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Abstract: This study investigated the efficacy of Rotstop®, a native Latvian Phlebiopsis gigantea strain
and 35% urea solution in combination with a stump cover treatment to control against natural spore
infection by Heterobasidion spp. upon precommercial thinning of Norway spruce in three stands grow-
ing on former agricultural lands. The major findings were that (i) infection rates of Heterobasidion spp.
on stumps treated with the native P. gigantea strain, Rotstop® or urea are similar when stumps
are uncovered, and (ii) stump cover promotes stump colonization by the Latvian P. gigantea strain
and Rotstop®, leading to a significantly smaller relative area colonized by Heterobasidion spp., as
well greater efficiency against Heterobasidion in comparison with urea. Covering of stumps appears
beneficial for controlling Heterobasidion stump colonization and may be valuable to forest owners
if used in small-scale operations, but it is impractical in automatized thinnings, where managers
should consider using regular Rotstop® without covering the stumps.

Keywords: biological control; Rotstop®; urea treatment; root rot; basidiospores; agricultural land

1. Introduction

Heterobasidion annosum sensu lato (Fr.) Bref. is a species complex of necrotrophic, root
and white rot pathogens of conifers, comprising five species distributed in the Northern
Hemisphere [1]. Three of the species are native to Europe: (i) Heterobasidion annosum sensu
strictum (Fr.) Bref., primarily a pathogen of Scots pine (Pinus sylvestris L.) but also other
pines and conifers; (ii) Heterobasidion parviporum Niemelä & Korhonen, a pathogen of Nor-
way spruce (Picea abies (L.) Karst.); and (iii) Heterobasidion abietinum Niemelä & Korhonen,
largely a pathogen of silver fir (Abies alba Mill.) and other Abies species. Heterobasidion
irregulare (Underw.) Garbel. & Otorsina is native to North America; however, it was
introduced into Europe in the 1940s and became invasive by spreading in Pinus pinea L. and
Querqus spp. stands [2]. In intensively managed forests and plantations, Heterobasidion spp.
is a major threat to timber production, owing to growth reduction and increased tree
mortality, with financial losses estimated as more than 790 million euros per year in Europe
alone. Moreover, these calculations do not include wind and storm damage in decay-
affected stands, damage that may be or may become (due to climate change) extremely
significant [1] and references therein. Disease development is largely dependent on forest
management practices [3–5]. Primary infection of the fungus occurs by airborne spores
infecting newly exposed wood surfaces [3,6]. Secondary infection from Heterobasidion spp.
infected stumps and trees to healthy trees may occur belowground through interconnected
root systems [3,6–9]. Stumps also serve as the main structure for developing fruiting
bodies [10]. In spruce stands of Latvia, approximately 23% of cut trees are colonized by
rot-causing fungi, most often H. parviporum [11].
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While practically impossible to eradicate once established in a stand, the disease
can be managed in healthy stands by certain preventative measures that limit primary
infections. Stump and root removal of infected and neighboring tree material is an effective
method, but it is expensive, requires specialized machinery and is hence rarely used
in practice [12]. Harvesting and thinning during nonsporulation times greatly reduces
the risk of new infections and should be done when possible. When logging during
periods of sporulation, stump surfaces should be treated with a chemical or biological
control agent (BCA) [13]. There are a few chemicals shown to be effective at reducing
Heterobasidion colonization, the most important being urea. In efforts to reduce the use
of chemicals in forestry, many countries in Europe have opted for the BCA Rotstop®.
Rotstop® is a commercial formulation containing spores of the fungus Phlebiopsis gigantea
(Fr.) Jülich, which is a naturally occurring saprotrophic fungus that effectively outcompetes
Heterobasidion spp. for nutrients in the woody stumps. Different versions of Rotstop have
been formulated based on local strains of P. gigantea, such as the PG suspension in the
UK and PG IBL in Poland. BCA has been further developed to be compatible with the
increased mechanization and use of harvesting machines and can now be applied directly
to cut stumps at the time of felling through specialized sawblades [14–20]. BCA containing
various strains of P. gigantea show higher efficacy in pine stumps in comparison to spruce
stumps [21–23]. Urea is a chemical alternative to BCA [16,20,24,25] and registered for use
in Finland, United Kingdom, Denmark, France, Ireland [2,16] and Latvia [19].

Urea and Rotstop® generally have various efficacy rates in spruce stumps [26–28]; how-
ever, BCA are considered to be more susceptible to biotic and abiotic factors, while urea is
more stable [29]. The efficacy of Rotstop® and urea is dependent on stump coverage [28,30].
Oliva et al. [31] showed that urea is a reliable, long-term (at least 15 years) protection
method against root and butt rot of Norway spruce. Only a few studies have directly com-
pared the efficacy of BCA to urea in spruce stumps in the same experiment [20,28,30,32,33],
and these yielded inconsistent results. The efficacy of stump treatment with urea solu-
tion and spore suspension of P. gigantea against infection by Heterobasidion spp. has been
compared in field conditions in Abies cilicica wood, and urea showed higher efficacy
than BCA [34]. Data obtained in Denmark showed that urea more effectively prevented
the spread of Heterobasidion root rot to adjacent P. abies than Rotstop® or local strains of
P. gigantea [33]. In Italy, the efficacy of urea at different concentration levels (10–30%) and
Rotstop® has been compared [5], the data showing similar efficacy for a 30% urea (w/v)
concentration and BCA. Contrastingly, Anselmi and Nicolotti [27] reported that the efficacy
of P. gigantea was higher than that of 30% urea. In addition, the type of treated wood
surface can have an impact; urea showed higher efficacy in logs, whereas Rotstop® and
local strains of P. gigantea were more efficient in spruce stumps [26].

Heterobasidion spp. infection risk is particularly high in stands on former agricultural
land [35,36]. Therefore, it is very important to analyze treatment agents against primary
infection in spruce stands planted on former agricultural soil. In the literature available,
there are only limited data where the efficacy of both BCA and urea against basidiospore
infection in spruce stands on former agricultural lands has been compared.

Stumps are sometimes covered with wood discs, moss and soil to increase BCA
efficacy [37–39]. However, stump cover could promote the development of other fungi,
including Heterobasidion spp. [40,41]. Yet, the influence of stump cover with discs on the effi-
cacy of urea against Heterobasidion spp. basidiospore infection is unknown. The aims of this
study were to test the control efficiency of Rotstop®, a native Latvian Phlebiopsis gigantea
strain and urea as control agents against natural spore infection of Heterobasidion spp. on
pre-commercial thinning stumps of Norway spruce on former agricultural lands, and to
analyze the effect of stump coverage on urea and BCA efficacy.
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2. Materials and Methods
2.1. Plant and Fungal Material

The experiment was established in 2018 on three, first-rotation Norway spruce stands
in Rezekne (Eastern Latvia). Site characteristics are detailed in Table 1. In Stands 1 and 3,
precommercial thinning was conducted in 2016, prior to our experiment. To reduce the
risk of secondary infections via root contacts from these thinned trees, a 3 m buffer zone
between trees used in this experiment and old stumps was implemented. Commercial
Rotstop® (Phlebiopsis gigantea strain VRA 1835) and Latvian P. gigantea strain 422 (in text
P. gigantea 422), initially isolated from Norway spruce and previously characterized in vitro
on malt agar for growth, asexual spore production and antagonism against H. annosum and
H. parviporum [42,43], were used as BCA for stump treatments.

2.2. Experimental Description

At each of the three sites, 160 trees were cut using a chainsaw in July 2018 (in total
480 trees) to a stump height of 70 cm. None of the stumps showed signs of discoloration
or decay and were presumed to be free of Heterobasidion infection at the time of cutting.
Stumps were left at a 70 cm height for one week until they could be further treated.
Outer bark was disinfected by treating them with 70% ethanol to reduce the unintended
introduction of microbes to cut surfaces before treatment application [44]. For all sites,
half of the stumps were cut to a height of 40 cm, while the other half were cut to 45 cm.
The 45 cm high stumps then had a 5 cm thick disk cut from the top of the stump, which
was kept and used for the subsequent stump cover treatment. After cutting, each stump
was treated with one of four stump treatments: Rotstop® spore suspension, P. gigantea
422 spore suspension, 35% urea solution or distilled water. Rotstop® and P. gigantea
422 spore suspensions were prepared as described by Kenigsvalde et al. [45]. The amount
applied varied according to the diameter of the stump surface so that the solution covered
the surface with a thickness of about 1 mm [46].

After stump treatment, the 5 cm thick wood discs were replaced on top of their
respective stumps, while the other stumps were left uncovered to create 8 unique treat-
ment combinations per site (Rotstop® covered (n = 20), Rotstop® uncovered (n = 20),
P. gigantea 422 covered (n = 20), P. gigantea 422 uncovered (n = 20), 35% urea covered (n = 20),
35% urea uncovered (n = 20), water covered (n = 20) and water uncovered (n = 20)). All
stumps were subjected to natural Heterobasidion spp. infection. To avoid clustering of a
certain treatment to one area of the site, treatments were assigned to stumps according to a
randomized complete block design that was identical for all experimental sites. During
the establishment of the experiments and the three subsequent weeks, the air temperature
fluctuated between 8.9 and 30.5 ◦C, with a mean of 20.3 ◦C. Total precipitation in the
three-week period following establishment was 51 mm.

2.3. Sampling, Heterobasidion spp. Infection Assessment and Identification of P. gigantea

The stumps were disinfected by treating them with 70% ethanol and sampled 14 weeks
after cutting (Table 1). Identification tags from four stumps disappeared prior to sampling,
so these trees were excluded, and samples were taken from the remaining 476 stumps. Two
3 cm thick discs were cut from each stump with a chainsaw. The top disc was discarded, and
the second disc was taken to the laboratory and assessed for Heterobasidion spp. infection.
Discs were examined for the presence of Heterobasidion spp. conidiophores [47], and the
presence of P. gigantea was estimated by morphological inspection of the mycelia and
presence of oidia (e.g., [17,18,30,48]). The area colonized by P. gigantea (either Rotstop®,
P. gigantea 422 or naturally infected by airborne P. gigantea spores (in the text referred to as
wild P. gigantea)) and Heterobasidion spp. was redrawn on a transparent sheet and measured
using a planimeter (PLANIX 10S “Marble”, Tamaya, Japan). Re-isolations from 20 of the
Rotstop® and P. gigantea 422 treated stumps were done to confirm successful colonization
of the stumps. Somatic incompatibility assays for all isolates were performed. Isolates were



Forests 2021, 12, 679 4 of 12

paired on malt agar with the original strain used for inoculation to test for compatibility to
confirm their identity [49].

Table 1. Description of experimental sites and stump characteristics.

Site Latitude,
Longitude

Stand Age
(Years)

Area
(ha) Forest Type Number of

Stumps
Mean Stump Diameter

±1 SD (cm) 5
Stump Diameter,
Min–Max, (cm)

1 56.24088,
27.88769 15 1 5.83 Oxalidosa 2 160 11.5 ± 5.9 A 8.4–16.0

2 56.22804,
27.97499 15 1 2.38 Oxalidosa turf. Met. 3 160 11.8 ± 5.9 A 8.4–14.2

3 56.22430,
27.83745 15 1 8.44 Hylocomisa 4 160 7.8 ± 5.7 B 4.1–14.5

1 No visual signs of heartwood; 2 Mesotrophic P. abies stands on mineral soil at the age of 100 years, tree height is 28–33 m [50]; 3 Highly productive
mixed spruce and broad-leaved stands on eutrophic-rich drained peat soils [50]; 4 Mesotrophic P. abies on mineral soils at the age of 100 years, tree height
is 30–33 m [50]; 5 Different letters represent significant differences in stump diameters as determined by the Kruskal–Wallis test at an α < 0.05 level.

2.4. Calculations and Statistical Analyses

The relative area colonized by P. gigantea (Rotstop® or Latvian strain) and H. annosum
was calculated by dividing their occupied areas by the total area of the disc (Kenigsvalde et al.,
2016). Control efficacy, expressed as the reduced proportion of stumps colonized by
Heterobasidion spp. and the reduced proportion of wood colonized by this pathogen, for
each treatment, was calculated according to the formula: E(%) = 100 −

(
100 ∗ nt

nu

)
, where

nt represents the proportion of colonized stumps or proportion of colonized wood for
treated stumps, and nu represents the proportion of colonized stumps or proportion of
colonized wood for control stumps [45]. Control efficacy was calculated within site, method
and treatment.

Data were inspected for normality using the Shapiro–Wilk test and by manually
evaluating Q–Q plots. Using these criteria, total area of discs, area of disc surface covered
by P. gigantea and area of disc surface covered by Heterobasidion were considered to be
not normally distributed (p = 0.00021, <2.2 × 10−16 and <2.2 × 10−16, respectively). The
differences in diameter were determined using the Kruskal–Wallis test. The relationship
between method (i.e., covered and uncovered stumps) and treatment effect (i.e., BCA,
urea and untreated control) on the presence of Heterobasidion infection was determined
using a generalized linear model (GLM) with a binomial distribution and logit as the link
function. The relationship between method and treatment on relative infected areas for
both Heterobasidion and P. gigantea was investigated with a GLM with a Poisson distribution
and log as the link function. In order to determine differences between coverage methods
and stump treatments on the frequency of Heterobasidion infection, and the relative areas
occupied by Heterobasidion spp. and P. gigantea, pairwise comparisons of the model’s
estimated marginal means (EMM) were carried out with a 95% confidence level, with
p-value adjustment according to Tukey’s method. All statistical analyses were performed
in the “R” environment [51].

3. Results
3.1. Effects of Treatments on Heterobasidion Incidence and Stump Colonization

Site did not have a significant influence on colonized area (p = 0.907) or infection
frequency by Heterobasidion (p = 0.56). In the uncovered stumps, Heterobasidion infection
frequency was significantly decreased compared to the untreated controls for the urea,
Rotstop® and P. gigantea 422 treated stumps, but no statistical differences were found
between the three treatments (Table 2). Heterobasidion infection frequency was significantly
higher in the covered control stumps compared to the uncovered control stumps (p = 0.004).
A similar trend was observed for urea-treated stumps, where coverage significantly in-
creased Heterobasidion incidence (p = 0.026). Significantly fewer stumps were infected
by Heterobasidion spp. when stumps were covered and treated with either Rotstop® or
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P. gigantea 422 compared to covered and uncovered urea and untreated control stumps.
Stump coverage also decreased Heterobasidion infection in both Rotstop® and P. gigantea
422 treated stumps compared to the uncovered stumps.

Table 2. Mean infection frequencies (%) of Heterobasidion spp. in Norway spruce stumps and percent
of stump surface colonized by Heterobasidion spp. and P. gigantea treated with Rotstop®, native
Latvian Phlebiopsis gigantea strain or urea (% ± standard deviation).

Treatment Uncovered Covered p-Value 2

Heterobasidion spp. Infection Frequency, %

Rotstop® 14 a 1 3 a p = 0.561
P. gigantea 422 13 a 5 a p = 0.795

Urea 17 a 38 b p = 0.026
Control stumps 35 b 53 c p = 0.004

Relative Stump Surface Colonized by Heterobasidion spp.

Rotstop® 0.89 ± 5.6 a 1 0.01 ± 0.3 a p < 0.001
(min–max) (0.5–39.3) (1.6–2.09)

P. gigantea 422 1.08 ± 3.7 a 0.43 ± 2.1 b p = 0.002
(min–max) (2.9–20.5) (3.5–13.5)

Urea 0.92 ± 3.0 a 2.72 ± 5.3 c p < 0.001
(min–max) (0.9–13.0) (0.4–24.2)

Control stumps 3.39 ± 5.9 b 10.18 ± 10.9 d p < 0.001
(min–max) (1.8–22.1) (2.2–48.6)

Relative Stump Surface Colonized by P. gigantea

Rotstop® 60.47 ± 34.3 e 85.17± 20.8 e p < 0.001
(min–max) (0–100) (5–100)

P. gigantea 422 56.51 ± 36.3 e 89.77 ± 46.8 e p < 0.001
(min–max) (0–100) (0–100)

Urea 4.43 ± 8.6 f 10.03 ± 23.4 d p < 0.001
(min–max) (0–79.6) (0–98.2)

Control stumps 10.68 ± 22.1 d 11.32 ± 20.9 d p = 0.9661
(min–max) (0–100) (0–100)

1 Values with different letters in columns. “Uncovered” and “Covered” are significantly different at α < 0.05
(Appendices A and B). 2 The p-values indicate the significance of differences between values in the same row.

Significant differences in relative area occupied by Heterobasidion spp. between covered
control stumps and other treatments were observed (p < 0.001; Table 2; Appendix A).
Relative stump surface area occupied by Heterobasidion spp. was significantly less when
Rotstop® or P. gigantea 422 (irrespective of coverage) were applied in comparison to covered
and uncovered control stumps and covered urea-treated stumps (Table 2; Appendix A).

Mean relative area of P. gigantea was significantly greater (p < 0.001) than the area
colonized by Heterobasidion spp. both in stumps treated with BCA and in control stumps
(Table 2). Moreover, the surface area colonized by P. gigantea was significantly larger in
uncovered control stumps than the area occupied by Heterobasidion spp. (p < 0.001). All
re-isolations were vegetatively compatible with each respective inoculated strain.

A total of 47% of covered control stumps and 38% of uncovered control stumps were
colonized by wild P. gigantea. Additionally, 24% of stumps (33% of covered and 15% of
uncovered) had both Heterobasidion spp. and P. gigantea present. For these stumps, relative
surface area colonized by Heterobasidion spp. varied from 3 to 49% (average 14%) and by
P. gigantea from 1 to 69% (average 21%). The presence of naturally occurring P. gigantea had
no influence on the natural infection rate of Heterobasidion spp. (p = 0.739). Eighteen percent
of the uncovered urea-treated stumps were colonized by wild P. gigantea and 35% of the
covered urea-treated stumps were infected by naturally occurring P. gigantea. However, the
area occupied by wild P. gigantea was considerably smaller than that occupied by Rotstop®

or P. gigantea 422 (for both p < 0.001; Table 2; Appendix B).
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3.2. Control Efficacy

Control efficacy was calculated based on the proportion of infected stumps and area
occupied by the pathogen. Based on infection frequency, Rotstop® and P. gigantea 422
showed the highest efficacy both in uncovered stumps (60.58% and 62.0%, respectively)
and covered stumps (95.29% and 92.93%, respectively). For both covered and uncovered
urea-treated stumps, the efficacy did not exceed 50% (47.71% and 45.78%, respectively).

The highest control efficacy was also found in BCA-treated and covered stumps in
comparison to urea based on the relative surface area occupied by Heterobasidion spp.,
(99.39% for Rotstop®, 95.69% for P. gigantea 422 and 72.71% for urea). Also compared to
uncovered stumps, the efficacy of both covered and Rotstop® and P. gigantea 422 treated
stumps were higher (Figure 1).
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4. Discussion
4.1. Effects of Treatments on Heterobasidion Incidence and Stump Colonization

The incidence of Heterobasidion infection did not differ between stumps treated by
urea or P. gigantea suspensions. Treatment with either BCA significantly decreased the
frequency of Heterobasidion spp. in comparison to control stumps. However, infection by
Heterobasidion spp. was not completely prevented, as more than 13% of uncovered BCA-
treated Norway spruce stumps were still infected. Such failure in preventing Heterobasidion
infections is not uncommon for BCA such as Rotstop®. For example, Berglund and
Rönnberg [30] regularly observed Heterobasidion infections (as high as 70% disease incidence
at some sites) on Norway spruce stumps even when fully covered with Rotstop®. The
efficacy of Rotstop® could be at least partially associated with the high natural infection
rate of Heterobasidion spp. [30,45,52]. In Latvia, Rotstop® has proven to be an effective
control agent against Heterobasidion spore infection [45], and P. gigantea 422 was equally
effective. Several studies have reported that native isolates of P. gigantea are capable
of achieving similar, if not higher, efficiency as Rotstop® [21,45,52]. Therefore, it seems
possible to complement the conventionally used Rotstop® with a native strain also in Latvia
(P. gigantea 422).

In this study, efficacy based on the proportion of infected stumps treated with urea
did not exceed 50%; however, if efficacy was based on Heterobasidion infected area, then the
efficacy of urea was almost the same as BCA. These results are in agreement with those
obtained in other studies, where the efficacy of urea and P. gigantea were similar [5,20,29];
however, urea has been documented to have higher efficacy in comparison to P. gigantea
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in some studies [26,33,34]. Moreover, development of P. gigantea depends on (i) stump
treatment coverage quality [28,30,53]; (ii) stump and root wood moisture content, which
in turn depend on the humidity during the treatment period [53], weather conditions
and seasonality [54–56]; (iii) growth characteristics of different P. gigantea isolates [43];
(iv) enzymatic activity of the fungi; (v) the characteristics of the wood; and (vi) the
richness of the fungal biota [57]. Furthermore, Wang et al. [29] found that treatment of
Larix x eurolepis stumps with urea resulted in more stable effects in control of Heterobasidion
than using BCA. The average air temperature during experiment establishment was close
to the optimal for P. gigantea development [57], and our data indicate that, although the
total precipitation in the three-week period following establishment of the experiments
was low, it was sufficient to ensure favorable conditions for fungal growth.

4.2. The Effect of Stump Cover on Heterobasidion spp. and P. gigantea Development

Although not used in practical forestry, stump cover treatments have been examined
under experimental conditions, typically using plastic sheets or bags to protect stumps
from environmental conditions and to the improve efficacy of P. gigantea [52,58–60] and
other BCA, consisting of Hypholoma fasciculare (Huds.) P. Kumm., Phanerochaete velutina
Karst., Vuilleminia comedens (Nees) Maire and Trichoderma harzianum [37].

As we analyzed covered and uncovered stumps, we had a possibility to compare
results between these two groups. If the stump surface was uncovered, Rotstop® and
P. gigantea 422 reached more than 60% efficacy based on the proportion of infected stumps
and at least 65% efficacy based on the relative infected area. The results obtained about
BCA efficacy based on incidence and colonized area are in agreement with previous
research with Norway spruce in Finland, Sweden and Latvia [16,45,61–63]. Our results
showed that the covered stumps had a greater relative surface colonized by P. gigantea. In
two of the sites, treatment with BCA combined with stump cover completely excluded
Heterobasidion infection (data not shown). Our data confirm that the development of both
P. gigantea and Heterobasidion spp. increases with stump cover. This is in agreement with
Redfern [41], who reported that covering stumps with freshly cut branches decreases
variation in microclimate, thereby stimulating the development of various fungi, including
Heterobasidion. Increased formation of Heterobasidion spp. fruiting bodies on covered
Norway spruce stumps has also been reported by Paludan [40]. Redfern [55] found that
Sitka spruce (Picea sitchensis (Bong.) Carr.) stumps covered with a polyethylene sheet 60 cm
above their surface tended to be more infected by Heterobasidion spp. spores compared to
uncovered stumps. Both Heterobasidion spp. and P. gigantea are primary colonizers of conifer
stumps [64,65], so factors that positively affect P. gigantea likely favor Heterobasidion spp.
as well. Despite this, our results indicate that covering of stumps with wooden discs
significantly promotes Phlebiopsis gigantea growth over that of Heterobasidion spp. in treated
stumps only. This was not the case in the control stumps. Our research demonstrates that
stump cover can increase the efficacy of BCA by up to 90%. This may be of value for small-
scale forestry, where cuttings are not mechanized, and manual placement of discs is feasible.
Moreover, this study provides additional information about processes typically happening
during commercial thinning and final felling, when stumps often become covered (with
branches, leaves, logging residues, sawdust, moss and soil). However, in both large- and
small-scale forestry, stump coverage increases efficacy of BCA only if stumps are treated
correctly; otherwise, it may increase the risk of Heterobasidion colonization (clearly shown
by high Heterobasidion infection frequency in covered control stumps; Table 2).

4.3. Treatment Effects on Wild P. gigantea

Wild P. gigantea was observed in 43% of the control stumps, which is higher than
previous studies in Latvia, where wild P. gigantea inefficiently colonized spruce stumps
at final felling [45,66]. Trees in this experiment were young and did not contain any
heartwood yet. This likely benefited P. gigantea, as it prefers to colonize sapwood [17,59],
unlike Heterobasidion spp., which is better adapted to heartwood in spruce stumps [67].
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Moreover, it has been reported that Picea sitchensis (Bong.) Carr. heartwood remains
susceptible to Heterobasidion basidiospores for longer than sapwood [68].

In uncovered control stumps, the mean relative surface area colonized by wild P. gi-
gantea was three-fold larger than the area infected by Heterobasidion. Kenigsvalde et al. [45]
showed that Heterobasidion spp. infection in untreated spruce stumps was low when wild
P. gigantea covered more than 10% of the stump cross-section. However, our data indicate
that stumps should be treated either with Rotstop® or P. gigantea 422 (equally effective)
to protect stumps, as the area occupied by wild P. gigantea was at least sox-fold smaller
than the area colonized by Rotstop® and P. gigantea 422. Moreover, colonization by wild
P. gigantea did not show any significant effect on the occurrence of Heterobasidion infection.

Besides the treatment efficiency against Heterobasidion spore infection, the impact
of different control agents on other stump-colonizing fungi and surrounding vegetation
should be taken into account [64]. Previous studies have asserted that urea has a more
negative effect on fungal biodiversity in treated stumps. In comparison to Rotstop®,
short-term treatment with urea causes both radical changes in the fungal community
structure and damage to bryothytes and vascular plants, while Rotstop®-treated stumps
were mainly colonized by the same fungal species as untreated stumps, and no effect on
ground-vegetation species was reported [69,70]. However, Varese et al. [37] concluded
that the negative effects of urea treatment on fungal diversity are largely short term.
We observed no difference in the colonization of wild P. gigantea in urea-treated stumps
compared to the untreated controls, and hence the long-term effect from use of urea may
be questioned and regarded as less important for fungal or biodiversity in general. When
deciding between urea or Rotstop/P. gigantea as management options, managers should
consider relevant factors that can affect treatment efficacy, fungal biodiversity and cost,
including season, weather conditions, soil type and equipment availability. However, these
issues were outside the scope of this study.

5. Conclusions

Overall, this study clearly shows that the efficacy of P. gigantea against Heterobasidion spp.
in Norway spruce stumps is significantly increased by covering the stump surface with
an autochthonous disk. Such a treatment is laborious and not practical for large-scale
forestry. However, during manual cutting in private or urban forests stump cover should
be considered. Commercial foresters should continue to protect against Heterobasidion
infection by using urea or Rotstop® when appropriate. There is also a possibility to utilize
native P. gigantea strains from Latvia rather than Rotstop® without compromising efficacy,
which may lead to a higher acceptance by the public and contractors for using BCA.
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Appendix A

Table A1. Output of statistical tests reflecting relative Heterobasidion infected area, colonies per cm2.
Relative infected area, Family = Poisson, Factors = Method + Treatment.

Treatment vs. Treatment Estimate SE z p-Value

Method: Covered

Rotstop vs. Control 5.114 0.5225 9.786 p < 0.001
Rotstop® vs. P. gigantea 422 1.969 0.5561 3.540 p = 0.0095

Rotstop® vs. Urea −3.796 0.5267 −7.207 p < 0.001
P. gigantea vs. Control 3.145 0.1989 15.809 p < 0.001

P. gigantea vs. Urea −1.828 0.2097 −8.715 p < 0.001
Urea vs. Control 1.317 0.0882 14.934 p < 0.001

Method: Not Covered

Rotstop® vs. Control 1.333 0.1556 8.570 p < 0.001
Rotstop® vs. P. gigantea 422 0.198 0.1860 1.604 p = 0.9641

Rotstop® vs. Urea −0.035 0.1932 −0.181 p = 1.000
P. gigantea 422 vs. Control 1.136 0.1422 7.985 p < 0.001

P. gigantea vs. Urea 0.163 0.1826 0.892 p = 0.9868
Urea vs. Control 1.298 0.1514 8.574 p < 0.001

Appendix B

Table A2. Output of statistical tests reflecting relative P. gigantea colonized area, colonies per cm2.
Relative colonized area, Family = Poisson, Factors = Method + Treatment.

Treatment vs. Treatment Estimate SE z p-Value

Method: Covered

Rotstop® vs. Control −2.0176 0.0414 48.679 p < 0.001
Rotstop® vs. P. gigantea 422 0.0525 0.0195 2.687 p = 0.126

Rotstop® vs. Urea 2.1386 0.0431 49.636 p < 0.001
P. gigantea vs. Control −2.0700 0.0413 50.091 p < 0.001

P. gigantea vs. Urea 2.1911 0.0430 −50.991 p < 0.001
Urea vs. Control 0.1211 0.0564 2.146 p = 0.385

Method: Not Covered

Rotstop® vs. Control −1.7333 0.0430 40.353 p < 0.001
Rotstop® vs. P. gigantea 422 −0.0676 0.0241 2.806 p = 0.0934

Rotstop® vs. Urea −2.6114 0.0636 41.091 p < 0.001
P.gigantea 422 vs. Control −1.6658 0.0431 38.677 p < 0.001

P.gigantea vs. Urea 2.5438 0.0636 39.979 p < 0.001
Urea vs. Control 0.8781 0.0729 12.046 p < 0.001
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