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A B S T R A C T   

Predicting disease resistance is one of the most prominent applications of aquaculture selective breeding. Re-
ductions in genotyping costs have allowed the implementation of genomic selection in an abundance of aqua-
culture species and their related diseases showing promising results. Machine learning (ML) models can be of 
value for prediction purposes, as suggested by several studies in both plants and livestock. The current study 
aimed to test the efficiency of various ML models in predicting disease resistance using both simulated and real 
datasets. More specifically, models like decision trees (DT), support vector machines (SVM), random forests (RF), 
adaptive boosting (Adaboost) and extreme gradient boosting (XGB) were benchmarked against genomic best 
linear unbiased prediction for threshold traits backend by Markov chain Monte Carlo (GBLUP-MCMC) both in 
terms of prediction efficiency and required computational time. Moreover, the model ranking was tested in 
datasets where the ratio between the two observed phenotypes (resistant vs non-resistant) was unbalanced. 
Across all tested datasets, XGB ranked first with a slight advantage over GBLUP-MCMC, ranging between 1–4 %. 
SVM and RF delivered predictions in tight proximity with the ones from XGB and GBLUP-MCMC. In addition, 
predictions 3–4 % lower compared to GBLUP-MCMC were obtained with Adaboost. On the other hand, the 
predictions from DT were consistently low (~40 % lower compared to GBLUP-MCMC). All tested ML models had 
significantly reduced computational requirements than GBLUP-MCMC. In the case of XGB, the computational 
requirements were reduced more than 20-fold as opposed to GBLUP-MCMC under the settings of the current 
study. RF delivered both competitive predictions and was highly efficient in terms of the required computational 
time (~3 min). Overall, the results of the current study suggest that ML models can be valuable tools in aqua-
culture breeding studies for disease resistance.   

1. Introduction 

Advancements in sequencing technologies over the last decade have 
transformed the field of aquaculture breeding and genomics (You et al., 
2020). Aquaculture selective breeding has transitioned to the genomics 
era, at least in the case of major farmed species like Atlantic salmon and 
Nile tilapia (Houston et al., 2020; Yáñez et al., 2020). Most importantly, 
it is not uncommon nowadays for selection decisions in aquaculture 
breeding programs to be guided by genomic information derived either 
through the usage of single nucleotide polymorphisms (SNPs) arrays 
(Lhorente et al., 2019) or genotyping by sequencing (GBS) platforms 
(Barbanti et al., 2020; Robledo et al., 2017). Furthermore, a plethora of 
research studies in the last five years has demonstrated the value of 
genomic selection (GS) practices (Meuwissen et al., 2001) in a wide 
range of aquaculture species, including, amongst others, salmonids, ti-
lapias, carps, bass and oysters (Barría et al., 2018; Besson et al., 2019; 

Faggion et al., 2019; Gutierrez et al., 2020; Horn et al., 2020; Joshi et al., 
2020; Vallejo et al., 2019). 

Current knowledge suggests that genomic information is particularly 
valuable in studying traits related to disease resistance as disease out-
breaks in farmed fish tend to be devastating both in economic and 
welfare aspects (Asche et al., 2009). Since there is a lack of efficient 
therapeutic agents for various commonly encountered diseases in 
aquaculture, selective breeding practices can offer solutions (Yáñez 
et al., 2014). Not surprisingly, the implementation of genomics in the 
study of disease resistance has a prominent role in aquaculture selective 
breeding as clearly shown by several recent studies (Aslam et al., 2018, 
2020; Boison et al., 2019; Gonen et al., 2015; Robledo et al., 2018). 

GS practices are usually considered to be the preferred route of ac-
tion as resistance to diseases usually resembles a polygenic trait 
(Houston, 2017). Most common applications of GS usually involve the 
usage of algorithms that are based on genomic best linear unbiased 
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predictor (GBLUP) or its variants like single-step approaches (Lourenco 
et al., 2020; Misztal et al., 2020) and on Bayesian linear regressions 
(Gianola, 2013). Equally important, the availability of state-of-the-art 
software like BLUPF90 (Misztal et al., 2018) or R/BGLR (Pérez and de 
los Campos, 2014) that are freely distributed allowed the implementa-
tion of GS in various aquaculture species and settings where experience 
so far suggests that GBLUP is a robust choice (Correa et al., 2017; Garcia 
et al., 2018). 

With a few exceptions (Vallejo et al., 2016; Vallejo et al., 2019), the 
vast majority of published studies to date have assessed the prediction 
efficiency of GS models for disease resistance based on data of a single 
generation. The above is mainly due to two reasons: 1. disease challenge 
experiments have high-costs requirements, and 2. aquaculture breeding 
programs up to date are relatively new compared to their livestock 
counterparts, and in many cases, genomic information beyond a single 
generation is not available. Therefore most of the studies aiming to pick 
the best performing model for predicting disease resistance have used 
cross-validation strategies on animals from the same generation to train 
GS models and minimize the chances of overfitting. However, the 
aforementioned does not necessarily provide information regarding the 
model that best predicts future performance, which is the overall aim of 
selective breeding. In contrast, in equivalent situations in livestock, it is 
common to train the GS models on multi-generational datasets and 
perform the validation in the latest generation(s) (Lourenco et al., 
2015). It is expected that in the coming years, we will witness more 
aquaculture-oriented studies on disease resistance using 
multi-generational datasets. 

Even though disease resistance traits can be interpreted and treated 
in a wide range of manners using well-documented approaches from the 
field of epidemiology (Saura et al., 2019), a most common approach is 
where disease resistance is regarded as a binary trait. In such situations, 
the objective of the tested model is to efficiently classify the animals of 
each category (resistant vs non-resistant) based on the available 
genomic information. As a matter of fact, the above is the most common 
interpretation in aquaculture disease resistance studies. However, 
limited attention has been placed in the scenario where the phenotypic 
distribution among resistant and non-resistant animals is skewed to-
wards one or the other category. It should be stressed that in the case of 
binary traits, some of the most popular breeding software like the 
BLUPF90 suite or R/BGLR rely on Markov chain Monte Carlo (MCMC). 
In general, algorithms based on MCMC are computationally demanding 
and non-prone to parallelization, which can prove to be a significant 
issue as genotypic datasets continue to increase in size. 

Machine learning (ML) tools have been recently in the spotlight, 
finding applications in numerous real-life situations (Wilmott, 2019). 
ML algorithms are routinely applied, amongst others, in a wide range of 
regression and classification problems in practically all sorts of scientific 
disciplines, with one of their most highlighted application being the 
study-prediction of human diseases (Myszczynska et al., 2020). In the 
field of animal breeding, ML algorithms have also been gaining mo-
mentum finding applications in a wide range of prediction tasks 
(Pérez-Enciso, 2017). Even though no single model, whether based on 
ML or more affiliated with traditional animal breeding, seems to provide 
optimal predictions for all traits of interest and breeding schemes, ML 
appears to have a role in the animal breeder’s toolbox. Experience 
gained from both simulation and real data studies suggests that ML 
models can produce competitive predictions to classical animal breeding 
models like GBLUP-MCMC (Nayeri et al., 2019). Besides, it should be 
noted that ML models compared to commonly used animal breeding 
models usually shine in scenarios where interactions influencing the 
phenotype of interest exist amongst the model predictors (Howard et al., 
2014). 

In the current study, ML algorithms were assessed in terms of their 
efficiency to predict disease resistance in both simulated and real-life 
aquaculture datasets. More specifically, the prediction efficiency of 
Decision Trees (DT), Support Vector Machines (SVM), Random Forests 

(RF) and boosting based approaches like AdaBoost and Extreme 
Gradient Boosting (XGB) was compared against GBLUP-MCMC. Each 
model prediction efficiency was also evaluated in situations where the 
ratio of the two observed phenotypes (resistant vs non-resistant) is un-
balanced. Finally, the required computational time for training each ML 
model was benchmarked against GBLUP-MCMC. 

2. Materials and methods 

2.1. Simulated datasets 

The QMSim software (Sargolzaei and Schenkel, 2009) was used for 
simulating phenotypic and their corresponding genotypic datasets. The 
initial historic population consisted of 2,000 generations with a constant 
size of 10,000 animals. The used parameters for simulating the historic 
population included equal sex ratio, random mating and discrete gen-
erations. Thereafter ten discrete non-overlapping recent generations 
were simulated using a breeding design often encountered in salmonids. 
In particular, 100 sires were considered to be uniquely mated with 200 
dams in each generation with 30 animals from each family being phe-
notyped. The heritability of the simulated trait was equal to 0.3 with 300 
biallelic and randomly located quantitative trait loci (QTL) affecting the 
trait. Furthermore, individuals from generation nine and ten (12,000 
animals) were genotyped for 9,000 SNPs that were randomly distributed 
across a genome consisted of 30 chromosomes each of 100 cM in length. 
In order to simulate a binary phenotypic trait, the animals were assigned 
into two categories using different thresholds on their true breeding 
value. The thresholds were chosen in order to simulate for a scenario 
were the phenotypic distribution amongst the two categories (resistant 
vs non-resistant) was approximately balanced and another scenario 
where the percentage of resistant and non-resistant animals was be-
tween 20 and 25 % and between 75 and 80 %, respectively. Finally, both 
simulated scenarios were replicated ten times. 

2.2. Carp resistance to koi herpesvirus dataset 

A publicly available dataset from Palaiokostas et al. (2019) was used 
for assessing the efficiency of the ML models in terms of predicting carp 
resistant to koi herpesvirus disease (KHVD). The dataset consisted of 1, 
255 carp juveniles with survival recordings for KHVD that were geno-
typed for 15,615 SNPs using restriction-site associated DNA sequencing 
(RAD-seq). 

2.3. Baseline predictive efficiency using GBLUP-MCMC 

GBLUP-MCMC was applied using the THRGIBBS1F90 module of the 
BLUPF90 suite (Misztal et al., 2018). The fitted model had the following 
form:  

y = Xb + Zu + e,                                                                          (1) 

where y was the vector of recorded phenotypes (resistant vs non- 
resistant). X and Z were the incidence matrices relating phenotypes 
with fixed and random effects. b represented the vector of the fixed 
effects (intercept), u the vector of random animal effects ~N(0, G σ2

g ) 
with G corresponding to the genomic relationship matrix (VanRaden, 
2008), σ2

g the additive genetic variance, e the vector of residuals ~N(0, 
Iσe2), I the identity matrix and σ2

e the residual variance. The model 
parameteres were estimated by Gibbs sampling (1,000,000 iterations; 
burn-in: 100,000; thin: 100). 

2.4. Implementation of machine learning algorithms 

An intercept term (known as bias in ML terminology) and the SNP 
genotypes were used as predictors (known as features in ML terminol-
ogy) in all the ML models. The response variable in all the tested 
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scenarios was a vector containing the disease resistance status of each 
animal (coded as 0 and 1 for non-resistant and resistant animals 
respectively). The Python library scikit-learn v0.22 (Pedregosa et al., 
2011) was used for fitting all ML models (DT; RF; SVM; AdaBoost) apart 
from the XGB. In the latter case, the Python API of XGBOOST v1.2 was 
utilized. In order to reduce overfitting, appropriate regularization 
hyperparameters for each model were applied. In the case of DT, the 
maximum tree depth was restricted to 8. The magnitude of regulariza-
tion in the case of SVM was controlled through the C parameter using a 
value of 1. For the ensembles, RF and XGB, a learning rate of 0.1 was 
used to minimize overfitting in addition to a maximum tree depth of 8. 
In the case of Adaboost, the maximum tree depth was fixed to 1. 
Moreover, the ensembles (RF; AdaBoost; XGB) were fitted using a 
maximum number of 2,000 base estimators. In all cases, the base esti-
mators were decision trees. The feature importance (equivalent to SNP 
effect) for the used ensembles was plotted in a Manhattan plot form 
using the R/CMplot library v3.6.2 (Yin et al., 2020). Overall, all the 
aforementioned hyperparameter values were inferred after 3-fold 
cross-validation on the training set using the RandomizedSearchCV 
function of scikit-learn. The required computations were performed 
using Python v3.8, while the corresponding visualization plots were 
produced using the Seaborn library v0.11 of Python. Finally, an example 
of Python code for fitting the above models can be found in the Sup-
plementary material (S1.html). 

2.5. Model evaluation 

The prediction efficiency of each tested model was assessed using 
receiver operating characteristic (ROC) curves. The models were ranked 
based on the area under the curve (AUC) metric, which by construction 
ranges between zero and one, with the latter representing the perfect 
classifier. In the simulated datasets, animals from the 9th generation 
were used to train the models, while the animals from the 10th gener-
ation served as a test set. On the other hand, since the carp dataset 
included animals from a single generation a 5-fold cross validation 
scheme was applied (Fig. 1). 

3. Results 

3.1. Simulated datasets 

The performance of all tested models was based on predictions made 
on the test set, which was comprised of 6,000 animals from generation 
10, while the training was conducted on the parental generation that 
also contained 6,000 animals. Animals from both generations were 
genotyped for 9,000 SNPs located randomly across the genome. The 
extreme gradient boosting (XGB) was the machine learning model that 

gave the highest AUC score across both scenarios with a mean value of 
0.83 (Fig. 2). 

Notably, the tested ensembles (DT, RF, Adaboost, XGB) provide es-
timates regarding the importance of each feature. With the exception of 
RF the rest of the ensembles performed as well variable selection by 
assigning values of zero to certain features. In the case of DT and Ada-
boost approximately 94 % and 92 % of the respective features had a 
value of zero. On the other hand in the case of XGB approximately 9% of 
the features were estimated of having an effect of zero (Fig. 3). Never-
theless, minor differences were observed between the best performing 
models (XGB, SVM, RF). In particular, the AUC score from XGB was 1–2 
% higher than the equivalent of SVM and RF (Fig. 4). The aforemen-
tioned ML models slightly outperformed GBLUP-MCMC with an AUC 
1–4 % higher than the latter. Adaboost performed slightly worse (3–4 %) 
than GBLUP-MCMC. On the other hand, the performance of DT was 
consistently low, with an average AUC of 0.54. It is important to note 
that an AUC score of 0.50 is expected merely by chance. 

The standard deviation of the AUC score among replicates ranged 
between 0.01 and 0.03 for all the tested models. The lowest standard 
deviation was found in the case of DT (0.01), while the highest was 
observed in the case of GBLUP-MCMC (0.03). The best performing 
model (XGB) had a standard deviation of 0.02. 

Two different scenarios were tested in the current study in terms of 
the phenotypic distribution of animals characterized as resistant or 
susceptible. More specifically, the model performance was tested in 
cases where the two recorded phenotypic categories had approximately 
an equal number of observations and in cases were the phenotypic dis-
tribution was skewed towards non-resistant animals. In the former case, 
the percentage of disease-resistant animals ranged between 42–47%, 
while in the latter case, it ranged between 11–23 %. The above ratios 
were consistent amongst the training and test sets. Overall, the model 
ranking was not affected by the ratio of resistant to non-resistant ani-
mals, with differences in terms of AUC scores being between 0.005 and 
0.02 for each tested model. In the case of XGB that had overall the 
highest performance, the difference of AUC score was 0.008 among the 
two scenarios (Fig. 4). 

3.2. Carp resistance to koi herpes virus 

Model performance was inferred by following a 5-fold cross- 
validation scheme consisting of sets of 1,004 animals for training and 
251 animals for validation purposes. The percentage of resistant animals 
amongst the training and validation sets ranged between 33–37%. 
Overall, the ranking of models was the same as in the case of the 
simulation datasets. 

However, the differences between the best performing ML models 
and GBLUP-MCMC were minimal. Amongst all tested models, the XGB 

Fig. 1. Cross validation scheme.  
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provided the highest AUC score of 0.74. The above was only slightly 
higher compared to GBLUP-MCMC where an AUC score of 0.73 was 
recorded. The latter was practically equivalent to the AUC scores of SVC 
and RF. Adaboost performed slightly worse than GBLUP-MCMC, with 
the corresponding AUC scores being approximately 4% lower. As in the 
case of the simulated datasets, DT had the lowest performance with AUC 
score of 0.57. Finally, the standard deviation of the recorded AUC scores 
ranged between 0.02 – 0.03, with the lowest value observed in the case 
of GBLUP-MCMC (Fig. 5). 

3.3. Hyperparameter tuning - computational time 

The number of available hyperparameters for the ML models ranged 
between 5 – 18. Adaboost had the lowest number of hyperparameters, 
while XGB the highest. The magnitude of influencing the predictive 
ability of each ML by hyperparameter tuning varied substantially 
amongst the tested models (Table 1). Hyperparameter tuning had a more 
profound effect in the case of Adaboost, were fixing the maximum 
allowed depth of the underlying DT classifiers to 1 resulted in 40–50 % 
increase of the AUC score. On the other hand, changing the hyper-
parameter values from the default ones in the case of SVM resulted in 
worse predictions. 

The computational time for fitting each model was benchmarked on 
an iMac (macOS 10.14.2) 4,2 GHz Intel Core i7 with 64 GB 2667 MHz 
DDR4 of RAM using the simulated datasets. All ML models required 
substantially less computational time compared to GBLUP-MCMC 
(Fig. 6) for fitting and prediction purposes. More specifically, the 
computational time for running GBLUP-MCMC was in the magnitude of 
hours (~4 h), while on the other hand, the computational time for ML 
ranged from seven seconds (DT) to approximately 30 min (SVM). 
Regarding the group of best performing ML models (RF, SVM, XGB), RF 
required approximately 3 min for completion, while SVM and XGB 
required approximately 30 and 10 min, respectively. 

4. Discussion 

The ability to predict disease resistance using genomic information 
in aquaculture species has attracted considerable research efforts 
(Elaswad and Dunham, 2018). In the current study, various ML models 

were evaluated in terms of their efficiency to detect disease-resistant 
animals through their genomic profile. Overall, promising results were 
obtained with the derived predictions of the best performing ML models, 
being in close proximity or even higher than the equivalent ones from 
GBLUP-MCMC. Even though no prior applications of ML in aquaculture 
breeding are available at the moment, encouraging results have been 
documented in both empirical and simulated datasets from plants and 
livestock (Montesinos-López et al., 2019; Waldmann, 2018). In the 
aforementioned cases, ML models performed at least equally well and 
even surpassed in certain scenarios the prediction efficiency of GS 
models in various regression tasks applied to continuous traits. 

Traditionally the performance of various GS models for regression 
tasks in aquaculture species is mainly evaluated based on the so-called 
accuracy metric, which is, in fact, the Pearson correlation coefficient 
between the predicted values and the true breeding values (in case of a 
simulated dataset) or the phenotypic recordings (in case of empirical 
data) of the validation-test dataset (usually adjusted for fixed effects). 
Interestingly, it was recently pointed out that reliance solely on the 
correlation coefficient can result in a non-optimal model selection 
(Waldmann, 2019). The usage of the above accuracy term is the most 
common approach also for binary traits (e.g. resistant vs non-resistant) 
even though the definition of correlation, in this case, could be 
deemed somewhat problematic. However, the accuracy term is also 
commonly encountered in a broad literature of various classification 
problems where it denotes the number of cases predicted successfully 
out of the whole prediction attempts. 

Nevertheless, it can be argued that none of the above definitions- 
usages of accuracy is optimal for binary traits. More specifically, the 
usage of accuracy for evaluating either GS or ML model performance in 
binary traits with a skewed ratio among the two observed phenotypic 
categories conveys limited practical value. Elaborating on the latter in a 
former study of genetic resistance of sea bream to pasteurellosis (Pal-
aiokostas et al., 2016) where the percentage of resistant animals was 
approximately only 5%, a naïve classifier always predicting for a 
non-resistant animal would have achieved an accuracy of approximately 
0.95. Model assessment was performed in the current study with ROC 
curves using the AUC metric. Through the simultaneous usage of false 
and true positive rate, ROC curves are less sensitive compared to accu-
racy in cases where the numbers of the two observed categories are not 

Fig. 2. Evaluation of the extreme gradient boosting (XGB) model with ROC curve. Mean AUC score derived from the simulation datasets.  
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balanced. Moreover, ROC curves have been already utilized in both 
human and animal genetic studies (Razgour et al., 2019; Tsairidou et al., 
2014; Wray et al., 2010). 

The results of the current study, including both simulated and 
empirical datasets, demonstrated that ML models could be successfully 
applied in classification problems relevant to breeding. According to the 
current results, the ranking of the tested models was not affected in the 
cases were an unbalanced distribution amongst the two observed phe-
notypes was used. In all tested scenarios, XGB was the model that ranked 
first though its advantage compared to GBLUP-MCMC was only slight, 
ranging between 1–4%. Furthermore, competitive predictions, as 
opposed to GBLUP-MCMC, were also obtained using SVM and RF. 
Notably, examples exist in the literature with applications of SVM, RF or 
similar ensemble learning algorithms using decision trees (e.g. Bayesian 
additive regression trees) in genomic selection studies on plants and 

livestock where the recorded prediction metric was of the same 
magnitude as with GBLUP-MCMC (Ogutu et al., 2011; Waldmann, 2016) 

Even though no application of XGB in aquaculture selective breeding 
seems to have been documented as of now in the literature, the results of 
the current study coupled with the fact that it is one of the most powerful 
ML algorithms (Géron, 2019) suggest that it could be a valuable tool in 
future genetics studies of disease resistance in aquaculture. Interest-
ingly, XGB was amongst the best performing models in terms of pre-
diction efficiency for either sire conception rate in Holstein bulls or for 
simulated datasets (Abdollahi-Arpanahi et al., 2020). Furthermore, in 
the latter case, XGB ranked first in scenarios where the trait of interest 
was primarily controlled by non-additive genetic effects. On the other 
hand, XGB was outperformed by RF in terms of prediction efficiency for 
body weight in Brahman cattle (Li et al., 2018). 

Notably, as is the case for most of the ML algorithms, XGB is 

Fig. 3. Feature importance for each predictor SNP of the simulated dataset estimated from decision trees (DT), random forests (RF), adaptive boosting (Adaboost) 
and extreme gradient boosting (XGB). 
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particularly prone to overfitting, especially in datasets where the num-
ber of features (SNPs in the current case) far surpasses the number of 
observations. As such, XGB requires the a priori setting of regularization 
hyperparameters, which in the current case was achieved primarily by 
using the hyperparameters of learning rate and the maximum number of 
estimators. Generally speaking, the former parameter restricts the 
magnitude of the weight the algorithm assigns to each feature, while the 
latter refers to the maximum allowed number of base estimators that the 
algorithms uses. It should be stressed that in the current study, a non- 
extensive search for hyperparameter tuning was performed, so more 
effective predictions than the ones documented cannot be excluded. 

Fig. 4. Comparison of machine learning models with GBLUP-MCMC-MCMC based on their area under curve (AUC) score. The models were evaluated on simulation 
datasets with either balanced or skewed ratio of disease resistant vs non-resistant animals. 

Fig. 5. Prediction of carp resistant to KHV using machine learning models and GBLUP-MCMC-MCMC.  

Table 1 
Predicted improvements (%) by fine-tuning respective hyperparameter values of 
each ML model.  

Model No. of 
hyperparameters 

No. of 
hyperparameters 
tuned 

Improvement over 
default % 

DT 13 3 < 0 
Adaboost 5 1 40 - 50 
SVM 12 1 < 0 
RF 14 4 5 - 10 
XGB 18 5 8 - 12  
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From all the tested ML models, hyperparameter fine-tuning had the most 
substantial effect in the case of Adaboost, where setting a single 
hyperparameter resulted in 40–50 % increase of the AUC score. On the 
other extreme, changing hyperparameter values from the default ones 
resulted in worse predictions in the case of SVM, indicating that fine- 
tuning hyperparameters in ML is a far from trivial task. Especially in 
the case of models with a high number of hyperparameters like XGB, an 
exhaustive search would be deemed particularly difficult and time- 
consuming. 

Interestingly, XGB, Adaboost and RF are ensemble learning algo-
rithms relying on aggregating the outcomes of base estimators (e.g. 
weak learners like DT) following different optimization routes (Biau and 
Scornet, 2016; Friedman, 2001) like bagging or pasting. In all three 
cases, the most common base estimator is the DT, with the fundamental 
idea being that through aggregating across the outcomes of several 
simple estimators, the prediction efficiency of the model can be 
improved compared to the equivalent of a single estimator (Géron, 
2019). Even though gaining a full picture of the exact internal optimi-
zation route for each of the ensemble models is most challenging, it was 
evident from the acquired results that substantial differences exist in 
terms of the magnitude of variable selection. On one extreme, Adaboost 
performed predictions after zeroing the values of approximately 92 % of 
the available features (SNP genotypes), while on the other extreme, in 
the case of XGB, approximately 91 % of the available features had a 
non-zero value. As such, it could be hypothesized that in the case of 
complex traits where the underlying genetic architecture is polygenic, 
the strong variable selection performed with Adaboost might not be 
optimal. Nevertheless, since investigating the internals of ML models 
was not the primary focus of this study, future research would be 
advised in order to validate or not the above hypothesis. 

An enormous amount of research has taken place in the field of an-
imal breeding aiming to find the optimal model for most accurate and 
reliable predictions under all cases. Nevertheless, practical experience in 
line with the famous “no free lunch theorem” in mathematics suggests 
that this aim is probably unrealistic. Constraining our focus on the task 
of predicting disease resistance in aquaculture and taking into consid-
eration the wide variation of the underlying genetic mechanisms 
involved in various diseases, it is doubtful that a single model, whether 
from the GS or ML, will be optimal for all cases. However, it is fair to 
state that GBLUP-MCMC is a robust approach, as was also clearly shown 
in the current study. Moreover, even though a slight advantage was 
observed in favour of the ML models compared to GBLUP-MCMC, it 
could easily be the case that the situation reverses in other datasets. 

Nevertheless, a significant advantage of the tested ML models lies in 
substantial reductions of computational time compared to GBLUP- 
MCMC in terms of model fitting. It should be stressed that the above 
mainly refers to comparisons in the case of binary traits when GBLUP 
relies on MCMC. Furthermore, taking into account that some of the ML 
models contain a large number of hyperparameters an extensive fine- 
tuning could easily require substantial computational time. In addi-
tion, it should be stressed that a certain aspect a subjectivity exists in the 
whole argument of computational efficiency as the number of iterations 
of the MCMC can vary depending on each specific application. In the 
current study, a relatively high number of iterations was used as in the 
case of binary traits, the mixing of the MCMC is slow. Nevertheless, 
despite the above, it is still apparent that ML, mainly due to paralleli-
zation of the assigned tasks, clearly outperform MCMC based algorithms 
in terms of computational efficiency. Notably, more substantial differ-
ences could be expected between the two classes in the case of using 
high-performance computing (HPC). Significant reductions of the 
required computational time were recorded in other studies as well. 
More specifically, SVM was shown to outperform various GS models in 
terms of computational efficiency (Montesinos-López et al., 2019). In 
the current study, 20-fold and above reductions of the computational 
time were observed between XGB and GBLUP-MCMC. Taking into ac-
count the fact that genotyping efforts in the field of aquaculture 
breeding continuously increase the availability of tools with the ability 
to produce accurate predictions within a reasonable time is highly 
attractive. 

Overall, it is important to stress that several simplifications were 
applied in the current study. Foremost, the model evaluation was con-
ducted on the basis of disease resistance being simplified as a binary 
trait. Even though this approach is appealing from a practical perspec-
tive, it could be argued that genetic resistance against a disease is a far 
more complicated process. As such, future studies, including informa-
tion regarding the resilience and tolerance of the host against pathogens, 
can shed additional light and contribute to expediting the genetic 
progress through selective breeding (Knap and Doeschl-Wilson, 2020). 
Moreover, the performed simulations considered the genetic architec-
ture of the trait as purely additive. Even though the latter has repeatedly 
proven to be a reliable approximation, it could well be the case that 
various interactive effects amongst the determining genetic components 
play an essential role in disease resistance. Interestingly, ML models 
usually shine in detecting non-linear patterns and interactions. Finally, 
even though an extensive range of popular ML models was tested here, 
the most highlighted category of deep neural networks (DNN) was 

Fig. 6. Required computational time for fitting machine learning models and GBLUP-MCMC.  
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intentionally not included as it would require a separate study on its 
own. DNN have various applications in the field of genomics (Eraslan 
et al., 2019) and could also be of high value in aquaculture breeding. 

5. Conclusions 

The results of the present study suggest that ML can be valuable tools 
in aquaculture breeding studies that aim to predict disease-resistant 
animals. XGB was the model that ranked first, conveying a slight 
advantage over GBLUP-MCMC that ranged between 1–4%. Furthermore, 
SVM and RF delivered competitive predictions as well. The application 
of solely DT is not recommended as low predictions were obtained 
consistently in all tested datasets. Finally, in terms of required compu-
tational time, all ML models clearly outperformed GBLUP-MCMC. 
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Géron, A., 2019. Hands-On Machine Learning with Scikit-learn, Keras, and TensorFlow. 
O’Reilly Media. 

Gianola, D., 2013. Priors in whole-genome regression: the Bayesian alphabet returns. 
Genetics 194, 573–596. https://doi.org/10.1534/genetics.113.151753. 

Gonen, S., Baranski, M., Thorland, I., Norris, a, Grove, H., Arnesen, P., et al., 2015. 
Mapping and validation of a major QTL affecting resistance to pancreas disease 
(salmonid alphavirus) in Atlantic salmon (Salmo salar). Heredity (Edinb) 1–10. 
https://doi.org/10.1038/hdy.2015.37. 

Gutierrez, A.P., Symonds, J., King, N., Steiner, K., Bean, T.P., Houston, R.D., 2020. 
Potential of genomic selection for improvement of resistance to ostreid herpesvirus 
in Pacific oyster (Crassostrea gigas). Anim. Genet. 51, 249–257. https://doi.org/ 
10.1111/age.12909. 

Horn, S.S., Ruyter, B., Meuwissen, T.H.E., Moghadam, H., Hillestad, B., Sonesson, A.K., 
2020. GWAS identifies genetic variants associated with omega-3 fatty acid 
composition of Atlantic salmon fillets. Aquaculture 514, 734494. https://doi.org/ 
10.1016/j.aquaculture.2019.734494. 

Houston, R.D., 2017. Invited Review Future directions in breeding for disease resistance 
in aquaculture species. Bras. Zootec 46, 545–551. https://doi.org/10.1590/S1806- 
92902017000600010. 

Houston, R.D., Bean, T.P., Macqueen, D.J., Gundappa, M.K., Jin, Y.H., Jenkins, T.L., 
et al., 2020. Harnessing genomics to fast-track genetic improvement in aquaculture. 
Nat. Rev. Genet. 1–21. https://doi.org/10.1038/s41576-020-0227-y. 

Howard, R., Carriquiry, A.L., Beavis, W.D., 2014. Parametric and nonparametric 
statistical methods for genomic selection of traits with additive and epistatic genetic 
architectures. G3 Genes, Genomes, Genet. 4, 1027–1046. https://doi.org/10.1534/ 
g3.114.010298. 

Joshi, R., Skaarud, A., de Vera, M., Alvarez, A.T., Ødegård, J., 2020. Genomic prediction 
for commercial traits using univariate and multivariate approaches in Nile tilapia 
(Oreochromis niloticus). Aquaculture 516, 734641. https://doi.org/10.1016/j. 
aquaculture.2019.734641. 

Knap, P.W., Doeschl-Wilson, A., 2020. Why breed disease-resilient livestock, and how? 
Genet. Sel. Evol. 52, 1–18. https://doi.org/10.1186/s12711-020-00580-4. 

Lhorente, J.P., Araneda, M., Neira, R., Yáñez, J.M., 2019. Advances in genetic 
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