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Abstract. The 4 per 1000 initiative aims to maintain and in-
crease soil organic carbon (SOC) stocks for soil fertility, food
security, and climate change adaptation and mitigation. One
way to enhance SOC stocks is to increase carbon (C) inputs
to the soil.

In this study, we assessed the amount of organic C in-
puts that are necessary to reach a target of SOC stocks in-
crease by 4 ‰yr−1 on average, for 30 years, at 14 long-term
agricultural sites in Europe. We used the Century model to
simulate SOC stocks and assessed the required level of addi-
tional C inputs to reach the 4 per 1000 target at these sites.
Then, we analyzed how this would change under future sce-
narios of temperature increase. Initial stocks were simulated
assuming steady state. We compared modeled C inputs to
different treatments of additional C used on the experimental
sites (exogenous organic matter addition and one treatment
with different crop rotations). The model was calibrated to fit
the control plots, i.e. conventional management without ad-

ditional C inputs from exogenous organic matter or changes
in crop rotations, and was able to reproduce the SOC stock
dynamics.

We found that, on average among the selected ex-
perimental sites, annual C inputs will have to increase
by 43.15± 5.05 %, which is 0.66± 0.23 MgCha−1 yr−1

(mean± standard error), with respect to the initial C inputs
in the control treatment. The simulated amount of C input
required to reach the 4 ‰ SOC increase was lower than or
similar to the amount of C input actually used in the majority
of the additional C input treatments of the long-term experi-
ments. However, Century might be overestimating the effect
of additional C inputs on SOC stocks. At the experimental
sites, we found that treatments with additional C inputs were
increasing by 0.25 % on average. This means that the C in-
puts required to reach the 4 per 1000 target might actually
be much higher. Furthermore, we estimated that annual C in-
puts will have to increase even more due to climate warming,
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that is 54 % more and 120 % more for a 1 and 5 ◦C warming,
respectively. We showed that modeled C inputs required to
reach the target depended linearly on the initial SOC stocks,
raising concern on the feasibility of the 4 per 1000 objective
in soils with a higher potential contribution to C sequestra-
tion, that is soils with high SOC stocks. Our work highlights
the challenge of increasing SOC stocks at a large scale and
in a future with a warmer climate.

1 Introduction

Increasing organic carbon (C) stocks in agricultural soils
is beneficial for soil fertility and crop production and for
climate change adaptation and mitigation. This considera-
tion was at the basis of the 4 per 1000 (4p1000) initia-
tive, proposed by the French government during the 21st
Conference of the Parties (COP21) on climate change. The
4p1000 initiative aims to promote agricultural practices that
enable the conservation of organic carbon in the soil (https:
//www.4p1000.org, last access: 25 June 2021). Because soil
organic carbon (SOC) stocks are 2 to 3 times higher than
those in the atmosphere, even a small increase in the SOC
pool can translate into significant changes in the atmospheric
pool (Minasny et al., 2017). To demonstrate the importance
of SOC, the initiative took as an example the fact that in-
creasing global SOC stocks up to 0.4 m depth by 4p1000
(0.4 %) per year of their initial value could offset the net an-
nual carbon dioxide (CO2) anthropogenic emissions to the
atmosphere (Soussana, 2017). While increasing SOC stocks
by 4p1000 annually is not a normative target of the initiative,
this value can be taken as a reference to which current situ-
ations and alternative strategies are compared (e.g., Pellerin
et al., 2019).

Strategies of conservation and expansion of existing SOC
pools may be necessary but are not sufficient to mitigate cli-
mate change (Paustian et al., 2016). In this sense, increas-
ing SOC stocks cannot be regarded as a dispensation to con-
tinue business as usual, but rather as a wedge of negative
greenhouse gas (GHG) emissions (Wollenberg et al., 2016),
as well as a strategy for improving most soils’ resilience to
changes in the climate.

The potential to increase SOC stocks is particularly rel-
evant in cropped soils, where the depletion of organic mat-
ter with respect to the original non-cultivated situation has
been demonstrated (Clivot et al., 2019; Goidts and van Wese-
mael, 2007; Meersmans et al., 2011; Saffih-Hdadi and Mary,
2008; Sanderman et al., 2017; Zinn et al., 2005) and where
straightforward management practices can be implemented
to promote the conservation or increment of SOC (Chenu
et al., 2019; Guenet et al., 2020; Paustian et al., 2016). More-
over, increasing the organic C content in agricultural soils is
known to improve their fertility and water retention capac-

ity (Lal 2008), indirectly enhancing agricultural productivity
and food security.

SOC stocks are a function of C inputs and C outputs. To
increase SOC stocks, one can either increase C inputs to the
soil (i.e. adding plant material or organic fertilizers) or re-
duce C outputs resulting from mineralization and, in some
cases, soil erosion. Increasing SOC stocks can be achieved
via agricultural practices such as retention of crop residue
and organic amendments to the soil, cover cropping, diversi-
fied rotations and agroforestry systems (Chenu et al., 2019;
Powlson et al., 2011). However, some of these practices only
lead to local carbon storage at the field scale, rather than a
net carbon sequestration from the atmosphere at larger scales
(Chenu et al., 2019).

Assessing the evolution of SOC stocks over time is im-
portant to correctly estimate the potential of SOC storage
in agricultural soils and evaluate management practices in
terms of both SOC stock increase and sequestration potential.
The dynamics of SOC stocks can be either measured in agri-
cultural soils through long-term experiments (LTEs) and soil
monitoring networks or estimated via biogeochemical mod-
els (Campbell and Paustian, 2015; Manzoni and Porporato,
2009). Combining measurements of SOC with models pro-
vides a wider applicability of the information collected in
field trials, as it allows SOC stocks and their future trends
to be estimated. However, validity of models in the studied
areas has to be assessed, and models need to be initialized.
This means that the initial status of SOC has to be set, either
for lack of data on total initial stocks or to determine the al-
location of C among the model’s compartments that cannot
be measured. This is commonly accomplished by assuming
that SOC is at equilibrium at the beginning of the experiment
(Luo et al., 2017; Xia et al., 2012).

The feasibility and applicability of a 4 ‰ increase target
depend on biotechnical and socio-economic factors. As we
mentioned earlier, a number of practices are known to in-
crease SOC stocks in agricultural systems. However, it is still
debated whether they will be sufficient to reach the 4p1000
objective. Minasny et al. (2017) described opportunities and
limitations of a 4 ‰ SOC increase in 20 regions across the
world. Several authors (e.g., Baveye et al., 2018; van Groeni-
gen et al., 2017; VandenBygaart, 2018) argued that some of
the examples described in Minasny et al. (2017) were not
representative of wide-scale agriculture and suggested that a
4 ‰ rate is not attainable in many practical situations (Poul-
ton et al., 2018). Implementing new agricultural practices
that allow the maintenance and increase in SOC stocks might
require structural land management changes that not all farm-
ers will be willing to adopt. Incentivizing and sustaining vir-
tuous practices to increase SOC stocks should be a strategy
for policymakers to overcome socio-economic barriers (e.g.,
Lal, 2018; Soussana, 2017), and in order to do that, they
need to be correctly informed. Recent works have assessed
the biotechnical limitations of a SOC increase, studying the
required and available biomass to reach a 4p1000 target in
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European soils (Wiesmeier et al., 2016; Martin et al., 2021;
Riggers et al., 2021).

Our work was set up in this context with the objectives to
(1) estimate the amount of C inputs needed to increase SOC
stocks by 4 ‰yr−1, (2) investigate whether this amount is
attainable with currently implemented soil practices (i.e. or-
ganic amendments and different crop rotations) and (3) study
how the required C inputs are going to evolve in a future
driven by climate change. We used the biogeochemistry SOC
model Century, which is one of the most widely used and val-
idated models (Smith et al., 1997a), to simulate SOC stocks
in 14 different agricultural LTEs around Europe. We set the
target of SOC stock increase to 4 ‰yr−1 for 30 years, rela-
tive to the initial stocks in the reference treatments. With an
inverse modeling approach, we estimated the amount of ad-
ditional C inputs required to reach a 4p1000 target at these
sites. Finally, we evaluated the dependency of the required
additional C inputs on different scenarios of increased tem-
perature.

2 Materials and methods

2.1 Experimental sites

We compiled data from 14 LTEs in arable cropping systems
across Europe (Fig. 1), where a total of 46 treatments with
increased C inputs to the soil were performed, and one con-
trol plot in each experiment was implemented (Table 1). The
experiments lasted between 11 and 53 years (median value
of 16 years) in the period from 1956 to 2018. Most of the ex-
periments had at least three replicates, except for the Italian
site Foggia, the French site Champ Noël 3 and the British site
Broadbalk, where no replicates were available. We selected
experiments where dry matter (DM) yields and SOC had
been measured at several dates. C inputs at all sites, except
for control plots and all plots in Foggia, included exogenous
organic matter (EOM) addition, e.g., animal manure, house-
hold waste, sewage sludge or compost additions. In Foggia,
different rotations without organic matter addition were stud-
ied and compared to a wheat-only treatment, considered the
control plot. The annual C inputs to the soil were substan-
tially higher in the rotations compared to the control. More
information on crop rotations and C inputs for each treatment
can be found in Table 1.

Cropping systems in the 60 treatments (14 control plots
and 46 additional C input treatments) were mainly cereal-
dominated rotations (wheat, maize, barley and oat). In partic-
ular, four were cereal monocultures (silage maize in Champ
Noël 3, Le Rheu 1 and Le Rheu 2 and winter wheat in
Broadbalk), and four sites had rotations of different cere-
als (winter wheat and silage or grain maize in Crécom 3
PRO, Feucherolles, La Jaillière 2 PRO and Avrillé). The
other sites rotated cereal crops with legumes (chickpea, pea)
and/or root crops (fodder beet, fodder rapeseed and Swedish

turnip), oilseed crops (sunflower and oilseed rapeseed) and
cover crops (mustard and rapeseed), and one rotation in-
cluded tomatoes. Straw residue was systematically exported
except at French sites, where residue was sometimes incor-
porated into the soil as accounted for in the C input calcula-
tions. All LTEs were under conventional tillage, which was
performed with a tractor, except in the case of Ultuna, where
it was performed manually. All experiments were rainfed, ex-
cept for Foggia, where tomatoes were irrigated in summer.
The French sites Champ Noël 3, Crécom 3 PRO, La Jaillière
2 PRO, Le Rheu 1 and Trévarez received optimal amounts of
mineral fertilizers both in the control plot and in the different
organic matter treatments. All other experiments did not re-
ceive any mineral fertilization. All control plots, apart from
Arazuri, had decreasing SOC stock trends (SOC approxi-
mated with a linear regression: SOC=m · t +SOC0, with
average relative change: m

SOC0
· 100 =−0.76 %, R2

= 0.58).
Over the 46 treatments of additional C input, 18 exhibited
increasing SOC stocks at a higher rate than 4 ‰yr−1 on av-
erage over the experiment length (Table 1). Six treatments
had increasing SOC stocks, but at a lower ratio than 4p1000.
The other 22 treatments with additional C inputs had decreas-
ing SOC stocks (MgCha−1). However, the decreasing trend
was, in these cases, lower than the decreasing trend in the
respective control plot, in the majority of the treatments.

2.1.1 Climate forcing

Mean temperature of the sites ranged from a minimum of
5.7 ◦C to a maximum of 15.5 ◦C, while mean soil humid-
ity to approximately 20 cm depth ranged between 20.2 and
24.6 kgH2O m−2

soil in the dataset (Table 2). When available, ob-
served daily air temperature was used as an approximation
of soil temperature. Otherwise, the land–atmosphere model
ORCHIDEE was used to simulate soil surface temperature
and soil humidity at the site scale (Krinner et al., 2005).
ORCHIDEE simulations were run over each site using a 3-
hourly global climate dataset at 0.5◦ (GSWP3 http://hydro.
iis.u-tokyo.ac.jp/GSWP3/, last access: 1 September 2020).
Plant cover was set to C3 plant functional type (PFT) for agri-
culture.

2.1.2 Soil characteristics

The sampling depth of the experiments varied between 20
and 30 cm. SOC stocks were measured in three to four repli-
cates, apart from the Foggia and Champ Noël 3 experiments,
where no replicates were available, and Broadbalk. In this
experiment, SOC was measured in each plot using a semi-
cylindrical auger where 10–20 cores were taken from across
the plot and bulked together (more details can be found on the
e-RA website1). The clay content ranged from 10 % (Jeu-les-
Bois) to 41 % (Foggia). Soil pH varied from a minimum of

1http://www.era.rothamsted.ac.uk, last access: 20 Febru-
ary 2020.
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Table 1. Summary of the agricultural experiments included in the study: crop rotations grown at site, amount of carbon inputs
(Mg Cha−1 yr−1) estimated from crop yields as in Bolinder et al. (2007), type of treatments, amount of additional organic carbon from
organic treatments (MgCha−1 yr−1) and mean annual SOC stock variation (%).

Site ID treatment Rotationsa Carbon inputs from
crop rotations

Treatment type Additional carbon inputs
from organic treatments

SOC annual
variation

MgCha−1 yr−1 MgCha−1 yr−1 %

Champ Noël 3 Minb sM 1.29 Reference+Nb 0 −0.92
(CHNO3) LP Silage maize 1.49 Pig manure 0.79 −0.89

Colmar T0 wW/Mg/sB/S 2.79 Reference 0 −0.78
(COL) BIO1 wW/Mg/sB/S 3.93 Biowaste 1.01 0.15

BOUE1 wW/Mg/sB/S 3.96 Sewage sludge 0.49 −0.61
CFB1 wW/Mg/sB/S 4.04 Cow manure 1.07 −0.01
DVB1 wW/Mg/sB/S 4.00 Green manure+sewage sludge 1.08 0.18
FB1 wW/Mg/sB/S 3.93 Cow manure 1.36 −0.01

Crécom 3 PRO Min wW/sM 1.84 Reference+N 0 −0.06
(CREC3) FB2 wW/sM 1.92 Cow manure 1.82 0.49

FV wW/sM 1.96 Poultry manure 0.47 −1.46

Feucherolles T0 wW/Mg 2.22 Reference 0 −0.66
(FEU) BIO1 wW/Mg 3.44 Biowaste 2.21 3.60

DVB1 wW/Mg 3.45 Green manure+ sewage sludge 2.45 3.69
FB1 wW/Mg 3.55 Cow manure 2.28 1.36
OMR1 wW/Mg 3.45 Household waste 2.11 1.72

Jeu-les-Bois M0 wB/R/wW 2.99 Reference 0 −1.33
(JEU) CFB1 wB/R/wW 2.89 Cow manure 1.1 1.61

CFB2 wB/R/wW 3.06 Poultry manure 1.94 1.52
FB2 wB/R/wW 3.11 Cow manure 2.43 0.99

La Jaillière 2 PRO Min sM/wW 1.59 Reference+N 0 −1.43
(LAJA2) CFB sM/wW 1.25 Cow manure 1.14 −0.88

CFP sM/wW 1.21 Pig manure 1 −1.09
CFV sM/wW 1.31 Poultry manure 0.94 −1.60
FB sM/wW 1.29 Cow manure 1.44 −0.64
FP sM/wW 1.27 Pig manure 1.07 −1.03
FV sM/wW 1.40 Poultry manure 0.93 −1.59

Le Rheu 1 Min sM 1.31 Reference+N 0 −1.51
(RHEU1) CFB1 sM 1.31 Cow manure 1.06 −1.21

Le Rheu 2 T0 sM 1.03 Reference 0 −1.72
(RHEU2) CFP1 sM 1.20 Pig manure 0.78 −1.28

FP sM 1.30 Pig manure 1.62 −0.74

Arazuri DO_N0 B/P/W/Sf/O 0.98 Reference 0 1.00
(ARAZ) D1_F1 B/P/W/Sf/O 1.40 Sewage sludge 2.82 0.40

D1_F2 B/P/W/Sf/O 1.41 Sewage sludge 1.4 1.22
D1_F3 B/P/W/Sf/O 1.44 Sewage sludge 0.78 1.22
D2_F1 B/P/W/Sf/O 1.30 Sewage sludge 5.64 0.22
D2_F2 B/P/W/Sf/O 1.40 Sewage sludge 2.8 2.32
D2_F3 B/P/W/Sf/O 1.49 Sewage sludge 1.56 0.93

Ultuna P0_B O/sT/Mu/sB/FB/OsR/W/FR/M 1.03 Reference 0 −0.52
(ULTU) S_F O/sT/Mu/sB/FB/OsR/W/FR/M 1.10 Straw 1.77 −0.09

GM_H O/sT/Mu/sB/FB/OsR/W/FR/M 1.82 Green manure 1.76 0.11
PEAT_I O/sT/Mu/sB/FB/OsR/W/FR/M 1.14 Peat 1.97 2.17
FYM_J O/sT/Mu/sB/FB/OsR/W/FR/M 1.76 Farmyard manure 1.91 0.69
SD_L O/sT/Mu/sB/FB/OsR/W/FR/M 0.82 Sawdust 1.84 0.56
SS_O O/sT/Mu/sB/FB/OsR/W/FR/M 2.59 Sewage sludge 1.84 1.36

Broadbalk 3_Nill wW 0.36 Reference 0 −0.09
(BROAD) 19_Cast wW 0.65 Castor meal 0.43 0.42

22_FYM wW 2.07 Farmyard manure 3 0.38

Foggiac T0 W 1.56 Reference 0 −0.86
Dw-Dw-Fall W/W/F 2.13 Rotation 0.57 0.01
Dw-Fall W/F 1.95 Rotation 0.39 −0.33
Dw-Oa-Fall W/O/F 2.20 Rotation 0.64 −0.33
Dw-Dw-Cp W/W/C 2.53 Rotation 0.97 −0.15
Dw-Dw-To W/W/T 2.57 Rotation 1.01 −0.59

Trévarez Min RG/Mg/wW/sM 1.94 Reference+N 0 −0.66
(TREV) FB RG/Mg/wW/sM 2.04 Cow manure 1.52 −0.39

FP RG/Mg/wW/sM 2.02 Pig manure 1.18 −0.18

Avrillé T12TR wW/sM 2.25 Reference 0 −1.18
(AVRI) T2TR wW/sM 2.36 Cow manure 1.68 −0.76

a Crops: sM: silage maize; Mg: maize grain; wW: winter wheat; W: wheat; sB: spring barley; wB: winter barley; B: barley; S: sugar beet; R: rapeseed; Sf: sunflower; O: oats; P: Pea; sT: Swedish turnip; Mu: mustard; DF: fodder beet;
OsR: oilseed rapeseed; FR: fodder rapeseed; F: green fallow; C: chickpeas; T: tomato; RG: ray grass. b Optimal amounts of mineral fertilizers added to the control plot and to all other treatments in the experiment. c In Foggia,
additional carbon inputs from organic treatments were calculated for each rotation as the difference between C inputs in the rotation and the reference wheat-only rotation.
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Figure 1. Location of the 60 field trials distributed among the 14 cropland experiments around Europe.

Table 2. Information about experimental sites, including mean annual values of temperature (◦C) and soil humidity to approximately 20 cm
depth (kgH2O m−2

soil) simulated with the ORCHIDEE model at each experimental site, measured pH, bulk density (gcm−3), clay (%) and
initial SOC stocks in the control plots (MgCha−1) at the experimental sites. Reference papers for each site are indicated.

Sites Reference paper Coordinates Years Mean annual
temperature

Mean annual
soil humidity

pH Bulk
density

Clay Initial SOC
stocks

◦C kgH2O m−2
soil gcm−3 % MgCha−1

Champ Noël 3a Clivot et al. (2019) 48.09◦ N, 1.78◦W 1990–2008 12.1 21.6 6.3 1.35 15.1 40.57
Colmar Levavasseur et al. (2020) 48.11◦ N, 7.38◦ E 2000–2013 9.6 24.6 8.33 1.3 23.1 54.33
Crécom 3 PRO Clivot et al. (2019) 48.32◦ N, 3.16◦W 1986–2008 11.8 22.9 6.15 1.36 14.6 62
Feucherolles Levavasseur et al. (2020) 48.88◦ N, 1.96◦ E 1998–2013 11.9 21.2 6.73 1.32 15.6 39.78
Jeu-les-Bois Clivot et al. (2019) 46.68◦ N, 1.79◦ E 1998–2008 12.2 22.1 6.27 1.52 10 48.53
La Jaillière 2 PRO Levavasseur et al. (2020) 47.44◦ N, 0.98◦W 1995–2009 12.7 20.5 6.8 1.37 20.8 32.42
Le Rheu 1a Clivot et al. (2019) 48.09◦ N, 1.78◦W 1994–2009 12.2 21.8 5.85 1.27 16.4 36.23
Le Rheu 2a Clivot et al. (2019) 48.09◦ N, 1.78◦W 1994–2009 12.2 21.8 6.05 1.28 13.9 36.53
Arazurib – 42.81◦ N, 1.72◦W 1993–2018 12.7 20.4 8.6 1.67 27.9 55.39
Ultuna Kätterer et al. (2011) 59.82◦ N, 17.65◦ E 1956–2008 5.7 22.6 6.23 1.4 36.5 41.72
Broadbalk Powlson et al. (2012) 51.81◦ N, 0.37◦W 1968–2015 10.2 21.5 7.8 1.25 25 24.84
Foggia Farina et al. (2017) 41.49◦ N, 15.48◦ E 1992–2008 15.5 22.4 8.1 1.32 41 63.22
Trévarez Clivot et al. (2019) 48.15◦ N, 3.76◦W 1986–2008 11.8 23.4 6.01 1.48 19.2 115.33
Avrilléa Clivot et al. (2019) 47.50◦ N, 0.60◦W 1983–1991 12.0 20.2 6.59 1.4 17.6 54.46

a These experiments were part of the initial French database (AIAL) described in Clivot et al. (2019), but they were not selected for the final modeling work of this latter study. For more information, see also Bouthier
et al. (2014). b For Arazuri, data were directly provided by the Spanish Mancomunidad de la Comarca de Pamplona.

5.85 in Le Rheu 1 to a maximum of 8.33 in Colmar. The aver-
age bulk density (BD) in the control plots was 1.38 gcm−3.
SOC stocks (Mg C ha−1) were calculated at each site using
the following equation:

SOC (MgC ha−1)= SOC (%) ·BD (gcm−3)

· sampling depth (cm), (1)

where SOC (%) is the concentration of organic C in the soil,
and BD is the average bulk density of the experimental plot.

It should be noted that the application of EOMs might in-
duce differences in BD with time, which in turn affects the
calculations of SOC stocks. No adjustment was made in this
sense, since data on the evolution of BD were available only
for a few sites. This might explain differences between the
SOC stocks calculated for Broadbalk in this paper and those
found by Powlson et al. (2012) at the same site, by adjusting
soil weights to observed decreases in top soil BD due to accu-
mulating farmyard manure (FYM). Initial SOC stock values
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Figure 2. Adapted from Bolinder et al. (2007). Representation of
the distribution of carbon in the different parts of the plant: CP rep-
resents the carbon in the harvested product (grain, forage, tuber), CS
is the carbon in the aboveground residue (straw, stover, chaff), CR
is the carbon present in roots and CE represents all the extra-root
carbon (including all root-derived materials not usually recovered
in the root fraction).

in the control plot and mean climate variables for each site
are reported in Table 2.

2.1.3 Carbon inputs

The allocation of C in the aboveground and belowground
parts of the plant was estimated with the approach first de-
scribed by Bolinder et al. (2007) for Canadian experiments
and then adapted by Clivot et al. (2019) to the same French
sites we use in this study. This methodology allows the split-
ting of C inputs from crop residue after harvest into above-
ground and belowground C inputs, using measured dry mat-
ter yields and estimations of the shoot-to-root ratio (S : R)
and harvest indexes (HI) of the crops (see Fig. 2). The above-
ground plant material is estimated as the harvested part of the
plant (CP), which is exported from the soil, plus the straw
and stubble that are left in the soil after harvest (CS). The
harvested part consists of the measurements of DM yields
(YP), while the straw and stubble are estimated using the
HI coefficient of the different crops in the rotation (Bolinder
et al., 2007). We assumed that the values used in Clivot et al.
(2019) for the HI compiled from French experimental sites
were applicable to all the sites in our dataset, which mainly
include temperate sites over Europe. When these values were
not available for some crops, they have been directly derived
from Bolinder et al. (2007) or other sources in the litera-
ture (S : R ratio for fallow from Mekonnen et al., 1997, and
tomato from Lovelli et al., 2012). When straw was exported
from the field, we considered that only a fraction of CS was
left on the soil. This fraction was set to 0.4 for all sites and to
0.2 in Ultuna, where almost no stubble was left on the soil,
since plots were harvested by hand and crops were cut at the
soil surface. We considered a C content of 0.44 gC (gDM)−1

in the aboveground (AG) plant material (Redin et al., 2014)
and 0.4 gC (gDM)−1 in the belowground (BG) part material
(Bolinder et al., 2007). We used the asymptotic equation of
Gale and Grigal (1987) to determine the cumulative BG input
fraction from the soil surface to a considered depth:

BGF depth = 1−βdepth, (2)

where β is a crop-specific parameter determined using the
root distributions for temperate agricultural crops, reported
in Fan et al. (2016) and Clivot et al. (2019). The depth was
set to 30 cm, since it was the depth at which soil samples
were taken at the majority of the sites. For more details on
the C input allocation method and the allometric functions
involved, see Bolinder et al. (2007) and Clivot et al. (2019).

2.2 Century model

2.2.1 Model description

For this study, we selected the Century model, which has
proven to be well suited to accurately simulate the soil C dy-
namics in a range of pedoclimatic areas and cropping sys-
tems (Bortolon et al., 2011; Cong et al., 2014; Parton et al.,
1993), and because we had the full command of the model
for fine tuning of parameters. Soil C dynamics in a soil or-
ganic matter (SOM) model with first-order kinetics can be
mathematically described by the following first-order differ-
ential matrix equation:

dSOC(t)
dt

= I +A · ξTWLCl(t) ·K ·SOC(t), (3)

where I is the vector of the external C inputs to the soil
system, with four nonzero elements (Fig. 3). The second
term A ·ξTWLCl(t) ·K ·SOC(t) of the equation represents or-
ganic matter decomposition rates (diagonal matrix K), losses
through respiration (ξTWLCl(t)), transfers of C among differ-
ent SOC pools (A) and SOC evolution with time (SOC(t))
(see Appendix A). We used the daily time-step version of
the SOM model Century (Parton et al., 1988) to simulate the
amount of C inputs required to reach a 4 ‰ annual increase
in SOC stocks over 30 years. In the version used, only SOC is
modeled, and plant growth is directly accounted for as vari-
ations in C inputs. The original version of Century simulates
the fluxes of SOC depending on soil relative humidity, tem-
perature and texture (as a percentage of clay). As shown in
Fig. 3, the model is discretized into seven compartments that
exchange C with each other: four pools of litter (aboveground
metabolic, belowground metabolic, aboveground structural
and belowground structural) and three pools of SOC (active,
slow and passive). The litter C is partially released to the at-
mosphere as respired CO2 and partially converted to SOM
in the active, slow and passive pools (see Table S1 in Sup-
plement for default Century parameters). The decomposition
rate of C in the ith pool depends on climatic conditions and

Biogeosciences, 18, 3981–4004, 2021 https://doi.org/10.5194/bg-18-3981-2021



E. Bruni et al.: Additional carbon inputs to reach a 4 per 1000 objective in Europe 3987

Figure 3. Representation of litter and soil organic carbon (SOC) pools in Century. The model takes as input litter carbon from plants
(aboveground metabolic (I1), belowground metabolic (I2), aboveground structural (I3) and belowground structural (I4)). A certain fraction
of carbon can be transferred from one pool to another, and each time a transfer occurs, part of this carbon is respired and leaves the system
to the atmosphere as CO2. The SOC active pool receives carbon from each litter pool, while only the structural material is transferred to the
SOC slow pool. Litter material never goes directly to the SOC passive pool while the three SOC pools exchange C within each other.

litter and soil characteristics and is calculated using environ-
mental response functions, as follows:

ξTWLCl(t)i ·Ki = ki · fT(t) · fW(t) · fL i · fClay i, (4)

where i = 1, . . .,7 is one of the AG and BG metabolic and
structural litter pools and the active, slow and passive SOC
pools; Ki is the (K)ii element of the diagonal matrix K in
Eq. (3); ki is the specific mineralization rate of pool i; fT(t)

is a function of daily soil temperature; fW(t) is a function
used as a proxy to describe the effects of soil moisture; fL i
is a reduction rate parameter acting on the AG and BG struc-
tural pools only, depending on the lignin concentration in the
litter; and fClay i is a reduction rate function of clay on SOC
mineralization in the active pool. The temperature function
fT(t) describes the exponential dependence of soil decom-
position on surface temperature, through theQ10 relationship
that was first presented by M. J. H. van ’t Hoff (1884):

fT(t)=Q
(T (t)−Tref)

10
10 , (5)

whereQ10 is the temperature coefficient, usually set to 2, and
Tref is the reference temperature of 30 ◦C. TheQ10 factor is a
measure of the soil respiration change rate as a consequence
of increasing temperature by 10◦. The other environmental
response functions are described in Appendix A.

2.2.2 Model initialization

The initialization of the model consists of specifying the
sizes of the SOC pools at the beginning of the experiment.
Here, we assumed initial pools are in equilibrium with C in-
puts before the experiments begin, in absence of knowledge
about past land use and climate making initial pools different

from steady state (Sanderman et al., 2017). Then, initializa-
tion can be done either by running the model iteratively for
thousands of years to approximate the steady-state solution
(numerical spin-up) or semi-analytically by solving the set
of differential equations that describes the C transfers within
model compartments (Xia et al., 2012). We solved the matrix
equation by inverse calculations for determining pool sizes at
steady state, as in Xia et al. (2012) and Huang et al. (2018).
These authors demonstrated that the matrix inversion ap-
proach exactly reproduces the steady state and SOC dynam-
ics of the model. By speeding up the performance of the sim-
ulations, this technique allowed us to perform the optimiza-
tion of model parameters, the sensitivity analysis of SOC to
climatic variables and the quantification of model output un-
certainties through Monte Carlo (MC) iterative procedures.
We solved the matrix equation by using its semi-analytical
solution and the following algorithm: (1) calculating annual
averages of matrix items obtained by Century simulations,
driven by 30 years of climatic forcing, and (2) setting Eq. (3)
to zero to solve the state vector SOC. For each agricultural
site, the 30 years of climate forcing were set as the 30 years
preceding the beginning of the experiment, and the litter in-
put estimated from observed vegetation was set to be the av-
erage litter input in the control plot over the experiment du-
ration.

2.2.3 Model calibration: optimization of the
metabolic : structural fractions of the litter inputs

In the Century model, AG and BG carbon inputs are further
separated into metabolic and structural fractions, according
to the lignin-to-nitrogen (L : N) ratio. Because the L : N ra-
tio was not available for all the crops in the database, we
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Table 3. Optimized values of the aboveground metabolic (AM), aboveground structural (AS), belowground metabolic (BM) and belowground
structural (BS) fractions of the litter inputs and the Q10 and reference temperature (◦C) parameters.

Site AM AS BM BS Q10 Reference temperature

◦C

CHNO3 0.85 0.15 0.26 0.74 5.0 21.2
COL 0.85 0.15 0.57 0.43 2.0 30.0
CREC3 0.15 0.85 0.29 0.71 2.0 30.0
FEU 0.85 0.15 0.52 0.48 5.0 21.6
JEU 0.85 0.15 0.52 0.48 5.0 21.6
LAJA2 0.85 0.15 0.72 0.28 5.0 21.5
RHEU1 0.85 0.15 0.49 0.51 5.0 21.3
RHEU2 0.85 0.15 0.32 0.68 5.0 21.3
ARAZ 0.53 0.47 0.53 0.47 3.0 30.0
ULTU 0.85 0.15 0.85 0.15 2.2 30.0
BROAD 0.42 0.58 0.15 0.85 2.9 30.0
FOGGIA 0.15 0.85 0.15 0.85 5.0 27.1
TREV1 0.15 0.85 0.15 0.85 5.0 23.0
AVRI 0.85 0.15 0.76 0.24 2.0 30.0

fitted model simulations to observed SOC dynamics for the
control plot of each site, i.e. the reference plot without addi-
tional C inputs, in order to get the metabolic : structural (M :
S) fraction of the AG and BG carbon inputs. We used the
sequential least-squares quadratic programming function in
Python (SciPy v1.5.1, scipy.optimize package with method,
SLSQP), a nonlinear constrained, gradient-based optimiza-
tion algorithm (Fu et al., 2019). We successfully performed
the optimization at 13 sites, where at least three measures of
SOC stocks were available. For Jeu-les-Bois, which includes
two SOC measurements only, we decided to use the same
optimized values as for Feucherolles, which has similar pe-
doclimatic conditions and crop rotations. The optimization
consisted in minimizing the following function:

Jfit =
∑n

i=1

(
SOCmodel

i −SOCobs
i

)2
σ 2SOCobs

i

, (6)

where i= 1, . . .,n is the year of the experiment, SOCmodel
i

(MgCha−1) is the SOC simulated with Century for year i,
SOCobs

i (MgCha−1) is the observed SOC for year i in the

control plot and σ 2SOCobs
i is the variance of the SOCobs

i esti-
mated from the different replicates. When replicates were not
available, we recalculated σ 2SOCobs as the variance amongst
SOCobs samples of the whole experiment. The optimized
M : S values are reported in Table 3 and represent the aver-
age quality of litter C in the rotating crops along the duration
of the experiments that match control SOC data at each site.

2.2.4 Model calibration: optimization of temperature
dependency parameters

We optimized the Q10 and daily soil reference temperature
parameters, which affect SOC decomposition. The Q10 fac-
tor is fixed to 2 in Century. However, many authors have
shown that Q10 measurements vary with pedoclimatic con-
ditions and vegetation activity (Craine et al., 2010; Lefèvre
et al., 2014; Meyer et al., 2018; Wang et al., 2010). For this
reason, and to correctly reproduce interregional variations
among the sites in the dataset, we optimized both theQ10 and
reference temperature parameters to better fit the SOC dy-
namics ( MgCha−1) of each agricultural site at the control
plot. We decided to bind the Q10 between 1 and 5, follow-
ing the variation in Q10 found by Wang et al. (2010) over
384 samples collected in the Northern Hemisphere. The ref-
erence temperature ranged between 10 and 30 ◦C. We used
the SLSQP optimization algorithm and the cost function of
Eq. (6) to perform the optimization, which was successful at
13 sites, and we assigned the values obtained from the op-
timization of Feucherolles to Jeu-les-Bois, where SOC mea-
surements were too sparse to perform a two-dimensional op-
timization. Optimized values of Q10 and reference tempera-
ture are reported in Table 3.

Model performance in the control plot was evaluated us-
ing two residual-based metrics. The first one is the mean
squared deviation (MSD), decomposed into its three compo-
nents to help locate the source of error of model simulations:
the squared bias (SB), the non-unity slope (NU) and the lack
of correlation (LC). The second metric used is the normalized
root-mean-squared deviation (NRMSD) (see Appendix B).
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2.3 4p1000 analysis

2.3.1 Optimization of C inputs to reach the 4p1000
target

After the spin-up to steady state, the model was set to cal-
culate the SOC stock dynamics of the control plot and the
C inputs for virtual treatments, assuming an average increase
in SOC stocks by 4 ‰yr−1 over 30 years. A total of 30 years
is considered a period of time over which the variation in
SOC can be detected correctly. During this period length, we
supposed the soil was fed with constant amounts of C in-
puts from plant material. For the control, we derived C in-
puts from measurements of DM yields and calculated the an-
nual mean over the whole experiment length. For the virtual
treatments, we used an optimization algorithm to calculate
the required amount of C inputs to reach a linear increase in
SOC storage by 4 ‰yr−1 above the SOC stock at the start of
the simulation. Mathematically, we minimized the following
function:

J4p1000 = |SOC0 · (1+ 0.004 · 30)−SOCmodel
30 (I )|, (7)

where I is the 1× 4 vector of C inputs to minimize over,
SOC0 is the initial SOC stock and SOCmodel

30 (I ) is the SOC
stock after 30 years of simulation. During the optimization,
theM : S fractions were allowed to vary to estimate the qual-
ity of the optimal C inputs. Instead, we kept the AG : BG ratio
of the C inputs fixed to its initial value, to bind the model in
order to represent agronomically plausible C inputs. In fact,
if not bound, the model tends to increase the BG C fraction
to unrealistic values (assuming the same crop rotations per-
sisted on site). On the other hand, keeping the AG : BG ratio
fixed implies that the simulated additional C inputs will be
spread equally on the surface and belowground. As for the
previous optimizations, we used the Python function SLSQP
to solve the minimization problem. The outcome of the opti-
mization is a 4× 1 vector (I opt) representing the amount of
C in the four litter input pools that matches the 4p1000 rate
target.

2.3.2 Uncertainty quantification

Uncertainties of model outcomes were quantified using a
Monte Carlo approach. We initially calculated the standard
error (SE) of the mean C inputs derived from yield measure-
ments for each experimental site:

SE=

√
σ 2
I

s
, (8)

where σ 2
I is the variance of the estimated C input from

yield measurements and s is the length of the experiment. If
not available, we calculated σ 2

I as the average relative vari-
ance of C inputs among the control plots. We therefore ran-
domly generated N vectors of C inputs (I ) around the calcu-
lated standard error and performed the 4p1000 optimization

N times, each time using one of the generated vectors I as a
prior for the optimization. To correctly assess the uncertainty
over the required C inputs, we set N to 50 (Anderson, 1976).
The SE of model outputs was calculated with Eq. (8), where
the variance was set as the variance of the modeled carbon
outputs and the experiment size (s) to 50.

2.3.3 Analysis of sensitivity to temperature

We tested the sensitivity of model outputs to tempera-
ture, running two simulations with increased temperatures.
We considered two representative concentration pathways
(RCPs) of global average surface temperature change pro-
jections (IPCC, 2015). The first scenario (RCP2.6) is the one
that contemplates stringent mitigation policies and predicts
that average global land temperature will increase by 1 ◦C
during the period 2081–2100, compared to the mean temper-
ature of 1986–2005. The second scenario (RCP8.5) estimates
an average temperature increase of+4.8 ◦C, compared to the
same period of time. We ran two simulations of increasing
temperature scenarios with Century. We considered the same
initial conditions as the standard simulations, hence running
the spin-up with the average soil temperature and relative hu-
midity of the 30 years preceding the experiments. Then, we
increased daily temperature by 1 ◦C (AS1) and 5 ◦C (AS5)
for the entire simulation length, to assess the sensitivity of
modeled C inputs to increasing temperatures. Nevertheless,
it must be noted that our simulations are running over a 30-
year period, not the entire 21st century. Thus, the tempera-
ture sensitivity analysis should not be considered a test of
climatic scenarios but a classical sensitivity analysis where
the boundaries were defined following RCP2.6 and RCP8.5
predictions of increased temperatures.

3 Results

3.1 Fit of calibrated model to control SOC values

Modeled and measured SOC stocks in the control plot were
compared to evaluate the capability of the calibrated version
of Century to reproduce the dynamics of SOC stocks at the
selected sites (Fig. 4c). As shown in Fig. 4b, the NRMSD
of the control plot SOC stocks is lower than 15 % for all the
treatments, indicating that overall model simulations fitted
the observed SOC stocks well (observed SOC stock variance
was 16.3 % on average in the control plots). The correlation
coefficient between modeled and observed SOC stocks in the
control plots was 0.96 (Fig. 4c). Figure 4a provides the values
of the three components of the MSD indicator for each site. It
can be noticed that the LC and NU components are the high-
est contributors to MSD. This means that the major sources
of error are the representation of the data shape and mag-
nitude of fluctuation among the measurements. The highest
NRMSD can be found at Le Rheu 1 and Le Rheu 2 (around
12 % and 14 %, respectively). At these sites the model seems
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Figure 4. (a) Decomposed mean squared deviation (MgCha−1)2

in control plots for all sites. LC: lack of correlation; NU: non-unity
slope; SB: squared bias. (b) Normalized root squared deviation (%)
in control plots for all sites. (c) Fit of predicted vs. observed SOC
stocks (MgCha−1) to control plots for all sites (R2

= 0.96).

Figure 5. Correlation between additional carbon inputs (MgCha−1

per year) and annual SOC stock increase (%) in the carbon input
treatments and mean± standard deviation of the additional carbon
inputs to reach the 0.4 % target in Century.

to better capture the shape of the data (low LC compared to
the other sites), but it misses the representation of mean SOC
stock (high SB) and data scattering (high NU) of the experi-
mental profiles. We tested the capability of Century to repro-
duce SOC stock increase in the additional C input treatments
(Fig. 5). Figure 5 shows the correlation between additional
C inputs and SOC stock increase in the C input treatments
(R2
= 0.23). In the same graph, we can appreciate additional

C inputs simulated by Century to reach the 4p1000 target be-
ing 0.66± 0.23 MgCha−1 yr−1 (mean± standard deviation
from the mean). This shows that Century generally overes-
timates the effect of additional C inputs on SOC stock in-
crease. However, the effect of additional C inputs on ob-
served SOC stock increase varies largely across different
treatments.

3.2 Estimates of additional carbon inputs and SOC
changes

3.2.1 Virtual C inputs to reach the 4p1000

Figure 6 represents the average percentage change of C in-
puts required to reach the 4 ‰ annual increase in SOC
stocks, among all the sites. The increase in C inputs is
given for each litter pool. On average, a 43.15± 5.05 %
(mean±SE across sites) increase in total annual C inputs
compared to the current situation in the control plot is re-
quired to meet the 4p1000 target. In terms of absolute val-
ues, this represents an additional 0.66± 0.23 MgCha−1 in-
puts per year, i.e., 2.35± 0.21 MgCha−1 total inputs per year
(equivalent to approximately 4.05± 0.36 MgDMha−1 yr−1).
What stands out in the graph is that, on average among
the studied sites, the AG structural litter pool should be
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Figure 6. Site average percentage change of carbon inputs needed to reach the 4p1000 (TOT), separated into the four litter input pools. AM:
aboveground metabolic; BM: belowground metabolic; AS: aboveground structural; BS: belowground structural; TOT: total litter inputs. Error
bars indicate the standard error. N.B: total change of carbon inputs (TOT) was calculated as the percentage change between the total amount
of carbon inputs before and after the 4p1000 optimization, averaged across all sites.

more than doubled, while the other pools need only to in-
crease by about half of their initial value. In terms of abso-
lute values, the structural AG biomass (which was initially
0.29 MgCha−1 yr−1 on average in the control treatments)
would need an additional 0.18 MgCha−1 yr−1 to reach the
4p1000, the metabolic AG (initially 0.70 MgCha−1 yr−1

on average) needs an additional 0.14 MgCha−1 yr−1 and
structural and metabolic BG biomass (initially 0.65 and
0.52 MgCha−1 yr−1) require an additional C input corre-
sponding to 0.21 and 0.13 MgCha−1 yr−1, respectively.

Analysis of the SOC pool evolution in the runs with opti-
mized C inputs to match the 4p1000 increase rate indicates
that the active and slow pools increased by 0.58 %yr−1 and
0.61 %yr−1, respectively, while the passive pool increased
annually by 0.01 % (Fig. 7). In absolute values, the slow
compartment contributed the most to the increase in SOC
during the 30-year runs, as it increased by 2.7 MgCha−1

on average among the sites (against an increase of 0.1 and
0.06 MgCha−1 in the active and passive compartments, re-
spectively). This corresponds to a storage efficiency for the
30 years of simulation of approximately 13.7 % in the slow
pool, compared to a storage efficiency of 0.5 % and 0.34 %
in the active and in the passive pools, respectively.

We found a high linear correlation (R2
= 0.80) between

observed initial SOC stocks and optimized C inputs (Fig. 8).
It is logical and expected that for low initial SOC stocks in
steady state, a small increase in C inputs is sufficient to reach
the 4p1000 target. Conversely, when SOC is high at the be-
ginning of the experiment (e.g., Trévarez) much higher C in-
puts must be employed since our target increase rate is a rel-
ative target. The regression line that emerges from the cross-

site relationship can be written as

I 4p1000
= 0.013 ·SOCobs

0 + 0.001, (9)

where I 4p1000 represents the simulated C inputs needed
to reach the 4p1000 target (MgCha−1 yr−1) and SOCobs

0
(MgCha−1) is the observed initial SOC stock.

3.2.2 Virtual vs. actual C inputs in the experimental
carbon treatments

In Fig. 9 we compare the C inputs required to reach the
4p1000 target to the actual inputs used across the 46 treat-
ments of additional C. The additional C (MgCha−1 yr−1)
shown in the graph for all experimental treatments refers to
exogenous organic amendments, plus additional C due to in-
creased crop yields, relative to the control plot. The most
striking result emerging from the data is that modeled addi-
tional C inputs are systematically lower or similar to at least
one treatment of additional C at all sites, except for Foggia.
In the Foggia experiment, different crop rotations were com-
pared, and no additional EOM was incorporated to the soil.
Here, none of the rotations had sufficient additional C content
(compared to the control wheat-only treatment) to meet the
required C input level predicted by Century for a 4p1000 in-
crease rate. Overall, 86.91 % of the experimental treatments
used higher amounts of C inputs compared to the modeled
need of additional C inputs at the same site. For the other
treatments, the difference between simulated and observed
additional C input was not significant. In the experimental
treatments 1.52 MgCha−1 yr−1 was applied on average, and
SOC stocks were found to be increasing by 0.25 %yr−1 rel-
ative to initial stocks. Modeled additional C input to reach a
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Figure 7. Sites average soil organic carbon pools (ACT: active; SLOW: slow; PASS: passive) evolution (MgCha−1) over the 30 years of
simulation to reach the 4p1000 target. In the graph the mean percentage increase is given for each SOC pool.

Figure 8. Correlation between initial observed SOC stocks
(Mg Cha−1) and modeled carbon inputs needed to reach the 4p1000
target (MgCha−1 yr−1). The correlation coefficient (R2) is 0.80
and the regression line is y= 0.013 · x+ 0.001.

0.4 % increase was 0.66 MgCha−1 yr−1, on average among
the sites.

3.3 Carbon input requirements with temperature
increase

The temperature sensitivity analysis of the Century model
for the 4p1000 target framework is plotted in Fig. 10. The re-
quired amount of C inputs to reach the 4p1000 target is likely
to increase with increasing temperature scenarios. In partic-
ular, C inputs will have to increase on average by 54 % in
the AS1 scenario of +1 ◦C and 120 % in the AS5 scenario of
+5 ◦C temperature change, relative to current C inputs in the

control plots. This represents an additional C input increase
of 11 % and 77 %, respectively, compared to the business-as-
usual scenario with current temperature setup (CURR). What
can be clearly seen in the graph is the increased amount of
C inputs required in Trévarez, where C inputs should more
than quadruple to reach the 4p1000 objective.

4 Discussion

4.1 Reliability of the Century model

The Century model has been widely used to simulate SOC
stock dynamics in arable cropping systems (Bortolon et al.,
2011; Cong et al., 2014; Kelly et al., 1997; Xu et al., 2011).
Optimizing the metabolic : structural ratio in the reference
plots allowed us to initialize the C input compartments, since
no measurement of the L : N ratio was available. This al-
lowed us to (1) take into account the average C quality of the
litter pools in the different crop rotations and (2) correctly es-
timate the initial values of SOC stocks at the majority of the
sites. On the other hand, this could have influenced the pre-
dicted redistribution of C in the additional C inputs required
to reach the 4p1000 (Fig. 6). We suggest that taking into ac-
count the historical site-specific land use could help initialize
SOC stocks without requiring any assumption regarding the
M : S ratio (e.g., with historically based equilibrium scenar-
ios as in Lugato et al., 2014). To further improve SOC stock
simulations, we optimized the Q10 and reference tempera-
ture parameters on the control plots to account for the dif-
ferent pedoclimatic conditions of the experimental sites and
enhance model predictions of SOC stock dynamics (Craine
et al., 2010; Lefèvre et al., 2014; Meyer et al., 2018; Wang
et al., 2010). Although the dispersion of SOC stocks over
time is not perfectly captured in the majority of the control
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Figure 9. Additional modeled carbon inputs (MgCha−1 yr−1) to reach the 4p1000 (grey bars) compared to additional carbon input treatments
(colored bars) at each experimental site. Additional carbon inputs for field trials are calculated as the sum of organic fertilizers and the delta
carbon inputs from crop yields (compared to the control plot). Additional carbon treatments are separated into different categories: BIO waste:
biowaste compost, green manure, green manure and sewage sludge, and household waste; Cow manure: cow manure and farmyard manure
(in Broadbalk and Ultuna), pig manure, poultry manure, sewage sludge; Rotations: different crop rotations, other organic amendments (OA):
straw, sawdust, and peat (in Ultuna) and castor meal (in Broadbalk). The error bars shown are the standard errors computed with the Monte
Carlo method.

plots (see the high LC component of the MSD in Fig. 4), the
simulations of SOC dynamics were improved by the opti-
mization of temperature-related parameters, and the NRMSD
was found to be lower than 15 % at all sites. Figure C2 shows
that the optimization of temperature-sensitive parameters did
not significantly affect the required C input estimation for the
current temperature scenario. This means that, although pa-
rameter optimization improved the simulation of SOC stocks
in the control plots, the final results are not affected by it. The
capability of Century to simulate SOC stocks in the simula-
tions of additional C treatments might be a major shortcom-
ing of modeling results. In fact, although SOC stocks were

found to be increasing on average in the additional C treat-
ments (0.25 %yr−1 with 1.52 MgCha−1 yearly additional
C inputs), this increase rate is lower than the 0.4 % increase
in SOC stocks predicted by Century with lower amounts of
virtual C inputs (0.66 MgCha−1 yr−1). This is pointed out in
Fig. 5, where we can see that predicted additional C inputs to
reach the 4 ‰ are lower than the correlation line between ad-
ditional C inputs and SOC stock increase in field treatments.
The overestimation of the C input effect on SOC stocks in
Century might be related to the assumption that SOC stocks
are in equilibrium with C inputs at the onset of the experi-
ment and to the high sensitivity of the model to C inputs.
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Figure 10. Temperature sensitivity analysis of carbon input increase (%) to reach the 4p1000 objective. CURR: business-as-usual simulation;
AS1: RCP2.6 scenario of +1 ◦C temperature increase; AS5: RCP8.5 scenario of +5 ◦C temperature change.

4.2 Increasing annual SOC stocks by 4p1000

4.2.1 Modeled carbon inputs to reach the 4p1000

Century simulations estimated that annual C inputs should
increase by 43± 5 % (SE) on average to reach the 4p1000
target at the selected experimental sites, under the condition
that the additional C inputs are equally distributed among
the surface and belowground, in order to maintain the same
AG : BG ratio as at the beginning of the experiment. Martin
et al. (2021) found similar values of required additional C in-
puts to reach a 4p1000 target in French croplands (i.e., 42 %,
that is 0.88 MgCha−1 yr−1). This is higher than the values
found by Chenu et al. (2019) using default RothC 26.3 pa-
rameters, who estimated a relative increase in C inputs in
temperate sandy soils by 24 % and in temperate clayey soils
by 29 %. Riggers et al. (2021) found that in 2095 a minimum
increase in C inputs by 45 % will be required to maintain
SOC stocks of German croplands at the level of 2014. How-
ever, they found that to increase SOC stocks by 4 ‰yr−1, a
much higher effort will be required. That is, C inputs in 2095
will have to increase by 213 % relative to current levels.

In our study, not only the quantity of C but also the qual-
ity will need to change according to Century predictions.
In fact, the predicted AG structural litter change was 3-fold
higher than all other pools on average, representing an ad-
ditional 0.18 MgCha−1 each year. A way for the farmer to
increase the structural fraction of the C inputs is to compost
the organic amendments that will be spread on the soil sur-
face. Increasing EOM in large quantities may not be pos-
sible everywhere. First of all, the amount of organic fertil-
izers is limited at the regional scale. If farmers source ad-
ditional EOMs elsewhere, only those EOMs that otherwise
would be mineralized (e.g., burned) and not applied to land
account as sequestration. Second, farmers may be prevented
from applying high amounts of EOM because of the risk
of nitrate and phosphate pollution (Li et al., 2017; Piovesan
et al., 2009). Moreover, producing additional animal manure
implies larger GHG emissions through animal digestion and
manure decomposition. Consequently, even if more manure
is returned to the soil, it will not necessarily result in climate
change mitigation.
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4.2.2 Stability of the additional carbon stored

Another important aspect to take into consideration is the sta-
bility of the additional C. In fact, the duration and persistence
of C in the soil might be very different depending on whether
or not the proportion of stable C is important. In the Century
model, this translates into questioning whether the fractions
of the long-turnover-rate pools (the slow and passive SOC
pools) have increased. In our simulations, a general pattern
can be detected (Fig. 6) where both passive and slow pools
increased, but at very different rates (0.1 ‰ and 6.1 ‰yr−1,
respectively). The active pool increased by 5.8 ‰ annually,
with benefits for soil fertility and hence food security. The
additional C is mainly stored in the slow pool (2.7 MgCha−1

in 30 years of simulations), meaning that it will be stored in
the soil for around 20 to 30 years. The increase in C inputs
must be sustained to increase SOC stocks at the desired rate,
until a new equilibrium will be reached. To further increase
SOC stocks after the new equilibrium, new strategies of ad-
ditional C could be implemented later on. For instance, this
could be achieved through the implementation of comple-
mentary management options to those considered in the long-
term experiments described here, such as residue manage-
ment, cover crops, conservation agriculture and agroforestry
systems (Chenu et al., 2019; Lal, 1997; Smith et al., 1997b).

4.2.3 Simulated carbon inputs and experimental
carbon addition treatments

Different types of organic C treatments were considered in
this study and compared to Century simulations of C in-
puts required to reach the 4p1000. At all experimental sites
with additional EOM inputs, at least one treatment employed
higher amounts of C inputs compared to the simulated C in-
puts required for a 4 ‰ annual target. In Foggia, C in-
puts from different crop rotations were studied, but none
employed sufficient amounts of additional C to reach the
4p1000, as predicted by Century. Model results in Foggia had
a high standard error, mainly due to the fact that the variabil-
ity of crop yields for this site was not available. Thus, for this
site, we calculated model uncertainty using the average rel-
ative variability across the whole dataset, which could have
increased the uncertainty of model outputs.

It is important to note that the amount of C inputs simu-
lated by Century was constrained to have the same AG :BG
ratio as at the beginning of the experiment. This means that
the additional C inputs should be distributed equally on soil
surface and belowground, not to change the initial allocation
of C in the litter pools. Since all field treatments were per-
formed under conventional tillage, the comparison between
modeled and observed additional C inputs under this con-
straint holds well.

The annual SOC stock variation (0.25 %) estimated in
the experimental C treatments across the 14 sites indicates
that Century might be overestimating the effect of addi-

tional C inputs on SOC stocks. In particular, only 18 out
of 46 field treatments (with average additional C inputs of
1.93 MgCha−1 yr−1) were found to be actually increasing
SOC stocks at a higher rate than 4 ‰yr−1, relative to their
initial SOC stocks. This is similar to the values found by
Poulton et al. (2018), who estimated that adding similar
high amounts of C inputs increased SOC stocks at an an-
nual rate higher than 4 ‰ in 16 long-term agricultural exper-
iments. Thus, Century seems to be over-predicting the effect
of adding C inputs in the virtual simulations. The overesti-
mation of the Century model might be due to several factors.
First of all, the C inputs prescribed to model simulations were
constant through time, while C inputs from plant material ac-
tually vary annually and over the years because of agronom-
ical and climatic factors. Historical land use and manage-
ment practices such as tillage were not taken into account,
although they affect SOC stocks (Pellerin et al., 2019). An-
other factor that the model is not taking into account is N and
other nutrient availability, which might affect the SOC stock
dynamics. This is especially true for treatments with differ-
ent frequencies of application (e.g., Arazuri), where nutrient
depletion is likely to be more evident when the application is
sparser. The method used to estimate C inputs (i.e., the allo-
metric functions from Bolinder et al. (2007) in our case) also
influences the simulation of SOC stocks (Clivot et al., 2019).
However, estimating the increase in C inputs relative to their
initial value has likely canceled out uncertainties related to
the C input estimation method in our analysis.

4.2.4 Organic carbon input use in Europe

Zhang et al. (2017) estimated that the amount of N inputs
from livestock manure applied to European croplands was
3.9 TgN in 2014, for a cropland area of 127 Mha in 2015
(Goldewijk et al., 2017). Cattle manure, which represents the
highest proportion of manure produced and applied to crop-
lands, has an average C : N ratio ranging between 10 and
30 (multiple sources from Fuchs et al., 2014, and Pellerin
et al., 2019). With these data, we can roughly estimate the
application of C manure from livestock in European agricul-
tural soils as ranging between 0.30 and 0.92 MgC ha−1 each
year. Most of the experiments used in this study used higher
amounts of C input (1.52 MgCha−1 yr−1 on average). How-
ever, the C input requirement predicted by Century, which
ranged between 0.24± 0.02 and 1.20± 1.00 MgCha−1 yr−1,
plus one site with 1.45± 0.16 MgCha−1 yr−1, is in line with
the average use of livestock manure in Europe. In terms of
C sequestration, organic fertilizers coming from animal ma-
nure are usually applied to the soil at some location; hence
they cannot account for additional climate mitigation poten-
tial (Poulton et al., 2018). Rather, they are considered to be a
business-as-usual situation that can unlikely be significantly
expanded. However, according to the estimation of Zhang
et al. (2017), there is room for improvement since the frac-
tion of livestock manure applied to cropland in the 2010s was
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approximately 26 % of total livestock production in Europe.
The estimates from Zhang et al. (2017) refer to livestock ma-
nure only. In our study, we also considered treatments with
other types of EOM addition, such as sewage sludge and
household waste. In many countries, a significant proportion
of food and urban waste is currently left in disposal areas,
where C is lost to the atmosphere as CO2 or methane (CH4)
emissions (Bijaya et al., 2006). Pellegrini et al. (2016) re-
ported the amounts of sewage sludge disposed in landfills
in Europe (EU26) from Eurostat (2014). In 2010, this was
0.914 TgDM. Using the van Bemmelen factor (1.724) to con-
vert OM to OC (McBratney and Minasny, 2010; Rovira et al.,
2015), we estimated that the sewage sludge disposed in land-
fills in Europe was around 0.004 MgCha−1 yr−1 in 2010. If
applied to cropland, this could potentially increase C inputs
to the soil and decrease GHG emissions associated with land-
filled waste. However, in some countries social acceptability
of spreading EOM such as sewage sludge is very low, limit-
ing its actual potential. In Europe, landfilled municipal waste
was 0.3 MgCha−1 in 2019 (estimated from Eurostat (2020)
considering a C content in household waste of 71 %; Larsen
et al., 2013). This is higher than the amount of municipal
waste currently composted in Europe (i.e., 0.22 MgCha−1 in
2019, according to Eurostat, 2020), showing that additional
efforts to improve the reutilization of municipal waste could
help to increase C inputs in agriculture. A contribution to
the sequestration of C from the atmosphere could also come
from changing the treatment methods which affect the qual-
ity of C in crop residue and manure, so that their turnover
time decreases, e.g., through fermentation or biochar. How-
ever, a full C cycle assessment should be considered to make
sure that GHG emissions associated with such treatments do
not exceed additional C storage (Guenet et al., 2020). In gen-
eral, improving the use efficiency of EOM to the soil by man-
aging it differently could contribute to some extent to climate
change mitigation, increase soil quality, and reduce mineral
fertilizer use (Chadwick et al., 2015). In this study, we did not
include other potentially beneficial management practices,
such as cover crops, reduced tillage, biochar application, im-
proved soil pH, landscape differentiation and mineral amend-
ments. Further research should investigate whether long-term
experiments with these management practices would be able
to increase SOC stocks by 4p1000, following Century pre-
dictions.

4.2.5 Reaching a 4p1000 target: only a matter of initial
SOC stocks?

As we expected, the estimated amount of C inputs to reach
the 4p1000 target was linearly correlated to the initial ob-
served level of SOC stocks (Fig. 7). This result means that
site differences in Q10 and decomposition rates are less in-
fluential than initial SOC in determining the optimal input
increase to reach the 4 ‰yr−1 target. The linearity between
C inputs and initial SOC stocks is primarily due to the lin-

ear structure of the Century model. In fact, if we consider the
stationary solution for which Eq. (2) is equal to 0, SOC de-
pends linearly on the carbon inputs. Therefore, the opposite
is also true (i.e., carbon inputs are linearly dependent on the
initial amount of SOC stocks). Moreover, the 4p1000 target
itself is defined as the increase in SOC by 0.4 %yr−1, rela-
tive to its initial value (Minasny et al., 2017). Hence, it im-
plies a proportional contribution that depends on the initial
SOC stocks. Wiesmeier et al. (2016) also observed a linear
relationship between SOC increase and C inputs. This lin-
ear relationship means that soils with high SOC stocks will
have to increase their carbon stocks more in absolute terms
to meet this quantitative target. On the other hand, smaller
amounts of C will have to be employed at sites with low lev-
els of SOC stocks, to reach a 4p1000 target. However, in-
creasing C inputs where SOC stocks are low might require
substantial changes in the agricultural systems, and such a
quantity of additional OM might not be available at a large
scale. A counterpoint is also that the largest contribution of
C sequestration will come from soils with medium or high
SOC stocks (i.e., higher than 50 MgCha−1, such as grass-
lands and forests). In these soils, the required additional C in-
puts will have to be higher according to Century, raising con-
cern about a compensation for CO2 emissions through im-
proved SOC stocks at a global scale. This result depends on
the quality of the simulated carbon inputs (i.e., the predicted
metabolic : structural ratio) and does not take into account
any notion of soil saturation. Before applying this trend to
calculate the required C inputs from current SOC stocks, we
should extend the database to cover different pedoclimatic
regions and different ecosystems of the world. Moreover, in-
accuracies in simulations outcomes, such as those found in
this study, need to be reduced. As discussed in Sect. 4.2.3, a
better representation of C input dynamics and management
practices could improve the simulation of SOC stocks.

We suggest considering multi-model analysis for this type
of work in the future (Farina et al., 2021), to acknowledge
different representations of SOC and reduce the effect of sin-
gle models’ uncertainties. Furthermore, the likely increase in
SOC mineralization due to future climate change (Wiesmeier
et al., 2016) needs to be taken into account.

4.3 Sensitivity analysis

The predicted need of additional C inputs to reach the 4p1000
target is likely to be higher with future global warming, as
a consequence of modified SOC decomposition rates. Con-
sidering the crucial role of soil as a land-use-based option
for mitigating climate change, recent studies have shown a
growing interest in temperature sensitivity of SOC stock de-
composition (Dash et al., 2019; Koven et al., 2011; Parihar
et al., 2019; Wiesmeier et al., 2016). We know that the de-
composition rate of SOM is affected – generally increased –
with increasing temperatures. However, the magnitude of ex-
pected feedbacks is still surrounded by controversy. In partic-
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ular, this is mainly due to the diversity of organic compounds
in the soil that are known to have inherent sensitivities to
temperature (Davidson and Janssens, 2006). In fact, a myr-
iad of responses of decomposition rates to future climates
can be expected, including increases due to higher tempera-
ture as well as decreases due to water limitation. In this con-
text, the study of the Century model response to predicted
scenarios of temperature increase is of primary importance.
We mimicked the most optimistic (+1 ◦C) and pessimistic
(+5 ◦C) RCP scenarios of the 5th IPCC assessment report.
Although these scenarios are calculated over∼ 100 years, we
used these values over a 30-year simulation to assess the sen-
sitivity of Century to temperature increase. What is striking
from our results is that with increasing temperatures all sites
will have to provide considerably higher amounts of C input
to reach the 4p1000 target (Fig. 9). In particular, the C input
change needs to more than double at all sites, according to the
worst-case scenario of+5 ◦C. It is important to point out that
the optimization of the Q10 and reference temperature pa-
rameters is likely to influence the outcomes of the simulated
SOC stocks and therefore the C input need. Nevertheless,
comparing the carbon input change simulated with the op-
timized version of Century (Fig. 9) to that simulated with the
default parameter setting (Fig. C1) shows that the predicted
C input change follows the same pattern, even though the in-
tensity of the increase is considerably higher in the optimized
version. These results can be understood in two ways. Either
the optimized version of Century is overestimating the effect
of temperature on SOC stock decomposition, or SOC stock
decomposition patterns are likely to increase even more in-
tensively when considering the entire range of possible Q10
values. In either case, further research is needed to reduce the
uncertainty around the impact of climate change on SOC de-
composition. Studies should also examine moisture change,
which we did not take into account here. This is likely to
be impacted as a consequence of modified precipitation and
temperature (IPCC, 2015), with consequences on root respi-
ration and microbial decomposition (Davidson and Janssens,
2006). Additionally, increased temperature and CO2 concen-
tration in the atmosphere, as well as changes in precipitation,
are likely to influence net primary production and therefore
C inputs to the soil. All these feedbacks are important and
must be taken into account for a comprehensive evaluation
of C cycle effects on climate change.

5 Conclusions

The Century model predicted an average increase in annual
C inputs by 43± 5 % to reach a 4p1000 target over a range
of 14 agricultural sites across Europe, with diverse soil types,
climates, crop rotations and practices. The required simu-
lated amount of additional C input was found to be sys-
tematically lower than or similar to the 46 treatments of
C inputs carried out at these sites. However, Century might
have overestimated the predicted effect of additional C in-
puts on the SOC stock variation rate, as the only field treat-
ments that were found to increase SOC stocks by at least
4 ‰ annually were those using very high amounts of C in-
put (∼ 1.93 MgCha−1 yr−1). The predicted amount of addi-
tional C input depended linearly on the initial amount of ob-
served SOC stock in the control experiments, indicating that
lower amounts of C inputs might be sufficient to reach the
4p1000 target where SOC stocks are low. However, increas-
ing C inputs might require substantial changes in the agricul-
tural systems, and high quantities of additional organic mat-
ter might not be available at a large scale. Furthermore, the
required amount of additional C input was found to increase
substantially with future scenarios of changes in temperature,
raising concern about the feasibility of a 4p1000 target un-
der climate change and beyond that the feasibility of SOC
stock preservation. The magnitude of SOC storage potential
in agricultural soils depends largely on site-specific condi-
tions, such as climate, soil type and land use. In this study,
we did not take into account the whole life cycle of C at the
farm. However, compensating for CO2 emissions from hu-
man activities through SOC sequestration should also com-
prehend GHG emissions related to the management of ad-
ditional EOM. In this study, we considered only temperate,
sub-humid and Mediterranean climates. A broader evaluation
of the required C inputs and associated agricultural practices
to increase SOC stocks should be carried out at larger scales.
Causes of biases in model simulations should be addressed
in future studies, and the representation of C inputs should
be improved. We also suggest that future research should in-
clude multiple models, to reduce the influence of extreme
model outcomes on the representation of SOC stocks.
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Appendix A: Century model description and
environmental functions used

The temporal evolution of soil organic carbon is described in
the Century model as a first-order differential matrix equa-
tion:

dSOC(t)
dt

= I +A · ξTWLCl(t) ·K ·SOC(t), (A1)

where SOC(t) is the vector describing the SOC state vari-
ables. The first term on the right side of the equation repre-
sents carbon inputs to the soil coming from plant residue and
organic material. Carbon inputs are allocated into four differ-
ent litter pools. Hence, I is a 1× 7 matrix with four nonzero
elements. The second term of the equation represents carbon
outputs from the soil, following a first-order decay kinetics.
A is a 7× 7 carbon transfer matrix that quantifies the trans-
fers of carbon among the different pools. The diagonal en-
tries of A are equal to−1, denoting the entire decomposition
flux that leaves each carbon pool. The non-diagonal elements
represent the fraction of carbon that is transferred from one
pool to another. K is a 7× 7 diagonal matrix with the diag-
onal elements representing the potential decomposition rate
of each carbon pool. ξTWLCI(t) is the environmental scalar
matrix, a 7× 7 diagonal matrix with each diagonal element
denoting temperature (fT(t)), water (fW(t)) lignin (fL i) and
clay (fClay i) scalars, which modify the potential decomposi-
tion rate. Temperature response function fT(t) is described
by Eq. (4); the others are expressed as follows. The moisture
function fW(t) is a polynomial function ranging from 0.25
to 1 and taking the form of

fW(t)= −1.1 ·w2
+ 2.4 ·w− 0.29, (A2)

where w is the daily relative humidity coefficient, which
varies between 0 and 1 and was calculated from soil mois-
ture (m3

water m−3
soil), using the following function from Krinner

et al. (2005):

w =
∑

texture

conctexture ·moisture−WPtexture

FCtexture−WPtexture
, (A3)

where w is the estimated relative humidity, ranging be-
tween 0 and 1; texture is sand, silt and clay; conctexture is
the concentration of the different textures; moisture is soil
moisture (m3

water m−3
soil), WPtexture is the wilting point of the

different textures (equivalent to 0.0657, 0.0884 and 0.1496
for sand, silt and clay, respectively); and FCtexture is the field
capacity of texture (equivalent to 0.1218, 0.1654 and 0.2697
for sand, silt and clay, respectively).

The decomposition rate of structural litter pools is affected
by their lignin content:

fL i = e
−lgc·L, (A4)

where lgc is the coefficient that regulates the lignin effect,
while L is the lignin structural fraction of the AG and the BG
litter pools.

Finally, the fraction of clay in the soil (gclay g−1
soil) influ-

ences the decomposition rate of the active pool:

fClay i = 1− 0.75 · clay. (A5)

Appendix B: Model evaluation

Two residual-based metrics were used to evaluate the good-
ness of fit of modeled and observed SOC stocks for each site:
the mean squared deviation (MSD) and the normalized root-
mean-squared deviation (NRMSD). The MSD for each site
is defined as

MSD=
∑n
i=1(mi − oi)

2

s
, (B1)

where i = 1, . . .,n is the year of the experiment,mi and oi are
respectively modeled and observed values of SOC stocks and
s is the number of observations in the experiment. Following
Gauch et al. (2003), the MSD can be decomposed into three
components: the squared bias (SB), the non-unity slope (NU)
and the lack of correlation (LC). SB is calculated as

SB= (m− o)2, (B2)

wherem and o are the mean values of modeled and observed
SOC stocks, respectively.

Calling 1Mi = (m−mi) and 1Oi = (o− oi), we have

NU=

(
1−

∑n
i=11Mi ·1Oi∑n

i=11M
2
i

)2

·

∑n
i=11M

2
i

s
, (B3)

LC=

(
1−

∑n
i=1(1Mi ·1Oi)

2∑n
i=11O

2
i ·
∑n
i=11M

2
i

)
·

∑n
i=11O

2
i

s
. (B4)

These three components add up to MSD and help locate
the causes of error of model predictions, determining areas in
the model that require further improvement (Bellocchi et al.,
2010). In particular, SB provides information about the mean
bias of the simulation from measurements, NU indicates the
capacity of the model to correctly reproduce the magnitude
of the fluctuation among the measurements and LC is an in-
dication of the dispersion of the points over a scatterplot, i.e.,
the capacity of the model to reproduce the shape of the data
(Kobayashi and Salam, 2000).

The second statistical measure we used was computed as
the squared root of the MSD, normalized by the mean ob-
served SOC stocks:

NRMSD=

√
MSD
o
· 100. (B5)

This indicator is expressed as a percentage and allows the
evaluation of the model performance independently of the
units of SOC stocks.
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Appendix C: Sensitivity analysis with default Century
parameters

Figure C1. Temperature sensitivity analysis of carbon input change (%) to reach the 4p1000 objective, using Century default Q10 and
reference temperature parameters. CURR: business-as-usual simulation; AS1: RCP2.6 scenario of+1 ◦C temperature increase; AS5: RCP8.5
scenario of +5 ◦C temperature change.
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Figure C2. Effect of the optimization of the Q10 and reference temperature (Tref) parameters on the additional carbon inputs to reach the
4p1000 predicted by Century (mean± standard deviation).
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