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Abstract
Aim: We tested whether there is a strong effect of species interactions on assembly 
of local lake fish communities, in addition to environmental filters and dispersal.
Location: Seven hundred and seventy- two European lakes and reservoirs.
Time period: 1993– 2012.
Major taxa studied: Nineteen species of freshwater fishes.
Methods: We applied a latent variable approach using Bayesian Markov chain Monte 
Carlo algorithms (R package “BORAL”). We compared the contributions of six envi-
ronmental predictors and the spatial organization of 772 European lakes in 209 river 
basins on the presence/absence of the 19 most frequent fish species and on the 
biomass and mean mass of the six dominant species. We inspected the residual cor-
relation matrix for positive and negative correlations between species.
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1  | INTRODUC TION

Macroecology traditionally considers species distributions at large 
spatial scales to be primarily driven by abiotic environmental con-
ditions. In contrast, community ecology considers the interactions 
between species as paramount to understand the composition of 
local communities. Several approaches have been suggested to link 
macroecology and community ecology (Soberón, 2007; Staniczenko 
et al., 2017; Vellend, 2010). By adopting the terminology from evolu-
tionary biology, a conceptual synthesis of community ecology sug-
gested that patterns in the diversity and composition of species are 
influenced by four major processes: selection, drift, speciation and 
dispersal (Vellend, 2010). Selection represents deterministic differ-
ences in fitness among species, drift represents stochastic changes 
in species abundance, speciation creates new species, and dispersal 
is the movement of organisms across space. The effects of speciation 
and drift on local communities can be inferred only from following 
community composition over time, whereas information on the ef-
fects of selection and dispersal can be obtained from comparisons 
of community composition across large spatial and environmental 
gradients (e.g., Boulangeat et al., 2012; Cazelles et al., 2016; Lansac- 
Tôha et al., 2021). The metacommunity model of dispersal assumes a 
network of small local communities linked by dispersal among them 
(Holyoak et al., 2005). Selection processes encompass fundamental 
niche (mainly abiotic) filters that determine whether a species can col-
onize and persist in a given habitat, whereas the realized niche filters 
are imposed by competitive, mutualistic and agonistic (predator– prey 
or pathogen– host) interactions (Weiher et al., 2011). Accordingly, the 
assembly processes of abiotic filtering and dispersal, as considered by 

macroecology, are linked with the species interactions at local scales 
dominantly considered in community ecology.

Freshwater lakes are good model systems for exploring the 
relative effects of dispersal, abiotic conditions and species inter-
actions on community assembly, because lakes can be considered 
as relatively discrete ecosystems within the terrestrial landscape, 
potentially with a hydraulic connection to other similar ecosystems 
(Heino et al., 2021; Jackson et al., 2001; Tonn et al., 1990). The 
metacommunity structure of several organism groups in freshwater 
lakes has been demonstrated empirically (Beisner et al., 2006; De 
Bie et al., 2012; Heino et al., 2015; Lansac- Tôha et al., 2021), with 
differences in the dispersal intensities of organisms determining 
the spatial extent at which environmental, spatial and hydrological 
processes structure aquatic communities. For example, in Brazilian 
floodplain lakes, environmental factors interact with hydrological 
period to structure communities of micro-  and macro- organisms at 
the smallest (within floodplain) spatial scales, whereas species dis-
tributions are not dispersal limited. Between floodplains, the rela-
tive importance of environmental factors increases, whereas spatial 
factors become most important at the subcontinental scale, espe-
cially for poor dispersers (Lansac- Tôha et al., 2021). Other studies 
on freshwater invertebrates across large spatial scales suggest that, 
in addition to spatial factors, climatic gradients (e.g., temperature, 
precipitation) and ecosystem size are dominant predictors of spe-
cies richness, community composition and average organismal size 
in lakes (Hayden et al., 2019; Meerhoff et al., 2012). Studies on pro-
cesses of community assembly for fishes in freshwater lakes likewise 
identified dominant roles of abiotic filtering at large spatial scales 
(Brucet et al., 2013; Emmrich et al., 2014; Jeppesen et al., 2020). 

Results: Environmental (50%) and spatial (10%) predictors contributed to the pres-
ence/absence assembly of lake fish communities, whereas lake size and productiv-
ity contributed strongly to the biomass and mean mass structures. We found highly 
significant negative correlations between predator and prey fish species pairs in the 
presence/absence, biomass and mean mass datasets. There were more significantly 
positive than negative correlations between species pairs in all three datasets. In ad-
dition, unmeasured abiotic predictors might explain some of the correlations between 
species.
Main conclusions: Strong effects of species interactions on assembly of lake fish 
communities are very likely. We admit that our approach is of a correlational nature 
and does not generate mechanistic evidence that interactions strongly shape fish 
community structures; however, the results fit with present knowledge about the 
interactions between the most frequent fish species in European lakes and they sup-
port the assumption that, in particular, the mean masses of fish species in lakes are 
modified by species interactions.

K E Y W O R D S

community assembly, dispersal, environmental filters, latent variables, model- based analysis, 
predator– prey interactions
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Fish population densities and population size structure are modi-
fied primarily by productivity of the ecosystems (Arranz et al., 2016; 
Brucet et al., 2013), and dispersal limitation of small fish species can 
affect local fish species occurrences (Mehner et al., 2014; Olden 
et al., 2001). Strong effects of species interactions on community 
composition have been documented predominantly by following 
local communities over time; for example, in response to predator- 
induced trophic cascades (Carpenter & Kitchell, 1993; Meijer 
et al., 1994). In contrast, when comparing lake fish communities 
across larger spatial scales, evidence for strong effects of negative 
interactions between fish species on community composition was 
usually poor (Chu et al., 2016; Mehner et al., 2016), whereas positive 
covariation of occurrences and population densities for functionally 
similar or phylogenetically related species was common (MacDougall 
et al., 2018; Mason et al., 2008; Mehner et al., 2016).

These somewhat contradictory results on the importance of 
species interactions for assembly processes of fish communities in 
lakes might reflect two major intrinsic difficulties. First, interaction 
strength is often context dependent (MacDougall et al., 2018); hence, 
a strong effect of species interactions for community assembly can 
be identified only if abiotic filters are evaluated simultaneously. For 
example, temperature determines whether brown trout (Salmo trutta) 
and pike (Esox lucius) coexist in lakes, with co- occurrence found only 
in large and colder lakes (Hein et al., 2014; McLoone et al., 2018). 
Second, the complex interplay between interaction effects, envi-
ronmental filtering and dispersal limitation generates a statistical 
challenge (Warton et al., 2015). The relative contribution from each 
process to community assembly cannot be disentangled by the usu-
ally applied distance- based ordinations (Legendre & Gauthier, 2014) 
or diversity measures (Magurran, 2004). For example, it can be dif-
ficult to discriminate between the effects of agonistic interactions 
and niche differences when two species rarely co- occur together in 
a set of lakes. In turn, co- occurrences of species can be driven either 
by facilitation between species or by similar abiotic niches.

Recent statistical developments, such as the hierarchical mod-
elling of species communities (HMSC), facilitate the formulation of 
data- driven hypotheses with respect to community assembly pro-
cesses (Ovaskainen et al., 2017). For example, by applying a latent 
variable approach, the models can isolate dispersal (spatial) and abi-
otic effects on fish community composition, ultimately leaving a re-
sidual correlation matrix that might reflect species interaction effects 
(Warton et al., 2015). Despite their conceptual advantages, it is still 
debatable whether the HMSC approach and the application of latent 
variables can identify the fundamental mechanisms behind species 
co- occurrences across communities, based on correlational evidence 
(Blanchet et al., 2020; Münkemüller et al., 2020). Recommendations 
to improve the reliability and validity of results obtained by the 
HMSC approach encompass the extension of datasets from pure 
presence/absence (p/a) of species to abundance or biomass contribu-
tions within a community, proper formulation of hypotheses and test-
able predictions, the application of the framework to a sufficiently 
large dataset and the report of uncertainty in the results (Blanchet 
et al., 2020; Hoegh & Roberts, 2020; Münkemüller et al., 2020).

Here, we used such a hierarchical model- based approach with 
latent variables to quantify the contributions from environmental, 
spatial and species- interaction effects to the composition of 772 
European lake fish communities. We tested datasets on p/a, biomass 
and mean mass of the dominant fish species in the lakes. The di-
mension of the dataset was large enough to ensure that the 19 most 
frequent species (see Table 1) occurred in a sufficiently high num-
ber of lakes (n ≥ 30). Abiotic predictors covered climatic conditions 
(temperature, precipitation and elevation), lake size (depth and area) 
and lake productivity (using total phosphorus concentration as a sur-
rogate). Therefore, the major environmental filters for large- scale 
(continental) and local presence, biomass and size of fish species 
were included. Spatial effects to infer potential contributions from 
dispersal were modelled by assuming a higher similarity of fish com-
munity composition in lakes belonging to the same river basin. We 
hypothesized that all three community assembly processes (abiotic 
filtering, species interactions and dispersal) would be important to 

TA B L E  1   Overview of the 19 most frequent fish species in 772 
European lakes, with Pearson correlation coefficients between 
empirically estimated and model- predicted presence/absence (p/a), 
biomass or mean mass for 19 (p/a) or six (biomass, mean mass) fish 
species

Common name Scientific name p/a Biomass
Mean 
mass

Bream Abramis brama 0.773 0.594 0.615

Bleak Alburnus alburnus 0.837 – – 

White bream Blicca bjoerkna 0.792 – – 

Crucian carp Carassius carassius 0.293 – – 

Stone loach Cobitis taenia 0.629 – – 

Vendace Coregonus albula 0.689 – – 

Whitefish Coregonus sp. 0.543 – – 

Pike Esox lucius 0.462 0.342 0.844

Gudgeon Gobio gobio 0.451 – – 

Ruffe Gymnocephalus 
cernuus

0.670 0.505 0.522

Bluegill Lepomis gibbosus 0.891 – – 

Sunbleak Leucaspius 
delineatus

0.457 – – 

Burbot Lota lota 0.993 – – 

Smelt Osmerus eperlanus 0.701 – – 

Perch Perca fluviatilis 0.833 0.851 0.979

Roach Rutilus rutilus 0.661 0.538 0.858

Pikeperch Sander lucioperca 0.991 – – 

Rudd Scardinius 
erythrophthalmus

0.999 0.707 0.759

Tench Tinca tinca 0.631 – – 

Mean 0.700 0.590 0.763

Note: The models included three latent variables, six abiotic predictors 
and random row effects to account for spatial effects. All correlations, 
p < .0001.
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model the fish datasets, but their relative contributions would be 
scale dependent. We predicted that environmental filtering from 
climatic effects and dispersal limitation would contribute strongly 
to the large- scale p/a structure, whereas lake size and productivity 
would have a stronger effect on the local biomass and mean masses 
of fishes. In turn, we predicted that the residual variance potentially 
reflecting species interaction effects would contribute strongly to 
predicting local fish biomass and mean masses but might be a weaker 
predictor for the continental p/a structure of the most frequent fish 
species. According to earlier studies, we expected the strongest neg-
ative interactions for predator– prey pairs, but likewise we expected 
to find numerous positive correlations between species with strong 
phylogenetic relationships in the residual correlation matrices.

2  | METHODS

We used the dataset of fish communities in 1,943 European lakes 
and reservoirs accumulated from standardized fishing by multi- mesh 
gillnets for the purpose of the European Water Framework Directive 
(Brucet et al., 2013; Mehner et al., 2017). Details of background, 
methods and basic fish community structure have been summarized 
previously (Brucet et al., 2013; Mehner et al., 2017). These lakes 
were sampled between 1993 and 2012. In short, fishing effort (num-
ber of nets per lake) was standardized according to lake area and 
depth, and fishing was performed using 30- m- long and 1.5- m- high 
benthic multi- mesh gillnets with 12 mesh sizes in a geometric row 
between 5.5 and 55 mm (CEN, 2015). These nets were placed at the 
lake bottom. In lakes deeper than 6 m maximum depth, additional 
pelagic gillnets were used, which were 1.5, 3 or 6 m high and had 
the same mesh sizes as the benthic ones (the 3 and 6 m nets lacked 
the 5.5 mm mesh section). The catch data were converted into a p/a 
matrix per species and lake. Furthermore, the species- specific catch 
per lake was expressed as the number or weight of fish per unit ef-
fort (NPUE or WPUE) in either benthic or pelagic areas, standard-
ized per net and fishing night (number or biomass of fish caught per 
standard net and night). The difference in height of pelagic nets was 
considered by assuming that 3- m- high pelagic nets were equivalent 
to two standard benthic nets, and 6- m- high pelagic nets equivalent 
to four benthic standard nets. We calculated the arithmetic average 
NPUE and WPUE from benthic and pelagic fish catches per species. 
In that way, benthic and pelagic fish catches were weighted equally, 
hence avoiding the commonly criticized underestimation of pelagic 
fishes in deep lakes relative to benthic catches caused by the ap-
plication of fewer pelagic nets than benthic nets per lake (Alexander 
et al., 2015). Finally, we divided WPUE by NPUE per species to ob-
tain the arithmetic mean mass (in grams) of each species per lake. 
Subsequently, we refer to these datasets as biomass and mean mass 
datasets.

Environmental predictors included per lake were elevation 
(in metres above sea level), maximum annual air temperature (in 
degrees Celsius), precipitation (in millimetres per year), lake area 
(in square kilometres), lake maximum depth (in metres) and total 

phosphorus concentration (TP; in milligrams per cubic metre), as 
obtained from at least four samples across the seasons per year 
(Supporting Information Table S1). The lake descriptors were taken 
from national databases. We also tested whether shoreline length (in 
kilometres; available for 293 lakes) would be a useful additional pre-
dictor. However, in contrast to log10 air temperature, log10 lake area 
and log10 lake depth, the square root of shoreline length was not 
significantly related to fish species richness in the lakes (Pearson's 
r = −.034); hence, it was not considered.

The maximum air temperature and precipitation were calculated 
from the Climatic Research Unit (CRU) model (New et al., 2002), 
as based on temperature records for the years before 2008, thus 
matching the period when the lakes were sampled. This specific 
model can obtain a spatial resolution of 10′ latitude and (or) longi-
tude and takes into account elevational differences between stations 
(New et al., 2002). The complete set of six environmental predictors 
was available for only a subset (n = 1,109) of the original n = 1,943 
lakes. The dataset contained only lakes with pH > 6, to exclude the 
potential effect of anthropogenically induced acidification and sub-
sequent mitigation measures on fish assemblages.

Spatial effects on fish community composition were considered 
by recording the river basins to which the lakes belong (for details, 
see subsection on model construction). These data were obtained 
from Catchment Characterization and Modelling (CCM) data v.2.1 
provided by the EU Joint Research Centre (JRC; http://ccm.jrc.ec.eu-
ropa.eu/php/index.php?actio n=view&id=23). The CCM2 database 
covers the entire European continent, including the Atlantic islands, 
Iceland and Turkey.

For the p/a dataset, we used all fish species that were present 
in ≥ 30 lakes (n = 19 species; Table 1; Supporting Information Table 
S2) and excluded lakes with only one or two species present. The 
limitation of the species included prevents an excessive number 
of zeroes in the dataset and avoids spurious correlations between 
species pairs occurring only rarely. Furthermore, the standardized 
sampling by gillnets is less reliable with respect to the occurrence 
of rare fish species in lakes (Diekmann et al., 2005; Olin et al., 2009; 
Šmejkal et al., 2015). Among the 19 species included, 18 fish spe-
cies are native in the regions covered, whereas bluegill (Lepomis gib-
bosus) is the most frequent invasive species in the lakes in Europe 
(Trochine et al., 2018). For some of the species (e.g., genera Esox and 
Scardinius), populations south of the Alps can be considered a sepa-
rate species (Bianco, 2014). However, the number of lakes from this 
geographical area in the total dataset was low (Figure 1), and there is 
no evidence that the ecological traits differ between the putatively 
different species of the genera between areas north and south of 
the Alps. Information on the six environmental predictors and spa-
tial information were available for a total of n = 772 lakes, covering 
large longitudinal and latitudinal gradients in Europe (Figure 1). The 
final set included 43 reservoirs (5.5%) from European areas with a 
low density of natural lakes. Earlier studies have demonstrated that 
the lists of species dwelling in natural lakes and in reservoirs are al-
most identical (Irz et al., 2006) and that the fish community compo-
sition in reservoirs shares many predictors with those for lake fish 

http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=23
http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=23
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communities (Irz et al., 2004). We used the identification number of 
the main river basins (seaoutlet) (WSO_ID in CCM2) and allocated 
these 772 lakes into 209 river basins (Figure 1). Most of the river 
basins included only one lake (n = 119). We found only 35 river ba-
sins with five or more lakes, with the River Elbe basin including the 
highest number of lakes (n = 47). The available data do not allow 
discrimination between landlocked (seapage) and drainage lakes 
(Heino et al., 2021; Tonn & Magnuson, 1982); therefore, we cannot 
infer whether the lakes within a river basin have a genuine hydraulic 
connection.

For the biomass and mean mass datasets, we focused on the 
dominant six fish species (perch, Perca fluviatilis; pike, Esox lucius; 
ruffe, Gymnocephalus cernuus; roach, Rutilus rutilus; bream, Abramis 
brama; and rudd, Scardinius erythrophthalmus) that were present in 
≥ 322 (c. 40%) of these 772 lakes (Supporting Information Table S3). 
We applied a relatively high presence threshold here to reduce the 
number of zeroes and facilitate proper model construction for the 
biomass and mean mass datasets. Excessive numbers of zeroes are 
particularly problematic and might distort the distributions of the 

continuous response variables biomass and mean mass; hence, we 
reduced the number of species in favour of obtaining robust model 
results. Accordingly, the 772 lakes included are identical for all three 
datasets. However, we ignored rare species not passing the over-
all presence thresholds in some of the lakes; hence, potential inter-
actions between dominant and rare species in these lakes are not 
explored. We analysed absolute values of fish biomasses and mean 
masses such that the raw data to calculate interaction strengths 
were not influenced by the exclusion of rare species.

2.1 | Model construction

We applied the HMSC approach with latent variables by running 
Bayesian models for analysing multivariate data as based on Markov 
chain Monte Carlo (MCMC) methods by the “BORAL” (Bayesian 
ordination and regression models for analysing multivariate data 
in ecology) package v.1.9 (Hui, 2016, 2020) under R v.3.6.2 (R 
Development Core Team, 2019). For each of the p/a, biomass and 

F I G U R E  1   Overview of geographical locations of 772 sampled European lakes (red dots), with Catchment Characterization and 
Modelling (CCM2) river basins (light grey) and main rivers (black lines). Note the numerous small river basins along the shorelines, which 
often contain only one of the sampled lakes [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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mean mass datasets, we compared purely latent models (including 
three latent variables without covariates) with correlated models 
(including environmental descriptors and three latent variables) and 
with spatially explicit correlated models (including three latent vari-
ables, environmental covariates and random row effects to account 
for spatial covariation). Purely latent models represent model- based 
unconstrained ordinations. With explanatory (environmental and 
spatial) variables, ‘BORAL’ fits correlated column generalized linear 
models (GLMs) with latent variables to account for any residual cor-
relation between the species. Therefore, the latent variables can be 
interpreted as a way of accounting for any residual covariation not 
explained by the covariates. Our previous work on abiotic predic-
tors indicated that (log)linear relationships describe the effects on 
fish communities well (Mehner et al., 2005, 2007, 2016); hence we 
did not include unimodal (quadratic) terms. Environmental predic-
tors were centred and standardized. To account for the effects of 
dispersal, we assumed that lake fish communities within the same 
river basin were more similar than fish communities in lakes from dif-
ferent river basins, reflecting stronger dispersal within than among 
river basins. This spatial correlation within river basins was accom-
plished by adding random row effects per river basin to the model, 
drawn from a normal distribution with mean zero and unknown vari-
ance, analogous to a random intercept in mixed models. Dispersal 
among the 209 river basins was assumed to be completely random. 
We ran the MCMC models via JAGS (Just Another Gibbs Sampler) 
according to the default settings in “BORAL” (burn- in 10,000 itera-
tions, total number of iterations including burn- in = 40,000, thin-
ning rate = 30, very weakly informative normally distributed priors 
with mean zero and variance 10). Given that only one MCMC chain 
is run by “BORAL” (see Hui, 2020), we calculated Geweke diagnos-
tics to check whether the MCMC chain had converged successfully. 
This diagnostics is a list containing Z- scores for all parameters in the 
model. If the Z- score exceeds c. 1.96, then the p- value of the test 
statistic is < .05, indicating that the MCMC chain did not converge 
for this particular parameter. p- values of multiple Z- tests were ad-
justed by the Holm method. To evaluate the fit of the final models, 
we calculated Pearson correlations between the observed presence, 
biomass or mean mass per species and the fitted values per species 
from the correlated response models including spatial information. 
For the fit, we used the posterior medians of the parameters. Note 
that the fitted responses for the p/a dataset form a continuous, not 
a dichotomous (0/1), variable.

We applied binomial distributions with probit link to the p/a 
datasets, and Tweedie distributions with log link for the biomass and 
mean mass datasets. Tweedie distributions are a special case of ex-
ponential dispersion models, often used as distributions for GLMs. 
The binomial and Tweedie distributions were selected according 
to the best visual fit of the residuals of the final “BORAL” models 
in comparison to other distributions. Biomass and mean mass data 
were Box– Cox- chord transformed (Legendre & Borcard, 2018) 
before running the “BORAL” models, to reduce skewness of the 
datasets with many zeroes (logarithmic transformation) and to ob-
tain a double- zero asymmetrical matrix (chord transformation). The 

optimum logarithmic transformation exponent was 0.5 (equivalent 
to square- root transformation) for both the biomass and mean mass 
datasets.

To compare the contribution of environmental, spatial and re-
sidual (species- interaction) effects, we calculated the predicted 
variance averaged across the 19 (p/a) or six (biomass, mean mass) 
species for the environmental, spatial (row effects) and residual 
contributions to the final model by the cal.varpart function of the 
“BORAL” package (Ovaskainen et al., 2017). An alternative proce-
dure is to estimate the reduction of trace of the residual covari-
ance matrix induced by the latent variables between a purely latent 
model, a correlated model with only environmental covariates and 
a final correlated model including spatial (row) effects and envi-
ronmental covariates (Hui, 2016). The trace of the final correlated 
model including environmental and spatial effects relative to the 
purely latent model is equivalent to the relative residual contribution 
(BoralModel$trace in the “BORAL” package). The reduction in trace 
qualitatively supported the contributions of environmental, spatial 
and residual variation as obtained from the predicted variance for 
the biomass and mean mass datasets but failed to mimic these re-
sults for the p/a dataset. The trace for the purely latent model of 
the p/a dataset was lower than the trace for any correlated model in 
several runs, such that the relative reduction in trace between the 
models could not be calculated properly. However, the trace calcu-
lations differed depending on the starting conditions (seed number), 
whereas the relative contributions from the assembly processes as 
calculated from the predicted variance per species were repeatable 
and independent of the starting conditions.

3  | RESULTS

The relative contributions of environmental, spatial and residual 
variance differed between the datasets. For p/a data, the sum of 
environmental (50%) and spatial (10%) effects was greater than 
the residual variance (40%), based on the amount of predicted vari-
ance averaged for the 19 species (Figure 2). Spatial effects were 
particularly pronounced (> 20% explained) for the p/a patterns of 
Carassius carassius, Gobio gobio, Tinca tinca and Esox lucius. In con-
trast, spatial patterns of lakes had almost no effect (< 1% explained) 
on p/a of Sander lucioperca, Lota lota and Scardinius erythrophthalmus. 
Significant spatial effects (posterior credibility intervals not includ-
ing zero) were found for 12 of the 209 CCM2 river basins (Supporting 
Information Figure S1). Strong effects of dispersal and higher similar-
ity of lake community compositions within river basins were found 
for the basins of the rivers Elbe, Oder, Rhine, Loire, Rhone, Neva and 
Kokemänjoki (plus three river basins without names in CCM2; WSO_
IDs: 92, 236 and 831,220), whereas for the River Shannon (plus one 
river basin without a name in CCM2; WSO_ID: 84,023) the similarity 
of species composition within the river basin was significantly lower 
than expected by chance (negative posterior credibility interval).

Geweke diagnostics confirmed that the MCMC model includ-
ing environmental and spatial predictors successfully converged 
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(Holm- adjusted p- values of Z- scores for 209 row coefficients, 19 
latent variable coefficients and six abiotic coefficients per species, 
all p > .05). Pearson correlations indicated a reasonably good fit be-
tween empirical and fitted presences and absences of the 19 species 
in the 772 lakes (mean Pearson's r = 0.70; Table 1), but the fit dif-
fered between species in the range from r = 0.29 (Carrassius caras-
sius) to r = 0.99 (Scardinius erythrophthalmus) (Table 1).

In contrast to the p/a dataset, contributions from spatial effects 
were minor (<< 1%) in the biomass and mean mass datasets. The 
proportion of environmental contributions exceeded the contribu-
tion from residual variance to total variance for the biomass dataset 
(abiotic 56%, residual 44%), whereas the reverse pattern was found 
for the mean mass dataset (abiotic 25%, residual 75%; Figure 2). The 
reduction of trace between latent and correlated models confirmed 
the low contribution of spatial dependence on biomass and mean 
mass datasets and the dominance of residual variance for the mean 
mass dataset. Geweke diagnostics confirmed that the MCMC mod-
els including environmental and spatial predictors successfully con-
verged for both biomass and mean mass datasets (Holm- adjusted 
p- values of Z- scores for 209 row coefficients, six latent variable co-
efficients and six abiotic coefficients per species, all p > .05). Pearson 
correlations indicated a reasonably good fit between empirical and 
fitted biomass (mean r = 0.59, range 0.34– 0.85; Table 1) and mean 
mass (mean r = 0.76, range 0.52– 0.98; Table 1) of the six species.

Dominant environmental predictors of the p/a dataset were vari-
ables related to meteorology (maximum temperature, significant for 
14 of 19 species; precipitation 12 of 19), whereas elevation, lake area 
and depth and total phosphorus concentration were significant co-
variates for the occurrence of a lower number of species (Supporting 
Information Figure S2). Precipitation, maximum temperature, maxi-
mum depth and total phosphorus concentration were significant co-
variates for four of the six species in the biomass dataset (Supporting 
Information Figure S3). For the mean mass dataset, temperature, 

maximum depth and total phosphorus were significant covariates for 
three of the six species (Supporting Information Figure S4).

The matrices of residual correlations of the final models were 
composed of a mixture of positive and negative signs (Figures 3 and 
4; Supporting Information Tables S4– S6). In the p/a dataset, there 
were 88 of 171 possible bivariate correlations significant at p < .05 
(51.5%; Figure 3; Supporting Information Table S6). We found 25 
species pairs with negative interactions. Among those, 14 were char-
acterized by predator– prey pairs including the predators Esox lucius, 
Perca fluviatilis, Sander lucioperca and Lota lota. There were 11 nega-
tive correlations including Coregonidae (Coregonus sp., Coregonus al-
bula) and Cyprinidae (Carassius carassius), which cannot be attributed 
to predation because these species are not piscivorous (Figure 3). 
There were 63 significant positive residual correlations. Among 
those, 18 were composed of species pairs from the family Cyprinidae 
(Rutilus, Abramis, Blicca, Gobio and Alburnus; Figure 3). Further pos-
itive correlations were frequently found for species pairs including 
Sander lucioperca, Lota lota, Osmerus eperlanus and Gymnocephalus 
cernuus (Figure 3).

In the biomass dataset with six species, only four of 15 possi-
ble species correlations were significant. Negative correlations 
were found between biomasses of Perca fluviatilis and three of the 
five other species (Figure 4a; Supporting Information Table S4). 
The negative correlations between Perca fluviatilis and Rutilus ruti-
lus or Abramis brama were strong (coefficients c. −0.9; Supporting 
Information Table S4). In the mean mass dataset with 11 of 15 signif-
icant correlations, the mean mass of Esox lucius was correlated neg-
atively with the mean mass of all the other five species (Figure 4b; 
Supporting Information Table S5). However, there were also six 
significant positive mean mass correlations including Cyprinidae 
(Abramis brama and Rutilus rutilus) and Percidae (Gymnocephalus cer-
nuus and Perca fluviatilis).

F I G U R E  2   Relative contributions (mean ± SD) of environmental 
(abiotic), spatial (random row effects) and residual effects to 
the correlated response models for presence/absence (p/a), 
biomass and mean mass datasets of fishes in 772 European 
lakes. The contributions are averaged across 19 (p/a) or six 
(biomass, mean mass) fish species [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  3   Plot of residual correlations between presence/
absence of 19 fish species in 772 European lakes. Positive 
correlations are shown in blue, negative correlations in red. Only 
significant (p < .05) correlations are shown; the colour intensity and 
circle size reflect the strength of correlations. Species are displayed 
along the angular order of their eigenvectors [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4  | DISCUSSION

Our study reveals that positive and negative interactions between 
species are likely to be contributing substantially to the structur-
ing of fish communities in European lakes. Despite including six key 
abiotic predictors for fish community composition in lakes and by 
accounting for spatial connectivity between lakes, addressing the 
effect of dispersal within river basins, there were several strong 
positive and negative correlations between species in the residual 
correlation matrices of the p/a, biomass and mean mass datasets. 
In the latent- variable models applied, the residual variance reflected 
that the species interaction effects were potentially highest for the 
mean mass of the six dominant fish species and lowest for the p/a 
of the most frequent 19 species. In contrast, environmental filter-
ing and spatial effects reflecting dispersal between lakes within river 
basins were prominent contributors to the p/a structure of the lake 
fish species, suggesting that these processes dominate the commu-
nity assembly at the continental scale. We are aware of substantial 
uncertainty in the estimates of contributions from the community 
assembly processes, and we are cautious with quantitative compari-
sons because the datasets contained different numbers of species. 
Furthermore, we do not claim that the residual correlations found by 
our models are equivalent to mechanistic evidence for interactions 
between species, which can be achieved only through replicated 
experiments at the community level. However, the model results 
correspond to our hypotheses and predictions on the dominant pro-
cesses of community assembly, as based on previous empirical work 
on environmental filters, dispersal and species interactions of fishes 
in European freshwater lakes. Therefore, we conclude that species 
interactions are an important process in the community assembly of 
European lake fish communities.

Negative correlations in the residual matrix involved several 
predator– prey pairs, for all three datasets tested. The piscivorous 
species perch and pike occurred in 99% and 78% of the lakes, re-
spectively. Perch are known for strong piscivory when they are larger 

than 15– 20 cm (Horppila et al., 2000; Persson & Greenberg, 1990), 
and negative interactions including predation and interspecific com-
petition between perch and the prey species roach and ruffe have 
been described from extensive experimental work and fish com-
munity surveys (Bergman & Greenberg, 1994; Persson et al., 1991; 
Persson & Greenberg, 1990). Likewise, the pike is a strong piscivore, 
with negative effects on presence, biomass or size of their prey spe-
cies found in several previous studies (Bellard et al., 2019; Englund 
et al., 2009; McLoone et al., 2019; Persson et al., 1996). Particularly, 
in isolated lakes, negative co- occurrence between predators and 
prey has been observed and interpreted as the result of prey extinc-
tion in the presence of predators (Englund et al., 2009). Pike influ-
enced the abundance and size distributions of crucian carp (Carassius 
carassius) and tench (Tinca tinca) (Brönmark et al., 1995), and intro-
duction of perch or pike into small lakes induced rapid extinction 
of sticklebacks (Gasterosteus and Pungitius) (Englund et al., 2009) or 
brown trout (Salmo trutta) (McLoone et al., 2018). The third major 
piscivorous fish species in the dataset was the pikeperch, which was 
present in only 27% of the lakes. Strong effects of pikeperch on other 
fish species are also well described (Keskinen & Marjomäki, 2004; 
Kokkonen et al., 2019; Kopp et al., 2009). It is interesting to note that 
the dominant negative correlations of pikeperch in the p/a dataset 
were found with pike and perch, suggesting that intraguild predation 
and competition between the piscivores might contribute to struc-
turing the local presence or absence of these three piscivorous spe-
cies (Kokkonen et al., 2019; Schulze et al., 2006). The local presence 
of both pike and pikeperch might also be affected by intentional 
stocking for fisheries purposes (e.g., Henriksson et al., 2016); hence, 
the p/a correlations between these two predatory species might 
in part reflect anthropogenic effects not covered by direct species 
interactions.

Interspecific competition might partly explain negative correla-
tions in the residual matrix of the p/a dataset between species not 
forming predator– prey pairs. For example, whitefish (Coregonus sp.) 
were correlated negatively with the presence of several cyprinid 

F I G U R E  4   Plot of residual correlations between (a) biomass or (b) mean mass of six fish species in 772 European lakes. Positive 
correlations are shown in blue, negative correlations in red. Only significant (p < .05) correlations are shown; the colour intensity and circle 
size reflect the strength of correlations. Species are displayed along the angular order of their eigenvectors [Colour figure can be viewed at 
wileyonlinelibrary.com]
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species, and crucian carp were correlated negatively with the pres-
ence of several other fish species. However, it is the fundamental 
limitation of the model- based approaches that positive and nega-
tive correlations in the residual correlation matrix are not equivalent 
to mechanistic inference of interaction effects. Although negative 
effects of predators on prey are a plausible outcome supported by 
numerous empirical studies, the extinction of competitively inferior 
fish species from communities by a superior competitor has rarely 
been documented. If interspecific competition is much stronger 
than intraspecific competition (Chesson, 2000), the resulting local 
competitive exclusion of a species would not leave a direct trace in 
the p/a dataset, because the communities were not followed over 
time. However, for the dominant fish species in European lakes, 
intraspecific competition and negative density- dependent growth 
rates are characteristic (Arranz et al., 2016), suggesting that compet-
itive exclusion is relatively unlikely. Negative correlations between 
non- predatory species in our analyses might also reflect opposing 
responses of species to environmental variables not considered in 
our study. Examples of unmeasured abiotic filters include different 
expression of heterogeneity within ecosystems; for example, vary-
ing vertical temperature or oxygen gradients in deep lakes or vary-
ing macrophyte coverage of the littoral zones, which are known to 
affect the occurrence of certain species or could explain the absence 
of other species (Diekmann et al., 2005; Lewin et al., 2014; Mehner 
et al., 2005). Therefore, a finer spatial resolution of within- lake gradi-
ents might generate additional insight into factors determining spe-
cies co- occurrence. Such high- resolution data were not available for 
the lakes included in our study. Furthermore, pH and alkalinity, a gra-
dient of water colour or turbidity induced, for example, by dissolved 
organic carbon (Mooij et al., 2005; Tammi et al., 2003), and even dif-
fering anthropogenic impacts on the lakes might cause similarities 
and dissimilarities in species occurrences, reflected by significant 
correlations between species in the residual correlation matrices. 
For example, different responses to water colour by perch and roach 
(van Dorst et al., 2020) might contribute to observed residual nega-
tive correlations in the abundance and mean mass datasets.

A similar caveat applies to the numerous positive correlations 
between fish species in the p/a, biomass and mean mass datasets. 
These correlations suggest that some fish species regularly co- occur 
together, and often their biomasses and mean masses vary in a sim-
ilar manner across the lakes, beyond the co- occurrences and cor-
relations induced by abiotic filtering and dispersal. As mentioned 
already, unmeasured environmental gradients might cause these 
patterns. Furthermore, positive correlations in the biomass and 
mean mass datasets might be caused by covariation in reproduction 
and recruitment, as induced by similar weather conditions in larger 
groups of lakes in the years before sampling (Bunnell et al., 2017; 
Chevalier et al., 2014). However, we also have to admit that there 
is not much known about positive species interactions, such as mu-
tualism and facilitation, in freshwaters (Silknetter et al., 2020). This 
is a fundamentally understudied topic (Collins et al., 2017; Eklöv 
& VanKooten, 2001). Positive interactions dominated in the pro-
cesses structuring fish communities of 721 Ontario lakes, and local 

richness appeared to beget richness in lakes rather than to restrict it 
(MacDougall et al., 2018). A dominance of positive correlations was 
also obvious for the piscivorous pikeperch in the p/a dataset of our 
study, supporting the results from the Ontario lakes (MacDougall 
et al., 2018) that the occurrence of predators might profit from an 
increase in prey numbers. Additionally, it has been suggested that 
positive interspecific interactions between species might emerge 
from the shared use of social information in juvenile fish commu-
nities (Haak et al., 2020). In our dataset, positive correlations were 
often found between species of the same family (Cyprinidae), which 
is the most species- rich fish family in European lakes (Kottelat & 
Freyhof, 2007). We cannot exclude the possibility that there is a 
phylogenetic effect on co- occurrences, because related species 
often share traits, such as with respect to feeding and life history; 
hence, they are often adapted to the same environmental conditions. 
However, co- occurrences attributable to the effects of dominant 
environmental covariates were accounted for by the hierarchical 
approach applied here and might, therefore, not fully explain the 
positive correlations between species. Accordingly, covariates not 
included in the model construction (see above) might additionally 
have facilitated co- occurrences of phylogenetically related species.

The model results suggest that we included important envi-
ronmental filters for fish species occurrences, biomass and mean 
mass. We found a dominant effect of temperature, precipitation 
and elevation on the large- scale occurrence of fish species, whereas 
ecosystem size, expressed as lake area or depth, and productivity 
were strong predictors of species biomasses and average mean 
masses. These environmental filters have been identified in previ-
ous studies on lake fish communities in Europe, North America and 
China (Brucet et al., 2013; Griffiths et al., 2014; Guo et al., 2019; 
MacDougall et al., 2018; Trochine et al., 2018). Temperature again 
emerged as the main driver of continental- scale differences in fish 
species occurrences, with lakes at higher latitudes and elevation 
harbouring primarily fish species of the cold-  and coolwater ther-
mal guilds (genera Coregonus, Lota and Osmerus), whereas the warm-
water thermal guild encompasses mainly the species of the family 
Cyprinidae (Brucet et al., 2013; Emmrich et al., 2014). Another im-
portant abiotic predictor, lake depth, is coupled to the temperature 
regime of lakes via the annual stratification patterns in temperate 
regions and the respective availability of habitats with different 
temperatures (cool hypolimnion versus warm epilimnion) (Hayden 
et al., 2014; Mehner et al., 2005). Strong effects of temperature on 
the direction and strength of interactions between fish species have 
been detected in a study on Ontario lakes (MacDougall et al., 2018), 
supporting the context dependence of interactions. Temperature 
was also a major determinant of average fish sizes, both in the anal-
ysis presented here and in an earlier comparison of fish size spectra 
in European lakes (Emmrich et al., 2014). In contrast, ecosystem pro-
ductivity, expressed as total phosphorus concentration, was least 
important for affecting the p/a structure of lake fish communities, 
but was important for the biomass and size structure of some of the 
dominant species (Argillier et al., 2013; Garcia et al., 2006). It is in-
teresting to note that temperature and productivity seem to interact 
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in determining the mean mass of some of the species. In contrast to 
the temperature– size rule, the average size of two cyprinids (bream, 
Abramis brama, and rudd, Scardinius erythrophthalmus) was higher 
in warmer lakes. This is certainly attributable to the higher produc-
tivity of the warmer (and often shallow) lakes, suggesting that the 
higher maintenance costs at higher temperatures affect the growth 
rates negatively only in conditions of resource limitation and strong 
intra-  and interspecific competition (Bourai et al., 2020; Fugère 
et al., 2018). In contrast, the size of the predator species pike de-
clined with higher temperatures, suggesting that pike cannot cover 
the higher energetic costs induced by increasing temperatures by 
higher prey uptake rates; for example, if some of their prey species, 
such as bream and rudd, escape into a size refuge by higher growth 
rates (Mehner et al., 2016).

There was some evidence that spatial effects contributed to the 
p/a structure of the lake fish communities, confirming earlier stud-
ies (Beisner et al., 2006; McLoone et al., 2018; Mehner et al., 2014). 
Lakes located in the same river basin had a higher likelihood of 
sharing species than lakes situated in different river basins. Similar 
meteorological conditions within river basins were covered by in-
cluding the environmental filters; hence, they were certainly not the 
reason for species co- occurrences within river basins. We conclude 
that species distribution was facilitated by dispersal between lakes 
within these river basins. The contribution of spatial effects within 
river basins to the overall model variance was c. 10% for the p/a 
dataset, whereas no spatial effects were found on the biomass and 
mean mass of the six dominant fish species. This is a plausible result, 
because dispersal is not expected to affect population dynamics and 
growth rates of fish directly. However, we acknowledge that the 
dataset was not ideal to identify strong effects of dispersal on local 
fish community composition. Only 35 of 209 river basins contained 
more than four lakes. Among those, a significant contribution of spa-
tial effects was found for 12 river basins, suggesting that dispersal 
primarily within larger and lake- rich river basins contributed to the 
similarity of lake fish communities. This result confirms similar stud-
ies showing that dispersal within river basins homogenizes the spe-
cies composition at fine spatial scales (Beisner et al., 2006; De Bie 
et al., 2012; Lansac- Tôha et al., 2021). In contrast, > 80% of all river 
basins listed in the CCM2 database contained fewer than five lakes, 
and 57% (n = 119) of the river basins had only one lake for which 
we obtained the fish community data. It is, therefore, not entirely 
surprising that the power to detect significant dispersal effects was 
limited.

We applied random row effects to model stronger dispersal 
within than between river basins. By taking this approach, we did 
not test whether dispersal limitation between river basins contrib-
uted significantly to dissimilarity of fish communities at larger spa-
tial scales. At the moment, the “BORAL” package does not allow the 
combination of random row effects for modelling within- basin dis-
persal and a distance matrix for modelling between- basin dispersal 
simultaneously. In addition, according to our database we could not 
discriminate between landlocked and drainage lakes, for which the 

effect of dispersal should differ fundamentally (Heino et al., 2021; 
Olden et al., 2001; Tonn & Magnuson, 1982). The best solution to 
evaluate the scale dependence of dispersal between lakes is the cal-
culation of hydraulic distances via connecting waterways that would 
facilitate a quantitative comparison of within- basin and between- 
basin dispersal effects (Beisner et al., 2006; Mehner et al., 2014; 
Olden et al., 2001). This connectivity matrix could ideally be com-
bined with flow directions of connecting rivers or streams (Olden 
et al., 2001) and records on in- stream barriers that fishes cannot 
pass (Belletti et al., 2020). Such a dataset is currently not available 
for the 772 lakes included in the present study, because there is 
an enormous complexity of spatial and geographical information 
needed to quantify the connectivity for even two lakes (cf. Olden 
et al., 2001). However, we would like to emphasize that a geographi-
cal map of hydraulic connectivity of European rivers and lakes would 
facilitate a much deeper analysis of the scale- dependent effects of 
dispersal on the community structure of dispersers with relatively 
large body size that are bound to water for migration, such as fishes 
(Heino et al., 2021; Lansac- Tôha et al., 2021).

We intended to expand our previous analyses on the effect 
of abiotic filtering on lake fish communities (Argillier et al., 2013; 
Brucet et al., 2013; Emmrich et al., 2014) to an exploration of the 
potential effects of species interactions on community assembly. 
The results of our new analyses suggest that species interactions 
might have strong effects, although positive interactions seem to be 
quantitatively even more important than the agonistic ones, which 
dominate the discussion in community ecology. From our perspec-
tive, this is a major step forwards in understanding the mechanisms 
of community assembly for lake fish communities. We are aware of 
several recent critical considerations about inferring processes from 
co- occurrence data (Blanchet et al., 2020; Münkemüller et al., 2020). 
However, we knew the main interactions between the species a pri-
ori and did not infer them from the data. We applied the approach 
to a dataset that is bigger than most of the datasets on which hierar-
chical models have been tested so far, and we covered large environ-
mental gradients while including lakes from larger parts of Europe. 
Furthermore, we understand limitations of our approach; for exam-
ple, that indirect interactions or interactions with a third species 
might mask the effect of direct interactions between two species 
(Eklöv & VanKooten, 2001; Schulze et al., 2006). This is particularly 
likely for the biomass and mean mass datasets, which isolated the 
six dominant fish species and ignored rare species co- occurring 
with the common ones. It was decided intentionally to ignore rare 
species to avoid biases in model construction attributable to exces-
sive numbers of zeroes. However, the approach as demonstrated 
here elucidates that there are strong hints for a significant effect of 
species interactions on the assembly of lake fish communities. The 
comparison of p/a, biomass and mean mass datasets did not produce 
erratic patterns, but confirmed information that we have assembled 
from several earlier studies comparing lake fish communities across 
large spatial scales (Brucet et al., 2013; Griffiths et al., 2014; Guo 
et al., 2019; MacDougall et al., 2018). We agree that mechanistic 
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experiments at ecosystem scales would be the preferred option to 
support the correlative evidence accumulated here. However, we are 
not aware of any approach that has addressed community assembly 
experimentally for organisms with high longevity and relatively large 
size at natural spatial scales, such as fishes in lakes.
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