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ABSTRACT
Very few spatially explicit tree models have so far been constructed 
with a view to project remote-sensing data directly. To fill this gap, 
we introduced the prototype of the CanopyShotNoise model, an 
individual-based model specifically designed for projecting airborne 
laser scanning (ALS) data. Given the nature of ALS data, the model 
focuses on the dynamics of individual-tree canopies in forest ecosys-
tems, that is, spatial tree interaction and resulting growth, birth and 
death processes. In this study, CanopyShotNoise was used to analyse 
the long-term effects of the processes crown plasticity (C) and super-
organism formation (S) on spatial tree canopy patterns that are likely 
to play an important role in ongoing climate change. We designed 
a replicated computer experiment involving the four scenarios C0S0, 
C1S0, C0S1 and C1S1 where 0 and 1 imply that the preceding process 
was switched off and on, respectively. We hypothesized that C and 
S are antagonistic processes, specifically that C would lead to increas-
ing regularity of tree locations and S would result in clustering. Our 
simulation results confirmed that in the long run intertree distances 
decreased and canopy gap size increased when superorganisms 
were encouraged to form. At the same time, the overlap and packing 
of tree crowns increased. The long-term effect of crown plasticity 
increased the regularity of tree locations; however, this effect was 
much weaker than that of superorganism formation. As a result, gap 
patterns remained more or less unaffected by crown plasticity. In 
scenario C1S1, both processes interestingly interacted in such a way 
that crown plasticity even increased the effect of superorganism 
formation. Our simulation results are likely to prove helpful in recog-
nizing patterns of facilitation with ongoing climate change.
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1. Introduction

Canopies are the photosynthetically active macro-organs of trees. The assimilating leaves 
are usually organized in large clusters, which are often referred to as crowns or canopy. 
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Growing large stems and pushing crowns upwards has been a key evolutionary strategy 
that trees have adopted in contrast to other plants (Falster and Westoby 2003). 
Understanding gap dynamics and associated light environments, nutrient and water 
cycling throughout the vertical canopy is, therefore, key to studying forest ecosystem 
processes and patterns. Ongoing climate change has been found to affect forest canopies 
and, therefore, models focusing on tree crown patterns will contribute to a better under-
standing of climate-induced effects and their distribution in space (Nakamura et al. 2017; 
Senf et al. 2018).

Recent research has also highlighted that trees are less sessile than we often believe 
(Purves, Lichstein, and Pacala 2007; Schröter, Härdtle, and von Oheimb 2012; Uria-Diez 
and Pommerening 2017; Vovides et al. 2018). Particularly in forest stands, they often 
adjust the shape and locations of their crowns in an attempt to optimize the assimilation 
gain. Whilst in the past, spatially explicit research in forest ecology has almost exclusively 
focused on stem-centre coordinates, new research appears to suggest that important 
ecological signals may have been missed (García 2014): Where in former times – when 
using stem-centre coordinates – it was, for example, concluded that observed tree- 
location patterns were close to complete spatial randomness, inhibition processes had 
in fact already started leading to regularly dispersed trees or overdispersion (Gavrikov, 
Grabarnik, and Stoyan 1993). The definition of stem-centre coordinates as traditional 
spatial reference of trees has originally stemmed from practice in forest inventory 
(Gregoire and Valentine 2008). Here, a definition was necessary to decide which trees 
were included in inventory plots and stem-centre coordinates were taken as convenient 
reference to meet this requirement (Pommerening and Sánchez-Meador 2018). The same 
spatial reference was later adopted in spatial ecology. However, these coordinates are 
conservative, since tree stems can hardly move, unless soil movements (e.g. landslides) or 
excessive mortality cause spatial tree patterns to change considerably. By contrast, tree 
crowns are very dynamic and crown-based coordinates can considerably deviate from 
stem-centre coordinates, a phenomenon which is often termed crown plasticity. Some 
crown movements are caused by environmental conditions (Vovides et al. 2018) such as 
wind and snow or by topography (slopes); however, to a large extent they are due to the 
struggle for light and due to physical forces between the tree crowns. Over the last two 
decades, average differences between stem-centre and crown-based coordinates of 2– 
4 m have been reported (Gavrikov, Grabarnik, and Stoyan 1993; García 2014; 
Pommerening and Uria-Diez 2017; Schröter, Härdle, and von Oheimb; Vovides et al. 
2018). Such differences can considerably influence the spatial pattern of forests so that 
the results obtained from using only stem-centre coordinates in the spatial analysis can 
lead to inadequate conclusions.

Apart from crown plasticity, there is another important process influencing the spatial 
patterns of tree locations in forest stands. Research in belowground forest ecology has 
suggested that trees often form root connections through mycorrhiza networks and 
through simple grafting (Gorzelak et al. 2015). This can potentially lead to 
a physiological connection or even union that could be termed ‘superorganism’. The 
formation of superorganisms is an extreme form of mutualism with a benefit for all trees 
involved (Perry, Oren, and Hart 2008). Mutualism is a form of facilitation that according to 
the stress-gradient hypothesis is said to increase when biotic and abiotic stress increases 
(Bertness and Callaway 1994). The formation of superorganisms is supported by the 
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frequent perception of two or more individuals sharing a common tree crown rather than 
shying away from each other (Till-Bottraud, Fajardo, and Rioux 2012). How crown plasti-
city and the formation of superorganisms interact is largely uncertain and dynamic tree 
models such as CanopyShotNoise can contribute to a better understanding of how these 
processes potentially influence spatial tree patterns of forests. For developing and apply-
ing such a dynamic model, spatially explicit time series involving tree locations and crown 
shapes are required.

Remote-sensing methods have the potential to provide such data efficiently for large 
areas. In particular, Airborne Laser Scanners (ALS) with their ability to penetrate the forest 
canopy have been successfully used to map individual-tree locations and crown shapes 
(Xiao et al. 2019) and in many cases even time series based on repeated airborne surveys 
are available that span over a decade or more (Bolton et al. 2018). For example, a multi- 
year time series between 2006 and 2014 including four airborne LiDAR (Light Detection 
and Ranging) acquisitions is available for Queen Elizabeth II Forest Park, Scotland, UK. 
Recently such data have also been made available from drone-based photogrammetry 
and laser scanning (Iglhaut et al. 2019), which can be acquired at high temporal frequen-
cies, albeit over small spatial extents.

This availability of high-resolution point cloud data from forest canopies has given 
rise to a wide range of applications in forest and ecological modelling, which largely fall 
into two main groups i) the area-based approach (ABA) breaking down the total area of 
a forest stand into regular grid cells and linking point cloud metrics of the cells with 
target variables using parametric and non-parametric models, and ii) the individual-tree 
detection (ITD) approach segmenting individual tree crowns in the point cloud for which 
a number of metrics (e.g. crown area, tree height, crown volume) are calculated as 
shown in Figure 1. ABA has been widely applied in forest ecology (see, for example, 
Heidrich et al. 2020; Jung et al. 2012; Müller et al. 2009) to estimate forest stand 
characteristics (see Shang et al. 2017; Zhang et al. 2019) and is often employed in the 
context of national forest inventories (Næsset et al. 2014; Nilsson et al. 2017; Magnussen, 
Nord-Larsen, and Riis-Nielsen 2018; White et al. 2013). The method is also applied in 
forest growth and yield modelling where first stand characteristics such as total height, 
species, basal area and mean diameters are predicted from ALS metrics which then 
provide inputs to growth models that were originally not designed for remote-sensing 
data (e.g. Falkowski et al. 2010; Marczak et al. 2020; Tompalski et al. 2018). With the 
advent of enhanced methods for single tree detection (Reitberger et al. 2014; Li et al. 
2012), the number of studies that utilize individual tree information is increasing. 
However, there are only a few studies that link individual-tree crown attributes with 
models (Packalen, Pukkala, and Pascual 2020; Pascual 2021). Again very few of these 
directly employ ALS-derived tree crown shapes to model forest development (Ma et al. 
2018; Pont et al. 2021; Versace et al. 2019). To the best of our knowledge, the potential 
for the use of ALS-derived individual-tree crown or canopy metrics in dynamic forest 
models has been little explored.

Given the increasing importance of remote sensing in forest ecology and manage-
ment, it is a sensible idea to directly link individual-based tree models with single-tree 
traits derived from remote sensing to avoid the detour of data transformation and the 
associated potential loss of information in the process. This way we gain new insights on 
spatial pattern forming processes based on real-world observational data.
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The objectives of this study are (1) to propose CanopyShotNoise, a spatially explicit 
individual-based forest model, that can be parameterized based on ALS-derived single- 
tree information and project crown sizes and locations and (2) to illustrate the model’s 
capabilities for exploring the consequences of crown plasticity and of the formation of 
superorganisms compared to scenarios without these processes. We hypothesized that in 
the long term crown plasticity would lead to increasing regularity of tree locations, also 
termed overdispersal, and that the formation of superorganisms would result in clustering 
or underdispersal. This would imply that crown plasticity would leave small gaps in the 
forest stand canopy whilst with superorganism formation gaps would be markedly larger.

2. Methods

2.1. Description of the model framework

2.1.1. Interaction field and crown-diameter growth
The spatio-temporal evolution of plant patterns can be modelled accurately by spatially 
explicit individual-based models (IBM). This concept has origins in different fields of 
natural sciences including the ecological field theory (Wu et al. 1985; Miina and Pukkala 
2002), shot-noise fields in physics (Baccelli and Blaszczyszyn 2001), individual-based 
modelling (Snyder and Chesson 2004; Adams et al. 2011), competition kernels (Vogt, 

Circular model

ALS model

Tree centre

Figure 1. Example of individual-tree detection from a mixed-species forest stand including Norway 
spruce (Picea abies (L.) H. KARST.) and Scots pine (Pinus sylvestris L.) trees in 2018 at Gartow in northern 
Germany. The red lines represent the irregular crown boundaries that were detected by the segmen-
tation algorithm. The cyan lines represent circular crowns with the same areas and centre coordinates. 
The background shows a true-colour digital ortho-mosaic with a spatial resolution of 5 cm.
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Murrell, and Stoll 2010) and growth-interaction models (Renshaw and Särkkä 2001; Särkkä 
and Renshaw 2006; Cronie, Nyström, and Yu 2013; Häbel, Myllymäki, and Pommerening 
2019). In these models, every plant of a given community emits a signal, which is largest at 
or near the location of a plant and decreases with increasing distance from that plant. 
These local signals are described by probability density functions, the so-called kernel 
functions. They express the contribution of a plant to the interaction field. The signals can 
be aggregated additively or multiplicatively at any point in the observation window 
leading to interaction fields, which are characteristic of these model approaches. The 
interaction field obtained from aggregating or superimposing individual plant signals 
largely drives the ecological processes of the model such as interaction, growth, survival 
and birth.

The starting point for our new modelling framework was the TreeShotNoise model 
documented in Pommerening, LeMay, and Stoyan (2011), Pommerening and Särkkä 
(2013), Häbel, Myllymäki, and Pommerening (2019) and Pommerening and Grabarnik 
(2019, Chapter 5.2.10). Since the new modelling framework has a different focus and is 
based on different principles, we refer to the new model as CanopyShotNoise through-
out this text for better discrimination. The main mark, that is, the key tree variable, 
modelled and projected in CanopyShotNoise is tree crown diameter, w, thus resulting in 
simplified, circular crown projection areas. In future model applications, it is naturally 
also possible to consider irregular crown shapes, since the necessary information is 
provided by ALS remote sensing. The general concept of the model can be adapted to 
any vegetation that forms canopy clusters such as trees and shrubs. We included total 
tree height as a secondary mark, as this information is often useful in follow-on 
analyses and tree heights can be measured with high precision at low cost using ALS 
data.

In the model, we considered relative growth rates (RGR) of crown diameters as 
response variables. These are estimated for updating crown diameters and total heights. 
In our approach, mean periodic RGRs are computed as 

�ri;t ¼
logewi;t � logewi;t� Δt

Δt
(1) 

following conventions in general plant science (Pommerening and Grabarnik 2019, 263). 
wi,t denotes crown diameter of tree i at current time t and wi;t� Δt is crown diameter 
measured at time t � Δt in the past. In the case of annual time steps as used in 
CanopyShotNoise, Equation (1) simplifies because Δt ¼ 1. In our model, we considered 
a transformation of RGR, the growth multiplier, Mi,t, which is obtained from Equation (1) by 
calculating Mi;t ¼ e�ri;t , assuming again annual time steps (Pommerening and Grabarnik 
2019, 264). The growth multiplier is a function of relative growth rate and defined as the 
ratio of a particular plant size characteristic at different times, that is, in our case Mi;t ¼

wi;t
wi;t� 1 

for all times t (Wenk 1972). Circumstances where Mi;t > 1 indicate growth, the 

condition Mi;t ¼ 1 occurs where there is no growth and with Mi;t < 1 the corresponding 
plant size characteristic shrinks. All these three conditions apply in CanopyShotNoise. The 
potential growth multiplier of tree crown diameter was modelled using a power function 
(Pommerening and Grabarnik 2019, 287; Figure 2). 
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Mpot
i;t ¼ k � w� q

i;t (2) 

The power function of Equation (2) is a function of the current size of the tree crown, wi,t. 
Mpot

i;t is the potential growth multiplier of the tree-crown diameter and k and q are the 
model parameters to be estimated from mean periodic RGR measured in repeated 
surveys, see Equation (1). In future versions of the model it would also be possible to 
estimate Mpot

i;t from tree physiology parameters and environmental covariates.
A key element of the CanopyShotNoise model is the aforementioned shot-noise inter-

action field. This interaction field is the result of additively aggregated interaction signals. 
Following the shot-noise methodology outlined in Häbel, Myllymäki, and Pommerening 
(2019), an interaction function Hi,t (Equation 4) aggregates interaction signals emitted by 
each tree j at the location of subject tree i. The interaction signals are modelled using 
a Gaussian kernel density function that depends on the distance from the subject tree but 
also on its mark (Figure 3(a), Equation 3). In contrast to the Gaussian kernel used in 
TreeShotNoise (Häbel, Myllymäki, and Pommerening 2019), wα

j;t , the maximum value of the 
interaction signal, is continued throughout the extent of the circular crown projection 

Figure 2. Annual growth multiplier Mi;t pooled from a total of 17 F. sylvatica plots in the Swiss forest 
regions of Aarburg, Concise, Embrach, Zofingen and Zollikon. The red curve represents potential tree 
crown growth multiplier using Equation (2) and quantile regression (Cade and Noon 2003) with 
τ ¼ 0:975.
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area of a given tree and only decreases beyond the boundaries defined by the crown 
radius (Berger and Hildenbrandt 2000): 

pj;t �i;t
� �

¼

wα
j;t; for 0 � distj �i;t

� �
< wj;t

2

wα
j;t � e

�
δ� distj �i;tð Þ�

wj;t
2

� �2

wβ
j;t

� �

;

otherwise

8
>><

>>:

(3) 

The Gaussian kernel function has three model parameters α; β and δ. Increasing the value 
of α increases the strength of the interaction signal, whilst β and δ affect the range of the 
interaction signal (Pommerening, LeMay, and Stoyan 2011). At any location �t in the 
observation window, the sum Ht �tð Þ ¼

P
pj;t �tð Þ defines the shot-noise field at time 

t (Figure 3(b)). In CanopyShotNoise, the tree locations are essentially crown-centre coordi-
nates and can potentially change from year to year. The interaction function Hi,t describ-
ing the interaction between trees j and tree i is the sum of local interaction effects pj;t �i;t

� �

divided by the interaction signal value of the subject tree at its own location: 

Hi;t ¼
X

j�i

pj;t �i;t
� �

wα
i;t

(4) 

Dividing by wα
i;t scales, the strength of interaction according to the crown size of subject 

tree i. Finally, following Häbel, Myllymäki, and Pommerening (2019), interaction is stan-
dardized as in Equation (5). 

Figure 3. (a): Gaussian kernel and local effect according to Equation (3) with α ¼ 0:24782; β ¼
1:60597 and δ ¼ 0:07471 for F. sylvatica trees with a crown diameter wj,t of 2 (blue), 5 (red) and 
10 m (black). The unit of distance distj �tð Þ is metres. (b): shot-noise field of a model simulation of 
F. sylvatica in a 100 × 100 m observation window after 34 years. The union of filled grey circles 
represent tree crowns and the black dots denote the tree locations. The colours indicate the different 
intensities of the shot-noise field. The largest field values are indicated by yellow and orange colours, 
the lowest by blue colours.
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H�i;t ¼ 1 � e
ν

Hi;t (5) 

In Equation (5), ν is another model parameter. The estimated growth multiplier of the tree 
crown mark can now be simply calculated as 

Mi;t ¼ Mpot
i;t � H�i;t (6) 

Crown diameter wi;t� 1 from year t � 1 is then updated by multiplication with Mi,t: 

wi; ¼ Mi;t � wi;t� 1 (7) 

Finally total tree height hi,t of tree i at time t is calculated from crown diameter through 
the crown spread ratio, that is, wi;t

hi;t 
and the Michaelis-Menten saturation model (Michaelis 

and Menten 1913; Bolker 2008, 77ff.): 

hi;t ¼
bþ wi;t

a
: (8) 

Equation (8) was motivated by the relationship between total tree height and crown 
diameter found in the Swiss F. sylvatica data, see Section 2.2. hi,t played a minor role in this 
study, but can be important information in other contexts.

2.1.2. Mortality
The mortality model was adopted from TreeShotNoise as described in Häbel, Myllymäki, 
and Pommerening (2019) and Pommerening and Grabarnik (2019, Chapter 5.2.10). 
Mortality here depends on the five-year growth performance that in turn is determined 
by a combination of potential crown growth and interaction. The aforementioned crown 
growth multiplier Mi,t is interpreted as an indicator of growth performance. For a given 
tree i, a memory function aggregates and updates the growth multipliers Mi,t of the last 
five years: 

M 5ð Þ
i;t ¼ Mi;t �Mi;t� 1 � . . .�Mi;t� 4 (9) 

If the simulated five-year growth multiplier falls short of a critical value, the tree dies. This 
critical value M 5;critð Þ

i;t is dependent on crown size and is calculated from the power function 

M 5;critð Þ

i;t wi;t
� �

¼ ct � w� d
i;t , where c and d are model parameters. The power function takes 

the dynamics of relative growth rates into account, specifically the size influence leading 
to a trend where smaller plants typically tend to have large and larger plants tend to have 
small RGRs (Pommerening and Muszta 2016; Pommerening and Grabarnik 2019, 
Chapter 6). In CanopyShotNoise, model parameter ct is additionally made dependent on 
canopy cover fraction vt , that is, on the proportion of forest stand area covered by tree 
crowns (Pretzsch 2009, 267): 

ct ¼
c0 � vt

c1 þ vt
: (10) 

The canopy cover fraction vt is the grey area of united crowns in Figure 3(b) relative to the 
total area of the observation window. In Equation (10), again the Michaelis–Menten satura-
tion model is used to describe model parameter ct. The more canopy density increases the 

larger M 5;critð Þ

i;t , leading to increased mortality. However, the saturation model ensures that 
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mortality rates do not continue to increase exponentially with increasing canopy density. 

With decreasing canopy caused by mortality M 5;critð Þ

i;t decreases as well. This model compo-
nent supports the fact that in forest ecosystems light availability typically decreases as 
canopy cover fraction increases and at the same time mortality increases.

2.1.3. Birth processes
The birth process of CanopyShotNoise was modelled as an immigration-death process, 
since detailed data on seed dispersal and germination are often unavailable. The term 
immigration in our model framework therefore relates to tree saplings. In our immigra-
tion-death process, individuals arrive in observation window W at random points in time 
according to a Poisson process on [0, T] with annual intensity λB > 0 and T is the total 
simulation time (see Särkkä and Renshaw 2006). A given simulation year is considered an 
arrival year of immigrants, if a uniformly distributed random number between 0 and 1 is 
less than an exponentially distributed random number drawn for that particular 
simulation year with intensity λB. In the arrival years t1; . . . ; tNB , each existing parent tree 

contributes N Bð Þ
i;t ¼ f � π � wi;t

2

� �2immigrants, where f is the birth rate per m2 (Adams et al. 

2011; Nanos, Larson, and Millerón 2010). The N Bð Þ
t trees are assigned to random, uniformly 

distributed locations � in W (Cronie, Nyström, and Yu 2013). Crown diameters are assigned 
to these immigrants by an exponential marking model (Ho and Stoyan 2008; Myllymäki 
and Penttinen 2009) similar to Equation (13) with the difference that crown diameter is 
dependent not on local point density Λ �ið Þ but on the shot-noise field, more precisely on 

Hk ¼
X

j�i

pj �kð Þ (11) 

where �k are the locations of the tree immigrants and pj �kð Þ are the unweighted local 
effects from Equation (3). The resulting interaction values are a function of local canopy 
density. The total tree heights of the immigrants are again obtained from crown dia-
meters based on Equation (8).

Finally, the new immigrants are thinned by the shot-noise field. The thinning mimics 
immediate seedling death shortly after germination, hence the term immigration-death 
process. For this, Equation (11) is again calculated for all immigrants and the Hk values are 
standardized based on both established trees and new immigrant trees through the  

well-known equation H�k ¼
Hk;t � min Hk;tð Þ

max Hk;tð Þ� min Hk;tð Þ
. Immigrant trees die instantly, if H�k is larger   

than a random number drawn from a uniform distribution between 0 and 1. The values of 
Mi;t;Mi;t� 1; � . . . ; �Mi;t� 4 of the survivors are initialized with a value of 1.5 each and the 
general mortality model as described in Section 2.1.2 starts to affect the immigrants along 
with all other trees in the following year.

2.1.4. Crown plasticity
A particular feature of CanopyShotNoise is to allow tree crowns to change and optimize their 
crown locations according to the shot-noise field (Figure 3(b)). The shot-noise field is 
essentially a map of local interaction intensity. As mentioned in Section 1, crown plasticity 
is quite common in nature (Uria-Diez and Pommerening 2017; Schröter, Härdtle, and von 
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Oheimb 2012; Vovides et al. 2018) and somewhat questions the use of stem-centre coordi-
nates that usually form the basis of spatial tree analyses (García 2014). We simulated crown 
plasticity in such a way that every year each tree has 100 attempts to improve its competitive 
situation by moving to a new location within a radius R around its current location. That 
location is approved as new tree location where Hk (Equation 11) is smallest. Index k here 
denotes the trial locations within circles defined by R. If no location with a smaller Hk can be 
found, the given tree remains at its current location. This crown plasticity process was 
simulated sequentially, that is, one tree at a time attempted to find a more suitable tree 
location until the whole tree list was processed.

2.1.5. Superorganisms
In CanopyShotNoise, it is also possible that trees at close proximity form a superorganism. 
Although such trees in the model retain their individual crowns, circular crown projection 
areas and coordinates as well as the opportunity to move separately, a group of trees 
acting as one superorganism ceases to compete with each other for resources. This gives 
trees that are part of a superorganism an advantage over those that continue to be 
individual, solitary trees. The cumulative growth rates of trees forming a superorganism 
are also less likely to fall below the mortality threshold M 5;critð Þ

i;t , see Section 2.1.2.
In our model, the formation of superorganisms is based on crown overlap. Crown 

overlap exists, if the sum of crown radii of a pair of trees is larger than the distance 
between them (Pommerening and Grabarnik 2019, 227, see Figure 4).

We turned this fact into a rule for the formation of superorganisms. Not considering 
time t for the ease of reading, two trees form a superorganism, if 

wi
2 þ

wj

2

distj �ið Þ
> S: (12) 

This means that the two trees satisfying Equation (12) cease to contribute to each other’s 
competition load in Equation (4). The rule described in Equation (12) implies that the ratio 
of crown-radius sum and distance must be larger than a superorganism characteristic S, 
which is another model parameter. For two tree crowns to overlap, the condition S > 1 

(a) (b)

Figure 4. Principle of crown overlap (without considering time t): tree crowns overlap (a), if 
wi
2 þ

wj

2 > distj �ið Þ, otherwise they do not (b), where w is tree crown diameter. The two crowns in 
each example are indicated by open circles. Modified from Pommerening and Grabarnik (2019, 227).
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must be satisfied. The larger S the more crown overlap is required to ‘formally’ recognize 
trees as superorganisms. The rule also allows for multiple neighbours j to form 
a superorganism with the same tree i.

In simulations, the superorganism rule often leads to small clusters of 2–4 medium- to 
large-sized tree crowns and consequently to a more compact packing of tree canopies. 
Another consequence of the formation of superorganisms is the increased survival of 
small-canopy trees under the canopy of very large trees, which can often be observed in 
nature (LeMay, Pommerening, and Marshall 2009).

2.2. Parameter estimation

CanopyShotNoise is a generic model without any particular reference to species or 
geography. In future applications of the model to specific tree populations and forest 
ecosystems, the parameterization can entirely be based on remotely sensed data or on 
a combination of remotely sensed and terrestrially measured data. For deriving suitable 
shot-noise parameters α; β; δ, a time series of remotely sensed or terrestrially measured 
data is required.

For illustrating the modelling framework in this paper, the tree crown and height 
characteristics as well as the shot-noise field were loosely based on the species European 
beech (Fagus sylvatica L.). Spatially explicit terrestrial data were gratefully obtained from 
the Swiss Federal Institute of Forest, Snow and Landscape Research (WSL). The 5591 
spatial tree records (crown radii, total tree heights and tree coordinates) were collected in 
a total of 17 plots at each of the five sites at Aarburg, Concise, Embrach, Zofingen and 
Zollikon and were used to establish growth potential parameters and the parameters of 
the shot-noise field. These time series had 4–9 re-measurements at variable survey 
intervals with an average of 7 years.

Parameter estimation largely followed Häbel, Myllymäki, and Pommerening (2019) and 
proceeded in two main steps (see Table 1). Firstly, we estimated the parameters of the 

Table 1. Main parameters of the CrownShotNoise model, their descriptions and values as used in this 
study.

Parameter Description Value

k Parameter of the power function modelling potential growth multiplier as a function of crown 
diameter, Equation (2)

1.1287

q Parameter of the power function modelling potential growth multiplier as a function of crown 
diameter, Equation (2)

−0.0387

α Shot-noise parameter scaling kernel strength (Equation 3) 0.2478
β Shot-noise parameter scaling kernel range (Equation 3) 1.6060
δ Shot-noise parameter scaling kernel range (Equation 3) 0.0747
ν Parameter used in standardizing the interaction function H�i;t (Equation 5) 96.3815
a Total tree height estimation parameter (Equation 8) 0.5697
b Total tree height estimation parameter (Equation 8) 9.1091
c0 Mortality threshold parameter (Equation 10) 1.0200
c1 Mortality threshold parameter (Equation 10) 0.0200
d Mortality threshold parameter 0.0060
λB Annual birth intensity 0.0390
f Birth rate per square metre crown projection area 0.0900
R Every year each tree can shift its current location to a new one within a radius of R m. 0.4000
S To be recognized as part of a superorganism, the sum of a tree’s crown radius and that of 

a neighbour divided by the distance between them must be larger than S (Equation 12).
1.3000
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potential growth multiplier of tree crown diameter (Equation 2), k and q, separately from 
the remainder of the model and directly from the observed data as an upper quantile of 
the observed mark growth rates applying quantile regression (Koenker and Park 1994; 
Cade and Noon 2003), where the quantile selected was set to τ = 0.975.

Secondly, the interaction parameters α; β and δ were estimated through nonlinear 
spatial regression using the growth multiplier of crown diameters as dependent variables. 
As in Häbel, Myllymäki, and Pommerening (2019), we applied both a nonlinear least- 
squares and a maximum-likelihood approach for estimating the interaction parameters by 
initially using the same starting values. Then, we evaluated least-squares loss at the 
maximum-likelihood location. Finally, we fitted the maximum-likelihood model using 
the least-squares parameter estimates as starting points. We also checked quantile- 
quantile plots, homoscedasticity of residuals and the shape of the interaction kernels. 
The parameter estimates of both methods usually were quite similar. In this estimation 
process, we applied periodic boundary conditions (Pommerening and Grabarnik 2019, 
177) for spatial edge correction.

All other model parameters were freely determined in such a way that the model 
would simulate continuous forest development without any instances where no trees at 
all would occur in the observation window at any time (Table 1). Given the objectives of 
this study, crown plasticity and superorganisms were considered as model inputs in order 
to study how these processes affect the formation of spatial canopy patterns.

2.3. Model scheduling

CanopyShotNoise operates in discrete, annual time steps and at the beginning of each 
time step first the mortality rule is applied followed by a removal of all dead trees 
(Figure 5). Afterwards the interaction term is calculated, which contributes to the annual 
relative growth rates of the crown diameter mark. The superorganism rule is part of the 
interaction calculation. In the same way as in the parameter estimation, the interaction 

Figure 5. Flowchart of the CanopyShotNoise model simulation. The meaning of the symbols is 
explained in Section 2.1.
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term is calculated using periodic boundary conditions (Pommerening and Grabarnik 2019, 
177). After calculating interaction and canopy growth, the tree crown diameters and total 
heights are updated synchronously.

Each model cycle is continued by simulating small immigrant trees, if that 
particular year is selected as an arrival year. The immigrants surviving the shot-noise 
thinning are included in the tree population. The model cycle is completed by calculating 
crown movements and updating the new tree coordinates.

2.4. Model initialization

In future applications of CanopyShotNoise, it is possible to initialize the model with an 
observed crown map obtained from airborne laser scanning. For the experiments per-
formed in this study, the model was initialized with a Poisson point process model with 
intensity λ ¼ 0:025 points per m2 in an observation window with 100 m side lengths 
mimicking the pattern of a very young forest. Any other point process model and intensity 
are naturally also possible. In a second step, initial crown diameters were simulated using 
an exponential marking model (Ho and Stoyan 2008; Myllymäki and Penttinen 2009) that 
is dependent on local point intensity, that is, the lower local point density the larger are 
the estimated crown diameters (Equation 13). Conversely, in areas of high local point 
density, the estimated crown diameters are comparatively small. Local point density was 
estimated using the spatstat function density (Baddeley, Rubak, and Turner 2016). 

w �ið Þ ¼ 12:3� e� 75Λ �ið Þ (13) 

Here, �i denotes the location of tree crown i whilst Λ �ið Þ is the local point density at �i. The 
inspiration for this initialization was taken from the Boolean model of random set statistics 
(Chiu et al. 2013).

2.5. Experimental model settings and simulations

In this study, we were mainly interested in evaluating the likely influence of crown 
plasticity and the formation of superorganisms on emerging crown canopy patterns. 
Therefore, we considered four scenarios

(1) No crown plasticity + no superorganism formation (scenario: C0S0),
(2) Crown plasticity + no superorganism formation (scenario: C1S0),
(3) No crown plasticity + superorganism formation (scenario: C0S1),
(4) Crown plasticity + superorganism formation (scenario: C1S1).

Scenario 1 (C0S0) can be considered a baseline reference, whilst scenario 4 (C1S1) covers 
potential interactions of crown plasticity and the formation of superorganisms. Since this 
was an explorative study with a prototype model, we decided to interpolate between 
extreme model settings rather than varying the model parameters on a continuous scale, 
which would lead to many results that are hard to present in a single scientific paper. To 
gain clear signals, we have, therefore, applied the following model settings: R = 40 cm, 
S = 1.3, see Sections 2.1.4 and 2.1.5. The settings allow every tree each year to move away 
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from its current location within a radius of 40 cm, which is at the upper end of currently 
available observations of annual shifts (Uria-Diez and Pommerening 2017; Vovides et al. 
2018). In a similar way, superorganisms are formed as soon as the sum of crown radii of 
two trees divided by the distance between their locations exceeds 1.3. In the absence of 
physiological evidence, this assumption describes situations of small crown overlaps, that 
is, the formation of superorganisms is strongly encouraged in the simulations.

After initial trial simulations and tests to assess the variability of simulation outcomes, 
we decided to simulate each of the four scenarios 500 times. Each simulation included 
a period of 100 years to allow studying the long-term effects of crown plasticity and the 
formation of superorganisms.

2.6. Summary characteristics

We identified and tested three summary characteristics from spatial statistics that 
described the differences in simulated tree canopy patterns particularly well.

The nearest-neighbour distance density function d rð Þ ¼ D0 rð Þ gives the density of the 
nearest-neighbour distance distribution function D(r). In our study, both quantities are 
based on the distance dist �ð Þ from a tree’s coordinates � to those of its first nearest 
neighbour. For clarity, we omitted index t pertaining to the tree locations in the following 
equations. Illian et al. (2008, 211) give a suitable estimator as 

d̂ rð Þ ¼
X

�

kh dist �ð Þ � rð Þ
1W�dist �ð Þ

�ð Þ

A W�dist �ð Þð Þ

λ̂nn
(14) 

Here, 1W�dist �ð Þ �ð Þ is an indicator function returning the value of 1, if dist �ð Þ is smaller than 
the shortest distance between � and the boundary of observation window W and 0 
otherwise. A W�dist �ð Þ

� �
gives reduced areas of the observation window dependent on 

dist �ð Þ. kh denotes an appropriate kernel function with bandwidth h, in our case the 

Epanechnikov kernel, see Pommerening and Grabarnik (2019, 152), whilst λ̂nn is a density 
estimator that computes as 

λ̂nn ¼
X

�;dist �ð Þ

1W�dist �ð Þ �ð Þ

A W�dist �ð Þ
� � (15) 

This form of estimator d̂ rð Þ corresponds with the Hanisch edge correction estimator of 
nearest-neighbour functions (Hanisch 1984).

A complementary characteristic that even better takes the nature of overlapping tree 
canopies and remote-sensing data into account is the spherical contact distribution func-
tion, HS(r). As part of the estimation process, all parts of the observation window that are 
covered by tree crowns form one, united random set X (see the grey area in Figure 3(b)), 
whilst the gaps in between, where there is no tree biomass, is the complement of 
X (Pommerening and Grabarnik 2019, 103). The density variant of this function, hS(r), 
gives the density of the distances from arbitrary test locations ω outside X to the nearest 
points of X. As a result this function describes the size of gaps within the crown canopy 
patterns. hS(r) can be estimated in the same way as d(r), i.e. using Equations (14) and (15), 
however, instead of considering distances between tree locations denoted as dist �ð Þ, we 
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now analyse the aforementioned distances distω �ð Þ between test locations ω outside 
X and the nearest points of X (Chiu et al. 2013, 236). In addition, we also monitored the 
area fraction v of random set X, that is, the percentage of area covered by the union of tree 
crowns (see Figure 3(b)).

In addition to d(r) and hS(r), we also used the aggregation index R0 by Clark and Evans 
(1954) for monitoring the development of the spatial pattern of tree locations over time in 
the four simulation scenarios: 

R0 ¼
�r
Er

(16) 

with Er ¼ 1
2�
ffiffi
N
A

p and R0 2 0; 2:1491½ �

This index compares the mean of simulated distances, �r, between any point of the 
pattern of tree locations and its first nearest neighbour with the corresponding expected 
value, that is, the mean distance in a corresponding Poisson point process, Er. N and A are 
the number of points in the observation window and its area, respectively. R0 > 1 indicates 
a tendency towards a regular (overdispersed) point pattern as caused by inhibition, whilst 
R0 < 1 highlights a trend towards clustering (underdispersal) caused by mutual attraction. 
When mean simulated distance and mean Poisson distance are roughly the same, R0 � 1. 
For calculating this index, we used the NN1 edge correction (Pommerening and Stoyan 
2006).

Further we considered the mark variogram γm rð Þ, a characteristic derived from geos-
tatistical variograms and designed for quantitative marks m such as plant size variables. Its 

test function 1
2 m �ið Þ � m �j

� �� �2 quantifies the difference between two marks by sub-
tracting them from one another and squaring the difference. The estimator of the mark 
variogram we used in this study is given in Equation (17). 

γ̂m rð Þ ¼
1

σ2
m

X�

�i;�j2W

1
2 m �ið Þ � m �j

� �� �2kh jj�i � �jjj � r
� �

2πrA W�i \W�j

� � (17) 

The normalizing term before the sum is the reciprocal of the mark variance σ2
m and in our 

case crown diameters were the size marks m used. For homogeneous data, the non- 
normalized mark variogram converges towards σ2

m at larger distances. As this is also an 
important characteristic, we monitored σ2

m throughout the simulations. kh is again the 
aforementioned Epanechnikov kernel. A W�i \W�j

� �
is the area of intersection of W�i and 

W�j , see Illian et al. (2008, 481 f. and p. 188), relating to the translational edge correction 
(Ohser and Stoyan 1981). Large differences between tree crowns are indicated by 
γm rð Þ > 1 (also referred to as negative association), whilst with γm rð Þ< 1 (also referred to 
as positive association) both crown radii are similar in size regardless whether the two 
radii in question are both large or both small. Spatially uncorrelated (= independent) 
crown radii are indicated by γm rð Þ � 1 (Suzuki, Kachi, and Suzuki 2008; Pommerening and 
Särkkä 2013).

Applying the GET package, we calculated the 50% central region around the mean of 
each of the aforementioned summary characteristics from the 500 simulations to illustrate 
the variability among the replications. This is common procedure in functional data 
analysis and in spatial statistics (Myllymäki and Mrkvička 2019). For all simulations and 
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calculations, we used our own R (version 3.5.1, R Development Core Team 2020) and C++ 
code and additionally applied the spatstat (Baddeley, Rubak, and Turner 2016) and GET 
packages (Myllymäki and Mrkvička 2019).

3. Results

3.1. Non-spatial measures

Canopy cover fraction v is a characteristic from random-set statistics and gives the 
proportion of forest stand area covered by tree crowns, see Section 2.1.2 and Figure 3 
(b). As such v is a density measure based on tree crown biomass and can include no but 
also multiple crown overlaps. Comparing the canopy cover fraction graphs reveals in all 
scenarios an initially steep build-up of canopy cover up to 25 years reaching v � 0:7 
(Figure 6). The same trend is also reflected by the sum of crown projection areas; however, 
the values here are usually much higher than v, as crown overlaps are not considered. 
Only in scenario C1S1, the initial maximum of v is markedly less than 0.7. The initial 
maximum is followed by one or a few severe disturbances reducing canopy cover fraction 
to a much lower level. These disturbances are caused by dramatic events of natural 
mortality. The new level is affected less severely by disturbances and differs between 
the four scenarios.

The S0 scenarios without superorganism formation (Figure 6(a) and 6(b)) and those 
including superorganism formation (Figure 6(c) and 6(d)) apparently form two groups 
with shared similarities within them. In scenario C0S0 (Figure 6(a)), the new level is 
situated at v � 0:6 and is fairly constant through time (when ignoring minor fluctuations). 
In scenario C1S0 (Figure 6(b)), the initial reduction goes down to almost v � 0:4, increases 
afterwards to remain at v � 0:5 from 60 years onwards. Interestingly, the level of the sum 
of crown projection areas after 25 years is a bit lower in scenario C1S0 than in C0S0. In 
scenario C0S1 (Figure 6(c)), the new level of canopy fraction after the initial disturbance 
keeps declining towards what possibly is a new level after 60 years of simulation at around 
v � 0:4. A particularly sharp drop after the initial canopy cover fraction maximum with 
hardly any fluctuations can be observed for scenario C1S1. After this the new level 
remains remarkably constant between 25 and 60 years at v � 0:4 to decrease further 

(a) (b) (c) (d)

Figure 6. The development of crown canopy fracture v over time for the four simulation scenarios 
C0S0, C1S0, C0S1 and C1S1, see Section 2.5. The mean of 500 simulations is depicted as continuous 
line along with the shaded 50% central region of all 500 simulated v. The dashed line gives the total 
crown area, that is, the sum of all individual crown projection areas, divided by the area of the 
observation window for comparison.
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afterwards towards v � 0:3 at 100 years of simulation. These results seem to suggest that 
both crown movement and superorganism formation reduce canopy cover fraction with 
the latter having a greater effect than the former. Both processes in combination (C1S1) 
cause a complementary effect leading to a markedly reduced canopy fraction. In scenarios 
with superorganism formation (Figure 6(c) and (d)), variation of simulations is markedly 
reduced compared to those where no superorganisms were allowed to form (Figure 6(a) 
and (b)). A comparison with the sum of crown projection areas of each individual tree 
relative to the area of the observation window shows that there is a long-term increase of 
crown area in both scenarios C0S1 and C1S1 while the canopy fraction keeps declining. 
Note that the long-term sum of crown projection areas is much lower in the two S0 than in 
the two S1 scenarios.

Another interesting characteristic is the crown radius variance σ2
w acting as an asymp-

tote for the mark variogram at large distances r, see Section 2.6. Also here we can clearly 
see a divide between the scenarios with and without superorganism formation (Figure 7 
(c) and (d) as opposed to Figure 7(a) and (b)). Whilst without superorganism formation σ2

w 

increases to reach a maximum of σ2
w � 10 m2 at around 60 years for scenarios C0S0 and 

C1S0 and then decreases again, there is a continued exponential increase of σ2
w through-

out the simulation period in scenarios C0S1 and C1S1. The maximum of σ2
w at around 

60 years is a bit lower in C1S0 compared to that in C0S0. In the latter scenarios, the 
variability in the simulation also increases exponentially with years.

Apparently the formation of superorganisms much increases the variability of the size 
of tree crowns, whilst with crown movements σ2

w remains comparatively low.

3.2. Spatially explicit characteristics

The nearest-neighbour distance distribution d(r) provides spatial information on the 
distance patterns in the vicinity around each tree. Ten years after the beginning of the 
simulations, the estimated density distribution d̂ rð Þ is still close to that of a Poisson point 
pattern (Figure 8), which in fact was used for initialization, see Section 2.4. Scenario C1S1 is 
an exception, since a bimodal distribution has formed already after 10 years of simulation. 
As expected, with increasing years, the differences between simulated and Poisson 
nearest-neighbour distance densities increase. These differences are particularly large 

(a) (b) (c) (d)

Figure 7. The development of crown-diameter variance σ2
w over time for the four simulation scenarios 

C0S0 (a), C1S0 (b), C0S1 (c) and C1S1 (d), see Section 2.5. The mean of 500 simulations is shown as 
continuous line along with the shaded 50% central region of all 500 simulated σ2

w .
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for scenarios C0S1 and C1S1, that is, again for those scenarios where the formation of 
superorganisms was involved. However, the range of nearest-neighbour distances does 
not change much over the years.

Figure 8. Estimations of the nearest-neighbour distance density function d̂ rð Þ for the four simulation 
scenarios C0S0, C1S0, C0S1 and C1S1, see Section 2.5, and simulation years 10, 30, 50, 70, and 100 
(continuous line). Corresponding d̂ rð Þ for the case that all tree locations form a poisson point process 
are shown as dotted lines. The lines are the means of 500 simulations and the shaded areas represent 
the 50% central region of all 500 simulated d̂ rð Þ.
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It is striking that for scenarios C0S1 and C1S1, the d̂ rð Þ distributions are shifted 
markedly further to the left than those related to scenarios C0S0 and C1S0. This trend is 
stronger for C1S1 than for C0S1. A small difference between scenarios C0S0 and C1S0 is 
the tendency that the distance density distributions related to C1S0 are slightly flatter and 
in year 30 a bimodal distribution can be observed. The nearest-neighbour distance 
distribution indicates that – as expected – the formation of superorganisms leads to 
spatial tree patterns with short nearest-neighbour distances and clustering (additionally 
confirmed in Figure 9), whilst crown shifts appear to increase nearest-neighbour dis-
tances. The effect of superorganism formation, was, however, much stronger than the 
effect of crown shifts and in scenario C1S1, contrary to our expectation, the superorgan-
ism effect was even enhanced by crown shifting.

The results of the analysis using the aggregation index by Clark and Evans (1954) 
confirmed that with crown plasticity (scenario C1S0) as expected there is a moderate 
tendency for R0 > 1 which occasionally recovers from disturbances by birth and death 
events, whilst in the presence of superorganisms (scenarios C0S1 and C1S1), there is 
strong evidence of clustering R0 < 1 of trees, particularly in scenario C1S1 (Figure 9(d)). 
Here, again crown plasticity and superorganism formation appear to complement their 
effects. As expected complete spatial randomness with R0 � 1 occurs in the reference 
scenario C0S0 (see Figure 9(a)). Crown plasticity as implemented in our model leads to 
moderate regularity of tree locations whilst the formation of superorganisms results in 
strong clustering.

The spherical contact density function hS (r) sheds light on gap dynamics. The larger 
the range of the distribution the larger the associated gaps in the tree canopy pattern. 
Whilst the spherical contact density functions of the four scenarios are all quite similar 
in year 10, there are again marked differences between C0S0 and C1S0 on one hand and 
C0S1 and C1S1 on the other in years 50–100 (Figure 10).

In scenarios C0S1 and C1S1, beginning in year 50 the ĥS rð Þ curves gradually flatten out 
until they stretch towards a gap diameter of more than 15 m in year 100. Again, crown 
plasticity in scenario C1S1 had a complementary effect on gap formation, as the range of 

ĥS rð Þ is larger and the curve flatter in scenario C1S1 than in scenario C0S1. There was not 
much difference between scenarios C0S0 and C1S0. Crown plasticity is expected to 
decrease gap size, as this process leads to greater regularity of tree locations, but we 

(a) (b) (c) (d)

Figure 9. The development of the aggregation index R0 (Clark and Evans 1954) over time for the four 
simulation scenarios C0S0 (a), C1S0 (b), C0S1 (c) and C1S1 (d), see Section 2.5. The mean of 500 
simulations is depicted as continuous line along with the shaded 50% central region of all 500 
simulated R0.
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did not find much difference compared to scenario C0S0. Overall, we found that super-
organism formation increases gap size whilst crown shift had hardly any effect on the 
gaps in the tree canopy.

Figure 10. Estimations of the spherical contact density function ĥS rð Þ for the four simulation scenarios 
C0S0, C1S0, C0S1 and C1S1, see Section 2.5, and simulation years 10, 30, 50, 70 and 100 (continuous 
line). The lines are the means of 500 simulations and the shaded areas represent the 50% central 
region of all 500 simulated ĥS rð Þ.
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In our study, the mark variogram considers tree crown diameters in addition to crown 
locations (Figure 11). In scenario C0S0, the mark variogram indicates positive association 
of crown diameters throughout the 100 years of simulation, that is, crown diameters are 
similar, particularly at shorter distances between r ¼ 0 � 20m. This usually reflects pat-
terns of small trees with comparatively small crown diameters.

Figure 11. Estimations of the mark variogram γ̂m rð Þ for the four simulation scenarios C0S0, C1S0, C0S1 
and C1S1, see Section 2.5, and simulation years 10, 30, 50, 70 and 100 (continuous line). The lines are 
the means of 500 simulations and the shaded areas represent the 50% central region of all 500 
simulated γ̂m rð Þ.
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The effect of positive mark association is particularly strong at the beginning in 
simulation year 10 and then weakens by approaching the horizontal line through 1 
with a similar trend in all subsequent years. Scenario C1S0 reveals much the same general 
tendency as C0S0, however, beginning with year 50, there is a small rise of the γ̂m rð Þ curve 
towards 1 between r ¼ 0 � 5 m. In this range, there is a slight tendency of neighbouring 
crown diameters to be closer to a situation where there is no correlation between crown 
diameters. This trend is even more developed in scenario C0S1 starting in year 30 to 
eventually take values of γ̂m rð Þ> 1 qualifying for negative association of crown diameters. 
This range of negative mark association stretches as far as r � 10 m implying that trees in 
this distance range have very different crown diameters. The effect of negative association 
of crown diameter is, however, strongest in scenario C1S1. Initially, there is positive mark 
association up to r = 3 m followed by a maximum of negative association around r = 6 m. 
Naturally, the variability of the mark variogram is greatest for short distances, as a gradual 
convergence towards 1 is expected for large r. Particularly large variability can be 
observed for scenario C1S1 around the maximum of negative mark association. 
Apparently, the formation of superorganisms plays a dividing role also in terms of the 
mark variogram: At distances r < 12 m positive mark association (with similar crown 
diameters) dominates in the scenarios without superorganism formation whilst negative 
association (with dissimilar crown diameters) prevails in this range when superorganisms 
are allowed to form in the simulations.

4. Discussion

CanopyShotNoise is the prototype of a dynamic forest model designed to be used with 
data directly derived from remote sensing. In this study, we presented CanopyShotNoise as 
a first step towards bridging the gap between individual-based forest modelling and 
remote sensing (see Figures 1 and 3(b)). Therefore, the model focus is on tree canopies 
and the model relies on modern concepts from point process and random set statistics. 
CanopyShotNoise can not only be used to project future forest development but also, and 
perhaps more importantly, for experimentation to answer urgent ecological questions. 
ALS remote sensing has become one of the most important remote-sensing data source 
in forest monitoring and it can be assumed that more multi-temporal ALS datasets will 
become available. Furthermore, the development in LiDAR sensor technologies with 
increasing repetition rates and multiple wavelengths as well as the integration of LiDAR 
sensors into unmanned aerial systems (UAS) will improve the availability and quality of 
high-resolution point clouds even more and thus the opportunity to produce single tree 
locations and tree crown shapes for large areas in an efficient manner.

The CanopyShotNoise model requires tree coordinates; however, the detection prob-
ability of single trees is dependent on their size and vertical position. Smaller understorey 
trees usually have a considerably lower chance to be detected (Heurich et al. 2004; 
Korpela, Hovi, and Morsdorf 2012; Persson, Holmgren, and Söderman 2002). The expected 
increase in point densities together with new approaches that perform individual tree 
detection directly on the unstructured point cloud (e.g. Yao, Krzystek, and Heurich 2013) 
might reduce the problem of undetected understorey trees (Hamraz, Contreras, and 
Zhang 2017).
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In this study, we explored the phenomena of crown plasticity (C) and superorganisms 
(S) through model simulations based on CanopyShotNoise. These two phenomena have 
only recently gained research attention in forest ecology (Gavrikov, Grabarnik, and Stoyan 
1993; García 2014; Gorzelak et al. 2015; Pommerening and Uria-Diez 2017; Till-Bottraud, 
Fajardo, and Rioux 2012; Schröter, Härdtle, and von Oheimb 2012; Vovides et al. 2018). We 
compared combinations of crown plasticity and superorganisms in four scenarios, that is, 
C0S0, C1S0, C0S1 and C1S1, and hypothesized that crown plasticity would lead to greater 
regularity of tree locations whilst antagonistically the formation of superorganisms would 
encourage clustering.

Our simulation results indeed suggested that distances between trees in the long run 
tend to decrease (Figure 8) and gap size to increase (Figure 10) when superorganisms are 
encouraged to form. As a consequence tree canopy cover fraction decreases (Figure 6). 
On first glance, this could be interpreted as a decreasing carrying capacity but in fact 
carrying capacity did not decrease in our simulations and in the two S1 scenarios the total 
canopy area even increased with time. The formation of superorganisms typically leads to 
a situation where tree crowns are more densely packed, thus making space for larger 
gaps. This is also reflected by the low numbers of the aggregation index (Clark and Evans 
1954; Figure 9(c) and (d)). The increased packing of tree crowns can, therefore, be seen as 
an extreme form of facilitation in an attempt to adapt to environmental challenges 
particularly in forest ecosystems with shade-tolerant species such as F. sylvatica. This 
can be explained by the fact that smaller trees have a better chance of survival under the 
protection of larger individuals whilst being dominated by them at the same time. The 
formation of superorganisms also dramatically increases the variability of crown size 
(Figure 7). It is interesting to note that crown biomass production is much larger and 
increasing in the S1 scenarios compared to the S0 scenarios where crown biomass 
production is low and remains roughly constant.

Crown plasticity was hypothesized to lead to regular patterns of tree dispersal, since 
regularity is an efficient way to grant space to each individual. Therefore, we monitored 
the aggregation index by Clark and Evans (1954, see Figure 9). Here, we found that there is 
indeed a clear trend toward more regularity in scenario C1S0 (Figure 9(b)) compared to 
reference scenario C0S0 (Figure 9(a)). However, this trend was weaker than we expected. 
In Figure 9(b), the sudden drop in the aggregation index around 25 years of simulation 
coincides with the sudden drop in canopy cover fraction (Figure 6(b)). Apparently, the 
large mortality disturbance after 25 years of simulation contributed to a dramatic reduc-
tion in the aggregation index and the former values only slowly and not completely 
recovered thereafter. In scenario C0S1, there is a dramatic and continued decline in the 
aggregation index after the initial 25 years of simulation illustrating the strength of the 
superorganism effect whilst in C1S1, this trend is even more dramatic and starts already 
in year 10. It is also interesting to note the considerable variation in both the aggregation 
index and the canopy cover fraction after simulation year 25. The reasons for the 
moderate regularity of tree dispersal in scenario C1S0 can be explained by the fact that 
the trees attempt to evade competition pressure that is passed on to them by the shot- 
noise field and not so much evaded other trees directly. In the shot-noise field, neigh-
bouring trees with larger size carry a higher weight than smaller trees. This is also likely to 
contribute to deviations from regularity. At the same time, repeated birth events reduce 
the aggregation index, since they introduce clusters.
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We also hypothesized that crown plasticity – as a consequence of imposing more 
regular tree locations – would decrease gap size, but there was no evidence supporting 
this hypothesis (Figure 9, C1S0). Surprisingly despite the extreme setting for R = 0.4 m (see 
Section 2.5), shifting tree crowns had hardly any influence on gap dynamics, as measured 
by ĥS rð Þ.

The complementarity or interaction effect between crown plasticity and superorgan-
ism formation in scenario C1S1 is noteworthy. The effect causes smaller mean nearest- 
neighbour distances (Figure 8) and larger mean gap diameters (Figure 9), particularly in 
simulation years 70 and 100, than in scenario C0S1. The interaction effect is also evident in 
the patterns of the aggregation index (Figure 9(c) and (d)). It is possible that the stronger 
effect of superorganism formation decreases the majority of nearest-neighbour distances 
whilst the few remaining independent individuals attempt to keep their distance to the 
superorganisms but available space for evasion is in short supply at this stage. It is also 
plausible that the competition pressure is too high for individuals to move into gaps 
between two or three superorganisms and therefore remain at their current location. This 
phenomenon definitely requires further analysis in future studies.

The mark variogram highlighted that the formation of superorganisms strongly sup-
ports negative association or negative autocorrelation of tree crowns implying that the 
size of crowns differ a lot around a distance of 5 m starting with simulation year 50 
(Figure 11). Negative association of quantitative tree variables in spatial patterns is 
comparatively rare (Pommerening and Särkkä 2013). This likely results from the fact that 
small trees are in this scenario encouraged to persist and can survive in greater numbers 
in the vicinity of large trees. Interestingly, also crown movements lead to more diversity in 
crown sizes at close proximity, see scenario C1S0 compared to C0S0 in Figure 11. 
However, this effect is much weaker than the effect caused by the formation of super-
organisms in scenarios C0S1 and C1S1. The differences in the mark variograms between 
the S1 and the S0 scenarios can also partly be explained by the fact that with the S1 
scenarios the variance of crown diameters increased exponentially by year, that is the 
chances of pairings with differing crown diameters at close proximity were much higher in 
the S1 scenarios (Figure 7).

5. Conclusions

With the CanopyShotNoise IBM, we present a dynamic forest model that can be directly 
interfaced with information derived from ALS remote-sensing data. Using this model, our 
simulations revealed that the formation of superorganisms has a stronger effect on spatial 
tree and canopy patterns than crown plasticity. The former process leads to clusters with 
denser, more compact packing of tree canopies and opens larger gaps between the 
clusters. Crown plasticity on the other hand introduced a greater regularity between tree 
locations; however, this process apparently has little effect on gap dynamics. There was 
a curious interaction between the formation of superorganisms and crown plasticity 
leading to even greater gaps than in a scenario where superorganisms acted alone. The 
formation of superorganisms also substantially increased crown-size diversity and strong 
negative spatial association between crown diameters, a rare phenomenon was indicated 
by the mark variogram as a consequence of this process. With ongoing climate change, it 
is likely that facilitation between trees will increase and as a consequence we are likely to 
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observe spatial patterns in our monitoring that resemble the patterns found in our 
superorganism model simulations. Our and similar studies can then aid correct interpre-
tation of monitoring results.
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