon (Rillig et al., 2021) and possibly nitrogen (Rong et al., 2021) 
cycling are especially concerning.

Microplastics can enter the terrestrial environment through dif-
ferent pathways, including landfills (Geyer et al., 2017), atmospheric 
fallout (0.343 million tons per year globally; Evangeliou et al., 2020) 
and from different agricultural practices, for example, the use of 
plastic mulching (Büks & Kaupenjohann, 2020; Crossman et al., 
2020). Agroecosystems are major entry routes for microplastics 
to the terrestrial environment, in particular when sludge (biosolids) 
from wastewater treatment are applied to the soil (Corradini et al., 
2019). Microplastics present in wastewater are efficiently retained 
(c. 99%) in the sludge produced during treatment and the use of 
sewage sludge to amend soils is estimated to add between 63–430 
and 44–300 thousand tons of microplastics to agroecosystems in 
Europe and North America annually (Nizzetto et al., 2016). Sewage 
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sludge applications in terrestrial agroecosystems alone exceed the 
estimated amount (93–236 thousand tons of microplastics) exported 
to oceans annually (Van Sebille et al., 2015).

Given the importance of the soil for supporting biodiversity and 
ecosystem services (Bardgett & van der Putten, 2014), particularly the 
irreplaceable role of agroecosystems in food production, it is imper-
ative to evaluate the ecological effects of microplastics in terrestrial 
environments as any adverse effects could threaten sustainability 
and the well-being of future generations (Rillig, Ingraffia, et al., 2017). 
Additional studies on effects of microplastics on terrestrial food web 
stability, critical ecological processes (e.g., biogeochemical cycles and 
pollination) and interactions with other anthropogenic stressors must 
be conducted. Other contaminants, for example, dichlorodiphenyl-
trichloroethane (DDT; Colborn et al., 1993), per- and polyfluoroalkyl 
substances (PFAS; Koch et al., 2020) and antibiotics (Ferri et al., 2017) 
that share similar characteristics as microplastics (i.e., high persistency 
and widespread presence in the environment) have caused unex-
pected ecosystem responses including the near extinction of iconic 
predatory bird species (ospreys and bald eagles; Wiemeyer et al., 
1975, 1984) and even put human health at risk (Fry, 1995; Sunderland 
et al., 2019). Unlike other chemical contaminants, microplastics have 
unique properties: make up of diverse polymers, broad size ranges 
including the nano scale (<0.1 µm), vary in shape and contain diverse 
chemical additives (Rochman et al., 2019), which increase their likeli-
hood to impact ecosystems and cause ecological surprises.

Here, we review findings about microplastics in the terrestrial 
environment that may help to minimize the likelihood of ecologi-
cal surprises. Our main objectives were to (a) summarize the char-
acteristics of microplastics (shape and size) observed in terrestrial 
ecosystems, (b) document species- and community-level effects on 
terrestrial organisms, (c) summarize changes in soil physicochemi-
cal properties associated with the presence of microplastics, (d) link 
changes in soil physicochemical properties to their effects on bio-
geochemical processes, (e) evaluate the dispersion and degradation 
of microplastics in the terrestrial environment, (f) highlight the role 
of microplastics as vectors for other contaminants and (g) identify 
future research needs to uncover and understand potential ecologi-
cal consequences which should avoid related surprises.

2  |  METHODOLOGIC AL APPROACH

A survey of peer-reviewed publications was performed on March 
21st, 2021, using Thompson Reuters database ISI web of Science 
(Versions 5.34 and 5.35, respectively). We initially tried different 
combined keywords, including “microplastic, soil,” “microplastic, ter­
restrial,” “microplastic, colloids,” “microplastic, ecosystem services,” “na­
noplastic, soil” and “nanoplastic, terrestrial.” The first paired keywords 
“microplastic, soil” gave the highest number of hits and largely cov-
ered the results (identical publications) obtained from the remaining 

F I G U R E  1  Conceptual diagram on the current state of knowledge regarding the effects of microplastics in the terrestrial environment. 
The effects of microplastics on (1) the physical and chemical properties of soil (de Souza Machado et al., 2019; de Souza Machado, Lau, 
et al., 2018; Zhang & Liu, 2018) and (2) on single terrestrial species using short term ecotoxicological assays (Boots et al., 2019; Lahive et al., 
2019; Prendergast-Miller et al., 2019; Song et al., 2019) have recently been studied. However, ecologically oriented studies targeting the 
potential implications of microplastics and the risk for surprises in more natural settings that consist of (3) multiple populations of species 
that collectively form communities and the (4) functions those multiple species performed are currently scarce [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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search terms leading to a total of 921 candidate publications. The 
abstracts from these 921 candidate publications were carefully read 
to further identify relevant studies that covered at least one of the 
following selection criteria: (a) degradation of microplastic in terres-
trial environment, (b) dispersion of microplastic in terrestrial envi-
ronment, (c) effects of microplastic in terrestrial environment and 
(d) reviews addressing microplastic research in terrestrial ecosys-
tems. Publications covering either aquatic environments or method 
development for quantifying microplastics were excluded. Among 
the 921 candidate publications, 264 fulfilled our selection criteria 
and relevant information including microplastic properties (i.e., type, 
shape and size range) were recorded. Information on methodological 
approaches to investigate microplastic effects on terrestrial biota, 
for example, targeted biological entities (single species testing vs. 
multiple-species assemblages), study scale (lab; small-scale experi-
ments in controlled conditions, vs. field; large-scale experiments in 
realistic conditions), study duration and exposure concentrations 
were extracted. Whenever possible, microplastic concentrations 
were standardized as percent weight of microplastic per weight of 
soil (% w/w) to facilitate comparison between studies. As some stud-
ies assessed multiple response variables in combination with a range 
of microplastic properties, the number of data points (989) exceeded 
the number of publications (264).

Plastics were classified according to their polymer types: acrylic 
polymers, polyamide, polyester, polyethylene, polypropylene, poly-
styrene and polyvinylchloride. High- and low-density polyethylene, 
polylactic acid and polyethylene terephthalate were classified as 
polyethylene (de Sá et al., 2018). When specified, microplastic 
shapes were recorded as beads (spherical), fragments, fibers, parti-
cles (irregular ovoidal shape) and pellets (short rod shape). When re-
ported, microplastic sizes were classified using the following ranges: 
<1, 1–10, 10–70, 70–250, 250–650, 650–1000 and 1000–5000 µm. 
Microplastics belonging to the nano range (<0.1 µm) were included in 
the smallest size class (<1 µm). Ecotoxicological responses included 
the following: biomolecular changes, biosynthesis, gene expression, 
genotoxicity, oxidative stress, histopathological effects, behavior, 
physical effects, mortality, reproductive success, transgenerational 
effects, community structure and community functioning. The role 
of microplastics as vectors for other contaminants and pathogens in-
cluding bacteria carrying antimicrobial resistance (AMR) genes was 
also considered.

3  |  OVERVIE W OF RELE VANT RESE ARCH 
AND MICROPL A STIC PROPERTIES IN THE 
TERRESTRIAL ENVIRONMENT

Most publications focused on literature reviews and effect stud-
ies followed by papers addressing the distribution and degradation 
of microplastics in the terrestrial environment (Figure 2a). Overall, 
these publications reflect the high heterogeneity of microplastic 
polymers (Figure 2b), shapes (Figure 2c) and sizes (Figure 2d). The 
type of plastic polymers used, and their shape differed among study 

categories (degradation, distribution and effect). The frequency of 
plastic polymers reported in effect studies reflects a combination of 
global production patterns (Geyer et al., 2017) and the type of poly-
mer commonly found in sewage sludge (Mahon et al., 2017), where 
polystyrene (35%), polyethylene (22%), polyester (20%) and poly-
vinylchloride (6%) were more abundant. Fragments were the only 
shape type that were consistently present in all study categories 
(Figure 2c). Fragments, mixed shapes and particles were reported in 
a large proportion of studies documenting microplastic distribution, 
whereas beads and fragments were reported in a large proportion 
of studies that primarily focused on effects. The five smallest size 
classes, <1, 1–10, 10–70, 70–250 and 250–650 µm, were reported in 
87% of studies (Figure 2d). Drawing general conclusions about shape 
and size of microplastics in the terrestrial environment is challeng-
ing as microplastics are mostly studied in relation to their different 
points of entry (i.e., application of sewage sludge on agricultural land, 
mulching, seed coating, inadequate waste management and atmos-
pheric deposition). Therefore, any information about microplastic 
prevalence and fate is context-specific. For example, both fibers and 
fragments (Corradini et al., 2019; van den Berg et al., 2020; Zhang, 
Xie, et al., 2020) can predominate in soils receiving sludge amend-
ments, whereas fragments are commonly found in sites affected 
by atmospheric deposition (Klein & Fischer, 2019) and poor waste 
management practices (Huerta Lwanga, Mendoza Vega, et al., 2017).

4  |  OVERVIE W ON THE DISPERSAL 
OF MICROPL A STIC S BY TERRESTRIAL 
ORGANISMS AND ECOTOXICOLOGIC AL 
EFFEC TS

Most studies considering the role of terrestrial organisms in dis-
persing microplastics (86%) and their biological effects (50%) have 
been performed using single species (Figure 3a,b). These studies 
document the role of, for example, plants (corn; Zea mays, soybean; 
Glycine max and ryegrass; Lolium multiflorum, Li et al., 2021), earth-
worms (Lumbricus terrestris; M. Yu et al., 2019), snails (Helix aspersa, 
H. aperta and H. pomatia; Panebianco et al., 2019) and birds (Gallus 
gallus domesticus; Huerta Lwanga, Mendoza Vega, et al., 2017; Falco 
tinnunculus, Buteo buteo and Milvus migrans lineatus Zhao et al., 2016) 
as vectors for dispersal of microplastics.

We found only one study that explicitly addressed the role of 
interactions between multiple species assemblages in promoting mi-
croplastic dispersal (Zhu, Bi, et al., 2018). The authors (Zhu, Bi, et al., 
2018) showed that predator–prey interactions in microarthropod as-
semblages can also enhance the dispersion of microplastics.

Microplastic concentrations used in ecotoxicological studies had 
a median of 0.5% w/w, a mode of 1% w/w and ranged from a mini-
mum of 0.000002% w/w to a maximum of 60% w/w. Early terrestrial 
studies (e.g., Huerta Lwanga et al., 2016) used high exposure con-
centrations (up to 60% w/w) while more recent studies have used 
more environmentally realistic levels mimicking the range of concen-
trations representative of near-pristine remote areas (0.0005% w/w, 
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average value reported from Swiss floodplain soils, see Scheurer 
& Bigalke, 2018) to industrial hotspots (up to 6.75% w/w; Fuller & 
Gautam, 2016).

Ecotoxicological effects of microplastics were more frequently 
studied in certain organism groups (Figure 3c,d): bacteria (27.8%; 
concentration: 0.001%–28% w/w), plants (23.4%; 0.0002%–20% 
w/w) and worms (19.6%; concentration: 0.0000015%–60% w/w). 
Laboratory experiments were conducted over relatively short time 
scales (median of 30 days), whereas field trials were conducted over 
longer time frames (median of 287  days, see Figure 4a,b). Slightly 
more than half (53%) of these studies reported significant effects of 
exposure to microplastics (Figure 4b).

Some ecotoxicological responses were more widely reported 
than others, for example, physical changes (i.e., alterations in the 
morphological characteristics of the organisms such as growth rate, 
size, length and weight), mortality and behavioral effects (Figure 5). 
Microplastics are rarely lethal for terrestrial organisms, but rather 
induce general oxidative stress responses including gene expression 
(Yu et al., 2020) and ultimately influence the regulation and activa-
tion of antioxidant enzymes including, for example, superoxide dis-
mutase, catalase and glutathione s-transferase (Chen et al., 2020; 

Jiang et al., 2019; Le et al., 2018; Prendergast-Miller et al., 2019; 
Song et al., 2019; Wang et al., 2019). Those reactions can be inter-
preted as stress responses or defense mechanisms (Jeong & Choi, 
2019).

Effect studies that evaluate community endpoints (structure and 
function) predominantly involve soil microbial assemblages. The soil 
microbial community fulfills vital ecological roles (Gattinger et al., 
2008; Sofo et al., 2014) for nutrient cycling and is essential for plant 
survival. Any changes in soil microbial communities have the poten-
tial for ecological surprise as they can alter soil quality (Bardgett & 
van der Putten, 2014) and potentially affect carbon cycling (Rillig 
et al., 2021).

5  |  MICROPL A STIC EFFEC TS ON 
TERRESTRIAL PL ANTS

There are a limited number of studies of microplastic effects on 
terrestrial plants and it is hard to draw any general conclusions. 
With the exception of Lozano and Rillig (2020), most studies have 
targeted single species, including, for example, perennial ryegrass 

F I G U R E  2  Number of publications and characteristics of studied microplastics within the terrestrial environment. The number of peer-
reviewed publications covering the three main topic areas: degradation, dispersion, effects and reviews (a) and the associated properties of 
microplastics; type of polymer (b), shape (c) and size range (d). In some studies, the shape and the plastic polymers were not specified (denote 
as N.s in the legend) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(Boots et al., 2019), common wheat (Judy et al., 2019), broad bean 
(Jiang et al., 2019), carrots (Lozano et al., 2021) and spring onion (de 
Souza Machado et al., 2019). The experimental conditions used in 
these studies vary widely with respect to soil type (loamy sandy soil 
and clay collected at different locations), duration of exposure (2–
273 days) and microplastic concentrations (0.001%–2% w/w). This 
lack of standardization makes any cross-study comparisons chal-
lenging. When multiple studies can be compared because they share 
some common aspects of experimental setup, conflicting results are 
often reported. For example, Boots et al. (2019) found that germina-
tion of perennial ryegrass was impaired when exposed to acrylic pol-
ymers and polyester at concentrations of 0.1% w/w, whereas Judy 
et al. (2019) did not find any negative effects on germination of com-
mon wheat using identical concentrations of polyester, polyethylene 
and polyvinylchloride, suggesting that species respond differently. 
The presence of microplastics can trigger different effects on differ-
ent plant organs. Boots et al. (2019) reported that perennial ryegrass 
exposed to polyethylene microplastics had a significant increase in 
root biomass but no significant change in shoot biomass. Size of mi-
croplastics also appears to matter. Jiang et al. (2019) showed that 

identical concentrations (0.001%, 0.005% and 0.01% w/w) of differ-
ent sized polystyrene microplastic beads caused size-dependent re-
sponses in broad bean. Exposure to larger beads (5 µm) significantly 
reduced root length but did not induce any genotoxicity effect, 
whereas smaller beads (0.1  µm) triggered significant genotoxicity 
effects while root length was unaffected (Jiang et al., 2019).

A better understanding of the interactions between plants and 
mycorrhizal fungi may help to elucidate some of the mechanisms be-
hind the morphological changes in plants associated with exposure 
to microplastics (de Souza Machado et al., 2019). A study assessing 
effects of six microplastics polymers (polyamide: 2% w/w, polyes-
ter: 0.2% w/w, high-density polyethylene: 2% w/w, polypropylene: 
2% w/w, polystyrene: 2% w/w and polyethylene terephthalate: 2% 
w/w) with three different shapes (fibers, beads and fragments) on 
plant (spring onion; Allium fistulosum)–mycorrhizal fungi interactions 
showed polymer and shape-specific effects on symbiosis (de Souza 
Machado et al., 2019). Compared to the other polymers, polyester 
fibers substantially increased mycorrhizal colonization (by 8-fold) 
around the roots (de Souza Machado et al., 2019). The increase in 
colonization was attributed to localized changes in soil structure   

F I G U R E  3  An overview of the studies 
reporting distribution of microplastics 
by terrestrial organisms and microplastic 
effects on terrestrial organisms. 
Comparing the level of biological 
organization, i.e., individual species versus 
community assemblages across studies 
focusing on the distribution (a)  
and the effects of microplastics (b) 
and the terrestrial organism groups 
studied (c and d) for each respective 
category [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(an increase soil density and water stable aggregates) surrounding 
the roots and subsequently improved the yield of spring onion bulbs 
(de Souza Machado et al., 2019). These findings clearly demonstrate 
that microplastics can indirectly affect the viability of agroecosys-
tems by influencing multi-species interactions and plant growth 
processes.

6  |  MICROPL A STIC EFFEC TS ON SOIL 
STRUC TURE AND FUNC TION

6.1  |  Changes in soil physicochemical properties

Soil is a critical environmental matrix that provides habitat and 
sustains ecosystem functions and services (Bardgett & van der 
Putten, 2014). The presence of microplastics can significantly alter 
soil physicochemical properties, including the distribution of water 
stable aggregates, bulk density, water retention capacity and pH 
(Table 1). These changes in physicochemical properties are depend-
ent on microplastic shape, polymer and concentration (de Souza 
Machado et al., 2019; de Souza Machado, Lau, et al., 2018; Lozano 
et al., 2021; Zhang, Zhang, et al., 2019). Specifically, fibers have been 

observed to trigger stronger effects on soil bulk density, distribu-
tion of soil aggregates and the formation of macropores (>30 µm; 
de Souza Machado et al., 2019; de Souza Machado, Lau, et al., 2018; 
Zhang, Zhang, et al., 2019; Zhang & Liu, 2018). Moreover, some of 
the changes in soil physicochemical properties can be modulated by 
interactions with soil dwelling organisms, for example, plants and 
fungi (de Souza Machado, Lau, et al., 2018; Liang et al., 2019; Wang 
et al., 2020).

6.2  |  Interactions with soil biota

Interactions between microplastics and the soil biota can influence 
changes in soil physicochemical characteristics. Liang et al. (2019) 
showed that the effects of microplastics on water stable aggregates 
varied when the soil was inoculated with different strains of sapro-
bic fungi. For instance, the interactions between microplastics and 
two individual fungal strains substantially reduced the percentage 
of water stable aggregates, whereas the opposite effect was ob-
served for a third strain. In another study, Boots et al. (2019) found 
that the addition of microplastics (polyethylene polymer) on their 
own significantly decreased soil pH. However, in treatments that 
combined microplastic addition and a plant (perennial ryegrass), no 
decrease in pH was observed. Interactions between different micro-
plastic polymers (polyamide, polyester, polyethylene, polypropyl-
ene and polystyrene) and spring onion on soil characteristics (bulk 
density and water-holding capacity) were investigated by de Souza 
Machado et al. (2019). They demonstrated differences in outcomes 
across treatments that included microplastic–plant interactions 
compared to microplastics alone (de Souza Machado et al., 2019). 
For instance, microplastic-induced reductions in soil bulk density 
(with the exception of polypropylene) and increase in water-holding 
capacity were less pronounced when interactions between micro-
plastics and plants were considered (de Souza Machado et al., 2019). 
These findings highlight the potential for ecological surprise when 
microplastics are added to the soil. The complexity of interactions 
between microplastics, plants and the soil biota in relatively simple 
experimental setups underscores the need to address interactions 
between microplastics, plants, fungi and other soil organisms for un-
derstanding changes in soil physicochemical properties and poten-
tial effects on agroecosystem integrity.

6.3  |  Linking changes in soil structure and function 
to presence of microplastics

Changes in soil structures (bulk density, water stable aggregates, 
water-holding capacity, pore volume) associated with the pres-
ence of microplastics can directly affect soil microbial communities, 
which are the main drivers of nitrogen cycling (Rong et al., 2021), 
carbon processing (Rillig et al., 2021) and other biogeochemical pro-
cesses essential for human survival (Bender et al., 2016). Multiple 
studies have shown that microplastics can affect soil microbial 

F I G U R E  4  The duration of the experiments at the laboratory 
(a) and the field scale (b) shown as violin plots, and the percentage 
of ecotoxicological studies reporting significant effects (c) [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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activity and may have important implications for nutrient cycling (de 
Souza Machado et al., 2019; de Souza Machado, Lau, et al., 2018; 
Liu et al., 2017; Rong et al., 2021). Liu et al. (2017) demonstrated 
that the increase in microbial activity (based on the enzymatic ac-
tivities of fluorescein diacetate hydrolase) associated with the pres-
ence of microplastics was correlated with an increase in soil-water 
dissolved nutrient concentrations. This suggests that microplastics 
can alter the performances of microbial communities and influence 
the accumulation of dissolved nutrients (Liu et al., 2017). Others 
reported mixed results on the performances of soil microbial com-
munities, for example, respiration and nitrification were both neg-
atively and positively influenced when exposed to microplastics 
(Judy et al., 2019) and Yan et al. (2020) reported changes in micro-
bial community diversity but no effect on soil nutrients. Moreover, 
the response of microbial assemblages to low concentrations of 

microplastics (0.05%–0.25% w/w) is particularly intriguing as they 
seem to produce stronger effects than higher exposure levels (de 
Souza Machado, Lau, et al., 2018; Judy et al., 2019). The mechanism 
behind this response is not fully understood and might be linked to a 
combination of factors including the changes that microplastics trig-
gered in the soil structure and the ability to microbes to colonize 
microplastic (de Souza Machado, Lau, et al., 2018).

There is conflicting evidence about the role of microplastics in 
the terrestrial carbon cycle (Gao et al., 2021; Ren et al., 2020; Rillig 
et al., 2021). Carbon is the main element in microplastics and un-
like more labile carbon sources that originate from natural processes 
(photosynthesis or biomass production), this recalcitrant carbon 
pool is better able to resist degradation, thus affecting soil carbon 
storage (Rillig & Lehmann, 2020). The relative long persistency of mi-
croplastics in the soil gives microbial communities an opportunity to 

F I G U R E  5  Ecotoxicological endpoints 
reported in studies of microplastic effects 
on terrestrial organisms. Each bar shows 
the total number of studies [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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evolve and exploit these additional sources of carbon (Rillig, 2018). 
Microbial communities are known to develop abilities to degrade 
other recalcitrant organic compounds, for example, polycyclic ar-
omatic hydrocarbons (PAHs) through multiple metabolic pathways 
(Ghosal et al., 2016; Posada-Baquero & Ortega-Calvo, 2011), sug-
gesting that they also have the ability to degrade microplastics. The 
above findings provide strong incentives to further study the im-
pacts of microplastics on soil microbial community functions related 
to biogeochemical cycling. Notably, the quantitative implications of 
these findings for carbon cycling have not yet been explicitly ac-
counted for (Huerta Lwanga et al., 2018; Rillig et al., 2021; Tian et al., 
2017; Zhang, Zhao, et al., 2019).

7  |  MICROPL A STIC S DISPERSION AND 
FR AGMENTATION IN SOIL

Once microplastics reach the soil, multiple abiotic and biotic fac-
tors can influence their dispersion and fragmentation. Dispersion of 
microplastics can be enhanced by physical features of the soil, for 
example, the presence of macropores and fissures (appearing during 
dry season), which act as a conduit between the surface and deep 
layers (Rillig, Ingraffia, et al., 2017). Physical disturbance caused by 
agricultural practices (plowing, tilling and crop harvesting) can also 
facilitate the transfer of microplastics from the soil surface into 
deeper soil layers (Rillig, Ingraffia, et al., 2017). Soil biota can also 
transport microplastic and the outcomes vary according to the niche 
occupied by the organisms (Maaß et al., 2017). In laboratory condi-
tions, larger soil-dwelling organisms such as earthworms transport 
microplastics over relatively larger distances (reaching 10 cm; Rillig, 
Ziersch, et al., 2017) while smaller organisms have more restricted 
ranges, which was about 3  cm for collembola (Maaß et al., 2017). 
Earthworms are efficient carriers of microplastics of less than 50 µm 
in size and facilitate the incorporation of plastics particles in the soil 
(Huerta Lwanga et al., 2016; Huerta Lwanga, Gertsen, et al., 2017). 
They contribute to the spreading of microplastics through their casts 
following ingestion and by their burrowing activities (Huerta Lwanga 
et al., 2016; Huerta Lwanga, Gertsen, et al., 2017). Predator–prey in-
teractions can also enhance the dispersion of microplastics (Zhu, Bi, 
et al., 2018). Specifically, predatory mites (Hypoaspis aculeifer) trigger 
predator avoidance behavior in prey species (collembolan; Folsomia 
candida and oribatid mite; Damaeus exspinosus) and the increased 
prey activity concomitantly led to increased microplastics dispersal 
at a local scale.

Microplastics undergo ageing and weathering processes in the 
soil (i.e., fragmentation and degradation), which leads to a gradual 
decrease in particle size (Ng et al., 2018). Weathering can be more 
rapid in soil than water (Duan et al., 2021). As plastic is generally 
resistant to degradation (Zhang et al., 2021), microplastics in soil 
may be more prone to breakdown by fragmentation (Lambert et al., 
2014; Zhou, Wang, et al., 2020). Microplastics in the uppermost soil 
layers are more susceptible to photo- and thermo-oxidation (Ng 
et al., 2018). Photooxidation occurs when plastic polymers absorb 

high-energy radiation (especially ultraviolet radiation 290–400 nm), 
which excites electrons to higher energy levels and eventually gives 
rise to the formation of free oxygen radicals (Lambert et al., 2014). 
Once free oxygen radicals are formed, they trigger bond (C–H and 
C–C) cleavages in the polymer chain resulting in decreased tensile 
strength and molecular weight (Singh & Sharma, 2008). Thermal 
oxidation causes bond scissions of the polymer chains when over-
heated (Lambert et al., 2014). Thermal oxidation affects the entire 
polymer and results in a decrease in crystallinity, loss of tensile 
strength and an increase in crack formation (Arkatkar et al., 2009). 
Other fragmentation processes that can occur in deeper soil layers 
include high impact mechanical disturbances associated with tillage 
that can shred microplastic into smaller pieces (Astner et al., 2019) 
and contact with water that can increase embrittlement (Julienne 
et al., 2019). Water-induced weathering can further contribute to 
fragmentation; prolonged contact with water triggers the formation 
of micro-cavities on the surface of polymers that eventually form 
larger cracks (Julienne et al., 2019).

Soil biota can also contribute to reducing the size of microplas-
tics. Some fungi and bacteria can use the backbone (C–H) structures 
of microplastic as a carbon source (Huerta Lwanga et al., 2018; Tian 
et al., 2017). Bacterial communities isolated from the digestive tract 
of earthworms (Lumbricus terrestris), which were previously exposed 
to microplastics could reduce the size polyethylene microplas-
tic (Huerta Lwanga et al., 2018). The isolated bacterial community 
consisted of Actinobacteria (Microbacterium awajiense, Rhodococcus 
jostii, Mycobacterium vanbaalenii and Streptomyces fulvissimus) and 
Firmicutes (Bacillus simplex and Bacillus sp.). The bacterial commu-
nity was able to drastically reduce the size distribution of microplas-
tics and even led to the formation of nanoplastics after a 4-week 
incubation period (Huerta Lwanga et al., 2018). Decrease in size (ap-
proximately 10%) was also observed after microplastic fibers were 
ingested by snails (Achatina fulica); however, the contributions of 
snail gut bacteria or other digestive processes to the observed size 
reduction are currently unknown (Song et al., 2019).

8  |  TROJAN HORSE FOR OTHER 
CONTAMINANTS

Microplastics can act as a vector for various extrinsic contami-
nants, herbicides (Hüffer et al., 2019), hydrophobic organic pol-
lutants (Wang et al., 2019) and heavy metals (e.g., zinc; Hodson 
et al., 2017), and thereby influence their distribution in soils (Ming 
Zhang & Xu, 2020). Microplastics also contain diverse intrinsic con-
taminants that are added during manufacturing (Campanale et al., 
2020; Hahladakis et al., 2018). Results of studies on microplastics 
as a vector for extrinsic contaminants in terrestrial environments 
showed a more complex picture than the relatively clear role of mi-
croplastics as vectors for other contaminants observed in aquatic 
ecosystems (Hartmann et al., 2019). Wang et al. (2019) reported 
that polyethylene and polystyrene microplastics neither acted as 
carriers for hydrophobic organic contaminants nor enhanced their 
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uptake by earthworms (Eisenia fetida). However, Hodson et al. (2017) 
showed that microplastics can act as a vector for zinc in earthworms 
(Lumbricus terrestris). Hüffer et al. (2019) demonstrated that polyeth-
ylene microplastics can reduce the sorption capacity of soil organic 
matter for two herbicides (atrazine and 4-(2,4-dichlorophenoxy) bu-
tyric acid), thereby increasing their mobility and the likelihood that 
they will interact with non-target organisms (Hüffer et al., 2019).

Intrinsic contaminants include substances (up to 70% w/w) added 
to plastic polymers to improve their durability, flexibility and other 
desirable properties (Geyer et al., 2017; Hahladakis et al., 2018). 
Once in the environment, intrinsic contaminants may leach from 
the plastic matrix where they can have adverse effect on biota and 
ecosystem function (Stone et al., 2020). Phthalates and bisphenol A 
are of special concern as they are well-known endocrine disruptors 
(Erkekoglu & Kocer-Gumusel, 2016). The combined effects of mi-
croplastics and their additives are incompletely known (Campanale 
et al., 2020). However, the risk posed by endocrine disrupting addi-
tives alone on the reproductive health of terrestrial organisms is well 
founded (de Souza Machado, Kloas, et al., 2018; Zhang, Yang, et al., 
2020). These results highlight the importance of additional studies 
addressing interactions between microplastics and other contami-
nants that depend on both their chemical properties and the prevail-
ing environmental conditions (Hüffer et al., 2019; Wang et al., 2019).

9  |  THE NEED TO MOVE TOWARD 
ECOLOGIC AL STUDIES

9.1  |  Microplastic as a stressor

To date, most studies addressing the effects of microplastics in 
terrestrial systems have been based on single species testing per-
formed in controlled laboratory conditions and over relatively short 
exposure times (Figures 3b and 4a). Scaling the mortality, physical 
and reproductive impairment observed under controlled, short-term 
artificial conditions used in ecotoxicological assays to the ecosys-
tem level is challenging and often falls short (Forbes et al., 2017). 
The scaling challenges arise from multiple sources including the 
community structure of real ecosystems, the complex structure of 
the natural environment and the time scale over which effects are 
manifested (Forbes et al., 2016, 2017; Kéfi et al., 2016). The com-
plex structures of ecosystems consisting of multiple populations of 
species that collectively form communities where numerous interac-
tions and self-reinforcing feedbacks that vary across time and space 
makes it hard to properly contextualize results from single species 
studies (Forbes et al., 2016, 2017; Kéfi et al., 2016; Windsor et al., 
2018). Therefore, to reduce the potential for ecological surprise, it is 
imperative to design studies which can detect ecological effects of 
microplastics in realistic terrestrial (model) ecosystems. With some 
exceptions, for example, Yan et al. (2020), who worked with seven 
vascular plant species, most studies of community effects have fo-
cused on microbes. Many of these studies showed profound changes 
in microbial community composition when exposed to microplastics 

(de Souza Machado et al., 2019; de Souza Machado, Lau, et al., 2018; 
Judy et al., 2019; Liu et al., 2017; Ng et al., 2021; Ren et al., 2020). 
Microplastics have the potential to generate effects that stretch 
beyond changes in species richness and community structures and 
impact ecological functions that species fulfill, commonly known 
as biodiversity–ecosystem functioning relationship (Hooper et al., 
2005; Loreau et al., 2001). Multiple lines of evidence consistently 
show a coupling between biodiversity and ecosystem functioning 
(Balvanera et al., 2006; Cardinale et al., 2011; Gonzalez et al., 2020). 
Adopting the biodiversity–ecosystem functioning approach is nec-
essary if we are to adequately evaluate whether or not microplas-
tics in the terrestrial environment pose a risk of ecological surprises 
that can lead to failure in key ecosystem functions including nutri-
ent recycling, pollination, seed dispersal and energy transfer trophic 
interactions, that are benchmarks of healthy terrestrial ecosystems 
(Brockerhoff et al., 2017; Sekercioglu, 2010).

9.2  |  Risk of ecological surprises and implications 
for agroecosystems

The potential consequences of ecological surprise are especially 
acute in terrestrial agroecosystems, given their role in providing the 
vast majority of the human food supply. Current agricultural prac-
tices, plastic mulching and the application sewage sludge as ferti-
lizers, are considered as major entry routes for microplastics into 
terrestrial ecosystems (Büks & Kaupenjohann, 2020; Corradini et al., 
2019; Nizzetto et al., 2016). However, microplastics do not occur in 
isolation; other environmental pressures resulting from natural dis-
turbances, for example, drought, flood and pest infestation (Food & 
Agriculture Organisation, 2017), anthropogenic activities, for exam-
ple, global warming (Gornall et al., 2010), pesticide use (Aktar et al., 
2009), invasive species (Paini et al., 2016) and heavy metal contami-
nation (Li et al., 2019) also occur in agroecosystems. As microplastics 
weather and fragment into smaller sized particles, their surface area 
and surface reactivity increase, thus allowing multiple interactions 
with other contaminants including their co-transport (Hale et al., 
2020). Microplastics alone are likely to cause sub-lethal effects 
(Figure 5) but the interactions with other co-occurring stressors 
can result in non-additive effects where their cumulative impacts 
become difficult to predict and can potentially lead to ecological 
surprises (Christensen et al., 2006). Previous studies have demon-
strated that interactive effects of stressors can lead to unexpected 
effects in terrestrial ecosystems. For example, the interactive ef-
fects of temperature, precipitation, ozone and carbon dioxide on 
hard-wood forests led to an increase of 20% in the net ecosystem 
carbon exchange, which defied the predicted decrease (29%) when 
each factor was modelled separately (Hanson et al., 2005). This in-
crease in the net ecosystem carbon exchange indicates that more 
carbon will be sequestered in tree biomass than being emitted by 
respiration in the future where temperature and winter precipita-
tions are expected to increase by 4°C and 20%, respectively (Hanson 
et al., 2005). In another example, the effects of nutrient enrichment 
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were found to intensify drought effects on grassland communities 
(Tilman & Downing, 1994). Therefore, it is crucial to investigate how 
plausible interactions between microplastics and other stressors 
can impact terrestrial biodiversity and the ecological functions they 
fulfill. This is particularly important for agroecosystems, as crop 
production is dependent on multiple interacting ecological func-
tions including nutrient recycling, symbiosis and pollination that are 
performed by terrestrial organisms (de Souza Machado et al., 2019; 
Oliveira et al., 2019). Studying the cumulative effects of microplas-
tics and other stressors in realistic ecological contexts is needed if 
we are to disentangle their impacts on biodiversity–ecosystem func-
tioning, and to subsequently evaluate the risk of ecological surprises 
in agroecosystems (Christensen et al., 2006).

9.3  |  Trophic transfer and food web stability

While studies of the transfer of microplastics across trophic lev-
els in terrestrial system are scarce, microplastics have been found 
in the digestive tracts of carnivorous terrestrial birds, which sug-
gests that they can be transferred up the food chain (Carlin et al., 
2020; D'Souza et al., 2020; Zhao et al., 2016). Bioaccumulation of 
microplastics in terrestrial organisms was first reported by Huerta 
Lwanga, Gertsen, et al. (2017) and Huerta Lwanga, Mendoza, et al. 
(2017). The authors documented a gradual increase in microplas-
tic concentrations from the soil (0.87  ±  1.9  particles/g) to earth-
worm casts (14.8  ±  28.8  particles/g) and finally in chicken feces 
(129.8  ±  82.3  particles/g). However, significant knowledge gaps 
remain regarding the potential effects of microplastics on terres-
trial food web structure (the flow of energy and materials; White 
et al., 2007) and food web stability (maintaining longer food chains; 
Sterner et al., 1997). Terrestrial and aquatic food webs are gener-
ally intertwined by organisms, which are mobile and occupy large 
spatial area (e.g., birds and winged insects), and can seamlessly 
transit ecotones (Knight et al., 2005). A recent study (D’Souza et al., 
2020) showed that microplastics can be transferred from aquatic 
to terrestrial ecosystems, when aquatic insects (Ephemeroptera 
and Trichoptera; 26  ±  3 particles/g) are consumed by passerines 
(Cinclus cinclus; regurgitated pellets 16 ± 3 particles/g, feces 8 ± 2 
particles/g).

10  |  UNCERTAINTIES ABOUT 
NANOPL A STIC S IN TERRESTRIAL 
ENVIRONMENTS

The effects of nanoplastics, a subfraction of microplastics smaller 
than 0.1  µm, on terrestrial ecosystems are even more uncertain 
(Wahl et al., 2021). Apart from their smaller size, nanoplastics have 
different surface properties, that is, large surface areas, and higher 
degrees of curvature, reactivity and charge (Wagner & Reemtsma, 
2019). These properties enable them to cross biological membranes 
and adsorb other contaminants (de Souza Machado, Kloas, et al., 

2018; Roach et al., 2006). The combination of different physical 
and chemical properties of nanoplastics and the almost complete 
absence of studies on their behavior in the terrestrial environment 
increases the risk for ecological surprise through direct or indirect 
deleterious effects on terrestrial organisms (de Souza Machado, 
Kloas, et al., 2018; Oliveira et al., 2019) which may then impact food 
production. The available studies are reviewed by Wang et al. (2021) 
who note that toxic effects on organisms and reduced plant growth 
have been observed in the laboratory. Outcomes included a range 
sub-lethal effects leading to reduction in biomass, oxidative stress, 
behavioral changes, genotoxicity, alterations in gut microbiota and 
reproductive impairment (Jiang et al., 2019; Kim et al., 2020; Le 
et al., 2018; Zhu, Fang, et al., 2018). However, these short-term, 
single-species studies were performed using a single polymer (poly-
styrene) under laboratory conditions and can thus be subject to the 
same uncertainties as the majority of studies on microplastics in ter-
restrial environments.

We currently have limited knowledge about the modes of ac-
tion and effects for many nanoplastics (Wagner & Reemtsma, 
2019). However, these knowledge gaps can be overcome using ex-
isting knowledge about the ecological consequences of nanomate-
rials. Nanomaterials and nanoplastics share similar characteristics. 
They are of a similar size, vary in shape and have comparable sur-
face properties (Bundschuh et al., 2018; Pitkethly, 2004). Owing to 
these similarities in properties, some of the progress achieved over 
the last decade of research on the fate and effects of nanomateri-
als in the environment (Bundschuh et al., 2018) can potentially be 
applicable to nanoplastics. The range of effects reported for nano-
materials on different terrestrial organisms include oxidative stress 
(Rico et al., 2015), shifts in bacterial community and functioning 
(Ge et al., 2011), impaired reproduction of springtails (McKee et al., 
2017) and hampered development in plants (Colman et al., 2013; 
Lee et al., 2010). In addition, uptake and translocation of nanoma-
terials in plants (Tripathi et al., 2017; Wang et al., 2012) and the 
effect of environmental factors (e.g., soil texture, organic matter 
concentration and pH) on nanomaterial bioavailability to soil organ-
isms (Bundschuh et al., 2018; Cornelis et al., 2014; Tourinho et al., 
2012) are relatively well described. Therefore, it is likely that some 
of the effects of nanoplastics on the terrestrial environment can be 
predicted using previous research on nanomaterials (Hüffer et al., 
2017).

11  |  CONCLUSIONS AND OUTLOOK

Research on microplastics in the terrestrial environment is still in 
its infancy but has gained momentum during recent years. Here, we 
summarized the findings of previous research on microplastics in ter-
restrial environments and highlighted the need to move away from 
single-species testing and begin to address ecological effects. Such 
a transition is needed if we are to avoid ecological surprises through 
a better understanding of the potential implication of microplastics 
on terrestrial biodiversity and the terrestrial ecosystem functions 
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relevant for sustaining crop production in agroecosystems. Based on 
our discussion above, we identify some pressing research priorities:

•	 Reevaluation of the risk posed by sewage sludge amendment 
of agroecosystems. Recent evidence from aquatic ecosystems 
showed that biofilms, which developed on the surface of micro-
plastics can include bacteria with AMR genes (Guo et al., 2020; 
Yang et al., 2020). Besides creating an entry route to the environ-
ment for microplastics, sewage sludge amendment can promote 
the spread of bacteria with AMR genes in agroecosystems and 
represent a risk for global health.

•	 Establishment of long-term agricultural experimental plots to pro-
vide a better understanding of microplastic effects on crop pro-
duction and the possible bottom-up effects of microplastics on 
soil structure and microbial communities (Boots et al., 2019; de 
Souza Machado et al., 2019). Long-term agricultural experimen-
tal plots have been instrumental in the past to optimize the use 
of fertilizers and herbicides and help to understand the damage 
caused by pathogens (Johnston & Poulton, 2018).

•	 Evaluation of the role microplastics as a stressor and their poten-
tial long-term impacts on terrestrial communities (microbes, in-
vertebrates, mammals and birds) and food web stability.

•	 Evaluation of the cumulative effects of microplastics and other 
stressors on terrestrial biodiversity and ecosystem functioning.
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