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Abstract. The status of the soil organic carbon (SOC) stock at any position in the landscape is subject to a
complex interplay of soil state factors operating at different scales and regulating multiple processes resulting
either in soils acting as a net sink or net source of carbon. Forest landscapes are characterized by high spatial
variability, and key drivers of SOC stock might be specific for sub-areas compared to those influencing the whole
landscape. Consequently, separately calibrating models for sub-areas (local models) that collectively cover a
target area can result in different prediction accuracy and SOC stock drivers compared to a single model (global
model) that covers the whole area. The goal of this study was therefore to (1) assess how global and local models
differ in predicting the humus layer, mineral soil, and total SOC stock in Swedish forests and (2) identify the key
factors for SOC stock prediction and their scale of influence.

We used the Swedish National Forest Soil Inventory (NFSI) database and a digital soil mapping approach to
evaluate the prediction performance using random forest models calibrated locally for the northern, central, and
southern Sweden (local models) and for the whole of Sweden (global model). Models were built by considering
(1) only site characteristics which are recorded on the plot during the NFSI, (2) the group of covariates (remote
sensing, historical land use data, etc.) and (3) both site characteristics and group of covariates consisting mostly
of remote sensing data.

Local models were generally more effective for predicting SOC stock after testing on independent validation
data. Using the group of covariates together with NFSI data indicated that such covariates have limited predictive
strength but that site-specific covariates from the NFSI showed better explanatory strength for SOC stocks. The
most important covariates that influence the humus layer, mineral soil (0–50 cm), and total SOC stock were
related to the site-characteristic covariates and include the soil moisture class, vegetation type, soil type, and soil
texture. This study showed that local calibration has the potential to improve prediction accuracy, which will
vary depending on the type of available covariates.

1 Introduction

About 30 % of the global terrestrial carbon (C) stock is stored
in forests, with 60 % located belowground (Pan et al., 2011).
These forests act mostly as a large net sink for atmospheric
carbon, but concerns exist for the potential release of C under
the impact of global warming over the next century (Price et
al., 2013; Kauppi et al., 2014). Moreover, the intensification

of forest management for timber, fibre, and fuel to satisfy
an ever-increasing demand will likely affect the dynamic of
the forest C pool. In recent decades, many studies have fo-
cused on assessing the soil organic carbon (SOC) stock in
forest soils (Kumar et al., 2016; Ottoy et al., 2017; Sheikh
et al., 2009; Prietzel and Christophel, 2014), which is crucial
for meeting the requirements of the climate convention and
the Kyoto Protocol for reporting all sources and sinks of car-
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bon dioxide and also for estimating potential carbon credits
(Buchholz et al., 2014; Jandl et al., 2007). In that context,
analysis of the C cycle in forests is crucial to the understand-
ing of climate-related changes in the global C pool.

The increased availability of remote sensing data and de-
velopment of spatial statistical methods has led to an in-
creased use of digital soil mapping (DSM; Minasny and
McBratney, 2016). DSM aims at estimating the spatial dis-
tribution of soil classes or soil properties by coupling field
and laboratory observations with spatial and non-spatial en-
vironmental covariates via quantitative relationships. Many
studies used DSM approaches to predict the SOC stock at
different scales and for various land use/land cover, climate,
and also across a wide range of soil types (Söderström et
al., 2016; Tranter et al., 2011; Beguin et al., 2017; Mansuy
et al., 2014; Mallik et al., 2020). These studies use different
modelling techniques ranging from geostatistics and multiple
linear regression to machine learning models such as artifi-
cial neural networks, support vector machines, and boosted
regression trees.

The accuracy and precision of predictions resulting from
modelling over a large extent are often reported to be poor
because of the spatial heterogeneity encompassing different
soil types, topography, and soil properties (Grimm et al.,
2008; Schulp and Verburg, 2009; Schulp et al., 2013; Tang et
al., 2017). Generally, models are applied to the whole study
area without prior stratification. However, models could be
calibrated separately for sub-areas, and their predictions can
then be combined to cover the whole area (Somarathna et
al., 2016; Piikki and Söderström, 2019; Song et al., 2020).
Since spatial variability is an important characteristic of for-
est landscapes, key drivers of SOC stock might be specific
for sub-areas compared to those influencing the whole land-
scape. Management decisions in relation to the driving fac-
tors of the SOC stock will likely be more cost-effective as
models gain in reliability for specific areas within a given
landscape.

Building on the soil state factor (climate, organisms,
relief, parent material, and age) equation developed by
Jenny (1941), McBratney et al. (2003) introduced the con-
ceptual framework for DSM referred to as SCORPAN, which
complemented the former with the inclusion of soil infor-
mation and location coordinates. The relative contribution of
any of these factors to the model accuracy in DSM varies,
and some turn out to be more relevant as explanatory co-
variates compared to others. Ottoy et al. (2017) identified
relief (highest groundwater level), soil (clay fraction), and
land use (tree genus) as being the main predictors for map-
ping SOC stock in forest soils in Belgium, while Mansuy
et al. (2014) reported relief and climatic covariates as being
the key covariates in mapping C, N, and texture in Canadian
managed forests. Vasques et al. (2016) recorded parent ma-
terial among the key covariates in mapping soil properties in
a tropical dry forest in Brazil. These studies and many oth-
ers rely mostly on covariates existing as maps, while survey

data, which present site-specific information, are left out dur-
ing modelling. However, soil factors affecting different pro-
cesses in the landscape operate at different scales, and taking
into account site-specific covariates would inform model lo-
cal variability, which might not be captured by remote sens-
ing covariates.

The goal of this study was therefore to (1) assess how
global and local models differ for predicting the humus layer,
mineral soil, and total SOC stock in Sweden forest ecosys-
tems, (2) evaluate to which extent and at which scale re-
motely sensed covariates can explain the variability in SOC
stock compared to site-specific covariates in the Swedish for-
est, and (3) identify covariates which may have potential for
future prediction models in forest SOC stock assessments.

2 Materials and methods

2.1 Data description

Forest data came from the Swedish National Forest Soil In-
ventory (NFSI) and the National Forest Inventory (NFI). The
NFSI runs concurrently every year with the NFI and con-
sists of repeated surveys of forest vegetation and soil chem-
ical and physical properties (Stendahl et al., 2017; Ortiz et
al., 2013). Data from the following inventory periods were
considered in the present study: 1993–2002, 2003–2012, and
2013–2015. However, the present paper did not focus on
SOC changes over these three inventory periods but on SOC
stock using plot scale as a unit. The NFSI are conducted on
ca. 23 500 permanent plots (Fig. 1), with a radius of 10 m,
covering all land uses in Sweden except urban areas, culti-
vated land, and the high mountains. The plots are distributed
based on a stratified and random national grid system cov-
ering all the Swedish forest soils. They are organized in
quadratic clusters (tracts) consisting of eight (in the north) to
four (in the southwest) circular (314 m2) sample plots. Each
plot of the NFSI is inventoried once every 10 years.

Soil samples are collected in a subset of the plots, with
humus sampling on ca. 10 000 plots and mineral soil sam-
pling on ca. 4500 plots (Stendahl et al., 2017). Based on
the NFSI data set, pedogenetic carbonates are not formed in
these soils due to sufficient leaching and also sedimentary
bedrocks, which could potentially contain CaCO3, cover less
than 1 % of Swedish forests. Therefore, the content of inor-
ganic carbon in mineral soil is considered negligible in the
study area. Humus layer volumetric samples are taken using
a soil core (core diameter 10 cm) below the O horizon down
to 30 cm depth. The mineral soil is sampled at 0–10, 10–
20, and 55–65 cm depth from the mineral soil surface. These
samples are dried at 35 ◦C and sieved to < 2 mm. Total C is
determined for all samples by dry combustion with elemental
analysers (LECO CNS-1000 and LECO TruMac CN). Total
O horizon SOC stock is calculated from the sampled amount
of soil material and the C concentration of the sample. The
total mineral SOC stock down to 50 cm depth for each site
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Figure 1. Sites from the Swedish Forest Soil Inventory for northern,
central, and southern Sweden.

is calculated using the SOC stock of measured layers with
the empirical model for bulk density (Nilsson and Lundin,
2006), corrections for stoniness (Stendahl et al., 2009), and
linear interpolation between measured layers. Since the po-
tential SOC stock change is very small compared to the entire
SOC stock, the averaged SOC stock between the inventories
was considered representative of the plots and was, there-
fore, considered for all computations and modelling in order
to the reduce variability between plots. The organic and min-
eral soil SOC stock were summed up to obtain the total SOC
stock.

2.2 Explanatory covariates for prediction

The set of covariates used in this study consist of topographic
covariates, climate covariates, geochemical and gamma ray
data, historical land use maps, and site characteristics (Ta-
ble 1).

Topographic covariates were computed from high-
resolution digital elevation models (DEMs) derived from
light detection and ranging (lidar) produced by the Swedish
National Mapping Agency. It was originally created with 2 m
spatial resolution (Dowling et al., 2013). However, the ini-
tial DEM was resampled in the ArcGIS 10 software pack-
age using the aggregation procedure with bilinear interpola-
tion to a final resolution of 10 m× 10 m, which is reasonable
for the data considered in the present study. The topographi-
cal covariates were computed using the SAGA GIS software

(Conrad et al., 2015). However, the depth to water (DTW;
2× 2 m) considered in this study is an estimation of the el-
evation along a defined least cost path (Lidberg et al., 2019;
Murphy et al., 2008). The depth to groundwater was obtained
from the Swedish Forest Agency (SGU, 2018) and computes
the difference in elevation in relation to surrounding cells fol-
lowing the vertical flow path.

Climate maps (1 km× 1 km) of the annual mean temper-
ature and annual precipitation for 1970–2000 were obtained
from the WorldClim platform (Fick and Hijmans, 2017). The
Geological Survey of Sweden (SGU) has produced geochem-
ical data based mainly on the spatial distribution of till which
covers about 75 % of the Swedish landscape. The following
base cations Ca (parts per million; hereafter ppm), Mg (ppm),
K (ppm), Na (ppm) and Mn (ppm) were considered for the
present study in predicting carbon storage (Andersson et al.,
2014).

Several studies in Sweden pointed to some correlation be-
tween gamma ray data and soil properties (Piikki et al., 2015;
Söderström and Eriksson, 2013). Gamma ray data have been
recorded by SGU since 1968, with measurements carried out
along flight lines at 200 m intervals in general. The flight
heights were 30 m up to 1994, while subsequent surveys were
carried out at 60 m altitude. The concentrations of the fol-
lowing radioisotopes 40K, 232Th, and 238U are measured and
corrected for background and cosmic radiation (Erdi-Krausz
et al., 2003). The gamma ray data set was filtered for values
< 0, which were omitted as they are mostly related to water
entities. The resulting gamma ray data and the geochemical
data were interpolated in this study into maps either by ordi-
nary kriging or inverse distance weighing when geostatistic
assumptions, such as normal distribution, were not met.

The Swedish Forest Agency has developed several forest
attributes maps based on the combination of satellite images
and field data from the NFI (Nilsson et al., 2017). Maps
(25× 25 m) of the stand age, tree biomass, tree height, and
stem volume produced for the year 2010 were used in the
present study. Auffret et al. (2017a) digitized some historical
map series (Ekonomiska kartan) which were initially pub-
lished in 1935–1978. The digitized versions of these maps
(1× 1 m) were only produced for the southern part of Swe-
den and present past major land use, settlements, and in-
frastructure. These maps were available per county but were
merged into a single raster file in ArcMap 10.7. For the
present study, we consider two variants of these maps, i.e.
(1) areas which were cropland and are now forest lands and
(2) areas which were grasslands and are now forest lands.

The records of site characteristics (Table 1) are also car-
ried out during the NFSI. The site description includes soil
types, soil moisture class, soil texture class, vegetation type,
and parent material class. The soil classification was based
on the World Reference Base (WRB) for soil resources. The
location of the average groundwater table over the vegeta-
tion season was the main criterion for defining classes of soil
moisture. The texture index was made by manual assessment
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Table 1. List of explanatory covariates for predicting SOC stock.

Type Variables Abbreviation

Topography Elevation (m) DEM
Slope (%) Slope
cos(Aspect) cosAsp
sin(Aspect) sinAsp
Plan curvature (rad m−1) PLCur
Profile curvature (rad m−1) PRCurv
Terrain ruggedness index TRI
Saga wetness index SWI
Distance to streams (mm) strDist
Depth to water (m) DTW
Distance to groundwater (mm) DTG

Climate Temperature (◦C) Temp
Precipitation (mm) Prep

Geochemical data Ca, Mg, K,
Na, and Mn (ppm)

GeoCa, GeoMg, GeoK,
GeoNa, and GeoMn

Gamma ray data 40K (ppm), 232Th (ppm), and 238U (%) GamK, GamTh, and GamU

Forest Stand age (years) For.Age
Biomass (kg) For.Biom
Height (m) For.Height
Stem volume (m3) For.Vol

Historical land use Former cropland histCL
map∗ Former grassland histGL

Site characteristics Soil types SoilTyp

Levels 1 – Histosol; 2 – Leptosol; 3 – Gleysol; 4 – Podzol; 5 – Umbrisol; 7 – Arenosol;
6 – Cambisol; 8 – Regosol; 9 Unclassified

Soil moisture class SoilMst

Levels 1 – Dry; 2 – fresh; 3 – fresh/moist; 4 – moist; 5 – wet

Soil texture class Texture

Levels 0 – Boulders in the profile; 1 – stone/boulder/bedrock; 2 – gravel/gravelly till;
3 – coarse sand/sandy till; 4 – sand/sandy silty till; 5 – fine sand/silty sandy till;
6 – coarse silt/coarse silty till; 7 – fine silt/fine silty till; 8 – clay/clayish till/gyttja;
9 – peat

Parent material ParMat

Levels 1 – Well-sorted sediments; 2 – poorly sorted sediments; 3 – till; 4 – bedrock; 5 – peat

Vegetation type VegTyp

Levels 1 – tall herbs without shrubs; 2 – tall herbs with shrubs/bilberry; 3 – tall herb
with shrubs/vitis-idaea; 4 – low herbs without shrubs; 5 – low herbs with shrubs/bilberry;
6 – low herbs with shrubs/vitis-idaea; 7 – without field layer; – 8 broadleaved grass;
9 – narrow-leaved grass; 10 – tall sedge; 11 – low sedge; 12 – horse tail type;
13 – bilberry type; 14 – vitis-idaea/whortleberry and marsh rosemary;
15 – crowberry/heather type; 16 – poor shrubs type

Coordinates Northern NorthC

Eastern EastC

∗ Used only for the southern part of Sweden.

SOIL, 7, 377–398, 2021 https://doi.org/10.5194/soil-7-377-2021



K. O. L. Hounkpatin et al.: Predicting the spatial distribution of soil organic carbon stock in Swedish forests 381

in the field, e.g. through the rolling and washing test. The
vegetation type, as reported in Table 1, was defined by com-
bining the descriptions of the field layers which refer to the
understorey. Field layers consisted of four main types which
are categorized from fertile to poor, namely herb types (tall
or low), grounds without field layer, grass types, and dwarf
shrub types.

2.3 Prediction models: random forest and quantile
regression forest

The random forest (RF) algorithm was selected for SOC
stock prediction. Additionally, the quantile regression forest
(QRF) was used to estimate the standard deviation related to
the predictions.

RF is a classification and regression method that builds
multiple decision trees. For regression, the tree predictors
provide numerical output instead of class labels for classi-
fication (Breiman, 2001). The RF is able to model complex
and nonlinear relationships between input predictors and re-
sponse covariates. The RF is characterized by double ran-
domness in the construction of the decisions trees. An en-
semble of growing decision trees is generated by combining
bagging (bootstrap aggregating) along with random feature
selection. Bagging consists of producing training data sets
(bootstrap sample) by drawing randomly with replacement
from the original training data set generated. A regression
tree is fitted to each of the bootstrap samples from a random
subset of the input predictors when deciding to split a node.
For any new given input X = x, RF provides the prediction
of a single tree as a weighted average of the original obser-
vations Yi (i = 1, . . .,n) in each node.

µ̂ (x)=
∑n

i=1
wi(x,θ )Yi, (1)

where wi is the weight vector which results either in a posi-
tive constant when the observation (Yi,Xi) is inherent to the
leaf generated from the random vector of covariates or is 0
if otherwise. The weight vector (Meinshausen, 2006) wi is
defined as follows:

wi (x,θ )=
1{xi ε Rl(x,θ )}

#
{
j : xj ε Rl(x,θ )

} . (2)

Rl(x,θ ) is the rectangular subspace defined by the leaf l(x,θ )
of the tree built from the random vector of covariates θ and
the input xi and xj (j = 1, . . .,n). The conditional mean
E(Y |X = x) is computed by averaging the predictions of k
single trees which are individually built with independent
vectors having similar distributions. The weighted average
of trees is computed as follows:

wi (x)= k−1
∑k

t=1
wi(x,θt ). (3)

The final prediction of the RF regression is given by the fol-
lowing:

µ̂ (x)=
∑n

i=1
wi(x)Yi . (4)

The number of trees to grow in the RF model (ntree) and
the number of randomly selected predictor covariates at each
node (mtry) are the two key parameters to be tuned for RF
modelling. To reduce computational load, the ntree was set
at 500 while the mtry was tuned using the grid search (2
– p, with p being the number of covariates) method in the
R caret package (Kuhn, 2015) with 50-fold cross validation.
The importance of each input predictor can be assessed by
the RF based on the mean decrease accuracy (MDA; Hastie
et al., 2011). The MDA is computed by (i) randomly permut-
ing the values of each predictor within the out of bag sample
and (ii) measuring the reduction in model accuracy resulting
from that permutation. The hypothesis is that this permuta-
tion would result in little to no effect on model accuracy for
less important covariates, while significant drop will follow
the permutation of important covariates.

2.4 Covariate layers processing for sub-areas

We considered three sub-areas in Sweden (Fig. 1) which are
hereafter reported as northern (north), central (centre), and
southern (south) Sweden areas in the remainder of the paper.
These areas were defined by merging the northern, central,
and southern climatic regions which were considered in Ortiz
et al. (2013). A buffer of 4 km was considered for the shape-
files of each sub-area to create overlapping zones which en-
sured smooth transition while merging by averaging the SOC
stock values within these shared units. The covariates were
delimited for each sub-area. They were resampled to 10 m
resolution using the bilinear method for continuous covari-
ates and the nearest neighbour method for categorical covari-
ates. A value to point extraction was carried out by overlay-
ing the coordinates of the sampling points of each sub-areas
over the stacked raster files in R (Kuhn, 2015). The pixel val-
ues of each sub-area were compiled to form the database of
the humus layer and mineral and total SOC stock.

2.5 Modelling with different category of covariates:
global and local models

For modelling, the following three categories of covariates
were considered: (1) only the plot-level, site-specific covari-
ates (SSCs), (2) all the covariates without the SSC, namely
the group of covariates (GoCs), and (3) both the SSCs and
GoCs (allCs). Modelling with RF was carried out with each
category of covariate related to its sub-areas and for the com-
piled data set for the whole of Sweden. Moreover, to reduce
computation time while keeping relatively the same level of
accuracy, we (1) used feature preprocessing capabilities im-
plemented in the caret package (Kuhn, 2019) of R to remove
highly correlated (Pearson’s correlation) expressions, using a
cutoff point of 0.80, and (2) the recursive feature elimination
(RFE) using RF as a method to select the optimal set of co-
variates for each RF model. The RFE functions by carrying
out a variable importance classification then proceeds by it-
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eratively eliminating the least important features (Gomes et
al., 2019; Hounkpatin et al., 2018). For each RF model, the
RFE was carried out, and therefore, the model-specific opti-
mal set of covariates were identified for both sub-areas and
the whole of Sweden.

The RF models built on data covering the whole area of
Sweden are hereafter called global models. The RF mod-
els created for each of the sub-areas are hereafter reported
as local models. Considering the sub-areas as strata, the lo-
cal models were built by randomly splitting the local data
sets into calibration (80 %) and validation (20 %) subsets (Ta-
ble 2). Each local model was validated against their respec-
tive local validation set. For comparison, the global models
were validated using the same local validation set used for
the local models. The data used for calibrating the global
model was made up of the 80 % random split of the three
local training sets (northern, central, and southern training
sets). The same approach is used for validation at a national
scale by considering as one data set the 20 % split of the three
local validation data sets (northern, central, and southern val-
idation sets). We trained both global and local models based
on 10-fold cross-validation with five repetitions using the R
caret package (Kuhn, 2015).

2.6 Assessment of model performance and mapping

To compare model performance, we computed several as-
sessment metrics, i.e. R2, Lin’s concordance (Lawrence and
Lin, 1989) correlation (ρc), root mean square error (RMSE)
and mean absolute error (MAE), and the bias.

RMSE=
[

1
n

∑n

i=1
(Pi − Oi)2

]1/2

(5)

R2
= 1−

∑n
i=1(Pi − Oi)2∑n
i=1(Oi − µobs)2 (6)

ρc =
2ρσpredσobs

σ 2
pred+ σ

2
obs+

(
µpred− µobs

)2 (7)

MAE=
1
n

∑n

i=1
|Pi −Oi | (8)

Bias= µpred− µobs, (9)

where P is the predicted value, O is the observed/true value,
µobs and µpred are the means of the observed and predicted
values, respectively, σ 2

obs and σ 2
pred are the associated vari-

ances, and ρ is the correlation between the observed and the
predicted values.

Though these error metrics are widely used for assess-
ing models, they cannot inform about the uncertainty related
to the prediction. Therefore, we additionally considered the
density distribution of the predicted versus actual SOC stock.
Furthermore, the scattergram of the prediction interval cover-
age probability (PICP) was also considered (Vaysse and La-
gacherie, 2017). The latter is the graphical representation of
the proportion of time the actual values of SOC stock fall
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within a series of probability (p) of prediction intervals (PI)
limited by (1−p)/2 and (1+p)/2 quantiles. The QRF was
used to predict all percentiles, including the 5th and 95th per-
centile required to create the 90 % prediction intervals. Fi-
nally, the coverage of the 90 % prediction intervals by the
observation from the validation set was also analysed.

The SOC stock maps were computed only for the mod-
els based on the GoC models because of their availability as
maps. The uncertainty in the SOC stock predictions was ex-
pressed by considering the coefficient of variation which is
the percentage ratio of the standard deviation map divided
by the mean SOC stock prediction. A qualitative assessment
of the spatial distribution of the humus layer, mineral soil,
and total SOC stock from the produced maps was carried out
and compared to literature.

3 Results

3.1 Validation performance of global models over the
whole of Sweden

The performance metrics of the cross- and independent vali-
dation of the RF models at the national scale are presented in
Table 3. The internal accuracy statistics showed that mod-
elling with all covariates generally resulted in marginally
lower RMSE and higher R2 for all SOC stock. Modelling
with allCs reduced the cross-validation RMSE by 2 %, 1 %,
and 6 % compared to SSC models and by 7.9 %, 10 %, and
6 % compared to GoC models, respectively, for the humus
layer, mineral soil, and total SOC stock. Though modelling
with allCs resulted in higher cross-validation R2 compared
to the remaining models, only 30 %, 29 %, and 28 % of the
total variance were explained, respectively, for the total SOC
stock, mineral soil, and the humus layer SOC stock.

The independent validation showed similar trends as ob-
served for the cross-validation. The Lin’s correlation concor-
dance coefficient (CCC) confirmed that the predictive per-
formance of RF for the different SOC stock was enhanced
either by using only SSCs or allCs. The similarity between
the RMSE values of both training and validation data shows
that the global models over Sweden did no overfit. However,
the explained variances are as low as for the cross-validation
varying from 15 % to 27 % for the SSC models, 10 % to 18 %
for the GoC models, and from 26 % to 30 % for the allC mod-
els. For both cross- and independent validation, the RMSE
increased with depth, with the lowest values recorded for the
humus layer.

3.2 Validation performance of local models versus
global models

As observed for the global models at the national scale, bet-
ter accuracy was recorded for the local models based on
allCs and SSCs, which present, in general, lower RMSE and
higher CCC and R2 when compared to the local GoC mod-

els for the cross-validation (Table 4). The cross-validation
with the local models resulted in lower RMSE compared to
the values recorded for the global models (Table 3), except
for the southern Sweden models which recorded higher val-
ues regardless of the category of covariates. Local models
with allC reduced the RMSE of cross-validation in relation
to the global models (Table 3) by 18 % for both northern
and central Sweden for the humus layer SOC stock, by 21 %
(north) and 20 % (centre) for the mineral soil SOC stock, and
by 9 % (north) and 24 % (central) for the total SOC stock.
The variances explained by the local models based on cross-
validation varied from 17 % to 32 % for allC models, 12 % to
25 % for the SSC models, and from 5 % to 20 % for the GoC
models.

The global models were also used to make predictions
with the same independent validation set used for the lo-
cal models. Though the local models generally outperformed
the global models, the results were different based on the
sub-areas and category of covariates (Fig. 2). However, the
local SSC models were more consistent at outperforming
the global SSC models compared to GoC and allC models
when tested with an independent data set. For the humus
layer (Fig. 2a) and the mineral (Fig. 2b) and total soil lay-
ers (Fig. 2c), the local models had, in general, better perfor-
mance than the global models in term of RMSE within each
set of variables. The best local models were mostly associ-
ated with all covariates or site-specific covariates, especially
for central and southern Sweden. It was only with the local
model of mineral SOC stock for northern Sweden that the
GoC gave a better accuracy compared to other models. It was
also noted that the RMSE of the local models increased in
general from the humus layer to the mineral soil for both the
cross- and independent validation, as previously observed for
the global models, no matter the validation type and category
of factors.

The local and global models showed similar trend for the
density distribution of actual versus predicted SOC stock
(Fig. 3). For Figs. 3 and 4, only global and local models with
the lowest RMSE were reported to avoid redundancies. All
RF models presented an underestimation of lower and higher
values of SOC stock, while an overestimation was observed
for the values centred around the means. However, underes-
timation of high values was less pronounced with the global
models over the entire Sweden and also with the predictions
for the humus layer. The local model associated with the
group of covariates of the mineral soil SOC stock in northern
Sweden also presented a pronounced overestimation of the
lower values.

The PICP estimates seem to correspond quite well with
the respective confidence level (Fig. 4), except for the humus
and mineral SOC stock of southern Sweden. For southern
Sweden, it appears that at a higher level of confidence the
corresponding PICP is higher for the humus layer and lower
for the mineral SOC stock. Considering a 90 % prediction in-
terval, most of the validation observations (80 %–95 %) were
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Table 3. Cross-validation and independent validation of the global random forest models at the national scale.

Cross-validation Independent validation

RMSE R2 RMSE MAE Bias CCC R2

(t C ha−1) (t C ha−1) (t C ha−1) (t C ha−1)

Site-specific Humus layer 23.9 (±2.74) 0.26 (±0.06) 20.8 13.7 0.45 0.43 0.26
covariates (SSCs) Mineral soil 28.6 (±3.34) 0.27 (±0.06) 27.9 19.8 0.45 0.43 0.27

Total 38.9 (± 4.28) 0.21 (± 0.06) 38.9 27.8 1.81 0.34 0.15

Group of covariates (GoCs) Humus layer 25.4 (±3.20) 0.15 (±0.04) 22.1 15.2 1.27 0.28 0.17
Mineral soil 31.5 (±3.33) 0.13 (±0.05) 30.7 21.8 0.95 0.23 0.10

Total 38.9 (±4.40) 0.20 (±0.05) 38.4 27.7 0.87 0.32 0.18

All covariates (allCs) Humus layer 23.4 (±2.90) 0.28 (±0.06) 20.3 13.7 1.35 0.47 0.30
Mineral soil 28.3 (±3.46) 0.29 (±0.07) 28.2 20.2 1.17 0.41 0.26

Total 36.5 (±4.35) 0.30 (±0.06) 35.5 25.6 1.42 0.41 0.27

RMSE – root mean square error; MAE – mean absolute error; CCC – Lin’s correlation concordance coefficient; R2 – coefficient of determination.

Table 4. Cross-validation of the local random forest models.

Cross-validation

RMSE R2

(t C ha−1)

Site- Humus North 19.4 (± 4.33) 0.19 (± 0.11)
specific layer Centre 19.3 (± 3.84) 0.19 (± 0.07)
covariates South 30.1 (± 4.62) 0.25 (± 0.09)

Mineral North 23.0 (± 7.25) 0.12 (± 0.07)
soil Centre 23.1 (± 3.37) 0.13 (± 0.09)

South 35.5 (± 5.48) 0.24 (± 0.07)

Total North 34.7 (± 8.88) 0.22 (± 0.14)
Centre 29.1 (± 2.85) 0.14 (± 0.07)
South 47.7 (± 7.80) 0.15 (± 0.08)

Group of Humus North 19.4 (± 4.84) 0.18 (± 0.09)
covariates layer Centre 20.4 (± 4.33) 0.08 (± 0.04)

South 31.3 (± 5.49) 0.18 (± 0.08)

Mineral North 24.2 (± 7.55) 0.08 (± 0.06)
soil Centre 24.1 (± 3.22) 0.05 (± 0.04)

South 38.6 (± 5.26) 0.10 (± 0.07)

Total North 35.2 (± 8.51) 0.20 (± 0.10)
Centre 28.9 (± 3.07) 0.16 (± 0.08)
South 47.2 (± 7.21) 0.12 (± 0.07)

All Humus North 19.0 (± 4.67) 0.22 (± 0.08)
covariates layer Centre 19.0 (± 4.05) 0.20 (± 0.07)

South 28.5 (± 5.15) 0.32 (± 0.08)

Mineral North 22.3 (± 6.51) 0.19 (± 0.07)
soil Centre 22.6 (± 2.82) 0.17 (± 0.09)

South 35.3 (± 5.42) 0.25 (± 0.09)

Total North 33.2 (± 8.29) 0.28 (± 0.13)
Centre 27.7 (± 2.90) 0.23 (± 0.06)
South 44.9 (± 7.29) 0.22 (± 0.09)

RMSE – root mean square error; R2 – coefficient of determination.

located within the prediction interval, especially for models
based on specific site covariates or all covariates (Figs. S1a,
b, and c in the Supplement).

3.3 Variable importance

The global RF models using only site factors show that (Ta-
ble 5) the latitude (northing) was the most important vari-
able influencing the distribution the humus layer and the total
SOC stock, though it ranked second for the mineral soil. A
consistent negative but significant correlation was observed
between the different SOC stocks and the latitude, suggest-
ing lower stock northwards no matter the depth.

The site-specific covariates took pre-eminence over the
GoCs both at global and local scales when considering mod-
els using all covariates (Table 5). The occurrences of soil
moisture or soil type among the top two most influential co-
variates are higher compared to the remaining covariates. For
the humus layer SOC stock, the key covariate involved in
the prediction was the soil moisture reported both for global
and local models, except in southern Sweden where it came
as the third key variable. The most prominent covariate in
predicting the mineral soil SOC stock with the global allC
model was the soil type as also recorded for southern Swe-
den, while the remaining local models indicated texture for
northern and central Sweden. The global model revealed soil
moisture and soil type as being the main covariates affecting
the prediction of the total SOC stock over Sweden. A similar
trend is observed in northern Sweden, while the remaining
models recorded 40K as second key variable in addition to
soil moisture and soil type for the central and southern Swe-
den, respectively.

The cumulative contribution of each category of covariates
to model accuracy, based on their contribution to the MDA
using all covariates, is presented in Fig. 5. Topography co-
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Table 5. Random forest variable importance for the global and local models for the humus layer, mineral soil, and total SOC stock with
their associated Pearson’s coefficient of correlation with the covariates (values in parenthesis are as follows: ∗ p ≤ 0.05; ∗∗ p ≤ 0.01;
∗∗∗ p ≤ 0.001).

n Most important variablesa

Site-specific
covariates

Global Humus
layer

7 Northing (−0.12∗∗∗), soil moisture, easting (−0.09∗∗∗), vegetation type, soil
type, parent material, texture

(N = 7) Mineral
soil

7 Easting (−0.13∗∗∗), northing (−0.27∗∗∗), soil type, vegetation type, texture,
parent material, soil moisture

Total 7 Northing (−0.28∗∗∗), soil moisture, soil type, easting (−0.15∗∗∗), texture, veg-
etation type, parent material

North Humus
layer

7 Soil moisture, soil type, vegetation type, northing (−0.09∗∗), easting (0.06),
parent material, texture

Mineral
soil

7 Easting (−0.13∗∗), vegetation type, texture, parent material, northing (−0.09∗),
soil moisture, soil type

Total 7 Soil moisture, soil type, vegetation type, texture, parent material, easting (0.00),
northing (−0.11∗)

Centre Humus
layer

4 Soil moisture, northing (−0.08∗∗∗), easting (−0.02), vegetation type

Mineral
soil

4 Parent material, texture, northing (−0.05), soil type, soil moisture, easting
(0.00)

Total 7 Soil moisture, northing (−0.13∗∗∗), easting (0.03), parent material, texture, veg-
etation type, soil type

South Humus
layer

4 Vegetation type, soil moisture, soil type, easting (−0.15∗∗∗)

Mineral
soil

7 Soil type, easting (0.02), northing (−0.08∗), vegetation type, parent material,
texture, soil moisture

Total 4 Soil type, easting (−0.10∗∗), soil moisture, northing (−0.13∗∗∗)

Group of
covariates
(N = 26)

Global Humus
layer

20 Mn (−0.08∗∗∗), precipitation (0.16∗∗∗), 40K (−0.20∗∗∗), 232Th (−0.15∗∗∗),
Na (0.03), terrain ruggedness (−0.11∗∗∗), K (−0.07∗∗∗), distance to ground-
water (−0.14∗∗∗), 238U (−0.10∗∗∗), sinAsp (−0.06∗∗∗)

Mineral
soil

20 Temperature (0.28∗∗∗), precipitation (0.18∗∗∗), Mn (0.05∗∗), elevation
(−0.16∗∗∗), terrain ruggedness (−0.12∗∗∗), Na (−0.05), Ca (0.22∗∗∗), 40K
(−0.13∗∗∗), wetness index (0.11∗∗∗), K (0.01)

Total 21 Temperature (0.28∗∗∗), distance to groundwater (−0.17∗∗∗), precipitation
(0.21∗∗∗), 40k (−0.24∗∗∗), 232th (0.16∗∗∗), Na (−0.01), K (−0.04), Mn
(−0.02), 238U (−0.11∗∗∗), elevation (−0.18∗∗∗)

North Humus
layer

8 40K (−0.23∗∗∗), distance to groundwater (−0.18∗∗∗), elevation (−0.15∗∗∗), Ca
(−0.06), temperature (0.16∗∗∗), Mn (−0.10∗∗), Na (−0.06), K (0.00)

Mineral
soil

8 40K (−0.25∗∗∗), wetness index (−0.01), Ca (−0.05), Na (−0.09), temperature
(0.01), precipitation (0.16∗∗∗), K (0.04), aspect (0.03), stand age (0.02), eleva-
tion (0.13∗)

Total 8 Depth to water (−0.22∗∗∗), 40K (−0.30∗∗∗), K (0.04), temperature (0.10∗),
precipitation (0.16∗∗∗), elevation (−0.06), Mn (−0.07), distance to streams
(−0.15∗∗∗)
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Table 5. Continued.

n Most important variablesa

Group of
covariates
(N = 26)

Centre Humus
layer

16 238U (−0.05), 232Th (−0.10∗∗∗), aspect (0.04), 40K (−0.16∗∗∗), terrain
ruggedness (−0.11∗∗∗), elevation (−0.06), precipitation (0.08∗∗), distance to
groundwater (−0.16∗∗∗), sinAsp (−0.06∗), profile curvature (−0.04)

Mineral
soil

19 40K (−0.11∗), 232Th (−0.07∗), Mn (0.04), elevation (−0.03), wetness in-
dex (0.09∗), stand age (0.06), 238U (−0.02), sinAsp (−0.01), height (0.07),
precipitation (0.08∗∗∗)

Total 16 40K (−0.21∗∗∗), depth to water (−0.11∗∗), 232Th (−0.12∗∗∗), Mn (−0.02),
elevation (−0.08∗), sinAsp (−0.06), Na (0.02), precipitation (0.13∗∗∗), terrain
ruggedness (−0.14∗∗∗), aspect (0.03)

Group of
covariates
(N = 28)

South Humus
layer

16 40K (−0.24∗∗∗), precipitation (0.18∗∗∗), Mn (−0.11∗∗∗), Na (0.13∗∗∗), dis-
tance to groundwater (−0.12∗∗∗), K (0.11∗∗∗), stem volume (0.05∗), slope
(−0.09∗∗∗), stand age (0.05∗), 238U (−0.16∗∗∗)

Mineral
soil

20 Temperature (0.18∗∗∗), precipitation (0.02), stand age (−0.07∗), distance to
groundwater (−0.16∗∗∗), Na (0.05), elevation (−0.11∗∗), Ca (0.24∗∗∗), 232Th
(−0.09∗∗), slope (−0.09∗∗), 40K (−0.09∗∗)

Total 21 Precipitation (0.14∗∗∗), distance to groundwater (−0.17∗∗∗), elevation (0.00),
slope (−0.11∗∗), temperature (0.12∗∗∗), 238U (−0.20∗∗∗), height (−0.11∗∗),
Ca (0.12∗∗∗), K (0.04), 40K (−0.22∗∗∗)

All covariates
(N = 33)

Global Humus
layer

28 Soil moisture, vegetation type, northing, easting, precipitation, profile curvature
(−0.04∗∗), temperature (0.12∗∗∗), 232Th, 40K, Mn

Mineral
soil

28 Soil type, parent material, texture, temperature, vegetation type, easting, nor-
thing, elevation, Mn, Na

Total 16 Soil moisture, soil type, precipitation, 40K, elevation, Na, northing, distance to
groundwater, Mn, K

North Humus
layer

28 Soil moisture, distance to groundwater, Mn, elevation, temperature, Ca, K, nor-
thing, 40K, Na

Mineral
soil

16 Texture, wetness index, precipitation, K, distance to groundwater, 238U
(−0.13), vegetation type, 40K, 232Th (−0.13∗∗), elevation

Total 8 Soil type, soil moisture, depth to water, vegetation type, texture, 40K, K,
precipitation

Centre Humus
layer

26 Soil moisture, 232Th, 40K, northing, 238U, easting, elevation, profile curvature,
precipitation, Ca (−0.03)

Mineral
soil

26 Texture, parent material, precipitation, northing, Mn, elevation, soil type, 40K,
Ca (0.00), easting

Total 26 Soil moisture, 40K, northing, parent material, texture, elevation, 232Th, depth
to water, precipitation, Na

All covariates
(N = 35)

South Humus
layer

16 Vegetation type, soil type, soil moisture, easting, Na, 40K, precipitation, tem-
perature (−0.03), stem volume, K

Mineral
soil

29 Soil type, parent material, texture, vegetation type, easting, northing, precipita-
tion, Ca, Na, temperature

Total 30 Soil type, 40K, northing, soil moisture, precipitation, easting, 238U, Na
(0.14∗∗∗), texture, wetness index (0.03)

a Site-specific covariates have no correlation values since they are categorical covariates. Pearson’s correlation coefficient is provided at the first occurrence for a
specific category of covariates and SOC type. N – total number of covariates; n –number of covariates after feature selection.
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Figure 2. Local and global models ranked by decreasing RMSE per sub-area and category of variables along with correspondingR2 (a – litter
layer; b – mineral soil layer; c – total soil layer; SSCs – site-specific covariates; GoCs – group of covariates; allCs – all covariates).

variates greatly influence model accuracy in the northern part
of Sweden, contributing to about 30 %–40 % of the model
MDA, especially for the humus layer and mineral soil SOC
stock. This is further corroborated by a high correlation of
these covariates with the SOC stock in northern Sweden (Ta-
ble 5). For the humus and mineral SOC stock, the importance

of topography decreased from the north to the south of Swe-
den with the gamma ray, site-specific, and climate covariates
gaining more prominence (contributing together up to 60 %
of MDA) in central Sweden, while site factors were the most
influential variable with a share of 40 % of MDA in south-
ern Sweden (Fig. 5). These categories of covariates, which
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Figure 3. Density plots of the actual versus predicted humus layer, mineral soil, and total SOC stock from the local and global random forest
models (with lowest root mean square errors). Line – average values; SSCs – site-specific covariates; GoCs – group of covariates; allCs – all
covariates; dashed lines – mean of SOC stock.

ranked first in central and southern Sweden, were also classi-
fied among the top three covariates – site-specific covariates,
climate, and gamma ray data – for the global humus layer
model.

As observed for the humus layer, topography was less
prominent for central and southern Sweden for both mineral
soil and total SOC stock (Fig. 5). Site-specific covariates, cli-
mate, and geochemical data, which provided the highest con-
tribution to MDA mineral soil for the global model over Swe-
den, were also the most influential over central and southern
Sweden, contributing together up to 60 % and 70 % to the
MDA. Gamma ray data seemed to play a key role in the dis-
tribution of the total SOC stock, especially in southern Swe-
den, together with the site-specific covariates and climate. It
is important to note that, for the global model of the total
SOC layer, the different category of covariates contributed
almost equally to the MDA, with the gamma ray and climate
taking pre-eminence over the site-specific covariates. The
forest covariates had very low contributions as compared to
the remaining (Fig. 5) category of covariates, and they were
mostly absent from the top 10 (Table 5), while those ranked
have very low correlation with the different SOC stock.

3.4 Maps of SOC stock

Figure 6 shows the SOC stock maps from the GoC global
and local models. Though the global GoC models generally
outperformed the local GoC models (Table 4), their predic-

tive maps generally follow the same pattern. Broadly, there
is an increasing gradient of SOC stock from north to south
for the humus layer, mineral soil, and total SOC stock. The
local models tend to present lower values of SOC stock in
northern and central Sweden for the humus layer, while the
global model displays higher values over the whole country.
For the mineral soil, there seems to be no distinct difference
in the spatial prediction of SOC stock, which resulted in a
similar pattern from the north to the south for both local and
global model maps. Since the total SOC stock is the sum
between the humus layer and mineral SOC stock, its spa-
tial distribution follows the same trend, with the lowest SOC
recorded in northern and central Sweden while higher stock
are located in the south. No matter the type of SOC stock,
the coefficient of variation is high and generally above 60 %
throughout Sweden.

4 Discussion

4.1 Prediction with global and local models

This study examined how global and local models differ in
predicting the humus layer, mineral soil, and total SOC stock
in Swedish forests. The local models recorded lower RMSE
at the modelling stage with the cross-validation compared to
the global models, except for the southern area. When pre-
dictions were carried out on the same validation set, local
models, including those of southern Sweden, generally out-
performed the global models. This suggests, on the one hand,
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Figure 4. Prediction interval coverage probability of the local and global random models for the humus layer, mineral soil, and total SOC
stock. SSCs – site-specific covariates; GoCs – group of covariates; allCs – all covariates.

Figure 5. Variable importance of the main category of covariates for local and global random models for the humus layer, mineral soil, and
total SOC stock.
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Figure 6. Mean SOC stock prediction and prediction uncertainties of the spatial distribution of the humus layer, mineral soil, and total SOC
stock based on the group of covariates.

that global models with higher sample size might not neces-
sarily result in a more accurate model compared to models
built from a reduced data set corresponding to a sub-area
of a bigger region. On the other hand, the particular case
for southern Sweden suggests that, though a global model
might present a comparative advantage at modelling stage,

it might not necessarily have a better predictive power when
confronted with a new set of samples. The findings of this
study are in line with those of Somarathna et al. (2016), who
also found locally calibrated models to perform better than
global models for predicting SOC content. However, the re-
sults of the present study differed from the latter in that the
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comparative advantage was dependent of the category of co-
variates used.

Findings (Fig. 2) showed that local models which outper-
formed global models were either associated with all covari-
ates or site-specific covariates. For example, local models in
central Sweden required all covariates to outperform global
models for the humus layer, mineral soil, and total SOC
stock. The same pattern was observed for southern Sweden,
except for the mineral SOC stock for which the best local
model was associated with the SSCs. The local best model
for the total SOC stock in northern Sweden was also associ-
ated with SSCs. The higher occurrences of SSCs and allCs
with the best local models showed that modelling with GoCs
alone is not the optimal choice. On the one hand, forest SSCs
are more relevant for capturing the local variability in the
sampling plots than the other covariates which are mostly re-
mote sensing products. When both SSCs and GoCs are used
as covariates, the locally specific information at plot scale
are complemented by higher-scale covariates which cover a
larger range of the feature space, resulting in model improve-
ment, especially for the humus layer.

In addition, using both site characteristics and remotely
sensed products for predicting SOC stock generally in-
creased the variance explained with both cross-validation and
independent validation methods for the humus layer, min-
eral soil, and total SOC stock. However, despite the combi-
nation of these two categories of covariates, the accuracy of
the SOC stock prediction remained low for both the global
models (maximum R2 is 0.30) and local models (maximum
R2 is 0.33). There seems to be no study comparable in scope
and methodology targeting the prediction of SOC stock in
forest soils. The closest is the digital mapping of SOC stock
for the humus layer and mineral stock using machine learn-
ing models such as RF and the k nearest neighbour (kNN)
based on data set from the national forest inventory of the
USA (Cao et al., 2019). The authors also found a lower fit
between predicted and observed SOC stock after the inde-
pendent validation and reported an R2 of 0.20 and 0.11 for
the humus layer, while recording an R2 of 0.33 and 0.28 for
the mineral soil, respectively, for the RF and kNN models.
Other studies conducted in temperate forests for predicting
SOC stock also showed poor goodness of fit values, with a
cross-validation R2 of 0.22 (1 m depth) with the boosted re-
gression trees (Ottoy et al., 2017). For other soil properties,
Mansuy et al. (2014) reported, for some Canadian managed
forest, an R2 of 0.04 and 0.05 for SOC content in the humus
layer and mineral soil, respectively, with the kNN, while Be-
guin et al. (2017) recorded, for the Canadian forest, an R2 of
0.05 for SOC content for the mineral soil with RF model.

Low explained variances in predictive modelling could be
related to different factors (Nelson et al., 2011). For exam-
ple, the omission of key covariates with greater explanatory
power or conversely using non-essential covariates with very
low explanatory power which only increase the prediction
error variance. Omitting key covariates in relation to SOC

stock for forest ecosystem in the present study is less likely
since covariates considered in this study well represent the
surrogates for soil forming factors considered in the Soils,
Climate, Organisms, Parent material, Age and (N) space or
spatial position (SCORPAN) equation defined by McBratney
et al. (2003). In addition, the removal of redundant and non-
informative covariates was carried out via dimension reduc-
tion, with the exclusion of highly correlated covariates and
elimination of some others via recursive feature elimination.
However, the Pearson correlations (min= 0; max= 0.28) be-
tween covariates and the different SOC stock were found to
be poor though significant for most of the predictors (Table 5;
Figs. S2–S4). This could be expected because the data cover
a wide range of different site conditions, soil types, and par-
ent materials.

Another source of the errors could be inherent to the
model, with prediction accuracy varying with different type
of model. Many studies have already compared different ma-
chine learning models and concluded that RF generally has
a strong predictive ability in different ecosystems (Cao et al.,
2019; Forkuor et al., 2017; Wang et al., 2018). Preliminary
steps in the present study also tested extreme gradient boost-
ing and Cubist models (results not shown) alongside the RF,
with the latter displaying higher predictive capabilities. On
the other hand, applying geostatistical approaches (Fig. S5)
for the humus layer, mineral soil, and total SOC stock re-
vealed very low spatial autocorrelation for the different SOC
stock, suggesting that the structure of the SOC data has a
shorter range than the sampling interval. For soil properties
which vary over short distance, such as SOC stock, data-
driven models such as RF might capture the inherent variabil-
ity better when modelling data are a good representative of
the phenomenon that the SOC stock is subject to in the land-
scape, including small-scale variation. Beguin et al. (2017)
recorded poor performance of different models, including
RF, for predicting C : N because the sampling scheme failed
to capture the distance variation (< 20 km) at which a better
accuracy would have occurred. Model accuracy would likely
improve if more samples covering the spatial variability in
each inventory plot were taken. The increase in RMSE with
depth recorded for some models is consistent with previous
studies, where the prediction of lower soil layers resulted in
lower accuracy (Henderson et al., 2005; Yam et al., 2019).
This may be due to a higher sensitivity of the humus layer
which is directly exposed to the influence of environmental
covariates.

The estimates of SOC stocks are slightly biased towards
the extreme values, with an underestimation of the lowest
and highest values for both local and global models (Fig. 3).
This tends to confirm earlier findings which reported issues
related to the underestimation or overestimation of extreme
values by the RF model (Čeh et al., 2018; Hu et al., 2020;
Horning, 2010). On the one hand, this seems to be typical
for regression models with RF because predictions are the
average values of all of the trees, with a tendency to predict
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the mean when the correlation of response and covariate is
weak. On the other hand, this may also be related to an under-
representation of the lower and higher values compared to
those centred around the mean in the training data set. How-
ever, though underestimation of the lowest and highest val-
ues could be recorded for all models, the 90 % PICP shows,
in general, that the 90 % prediction interval adequately cov-
ers the observed values of the humus, mineral, and total SOC
stock layers (Fig. 4). This is an indication that the prediction
intervals are accurate representative of the prediction uncer-
tainties for each of these SOC stocks for both local and global
models. However, for southern Sweden, the PICP presented
higher values for the humus layer and lower values for the
mineral SOC stock with increasing level of confidence, sug-
gesting a higher level of uncertainties in the predictions. This
could be attributed to southern Sweden being characterized
by a longer management history and more intensive forestry
compared to northern Sweden (Angelstam and Pettersson,
1997), leading to a diversity in forest management patterns
with potential feedback on SOC stock distribution.

4.2 Variable importance and modelling accuracy

SOC stocks in forest soils are the product of the dynamic
equilibrium between the input flux of plant-derived materi-
als and output flux of carbon as a result of decomposition.
Classical soil-forming factors – climate, organisms (vegeta-
tion, fauna, and human activities), topography, parent mate-
rial, and time – are known to govern the amount and distribu-
tion of SOC stock. Though covariates used as proxy for these
soil-forming factors were considered separately for the sake
of analysis in this study, they are actually involved in dy-
namic interactions leading to complex soil processes in the
landscape.

With the global RF models using only site-specific covari-
ates, the latitude (northing) was the main variable driving the
distribution of the SOC stock, with a negative correlation
suggesting lower stock to the north (Table 5). The latitudi-
nal gradient (Millberg et al., 2015) in Sweden also results
in climatic gradient (Jungqvist et al., 2014), which, in turn,
interacts with topography (Johansson and Chen, 2003) to de-
termine the heterogeneity in net primary production in rela-
tion to the spatial variability in precipitation and temperature.
Even at a regional level, the latitude was still critical and was
mostly present among the top 10 covariates being selected
by the local RF models using all covariates (Table 5). How-
ever, climate and topographical covariates were consistently
overshadowed by SSCs when all the covariates were used for
modelling both at a national and regional scale. Though pre-
cipitation regulates net primary productivity (NPP) and tem-
perature controls microbial decomposition of organic mat-
ter, their local variability is generally small (Wiesmeier et
al., 2019). This makes them less relevant in contrast to SSCs
taken at plot level, which describe more closely the factors

controlling the decomposition and stabilization of organic
matter.

Among the site characteristics, the soil moisture was the
key site factor affecting the humus layer SOC stock, es-
pecially in the northern and central Sweden, while vegeta-
tion type was ranked first in southern part of Sweden (Ta-
ble 5). The box plots of these two covariates showed that
they clearly have different distributions of SOC stock in the
humus layer, although some of the interquartile ranges over-
lap (Fig. S6). As observed for the humus layer, soil moisture
was the most important variable associated with total SOC
stock along with the soil type. For a sequence from dry to
moist soils, there was an increase in SOC stock in the hu-
mus layer and for the mineral and total stock (box plot of
soil moisture in Figs. S6–S8). This might be explained by
higher productivity in litter supply as water is more available
in the tree root zone of fresh and moist sites. On the other
hand, these latter soils are subject to a longer period of satu-
ration (reducing conditions) that slows down decomposition.
The impact of soil moisture could also be noted when con-
sidering the partial dependence plot of the RF global model
of the humus layer showing the interaction between the soil
moisture class and vegetation type (Fig. S9a). Each vegeta-
tion type consistently tends towards higher values of SOC
stock for moist sites compared to dry and fresh sites.

Generally, soil type and texture were ranked by the allC
global models as being the top covariates influencing the
SOC stock in the mineral soil (Table 5). The link between
these two covariates could be related to the soil moisture
content of their classes. On the one hand, soil types (His-
tosols and Gleysols) with fine texture (fine silt and clay) and
high moisture content are more subject to reducing condi-
tions with higher SOC stock compared to soils (Leptosols
and Arenosols) with a coarse (stone, boulder, and coarse
sand) texture. On the other hand, the relevance of soil tex-
ture as a predictor of SOC could be related to the physico-
chemical SOC stabilization mechanisms. Clay minerals and
clay- and silt-sized particles generally have a positive corre-
lation with mineral SOC stocks, as the association of organic
matter with mineral surfaces and occlusion inside aggregates
hinders microbial decomposition and enhances SOC accu-
mulation (Lützow et al., 2006; Zhang et al., 2020).

The addition of the other group of covariates (GoCs) to
the site-specific covariates resulted in limited improvement
for both global and local models (Tables 3–4). This sug-
gests that their level of distinct complementarity in the fea-
ture space is low as the GoCs might be carrying redundant
information with the site-specific covariates in relation to the
humus layer, mineral soil, and total stock. For example, the
prominence of site-specific covariates over topographical co-
variates (Table 5; allCs) might be due to the fact they are in-
directly incorporated into the definition of the site-specific
covariates. For this study, wetness index, distance to ground-
water, and depth to water are indexes used to characterize soil
moisture, while gamma ray data describe parent material. A
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similar observation was shared by Wiesmeier et al. (2011)
who, also recorded land use and soil type as being key co-
variates affecting SOC stock, while topographic covariates
contributed very weakly to model accuracy using random
forest. However, though ranked low among all covariates
(Table 5; allCs), the cumulated variable importance analysis
showed that topographical covariates stood out in contribut-
ing to model accuracy in northern Sweden (Fig. 5) but were
less relevant in the south. Obviously, higher elevation and
derivatives in northern Sweden explain such an influence on
the SOC stock.

Next to site characteristics and climate, the cumulative
gamma ray data were more consistent in contributing to
model accuracy of the total SOC stock compared to geo-
chemical data, with the individual ranking further reveal-
ing a higher occurrence of radioactive K both at the global
and regional level (Table 5; Fig. 5). This suggests that K-
bearing minerals of the parent material have greater explana-
tory power over total SOC stock than U and Th, the nature of
which might require further studies. Malone et al. (2009) also
recorded gamma K as being the key covariate for mapping
SOC stock in an agriculture dominated land use in Australia.

The geochemical data were revealed to be the key covari-
ates in the distribution of SOC stock in southern Sweden,
especially for the humus layer (Na) and mineral stock (Ca
and Na), though of a much lower magnitude compared to
site-specific covariates. However, base cations seemed not to
primarily affect SOC distribution but rather environmental
covariates that regulate their dynamics. The low ranking of
forest parameters may be related to (1) their low correlations
with the SOC stock data and (2) the fact that the data set cut
across different data forest types without any specific strati-
fication, which could have created a homogeneous strata for
modelling. However, the focus of the present study was not
on a specific forest type, which could have further reduced
the training data set, while machine learning models require
high data samples to learn patterns and accurately predict tar-
get values on independent data sets.

4.3 Spatial prediction of SOC stock

The maps of the humus layer, mineral soil, and total stock
present a pattern of the increasing accumulation of SOC
stocks from south to north, with the highest uncertainties
in the southern part of Sweden regardless of the predicting
models (Fig. 6). In general, it is expected that the global lat-
itudinal trend will result in increasing stocks in higher lati-
tudes, which correspond to colder and humid regions. Pos-
sible explanations are associated with slower microbial de-
composition rates, while other studies suggest non-conducive
soil conditions such as water logging, low pH values, and
high aluminium concentration as being the main constraints
(Dieleman et al., 2013; Hobbie et al., 2000; Wiesmeier et al.,
2019).

The contrary configuration observed in the maps, with a
decreasing south–north distribution in the SOC stock for the
humus layer and mineral soil (Fig. S10), is consistent with
findings from different studies (Kleja et al., 2008; Fröberg
et al., 2011; Hyvonen et al., 2008). These studies advocate
that the high SOC stocks in the south could be related to a
higher deposition of nitrogen (N) compared to central and
northern Sweden. It has been suggested that N deposition re-
sults in both increasing litter inputs and increasing mean res-
idence time. Also, high concentrations of inorganic N inhibit
the activities of lignin-degrading phenol oxidase released by
microorganisms (Zak, 2017; Carreiro et al., 2000). How-
ever, a warmer climate makes trees grow faster, along with a
higher litter input, in the south than in the north. With the co-
occurring north–south gradient of temperature (lower), pH
(higher), soil carbon (lower; Iwald, 2016; Framstad, 2013),
and N deposition might have contributed to the strengthening
of the north–south SOC stock gradient. As southern Sweden
(Fig. 6) recorded a higher range in SOC stocks, the associ-
ated average variation around the mean was also larger.

4.4 Implication and limitations of the study

The present study compared a local and a global modelling
approach for DSM. To the question of which approach to
use when mapping a big area, our research showed that it
is dependent on the type of covariates available. In general,
building local models for sub-areas of the study region will
require having covariates which correlate most with the sam-
pling sites, thereby offering a better description at a smaller
scale. In this study, the site characteristics were better rep-
resentative of the sampling locations, and their local models
generally performed better than global models. In situations
where such site characteristics data are not available, it would
be preferable to use a global model for the whole area. How-
ever, machine learning models such as RF are data driven,
and therefore, results will vary according to the specificity
of a given area. Therefore, there is no silver bullet to use in
the approach for any specific area, and it will be necessary
to draw conclusions from the modelling results. However, it
is very likely that the combination of site characteristic with
the GoC data would result in higher accuracy at both a lo-
cal and global scale than using only the group of covariates
dominated by remote sensing data.

The maps produced with the GoC global and local models
for the humus layer, mineral soil, and total SOC stock ac-
curately present the distribution of SOC stocks observed for
Sweden in many studies. Given that the underlying models
were not the most accurate in the present study, such maps
should be treated with caution, especially with the associated
high coefficient of variation. However, they could serve as a
high-resolution indicator of the spatial trend in SOC stocks
at different depths for the landscape of the Swedish forest.
In addition, the use of a DSM approach in the present study
allows flexibility in future improvements upon the acquisi-
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Table 6. Independent validation of the global and local random forest models based on the mapped site-specific covariates compared to
models based on observed site-specific covariates and grouped of covariates.

RMSE R2 1RMSE
(t C ha−1) GoC-mSSC (%)

Independent validation

Global models Humus layer All of Sweden 20.87 0.27 5.57

Mineral soil All of Sweden 26.57 0.28 13.44

Total All of Sweden 34.35 0.28 10.55

Local models Humus layer North 19.22 0.22 2.46
Centre 17.56 0.16 2.47
South 24.81 0.31 6.37

Mineral soil North 20.21 0.22 4.68
Centre 22.89 0.09 20.23
South 32.11 0.29 11.04

Total North 29.82 0.28 −0.74
Centre 27.36 0.09 22.06
South 41.79 0.23 6.30

Error metrics by global models for local validation set

Humus layer North 20.28 0.14 −1.91
Centre 18.02 0.13 −1.24
South 25.27 0.27 4.64

Mineral soil North 22.72 0.10 −4.70
Centre 23.14 0.05 20.75
South 34.96 0.15 2.35

Total North 40.70 0.01 −43.56
Centre 30.00 0.07 13.49
South 43.18 0.18 0.74

1RMSE GoC-mSSC (%) – percentage estimate of the difference between the root mean square error of models based
on group of covariates and mapped site-specific covariates; negative values – models with mapped site-specific
covariates present a higher root mean square error compared to models based either on observed, site-specific variables
or a group of covariates; positive values – models with mapped site-specific covariates present a lower root mean
square error compared to models based on either observed, site-specific variables or a group of covariates;
R2 – coefficient of determination.

tion of new covariates or data points, repeatability in mod-
elling with the application of the same modelling principles
using open-source software (e.g. R), and the ability to cap-
italize on multi-source information (topography, site char-
acteristics, forest data, gamma radiometry, and geochemi-
cal data). Therefore, smaller counties could evaluate this ap-
proach against their own data sets for mapping other soil
properties (pH, texture, Fe, Al, etc.) and SOC stocks for local
applications.

DSM relies on existing maps for building regression mod-
els and for mapping. The quality and accuracy of the predic-
tions depend, as discussed earlier, on choosing the most rel-
evant covariates in relation to the target to be predicted. The
present study revealed that covariates which were available
as maps did contribute to the MDA, but site characteristics
were more prominent in relation to the SOC stocks in Swe-
den. This might suggest that mapping these variables that

were more decisive for SOC stock prediction and includ-
ing them as covariates for mapping may improve accuracy.
Since the primary focus of the present study was mainly to
evaluate the GoC data versus the SSC data at different scales
of modelling, and not primarily for making a map, the ob-
served data of the latter were used. However, since only the
observed data of the site characteristics were considered, this
study fails to consider that the mapping of these site charac-
teristics would involve modelling errors, and the propagation
of these errors into the final maps of these site variables might
actually reduce their predictive power. For completeness, we
carried out a preliminary mapping of the site characteristics
(Fig. S11) using additional soil inventory data, random for-
est, and the GoCs as predictors. These mapped site charac-
teristics (mSSCs) were then used as covariate for predicting
the SOC stocks.
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Table 6 presents the error metrics after independent vali-
dation for both local and global models, along with the per-
centage margin of the RMSE in relation to the models based
on GoCs. First, the local mSSC-based models still recorded a
lower RMSE compared to global mSSC models. Compared
to the GoC models, the overall positive percentage margin of
the RMSE for the independent validations indicated that the
mSSC models recorded the lowest RMSE. However, when
assessing the RMSE margin between the global models of
GoCs and SSCs, negative percentages were mainly recorded
for northern Sweden, independently of the depth. This in-
dicated that the mSSC-based global models were less accu-
rate at predicting SOC stocks locally in northern Sweden.
On the other hand, the mSSC-based local model did present
a better prediction for northern Sweden for the humus layer
and mineral SOC stock. The mean SOC predictions based
on the mSSCs showed a stronger increasing gradient from
northern to southern Sweden (Fig. S12) compared to the
pattern observed with the GoC maps. However, the uncer-
tainty distribution was of a similar magnitude (Fig. S12) to
those observed for the maps based on GoCs, probably due
to error propagations, as these covariates were used to make
the site-specific characteristics maps. This suggests that the
SSCs should still be supplemented for improvement at this
stage with other covariates different from the GoCs, such as
multi-temporal spectral (e.g. normalized difference vegeta-
tion index) data that are able to capture vegetation dynamic
in forests. Notwithstanding the possibility of error propaga-
tion, the study of which was beyond the scope our focus, the
preceding results tend to confirm the potential of the high-
resolution maps of the site characteristics to contribute to the
improvement of SOC stock prediction as compared to using
only the GoC data. Given that the preliminary mappings of
the SSCs recorded low kappa (0.17–0.48) values (Fig. S11)
at this stage, further improvements are still necessary to im-
prove their SOC stock predictive ability and the associated
coefficient of variations.

5 Conclusion

This study has shown that:

– Local models have a comparative advantage over global
models when using either site characteristics alone or
the combination of the latter with a group of covariates
dominated by remotely sensed data.

– Using a group of covariates dominated by remote sens-
ing data with a soil inventory data set indicates that such
covariates have limited predictive ability compared to
site-specific covariates.

– The most important covariates that influence the humus
layer, mineral soil, and total SOC stock were related to
the site-characteristic covariates consisting of the soil

moisture class, vegetation type, soil type, and soil tex-
ture.
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