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Abstract: The picornavirus named ‘Ljungan virus’ (LV, species Parechovirus B) has been detected in a
dozen small mammal species from across Europe, but detailed information on its genetic diversity
and host specificity is lacking. Here, we analyze the evolutionary relationships of LV variants
circulating in free-living mammal populations by comparing the phylogenetics of the VP1 region
(encoding the capsid protein and associated with LV serotype) and the 3Dpol region (encoding the
RNA polymerase) from 24 LV RNA-positive animals and a fragment of the 5′ untranslated region
(UTR) sequence (used for defining strains) in sympatric small mammals. We define three new VP1
genotypes: two in bank voles (Myodes glareolus) (genotype 8 from Finland, Sweden, France, and Italy,
and genotype 9 from France and Italy) and one in field voles (Microtus arvalis) (genotype 7 from
Finland). There are several other indications that LV variants are host-specific, at least in parts of
their range. Our results suggest that LV evolution is rapid, ongoing and affected by genetic drift,
purifying selection, spillover and host evolutionary history. Although recent studies suggest that
LV does not have zoonotic potential, its widespread geographical and host distribution in natural
populations of well-characterized small mammals could make it useful as a model for studying RNA
virus evolution and transmission.

Keywords: Picornaviridae; Parechovirus B; Ljungan virus isolates; small mammals; rodent-borne virus;
zoonosis; bank vole

1. Introduction

Small mammals, especially mice, rats, voles and bats, are known to be reservoirs
and vectors of zoonotic viruses [1,2] many of which are relatively unknown, but whose
potential emergence is an increasing burden on socio-economic resources [3–5]. The
molecular characterization of circulating virus strains and information on their host range
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and transmission risk can aid the development of highly sensitive diagnostics with a direct
effect on public health [6].

Viruses of the family Picornaviridae are found in almost all environments and in a great
variety of host species, including humans, other mammals, and birds, but also ectotherms
such as amphibians [7] and fish [8,9]. They can cause a wide variety of diseases affecting
the respiratory and gastrointestinal tract, central nervous system, heart, skeletal muscles
and liver. The most studied picornaviruses are those pathogenic to mammals and birds
and associated with human and livestock diseases [10,11]. Picornaviruses are known to
be mainly species-specific, but the diversity within this family and their hosts is far from
being fully delineated.

One member of this family, Ljungan virus (LV; species Parechovirus B), has been the
focus of an ongoing discussion on its suggested role in human gestational pathologies, as
well as type 1 diabetes [12–19]. LV was first discovered in bank voles (Myodes glareolus),
and soon after proposed as a rodent-borne zoonotic virus [20]. However, although high
LV immunoglobulin G (IgG) seroprevalence (36–38%) has been reported in humans in
Finland [21,22], no specific symptoms have been linked to LV infection [18,23,24], and it
has been also verified that concurrent LV infections do not appear to influence the clinical
picture for disease caused by the rodent-borne Puumala orthohantavirus (PUUV) [23].
LV transmission from rodents to humans has not been confirmed; in fact, on the basis of
age-related seroprevalence with a peak in children, Jääskeläinen et al. [22] suggested that
LV is not zoonotic, and that LV-reactive antibodies in humans might instead be induced by
a human-specific ‘LV-like virus’. To date, LV RNA has been detected in a total of 12 vole,
lemming, mouse, shrew and squirrel species collected from nine European countries with a
mean RNA prevalence of 15.2% [25]. Thus far, LV has been associated with type 1 diabetes
and myocarditis in captive wild voles [26–28], especially under stress, as well as gestational
pathologies in laboratory mice [29]; however, LV does not appear to influence rodent
cycles [30].

The positive single-stranded RNA genome of LV encodes a single polyprotein that is
cleaved into 11 proteins with the VP1 region being commonly used to determine LV geno-
types [31,32]. However, only eight complete genomes from five VP1 region-based geno-
types are known (see also https://talk.ictvonline.org/ictv-reports/ictv_online_report/
positive-sense-rna-viruses/w/picornaviridae/693/genus-parechovirus; accessed on 1
May 2021): VP1 genotype 1: isolate 87-012 (virus name Ljungan virus 1) and 174F (un-
classified); and genotype 2: isolate 145SL (Ljungan virus 2), 340 (unclassified) and 342
(unclassified). Both genotypes 1 and 2 were originally isolated from bank voles captured
in Sweden and passaged in baby hamster kidney (BHK)-21 cells injected into laboratory
mice [20,32]. Genotype 3 includes isolate M1146 (Ljungan virus 3) from the montane vole
(Microtus montanus) [33]; and genotype 4, the isolate 64-7855 (Ljungan virus 4) from the
southern red-backed vole (Myodes gapperi) [31], both native rodents in the USA. Finally,
genotype 5 includes isolate Fuz1 (Ljungan virus 5), isolated from wild birds in Japan [34]. In
addition, putative genotype 6 from RtMrut-PicoV/JL2014-2 (Ljungan virus 6), represents a
new candidate member of the Parechovirus genus, sequenced from the northern red-backed
vole (Myodes rutilus) in China [35].

More detailed molecular information about LV, from new hosts and locations, is
necessary to better understand its genetic diversity, host specificity and zoonotic poten-
tial [13,22,25,32,36]. Therefore, the purpose of this study was to analyze the evolutionary
relationships of LV variants circulating in multi-host small mammal communities across
Europe and to discuss the implications of the results for host range and transmission risk.

2. Materials and Methods
2.1. Sample Collection

Liver samples were obtained from small mammal species (nomenclature following
Integrated Taxonomic Information System; https://www.itis.gov/ accessed on 1 May 2021)
trapped during the EU FP7 Emerging Diseases in a Changing European Environment

https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/picornaviridae/693/genus-parechovirus
https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/picornaviridae/693/genus-parechovirus
https://www.itis.gov/
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project (EDENext; http://www.edenext.eu/ accessed on 1 April 2019) and additional
national projects, and described in detail in [25] and Supplementary Table S1.

We made several attempts to sequence entire genomes from LV RNA extracted from
wild small mammals (following [32] in collaboration with the European Virus Archive),
including RNA enrichment but excluding cell culture passaging, but were unsuccessful.
Hence, we concluded that the viral load in these samples (and therefore, total LV RNA)
was too low to proceed to whole genome sequences. For this reason, to complete our
phylogenetic studies, we decided to sequence two genetic markers: (a) a 393 nucleotide
(nt) fragment of the VP1 region; and (b) a 471 nt fragment of the 3Dpol region encoding the
RNA polymerase. The VP1 genotype was chosen because it corresponds to LV serotype;
since genotype/serotype can induce different responses in the host, its classification is
important for understanding virus ecology. Instead, the 3Dpol region was selected because
it is used extensively in phylogenetic studies for members of the Picornaviridae family [37].
In addition, we used 137 nt sequences of the 5′-untranslated region (UTR) generated by [25],
in order to investigate host specificities of these LV 5′-UTR haplotypes in small mammals,
as this fragment is often used for detecting strains within genera of picornaviruses [38–41].

2.2. RNA Extraction, Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
and Sequencing

Total RNA was extracted from LV PCR-positive liver samples identified in [25], as
described in [42]. Single-step and nested RT-PCRs were performed using primers targeting
the 3Dpol and VP1 regions (see Supplementary Table S2). Initially, we designed primers
based on the deposited genomes of LV and human parechovirus (HPeV) and obtained
a low number of sequences for both markers. Therefore, using these sequences and
those available in public databases, we designed additional primers (see Supplementary
Table S2), which we used in combination with the original ones in nested RT-PCRs to
obtain additional sequences. RT-PCRs were performed with the OneStep RT-PCR kit
(QIAGEN, Hilden, Germany) on a Veriti® Thermal Cycler (Applied Biosystems, Foster
City, CA, USA) using 4 µL of total RNA following the manufacturer’s instructions with
the following modification: a touch-down was carried out for both genes of interest (VP1:
60 ◦C–54 ◦C× 7 cycles; 54 ◦C× 43 cycles; 3Dpol: 60 ◦C–52 ◦C× 9 cycles; 52 ◦C× 41 cycles).
Nested RT-PCRs were performed with 2 µL of cDNA on the same thermal cycler using
the AmpliTaq Gold® 360 PCR Master Mix (Thermo Fisher Scientific, Waltham, MA, USA)
following the manufacturer’s instructions with the following modification: a touch-down
was carried out as described above. PCR products were purified with the PCR Purification
Combo Kit (Invitrogen, Carlsbad, CA, USA) and sequenced by dideoxy chain-termination
protocol on an ABI PRISM 3730xl Genetic Analyzer (Applied Biosystems) using the BigDye
Terminator cycle sequencing kit (Perkin Elmer, Applied Biosystems Division, Foster City,
CA, USA). Sequences were edited using Sequencher DNA sequence analysis software
(version 4.7, Gene Codes, Ann Arbor, MI, USA) and confirmed using the Basic Alignment
Search Tool (BLAST®) (version BLASTN 2.12.0+) analysis available in the National Center
for Biotechnology Information (NCBI) [43].

2.3. Genotyping Using the VP1 Region

According to the criteria for genotyping enteroviruses (EVs; family Picornaviridae) [31,32,44],
a genotype is identified based on the VP1 region when, compared with already known
genotypes, nucleotide sequence identity of this region is less than 75% and amino acid
sequence identity of the encoded protein is less than 88%. Therefore, in order to identify
genotypes among our sequences, the VP1 genetic distances were calculated in MEGA
5.2 [45], with the p-distance method as the model of nucleotide substitution. We also
included LV VP1 nucleotide and amino acid sequences available in GenBank: 87-012
(GenBank acc. no.: AF327920.2), 174F (AF327921.2), 145SL (AF327922.2), 340 (KR045607.1),
342 (KR045608.1), M1146 (AF538689.1), 64-7855 (EU854568.1), FUZ1 (LC133331.1) and
RtMrut-PicoV/JL2014-2 (KY432929).

http://www.edenext.eu/
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To support the genotyping, phylogenetic relationships among VP1 sequences were
reconstructed with a maximum likelihood (ML) algorithm in phyML ver. 3.1 [46] using
the approximate log likelihood ratio test (aLRT) to evaluate node supports and Bayesian
inference (BI) in Mr. Bayes ver. 3.1.2 [47], run for 10 million of generations, and sampled
every 100th generation, with a burn-in of 50%. The best-fit model was selected with jMod-
eltest2 [48] on the CIPRES Science Gateway [49] under the Akaike Information Criterion.
Trees were visualized and modified with Fig Tree v. 1.3.1 [50].

2.4. Analysis of Potential Selection on VP1 Region

VP1 region encodes for a structural protein that interacts with the host immune system
and is potentially subject to selection. Therefore, using VP1 sequences generated both
here and previously (see GenBank acc. no. listed above) from various host species and
geographic origins, we performed an analysis of codon positions under selective pressure
by comparing results from three methods. Given the lack of previous knowledge on how
LV evolves, we applied two methods which detect sites under selection according to the
dN-dS ratio (ω): fixed effects likelihood (FEL) [50], which assumes a constant selective
pressure along the history of the virus at a particular site, and mixed effects model of
evolution (MEME) [51], which instead detects episodic evolutionary processes (http://
www.datamonkey.org) accessed on 2 July 2019 [52]. We integrated these approaches based
onω ratio with the analysis of the changes in the amino acid properties when a substitution
occurs. We analyzed selection on 31 physicochemical amino acid properties of VP1 using
TreeSAAP 3.2 [53] accessed on 1 August 2019 by applying a windows analysis approach
with a width of 15 residues. In addition, we applied this method to FEL and MEME, as
the rate of synonymous substitutions tends to be higher than the rate of nonsynonymous
substitutions even when a site is effectively under positive selection [54], to avoid being
too conservative [53]. The TreeSAAP categories 1 to 8 indicate the type of selection acting
on the fragment windows: lower magnitude (categories 1–3) with a Z-score > 3.09 indicate
stabilizing (purifying) selection, whereas the higher categories (6-8) with a Z-score > 3.09
indicate positive (destabilizing) selection [55].

2.5. Phylogenetic Analysis of the 3Dpol Region

The genetic distance and phylogenetic relationships of nucleotide/amino acid se-
quences of 3Dpol region were calculated as described above for VP1. We also included
here the known LV strains available in public databases. In addition, we added Fal-
con/HA18_080/2014/HUN (KY645497), a closely related parechovirus isolated from birds
of prey in Hungary, and SEBV-1 (NC_021482), a rodent-borne parechovirus isolated in
Central Africa. Two HPeV strains HPeV2 (AJ005695.1) and HPeV4 (AB433629.1), chosen
from the available HPeV strains as representative of the genetic diversity of Parechovirus
A, were included as outgroups. A pairwise comparison of the 3Dpol nucleotide sequences
was performed within and between the clusters resulting from the phylogenetic analysis.

2.6. Network Analysis Using the 5′-UTR

To minimize the homoplasy masking phylogenetic patterns in these short, but variable
sequences, noted by [25], we performed a network analysis of a subset of the 5′-UTR haplo-
types (137 nt) from geographical areas where sequences from multi-species small mammal
communities were available, i.e., northern Italy (TN, SO, BS, LC and PV sites; N = 40 se-
quences, five species including Cricetidae/Arvicolinae, Muridae, Sciuridae and Soricidae)
and Finnish Lapland (PJ and KJ sites; N = 18 sequences, five species of Arvicolinae) (see
Figure 1 for sampling sites). The list of samples used can be found in Supplementary
Table S3. The two networks were generated using TCS [56] and visualized with PopArt
(http://popart.otago.ac.nz) accessed on 3 April 2020.

http://www.datamonkey.org
http://www.datamonkey.org
http://popart.otago.ac.nz
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Figure 1. Map of sampling sites in Europe where LV sequences analyzed in this paper were detected.
Numbers match those in Table S1. Number: nearest location, country (acronym) are: 1: Kilpisjärvi,
Finland (KJ); 2: Pallasjärvi, Finland (PJ); 3: Harads, Sweden (HA); 4: Haparanda, Sweden (HP); 5:
Fredrika, Sweden (FE); 6: Umeå coast, Sweden (UM); 7: Gnarp, Sweden (GN); 8: Enånger, Sweden
(EN); 9: Tierp, Sweden (TI); 16: Weissach, Germany (WE); 18: Fugelka, Slovakia (FU); 19: La Venotiere,
France (LA); 22: Mignovillard, France (MI); 24: Brescia, Italy (BS); 25: Pavia, Italy (PV); 26: Sondrio,
Italy (SO); 27: Trento, Italy (TN); 28: Lecco, Italy (LC). Sites with numbers 10–15, 17, 20, 21, 23 and 29
are not shown here, as no LV RNA was detected in animals from these sites.

3. Results
3.1. Genotyping Using the VP1 Region

A total of 90 samples from 12 mammal species and nine countries were analyzed
in this study (Figure 1). We were able to amplify partial VP1 sequences from 21 bank
vole individuals and three field vole individuals (Microtus agrestis; Table 1). Single LV
variants were found in each vole. Based on a 75% nt sequence identity and 88% amino acid
sequence identity (1 minus p-distances), nine VP1 genotypes were identified (Figure 2). Nt
sequence identities ranged from 59.7 to 75.6% (inter-genotype identity) and 76.6 to 100%
(intra-genotype identity), while amino acid sequence identities ranged from 56.9 to 87.5%
and 93.9 to 100%, respectively. Although the interval between the highest intra-genotype
and lowest inter-genotype nucleotide sequence identity is narrow (75.64 vs. 76.59%), the
gap between the two groups defined by amino acid sequence similarity is more clear-cut
(87.53 vs. 93.89%), and no value of inter-genotype amino acid sequence identity exceeds
the threshold of 88%.
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Table 1. List of LV RT-PCR-positive rodent samples from Europe with sequences available for
analysis 1, including geographical origin, VP1 genotype and 3Dpol phylogenetic subgroup.

Sample Number 2 Species Site 3 Country VP1 Genotype 4 3Dpol Subgroup 5

1-Ma-PJ-FI 6 Microtus agrestis PJ Finland 7 Ma
2-Ma-PJ-FI 6 Microtus agrestis PJ Finland 7 ND 7

3-Ma-PJ-FI 6 Microtus agrestis PJ Finland 7 Ma

1-Mg-PJ-FI 6 Myodes glareolus PJ Finland ND Mg C
2-Mg-PJ-FI 6 Myodes glareolus PJ Finland 8 Mg C
3-Mg-HA-SE Myodes glareolus HA Sweden ND Mg C
4-Mg-HP-SE Myodes glareolus HP Sweden 1 Mg A
5-Mg-FE-SE Myodes glareolus FE Sweden 1 ND

6-Mg-UM-SE Myodes glareolus UM Sweden 1 Mg A
7-Mg-UM-SE Myodes glareolus UM Sweden 1 ND
8-Mg-UM-SE Myodes glareolus UM Sweden 1 Mg A
9-Mg-UM-SE Myodes glareolus UM Sweden 1 Mg A

10-Mg-UM-SE Myodes glareolus UM Sweden 8 Mg C
11-Mg-GN-SE Myodes glareolus GN Sweden 1 Mg A
12-Mg-GN-SE Myodes glareolus GN Sweden 1 Mg A
13-Mg-EN-SE Myodes glareolus EN Sweden 2 Mg A
14-Mg-TI-SE Myodes glareolus TI Sweden 1 ND

15-Mg-WE-DE Myodes glareolus WE Germany 1 Mg B
16-Mg-WE-DE Myodes glareolus WE Germany ND Mg B
17-Mg-FU-SK Myodes glareolus FU Slovakia 1 ND
18-Mg-MI-FR Myodes glareolus MI France 8 Mg C
19-Mg-LA-FR Myodes glareolus LA France 9 Mg C
20-Mg-LA-FR Myodes glareolus LA France 9 Mg C
21-Mg-SO-IT 6 Myodes glareolus SO Italy 9 ND
22-Mg-SO-IT 6 Myodes glareolus SO Italy 9 Mg C
23-Mg-TN-IT 6 Myodes glareolus TN Italy 8 Mg C
24-Mg-BS-IT 6 Myodes glareolus BS Italy 9 ND

1 For VP1 and 3Dpol analysis; additional samples for 5′-UTR analysis listed in Supplementary Table S3. 2

Abbreviations (also used in subsequent Figures) determined by: ID number, species, sampling site (see Figure 1),
country code. Ma: Microtus agrestis; Mg: Myodes glareolus. 3 Listed in order from north to south; for abbreviations
see footnote Figure 1. 4 See also Figure 3; genotypes 1 and 2 previously noted in [20,32]. 5 A–C represent different
Mg clusters. See also Figure 4. 6 Samples also used to generate 5′-UTR sequences for network analysis. 7 ND: not
determined, i.e., a sequence could not be generated from this sample for this locus.
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and mean values of inter- and intra-genotype identity (and range) of nt and amino acid sequences 1. 1 Genotype 1:
87-012 (GenBank acc. no.: AF327920.2) and 174F (AF327921.2); genotype 2: 145SL (AF327922.2), 340 (KR045607.1) and
342 (KR045608.1); genotype 3: M1146 (AF538689.1); genotype 4: 64-7855 (EU854568.1); genotype 5: FUZ1 (LC133331.1);
genotype 6: RtMrut-PicoV/JL2014-2 (KY432929)): (see Table 1). For genotypes 3, 4, 5 and 6, intra-genotype values are
lacking because genotypes were represented by a single sequence.

A total of 11 VP1 sequences, nine from Sweden (sites: HP, FE, UM, GN, TI), one from
Germany (WE) and one from Slovakia (FU) coincide with previously reported VP1 geno-
type 1 from Sweden (Table 1) [20]. Only one sample, collected in Sweden (EN), matched the
previously noted genotype 2 (also from Sweden) [20,32]. None of our sequences matched
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genotypes 3 or 4 (originally identified in voles from the USA) [31,33], genotype 5 (from
birds in Japan) [34] or genotype 6 (from northern red-backed vole in China) [35]. In addi-
tion, a new VP1 genotype, genotype 7, was shared by three field voles captured in Finland
(site PJ). New genotype 8 was found in four bank voles, one each from Finland (PJ), Sweden
(UM), Italy (TN) and France (MI). New genotype 9 was identified in bank voles sampled in
Italy (one from BS and two from SO) and France (two from LA).

Several pairs of sequences approach the 75 and 88% genotype cut-offs for nt and
amino acid sequence identity: two variants of genotype 2 have similar nt sequences to
two variants of new genotype 8 (genotype 2: 13-Mg-EN-SE vs. genotype 8: 2-Mg-PJ-FI:
75.6%, and genotype 2: strain 340 (Genbank acc. no. KR045607.1) vs. genotype 8: 18-Mg-
MI-FR: 75.3%). The three variants of genotype 7 (1-Ma-PJ-FI, 2-Ma-PJ-FI and 3-Ma-PJ-FI)
are equally similar to one variant of new genotype 9 (22-Mg-SO-IT; 75.6%). In addition,
amino acid sequence identity values between genotypes 2 and 8 (85.5%, 86.3% for the
two comparisons above, respectively) and genotypes 7 and 9 (83.1%) are lower than 88%.
Therefore, the genotype pairs 2/8 and 7/9 could be considered sister genotypes.

3.2. Phylogeny of the VP1 Region

Both ML and BI algorithms provided an identical tree topology of VP1 nucleotide
sequences with highly supported nodes (Figure 3), confirming the genotyping based on
p-distances as described in the previous paragraph. The topology revealed a star-like tree,
with long basal branches. Both algorithms generated three clusters including genotypes 1
and 5, 2 and 8, and 7 and 9. Genotypes 1 and 8 also show intra-genotype bifurcation, with
differentiation between sequences from northern (VP1 genotype 1a; see also Table 1) and
central (VP1 genotype 1b) Europe. Similarly, genotype 8 shows differentiation between
northern (VP1 genotype 8a) and southern (VP1 genotype 8b) variants.
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3.3. Molecular Analysis of VP1 Sequences

Neither FEL nor MEME detected sites under positive selection. TreeSAAP only identi-
fied one property under positive destabilizing selection (Equilibrium constant: ionization of
COOH; category 8) with a Z-score higher than the threshold 3.09, and four properties under
conservative selection (Beta-structure tendencies, Mean root square fluctuation displacement,
Total non-bonded energy; category 1, Power to be at the middle of alpha-helix; category 2) with a
statistical support (Z-score) above the threshold of 3.09 (Figure 4). Residues affected by
destabilizing selection and conservative selection are shown in Supplementary File S1.
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3.4. Phylogeny of 3Dpol Region

We sequenced 3Dpol fragments of LV strains from 18 bank voles and two field voles
(Table 1), with each individual carrying a single LV variant. Both phylogenetic methods
ML and BI provided the same cladogram (Figure 5). All known LV strains clustered
separately from closely related bird Falcon/HA18_080/2014/HUN (KY645497) and rodent
SEBV-1 (NC_021482) parechovirus sequences. The four LV strains from Japan (Fuz1),
China (RtMrut-PicoV/JL2014-2) and the USA (64-7855 and M11465) formed a cluster well-
separated from that of all the European sequences with a high level of branch support
(aLRT/BPP: 0.95/1.0). Within the European sequences, the bank vole-associated LV strains
formed a monophyletic group with respect to the two field vole-associated sequences with
high support (0.96/0.84; aLRT/BPP).
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outgroups: HPeV2 (AJ005695.1) and HPeV4 (AB433629.1). The three Mg clusters are named A, B and C. Samples are
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There were three main branches within the clade containing the bank vole sequences
(labelled subgroups Mg A, B and C in Figure 5). The subgroups were all equally related to
each other and were well-supported (aLRT/BPP: 0.99/0.87, 1.00/1.00, 0.7/0.8). Subgroup
Mg A contained our sequences from Sweden, as well as previously published sequences
belonging to VP1 genotypes 1 and 2 (Table 1). Subgroup Mg B is characterized by two
variants from Germany, with one from genotype 1 (VP1 of the second variant was not
generated; Table 1). Subgroup Mg C is characterized by sequences from bank voles from
different sites across Europe: Finland (PJ), Sweden (HA and UM), Italy (TN and SO), and
France (LV and MI). The variants belonging to this subgroup had sequences matching VP1
genotypes 8 and 9 (Table 1).

3.5. Molecular Analysis of 3Dpol Region

Pairwise comparisons of the 3Dpol nt sequences revealed that the overall mean diver-
gence was 0.150 with a maximum value of 0.248 and a minimum value of 0.002 (Figure 6).
Among the bank vole- and field vole-associated clusters, these values varied from 0.153 to
0.193, while between bank vole clusters, the intra-cluster values ranged from 0.002 to 0.121
and inter-cluster values from to 0.130 to 0.176 (grey bars in Figure 6). The mean divergence
within subgroups Mg A and Mg C was comparable (0.79 and 0.77, respectively), as was the
range of variability (Mg A: 0.002–0.119; Mg C: 0.013–0.121). Subgroup Mg B has the lowest
divergence (0.034), but this cluster only has two members, both from the same sampling
site (Germany: WE).
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3.6. Networks of 5′-UTR Haplotypes

The TCS network of Finnish haplotypes had a central node with five clusters including
variants associated with either bank vole, field vole, northern red-backed vole or wood
lemming (Myopus schisticolor); and two clusters were associated with variants for Norway
lemming (Lemmus lemmus; Figure 7A). For Italy, the majority of 5′-UTR haplotypes origi-
nated from bank voles and the network showed no particular pattern according to host
species or sampling site (Figure 7B).
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4. Discussion
4.1. LV Phylogeny and Evolution

The zoonotic potential of mammal-borne viruses has been brought to the forefront
during the current pandemic. Estimating this potential requires knowledge of genetic
diversity and host specificity. This is the first study to investigate the genetic diversity
of LV at multiple molecular markers from various wild small mammal hosts across its
geographical range. Using LV-positive samples from [25], we sequenced two additional
markers (VP1 and 3Dpol) in order to assign variants to known or new genotypes, and to
reconstruct how these variants are phylogenetically related and distributed across Europe.
Host specificity is investigated through a phylogenetic analysis of the 5′-UTR haplotypes
in two small mammal communities.

Members of the Picornaviridae family are known to have high sequence variability in
the part of the genome encoding the capsid protein VP1, responsible for the host immune
response [57–59], as also shown for LV [31]. Here we generated VP1 sequences to classify
new LV VP1 variants. Using standard cut offs for nt (75%) and amino acid (88%) sequence
identity, we confirmed the presence of genotypes 1 and 2 in Swedish bank voles, as noted
by previous authors [20,32], as well as in Germany and Slovakia. We also confirmed the
lack of genotypes 3 and 4 (USA; voles), 5 (Japan; birds), and genotype 6 (China; northern
red-backed vole) in Europe (Figure 3). We named two other new VP1 genotypes in our
European bank vole samples as genotype 8 (from Finland, Sweden, France, and Italy) and
genotype 9 (from France and Italy). We also noted genotype 7 in Finland that was only
found in field voles.

The phylogeny of 3Dpol variants (Figure 5) mirrors the VP1 genotype distribution
with sequences from China, Japan and the USA clustering outside the European samples,
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while within the European samples, a field vole LV cluster and three closely related bank
vole-associated LV lineages are present. However, the phylogeny of VP1 sequences is
more complex. For example, genotypes 1 and 5 are closely related in the VP1 tree, but
paraphyletic in the 3Dpol tree (Figure 3) and not geographically sympatric; genotype
7 (from field vole) and 9 (from bank vole) are related in the VP1 tree (Figure 2), but
found in genetically distant clusters defined by host species in the 3Dpol tree (Figure 5).
This discordance is probably due to evolutionary processes occurring in the VP1 region.
Firstly, in the VP1 sequences presented here, the nucleotide sequence identity is higher
than the amino acid sequence identity (59.74 and 56.92%, respectively), suggesting that
there is a higher frequency of non-synonymous substitutions compared to synonymous
ones between genotypes than within genotypes. Such a ratio is required to maximize
the divergence of biochemical properties of amino acid residues of the capsid proteins;
this variation modifies epitopes in an attempt to circumvent host immune responses.
If a constant mutation rate, generally high in picornaviruses [59,60] is assumed, with
frequent production of deleterious or lethal mutations, as noted for RNA viruses [61], the
phylogenetic similarity of some pairs of VP1 genotypes can be explained by purifying
selection, which is recurrent along the LV genome as observed by [32]. This is confirmed by
our TreeSAAP analysis (Figure 4), which showed that where destabilizing positive selection
operates, purifying selection appears to act to maintain the functionality of the protein.

Several LV genotypes show signs of continuing evolution and divergence. The star-like
phylogeny of VP1 and the unresolved phylogeny of bank vole-derived LV 3Dpol sequences
suggest that LV lineages occur independently rather than being derived from each other.
In addition, genotype 1 was identified in many bank vole samples from Sweden, but also
from two samples in Germany and Slovakia: while the mean nt and amino acid sequence
identities of this genotype are 90.12 and 99.11%, respectively (Figure 3), the two central
European samples have a much lower nt sequence identity with respect to the mean value
of identity of VP1 genotype 1: 79.42% (15_Mg_WE-GE) and 80.60% for (17_Mg_FU-SK),
close to the cutoff threshold (75%) for defining a new genotype. However, the amino
acid sequence identity within the genotype is 97.76% for both the samples, suggesting
that the nucleotide sequence differences are due to genetic drift in geographic isolation.
Genetic drift due to geographical distance between genotype distributions could also
explain the discrepancy between a low value of nucleotide sequence identity (82.52%),
and relatively high amino acid sequence identity (96.41%) for genotype 8. Interestingly,
the alignment of VP1 amino acid sequences (see Supplementary File S1) indicates highly
variable regions, which might be conceived as putative epitopes that characterize each
genotype serologically [31,62]. Because some pairs of genotypes (genotypes 1 and 5;
genotypes 2 and 8) have similar amino acids in this region, they may also be serologically
similar.

Recombination is known to generate discordant cladograms when different segments
of viral genomes are analyzed [31,63]. The occurrence of recombination between variants
is frequent in picornaviruses [64] including those in the genus Parechovirus [37,65–68]. In
addition, the sequences flanking the capsid-encoding region are recognized as a breaking
point in HPeV genome [69–71]. Recombination has already been hypothesized in a previous
phylogenetic analysis of LV [31]. Here, different VP1 genotypes and 3Dpol clusters present
in the same individual also suggest recombination event(s) in LV evolution. For example,
in bank vole A cluster (Mg A; Figure 5), there were animals with both genotypes 1 and 2
(Table 1); within the Mg C cluster, both genotypes 8 and 9 were detected. Since genotype
8 is rather widespread, and genotype 9 is restricted to southern Europe, recombination
may have occurred in the latter region. However, we did not find recombinants between
genotype 1/Mg A and genotype 8/Mg C, which were both found in Umeå; this absence
may indicate incompatibilities of certain recombinants, or alternatively, small sample size,
or recent contact between the two groups.
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4.2. Host Specificity

Knowledge of the host range of a pathogen and monitoring or predicting processes
of adaptation to new hosts is an important issue in molecular epidemiology, also because
emerging pathogens are often characterized by a shift in host range or a spillover into
other hosts. Although many studies regarding LV focused only on bank voles [20,26,27]
and LV has been shown to be common in wild bank vole populations [25], it has also been
found in 11 other hosts [25,72,73]. Thus, additional rodent species, particularly voles in
the Arvicolinae subfamily, could play a role in the circulation of LV in multi-host small
mammal systems.

There are several indications that LV variants are host-specific. The Finnish network
of 5′-UTR sequences (Figure 7A) suggests several species-specific haplotypes in field voles,
Norwegian lemmings and bank voles. The 5′-UTR tree in Figure 7A and the monophyly of
the bank vole variants in the 3Dpol tree (Figure 5) indicate that there may be some bank
vole-specific LV variants. However, the case for host-specific LV haplotypes is strongest for
field voles, since only field voles carried VP1 genotype 7 (Table 1) and certain 3Dpol variants,
which were phylogenetically distant from other clusters (Figure 5), although pairwise p-
distances (Figure 6) indicate that differentiation between host-specific haplotypes is not
yet complete. The possibility of lemming-specific haplotypes indicated in Figure 7A is
strengthened by the result that one haplotype is found in site PJ, but also in KJ, where
bank voles are not present [74], hence the maintenance of this haplotype cannot be due to
recent spillover, although we cannot exclude the chance that LV presence in this population
was initiated by spillover from bank voles in the more distant past. The fact that we were
not able to obtain additional sequences of VP1 and 3Dpol from other species including
humans, with the exception of bank vole or field vole, despite considerable effort by several
laboratories using various direct and indirect techniques [24], may also be indicative of
host-specific variants that could not be amplified by the primer pairs used here due to
substantial divergence, even though the primers were degenerated. This “phylogenetic
distance effect” [75] has been noted as especially relevant for amplifying VP1 sequences [76].
Forbes et al. [36] attributed the apparent lack of LV RNA in seropositive field voles as
a consequence of events of spillover from sympatric bank voles, but here our findings
demonstrate that field vole-specific variants could be a more consistent explanation.

Interestingly, we observed co-presence of two LV clusters in northern Sweden (sites:
HA, UM), where genotype 1/3Dpol Mg A and genotype 8/3Dpol Mg C both occur; north
and south of this area, only one of the two occurs, respectively. Since a contact zone between
two geographic lineages of PUUV, a bank vole-borne virus, occurs ca. 200 km south of
the UM area [77], the distribution of LV clusters may reflect the historical colonization
of Fennoscandia by the bank vole, along both northern and southern routes, as shown
by the distribution of mitochondrial DNA lineages [78]. However, at the European level,
the rapid evolution and wide host range of LV might not allow the comparison of host-
virus phylogenies, as observed for PUUV, even though this virus has a single rodent host
species [79,80].

In northern Italy, the haplotype shared by one individual of yellow-necked mouse
(TN) and one individual of house mouse (Mus musculus) (BS), divergent from other 5′-UTR
sequences by 17 mutations, may represent a murid-associated lineage (Figure 7B). However,
in general, the association of 5′-UTR haplotypes and host species was not observed in
this small mammal community (Figure 7B), even in endemic species such as the Valais
shrew [81], suggesting that LV spillover from a reservoir host such as the bank vole to
other species is possible, a common phenomenon in RNA viruses [61]. Salisbury et al. [73]
also observed in the UK that the bank vole, field vole, house mouse and wood mouse
(Apodemus sylvaticus) share some of the same LV variants. Even in Finland, the northern
red-backed vole and wood lemming shared haplotypes (Figure 7A). Forbes et al. [36]
hypothesized a major role of bank vole in maintaining a high prevalence of LV in sympatric
species. Bank vole may also play a major role in our study area, since this host species is
present in all the Italian sites analyzed here, and populations are known to be genetically



Viruses 2021, 13, 1317 14 of 18

connected across this geographical area [82,83]. The reason for the contrasting patterns of
specificity in Finnish and Italian rodent communities is unclear. Little is known regarding
the transmission of LV among host individuals, although an oral-fecal route has previously
been suggested [20]. Therefore, we suggest that the spread of LV might be connected with
host interactions and dispersal, as well as abiotic factors, as previously noted in [25]. Larger
sample sizes of alternative potential host species, including birds, are needed in order to
confirm their role as reservoirs and in LV transmission.

5. Conclusions

LV is a widespread, rapidly evolving RNA virus present in numerous small mammal
species across nine European countries. The distribution of genetic variants from three
different segments of the genome (VP1, 3Dpol and 5′-UTR) suggest that LV evolution is
ongoing and affected by genetic drift, purifying selection, recombination events, spillover
and host evolutionary history. Some host specificity also appears to have evolved or is
evolving. Although recent research has indicated that LV is not associated with human
disease and is considered to have a low zoonotic potential, its widespread geographical
and host distribution in natural populations of well-characterized small mammals could
make it useful as a model for studying RNA virus evolution and transmission.
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