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Genomic selection study (GS) focusing on nonadditive genetic effects of dominance and

the first order of epistatic effects, in a full-sib family population of 695 Scots pine (Pinus

sylvestris L.) trees, was undertaken for growth and wood quality traits, using 6,344 single

nucleotide polymorphism markers (SNPs) generated by genotyping-by-sequencing

(GBS). Genomic marker-based relationship matrices offer more effective modeling

of nonadditive genetic effects than pedigree-based models, thus increasing the

knowledge on the relevance of dominance and epistatic variation in forest tree breeding.

Genomic marker-based models were compared with pedigree-based models showing

a considerable dominance and epistatic variation for growth traits. Nonadditive genetic

variation of epistatic nature (additive × additive) was detected for growth traits, wood

density (DEN), and modulus of elasticity (MOEd) representing between 2.27 and 34.5%

of the total phenotypic variance. Including dominance variance in pedigree-based Best

Linear Unbiased Prediction (PBLUP) and epistatic variance in genomic-based Best

Linear Unbiased Prediction (GBLUP) resulted in decreased narrow-sense heritability and

increased broad-sense heritability for growth traits, DEN and MOEd. Higher genetic

gains were reached with early GS based on total genetic values, than with conventional

pedigree selection for a selection intensity of 1%. This study indicates that nonadditive

genetic variance may have a significant role in the variation of selection traits of

Scots pine, thus clonal deployment could be an attractive alternative for the species.

Additionally, confidence in the role of nonadditive genetic effects in this breeding program

should be pursued in the future, using GS.

Keywords: scots pine (Pinus sylvestris L), genomic prediction, nonadditive effects, dominance, epistasis, response

to selection, genetic gain
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1. INTRODUCTION

Additive genetic variance is the main source of the variation
contributing to selection response in breeding programs (Hem
et al., 2021). Narrow-sense heritability, as a measurement of
the proportion of additive genetic variation over the phenotypic
variation, contributes to selection efficiency in tree breeding
programs in terms of accuracy of breeding values (White et al.,
2007). Many advanced forest tree breeding programs use clonal
and/or full-sib family tests in their selection strategies, where
the resemblance between related individuals consists not only of
additive genetic variation but also nonadditive genetic variation
(i.e., dominance and epistatic effects) (Falconer and Mackay,
1996; Lynch and Walsh, 1998). Indeed, the Swedish Pinus
sylvestris L. (Scots pine) breeding strategy uses full-sib mating
with forward selection and progeny testing, where clonal testing
is of great interest because it enablesmore efficient selection using
clonal cuttings as propagationmethod (Andersson and Lindgren,
2011; Rosvall, 2011).

Ignoring nonadditive genetic effects would lead to inaccurate
estimates of narrow-sense heritability and consequently less
precise estimates of breeding values and reduced genetic
gains (Lebedev et al., 2020). For instance, if the total
variation is expected to be defined more precisely into its
additive, nonadditive, and residual variances, thus more specific
discerning would lead tomore accurate estimations of heritability
and breeding values (Walsh and Lynch, 2018). The role of
nonadditive genetic effects has been widely studied in forest trees
with pedigree-basedmethods (Foster and Shaw, 1988;Mullin and
Park, 1992; Isik et al., 2004; Baltunis and Brawner, 2010; Chen
et al., 2020) and has been recommended to use for clonal forestry
(Rosvall et al., 2019). In a Pinus radiata L. (radiata pine) study,
the diameter at breast height at age five showed a large amount
of epistatic variance (Baltunis et al., 2009). However, epistatic
effects did not have a significant effect on growth in Pinus
taeda L. (loblolly pine) (Baltunis et al., 2007), but contributed
to fusiform rust (Isik et al., 2003), whereas dominance variance
was considerable in the volume variation at age six (Isik et al.,
2003) and somewhat large on early growth in clonal and seedling
full-sib populations (Baltunis et al., 2007).

Low estimates of nonadditive genetic variation may not
necessarily mean this source of variation is not present since a
suitable family structure and a proper mating design are also
needed to obtain reliable estimates of nonadditive genetic effects
(Munoz et al., 2014; Chen et al., 2020). Also, the lack of a
good mating design would lead to a poor estimation power of
variance components (Framton and Huber, 1995; Pégard et al.,
2020) and attention should be paid when exploiting full-sib
family structures. The role of dominance effects in many clonal
and full-sib breeding programs is well studied, whereas less is
known of epistatic variance. It has been, however, argued that
epistatic variation generally has only a little contribution to the
quantitative trait variation relative to additive genetic variance
(Hill et al., 2008) and is only a concern when dealing with
individual genes or gene pairs (Mäki-Tanila and Hill, 2014).

The lack of consideration of nonadditive genetic variation in
genetic evaluation can be also explained by several challenges

in the estimation of variance components regarding family
structure and mating design (Hem et al., 2021). The defiance
of using a full-sib family structure in genetic evaluation is that
nongenetic effects are often confounded with genetic effects
(Baltunis et al., 2007; Lee et al., 2010) and simultaneously
dominance and epistatic effects are confounded with additive
genetic and nongenetic effects (Lee et al., 2010; Bouvet et al.,
2016). A large proportion of the variance due to allele interactions
can be considered as additive genetic variance if the additive and
nonadditive genetic effects are not orthogonal, and an indication
of confounding can be seen when variance components are being
highly correlated (Lynch and Walsh, 1998; Hill et al., 2008; Hill,
2010).

Genomic marker-based models offer more in-depth
possibilities to investigate the subjacent variation of complex
traits, by allowing to account for the effect of nonadditive genetic
components (Su et al., 2012; Munoz et al., 2014; Varona et al.,
2018). Many studies using genomic marker-based information
have been already performed in several forest species, though
only a few of themhave evaluated the partition of genetic variance
into additive and nonadditive components (Grattapaglia et al.,
2018; Lebedev et al., 2020). However, in animal and plant
breeding, it has been more widely studied (Vitezica et al., 2013,
2017, 2018; Aliloo et al., 2016; Piaskowski et al., 2018; Ferrão
et al., 2020).

More accurate genetic parameters were estimated by
using genomic marker-based information with additive and
nonadditive relationship matrices to evaluate genetic covariances
between relatives in Picea abies L. Karst (Norway spruce) (Chen
et al., 2019), Picea glauca (Moench) Voss (white spruce) (El-Dien
et al., 2016), or Eucalyptus urophylla Eucalyptus grandis (eucalypt
hybrids) (Bouvet et al., 2016; Tan et al., 2018). The use of
genome-wide marker information will enable to distinguish
the additive from the nonadditive components when using
different family structures like open-pollinated and non-clonal
populations, which is not possible with pedigree-based methods
and without a specific mating design (El-Dien et al., 2018). In a
loblolly pine population a considerable improvement in breeding
value estimation for height was notice when using genomic
marker-based relationship matrix, as a result of genetic variances
partitioning more precisely into additive, dominance and first
order epistatic effects (Munoz et al., 2014). In particular for
this loblolly pine population and trait, additive and nonadditive
genetic variances were of similar magnitude (Munoz et al., 2014).

Genomic selection (GS) is expected to accelerate the rate
of genetic improvement of Norway spruce and Scots pine
in Sweden, one of the largest forest producer of the world
(Chen et al., 2018; Calleja-Rodríguez et al., 2020; Zhou et al.,
2020). Accuracy of GS and genomic predictions depends,
among others, on the effective population size but also on
the size of the population used to train the genomic model,
the level of linkage-disequilibrium (LD), the heritability of
the phenotypic trait evaluated, density and amount of the
single nucleotide polymorphism (SNP) markers, distribution
of the quantitative trait loci (QTL) effects, and the genomic
model used (Goddard, 2009; Lenz et al., 2017; Li and Dungey,
2018). To date, for Scots pine, the first genomic prediction
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study comparing pedigree-based (pedigree best linear unbiased
prediction or PBLUP), with a genomic best linear unbiased
prediction (GBLUP), Bayesian-LASSO (BL), and Bayesian Ridge
Regression (BRR), using genotyping-by-sequencing (GBS) data,
showed an improved efficiency to estimate additive genetic values
of all genomic-based models (Calleja-Rodríguez et al., 2020).

Well studied benefits of GS for forest tree breeding programs,
in increasing genetic gains by shortening generation intervals
and increasing prediction accuracies (Grattapaglia and Resende,
2011; Iwata et al., 2011; Grattapaglia et al., 2018), and combining
the methodology with clonal propagation and somatic embryo-
genesis (Li and Dungey, 2018), can be utilized in the Swedish
conifer breeding programs to decrease generation intervals.
Another advantage of GS in forest tree breeding is the possibility
to increase the selection intensities and getting larger genetic
gains, by reducing the breeding cycle through skipping or
reducing the field-testing periods (Harfouche et al., 2012; Isik,
2014; Grattapaglia et al., 2018). More precise estimates of
breeding values are possible with GS by using genome-wide
markers to generate the genomic realized relationship matrix
(VanRaden, 2008), which estimates kinships between individuals
more accurate based on the actual fraction of the genome shared
that is identical by descent or by state (White and Hill, 2020).
Furthermore, genome-wide markers also can consider the within
family variation in the Mendelian sampling term, specifying
relationships among individuals that include simultaneously
contemporary and historical pedigrees (Ødegård andMeuwissen,
2014, 2015; Grattapaglia et al., 2018). Without a doubt, GS
combined with flowering stimulation will accelerate the rate of
genetic improvement in Scots pine where the generation interval
ranges from 20 to 30 years, including a field-testing phase of
12–15 years (Calleja-Rodríguez, 2019; Calleja-Rodríguez et al.,
2020).

The current study was initiated to have the first indication
of nonadditive genetic effects using genomic marker data
on the Scots pine breeding population and can be used as
a basis in building GS models for the breeding program.
The objectives were to implement nonadditive genetic effects
including dominance and epistatic effects in genomic prediction
models in Scots pine, for growth, wood stiffness, and wood
density (DEN). In addition, the response to the selection of three
GBLUP and two PBLUP models used was also evaluated, and
genetic gains of early GS and conventional pedigree selection
compared.

2. MATERIALS AND METHODS

2.1. Plant Material and Phenotypes
In this study, a Scots pine full-sib progeny trial was used (named
as F261-Grundjärn). The trial was established in 1971 for the
Swedish tree improvement program at Skogforsk (the Forestry
Research Institute of Sweden) and was described in Fries (2012).
In brief, 695 progeny trees (F1-generation) from 184 full-sib
families, generated from a partial diallel mating design of 40
plus trees (F0-generation), were assessed for growth and wood
properties. The traits measured were tree height at ages 10
and 30 (Ht1 and Ht2, respectively), diameter at breast height

at ages 30 and 36 (DBH1 and DBH2, respectively), microfibril
angle (MFA), static modulus of elasticity (MOEs) and woodmean
density (DEN), obtained from Silviscan (RISE AB, Stockholm,
Sweden) analyses, and dynamic modulus of elasticity (MOEd)
predicted by Hitman ST300. Growth and wood traits were
described in detail in Calleja-Rodríguez et al. (2020) and Hong
et al. (2014), respectively.

2.2. Genotypes
An exhaustive description of the GBS library preparation, SNP
markers filtering, and calling was already described in Calleja-
Rodríguez et al. (2020). In summary, genomic DNA from
vegetative buds or needles from the progeny and parent trees
(827 samples with replicates included) were used to prepare
three GBS libraries that were sequenced on an Illumina HiSeq
2000 platform at SciLifeLab (Sweden). After filtering and calling,
24,152 informative SNP markers were kept.

2.2.1. Single Nucleotide Polymorphism Imputation
A baseline imputation of missing genotypes was first performed
through the LD K-nearest neighbor method (Money et al., 2015)
in TASSEL (Bradbury et al., 2007). Additionally an extra random
imputation was done with the function codeGeno from the
synbreed package (Wimmer et al., 2012) in R (R Core Team,
2019), which filtered out SNPs with minor allele frequency
(MAF) lower than 1%, resulting in the retention of 6344 SNPs.

2.3. Statistical Analysis
2.3.1. Initial Analysis
Adjusted phenotypes were obtained by removing either the
spatial auto-correlation or variation due to design effects from the
data, to obtain within-trial environmentally adjusted phenotypic
data as described by Calleja-Rodríguez et al. (2020). The adjusted
phenotypic data were used in the current study.

2.3.2. Genomic- and Pedigree-Based Best Linear

Unbiased Predictions
The complete data set was used to estimate variance components
for each trait using the PBLUP and GBLUP methods. Two
univariate linear mixed models which included either additive
(PBLUP-A and GBLUP-A) or additive and dominance (PBLUP-
AD and GBLUP-AD) genetic effects were used. In addition,
for GBLUP, a third model including additive, dominance, and
epistatic genetic effects (GBLUP-ADE) was used.

2.3.3. Additive, Dominance, and Epistatic

Relationship Matrices
The pedigree-based additive numerator relationship matrix (A)
and the dominance numerator genetic relationship matrix (D)
were estimated according to Lynch and Walsh (1998) based on
pedigree information. Briefly, the diagonal elements (i) ofA were

calculated as Aii = 1 + fi = 1 +
Agh

2 , where g and h are the
parents of individual i’s. The relationship between individuals ith
and jth are the off-diagonal elements and were estimated for A as

Aij = Aji =
Ajg+Ajh

2 , and for D as Dij = Dji =
AgkAhl+AglAhk

4 ,
where k and l are the j’s parents.The diagonal elements of D
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are Dii = 1. ASReml v4.1 (Gilmour et al., 2015) and ASReml-
R (Butler et al., 2009) were used to estimate A, while function
kin from the synbreed (Wimmer et al., 2012) package within
the R statistical environment (R Core Team, 2019) was used
to estimateD.

The genomic-based additive relationship matrix (GA),
called realized relationship matrix was estimated as,

GA =
ZZ′

2
∑m

i=1 pi(1−pi)
(VanRaden, 2008), where Z is rescaled

genotype matrix following M− P; where M is the genotype
matrix with genotypes coded as 0, 1, and 2 according to the
number of alternative alleles and with dimensions number
of individuals (n) by number of loci (m); P is the matrix of
locus scores 2pi, with pi being the ith allele frequency and
2
∑p

i=1 pi(1− pi) is the variance of markers summed across loci.
The genomic-based dominance relationship matrix (GD) was

estimated following Vitezica et al. (2013) as GD =
WW′

∑m
i=1 4p

2
i q

2
i

where W is the matrix containing −2q2i for the alternative
homozygote, 2piqi for the heterozygote, and −2p2i for the
reference allele homozygote of the ith SNP.

The genomic-based relationship matrices based on first-order
epistatic interaction were calculated by the Hadamard product,
cell by cell multiplication represented by ⊙ and trace (tr)
(Vitezica et al., 2017, 2018). The additive × additive terms were
estimated GAA =

GA⊙GA
tr(GA⊙GA)/n

, the additive × dominance terms

asGAD =
GA⊙GD

tr(GA⊙GD)/n
, and the dominance× dominance term as

GDD =
GD⊙GD

tr(GD⊙GD)/n
.

2.3.4. Model Including Additive Effects
The model used to perform additive PBLUP-A and
GBLUP-A was:

y = Xβ + Zaa+ ε (1)

where y is the vector of environmental adjusted phenotypes,
β is the vector of fixed effects (overall mean), a is the vector
of additive genetic effects, and is assumed to follow a normal
distribution with expectations of ∼ N(0,Aσ 2

a ) or ∼ N(0,GAσ 2
a )

for pedigree- and genomic-based relationship matrices,
respectively; A and GA were described above; σ 2

a is the additive
genetic variance and ε ∼ N(0, Iσ 2

ε ) is the vector of random
residual effects, where I denotes the identity matrix and σ 2

ε is
the residual variance. X and ZA are the incidence matrices for
β and a, respectively.

2.3.5. Model Including Dominance Effects
For the PBLUP-AD and GBLUP-AD models:

y = Xβ + Zaa+ Zdd + ε (2)

where d is the vector of random dominance effects which follows
a normal distribution with ∼ N(0,Dσ 2

d
) or ∼ N(0,GDσ 2

d
), for

the variance components using pedigree- or genomic-based
relationship matrices, respectively;D and GD were described
above; σ 2

d
is the dominance genetic variance and Zd is the

incidence matrix for d.

2.3.6. Model Including Epistatic Effects
For the model including all effects (GBLUP-ADE):

y = Xβ + Zaa+ Zdd + Ze1eaa + Ze2ead + Ze3edd + ε (3)

where eaa, ead, and edd are the vectors of random additive
× additive, additive × dominance, and dominance ×

dominance epistatic effects; which are assumed to follow
normal distributions with expectations ∼ N(0,GAAσ 2

aa),
∼ N(0,GADσ 2

ad
), and ∼ N(0,GDDσ 2

dd
), respectively; and

where σ 2
aa, σ

2
ad, and σ 2

dd are the additive × additive, additive ×
dominance and dominance × dominance, epistatic interaction
variances; Ze1, Ze2, and Ze3 are the incidence matrices for eaa,
ead, and edd, respectively.

2.4. Model Evaluation
The five models were compared based on the Akaike information
criterion (AIC) for each trait. Based on the full dataset and
depending on the model used, goodness-of-fit was evaluated
by calculating the correlation between estimated total genetic
or additive genetic values (respectively Ĝfull and Âfull), and the

adjusted phenotypes of individual trees (yfull), i.e., r(Ĝfull, yfull)

and r(Âfull, yfull). The significance of the correlation was
examined using t-test. Additionally, standard error of the
predictions (SEPs) was compared to evaluate the precision of
the predicted estimated total genetic values (EGVs) for models
containing nonadditive effects (i.e., PBLUP-AD, GBLUP-AD, and
GBLUP-ADE) or estimated breeding values (EBVs) for models
with only additive effects (i.e., PBLUP-A and GBLUP-A).

2.5. Heritabilities
For all models fitted, narrow-sense heritability was estimated as

ĥ2 =
σ̂ 2
a

σ̂ 2
p

(4)

Broad-sense heritability was estimated as

Ĥ2
=

σ̂ 2
g

σ̂ 2
p

(5)

where σ̂ 2
g is the estimated genetic variance predicted as σ̂ 2

a + σ̂ 2
d

for models with only additive and dominance effects (PBLUP-AD
and GBLUP-AD); whereas, for the model with epistatic effects
(GBLUP-ADE), it was estimated as σ̂ 2

g = σ̂ 2
a+σ̂ 2

d
+σ̂ 2

aa+σ̂ 2
ad
+σ̂ 2

dd
;

σ̂ 2
p denotes the predicted phenotypic variance and is the sum

of the estimated total genetic and residual variances, and varied
according to the model fitted.

2.6. Predictive Ability, Predictive Accuracy,
and Cross-Validation
Ten-fold cross-validation with 10 replicates was used to estimate
the predictive ability and predictive accuracy for all models.
Estimations were performed within each fold and averaged
across folds and replicates. The composition of the training and
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validation set was already evaluated in Calleja-Rodríguez et al.
(2020).

The predictive ability (r1) was defined as the Pearson product-
moment correlation between the cross-validated estimated total
genetic (ĜVP) or additive (ÂVP) values and the adjusted
phenotypes (y), i.e., r1 = corr(ĜVP, y) or r1 = corr(ÂVP, y);
i.e., if the model predictions were only additive genetic effects,
ÂVP estimations were used, whereas for models containing
both additive and nonadditive effects, r1 was estimated
separately for ĜVP and ÂVP.

The predictive accuracy (r2) was estimated according to
Legarra et al. (2008), as r1 scaled by the square root of heritability,
as r2 = corr(ÂVP, y)/̂h, where ĥ is the square root of narrow-sense
heritability. Additionally, for the genetic effects models PBLUP-
AD, GBLUP-AD, and GBLUP-ADE, r2 was also estimated as
r2 = corr(ĜVP, y)/Ĥ where Ĥ is the square root of the
broad-sense heritability.

In addition, for all models, Spearman’s rank correlations
between EGV and EBV rankings were also evaluated.

2.7. Expected Response of GS
The responses of genomic selection (RGS) and traditional
phenotypic selection (RPS) were calculated as percentage of the
average population following Resende et al. (2017),

RGS(%) = RPS(%) = (
EGVS − EGV0

EGV0

)× 100 (6)

where EGVS is the average of the expected genetic values for the
individuals selected and estimated from PBLUP-AD, GBLUP-
AD, GBLUP-AD, and GBLUP-ADE, and EGV0 is the average
of genetic values of the population. When models only contain
additive effects, i.e., GBLUP-A and PBLUP-A, EGVS refers to the
average of expected breeding values of the individuals selected
and EGV0 is the average of breeding values of the population. The
RGS is used for GBLUP models and RPS for PBLUP models.

Since one of the greatest advantages of GS in conifer breeding
is the possibility to shorten the breeding cycle length, we
compared the RGS per year (RGS/year) of GBLUP-A, GBLUP-
AD, and GBLUP-ADEmodels, with the response of conventional
phenotypic selection per year (RPS/year) of PBLUP-A and
PBLUP-AD models, by assuming a reduction of 50% breeding
cycle (11 years) in the GS scenario compared with the full cycle
length (23 years) in the PS scenario.

2.8. Expected Genetic Gain
The expected genetic gains (1G) were estimated for two types of
selection and deployment strategies, as a percentage of the overall
mean (y) and adapted from Mullin and Park (1992) and Chen
et al. (2020). The strategies evaluated were (1) selection based on
conventional testing for individual forward mass selection and
grafted seed orchard (i.e., only additive effects), and (2) early GS
with individual forwardmass selection for vegetative propagation
(i.e., total genetic effects).

The expected genetic for strategies 1 and 2 was estimated,
respectively as,

1G
ĥ2

=
100̂h2i

y

√
σ̂ 2
p (7)

1G
Ĥ2 =

100Ĥ2i

y

√
σ̂ 2
p (8)

where i is the selection intensity of i = 2.67 (i.e., 1% of the
population selected).

3. RESULTS

3.1. Model Evaluation
Generally, the lowest AICs were observed for PBLUP-A and
PBLUP-AD models for almost all traits, but no considerable
differences between the AIC values were obtained (Table 1).

The highest goodness-of-fit was between total genetic values
from the GBLUP-ADE model and adjusted phenotypes for all
traits except Ht1, which had its highest goodness-of-fit for
the total genetic values estimated from PBLUP-AD (Table 2).
All models with nonadditive effects exhibited higher goodness-
of-fit for the total genetic values when nonadditive effects
were present. However, all models showed similar goodness-of-
fit when additive genetic values (Âfull) were correlated with
phenotypes (yfull).

The comparison between SEPs for all models are presented
in Table 3 and Supplementary Figures 1–6. The precision of
EBVs and EGVs based on SEPs comparison between PBLUP
models, revealed similar mean values of SEPs for most traits
regardless of the PBLUP model used, except for Ht1, Ht2, and
DBH2, that were slightly smaller for PBLUP-A.While, comparing
GBLUP models, the lowest SEPs were produced by A and/or
AD models. The mean SEPs values of EBVs from GBLUP-A
were slightly lower than SEPs of EBVs from PBLUP-A for Ht2,
DBH1, DEN, and MOEd. Yet, comparison of mean SEPs values
of EBVs and EGVs for growth traits, DEN and MOEd, were
somewhat smaller with GBLUP-A and GBLUP-AD compared
to PBLUP-AD. GBLUP-ADE revealed the highest SEPs for all
traits evaluated in the current study with the only exception of
Ht1 for which the highest SEPs were observed with PBLUP-
AD model. Standard deviations (SDs) of SEPs were highest for
GBLUP models, irrespective of the genetic effects evaluated.

3.2. Variance Components and Heritability
Estimates
Estimates of ĥ2 ranged from low to moderate (0.15–0.48), being
higher with PBLUP for Ht2, DBH1, DEN, and MOEd, while
for the remaining traits, ĥ2 were similar or slightly higher with
GBLUPmodels (Table 1). Usually, wood quality traits had higher
ĥ2 than growth traits.

Based on nonadditive models, Ĥ2 was moderate (0.23–0.67)
with some indication of higher estimates with GBLUP compared
to PBLUP. Indeed, the highest estimates of Ĥ2 were obtained
by the model with epistatic effects (i.e., GBLUP-ADE) for Ht2
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TABLE 1 | Summary of the genetic parameter estimations, including additive (̂σ 2
a ), dominance (̂σ 2

d ), epistatic additive × additive (̂σ 2
aa), epistatic additive × dominance (̂σ 2

ad ), epistatic dominance × dominance (̂σ 2
dd ),

residual variances (̂σ 2
e ), narrow- and broad-sense heritabilities (̂h2 and Ĥ2, respectively), and Akaike information criterion (AIC) for each model and trait.

Trait Model AIC σ̂ 2
a σ̂ 2

d σ̂ 2
aa σ̂ 2

ad σ̂ 2
dd σ̂ 2

e ĥ2 Ĥ2

Ht1 PBLUP-A 5788.85 309.09 (118.88) – – – – 1469.49 (114.45) 0.17 (0.06) –

PBLUP-AD 5786.88 269.57 (122.53) 501.60 (283.39) – – – 1009.78 (263.65) 0.15 (0.07) 0.43 (0.15)

GBLUP-A 5793.20 328.42 (120.30) – – – – 1458.70 (117.30) 0.18 (0.06) –

GBLUP-AD 5795.20 328.42 (120.39) 0.00 (0.00)* – – – 1458.70 (117.30) 0.18 (0.06) 0.18 (0.06)

GBLUP-ADE 5801.07 299.03 (142.39) 0.00 (0.00)* 138.34 (380.26) 0.00 (0.00)* 0.00 (0.00)* 1359.88 (294.99) 0.17 (0.08) 0.24 (0.18)

Ht2 PBLUP-A 6875.41 3828.13 (1090.64) – – – – 5818.22 (726.37) 0.39 (0.09) –

PBLUP-AD 6876.84 3719.17 (1093.87) 847.19 (1193.23) – – – 5068.48 (1254.57) 0.39 (0.10) 0.47 (0.14)

GBLUP-A 6890.86 2999.85 (733.46) – – – – 6443.27 (584.16) 0.32 (0.07) –

GBLUP-AD 6892.76 2963.10 (744.24) 135.05 (557.15) – – – 6343.47 (712.08) 0.31 (0.07) 0.33 (0.08)

GBLUP-ADE 6895.17 2166.02 (819.39) 0.56 (536.44) 3573.72 (2090.50) 0.01 (0.00)* 0.01 (0.00)* 3936.31 (1502.41) 0.22 (0.08) 0.59 (0.16)

DBH1 PBLUP-A 4998.46 148.85 (49.45) – – – – 456.93 (40.62) 0.25 (0.07) –

PBLUP-AD 5000.46 148.85 (49.45) 0.00 (0.00)* – – – 456.93 (40.62) 0.25 (0.07) 0.25 (0.07)

GBLUP-A 5007.54 132.64 (40.75) – – – – 471.71 (38.19) 0.22 (0.06) –

GBLUP-AD 5009.55 132.64 (40.75) 0.00 (0.00)* – – – 471.71 (38.19) 0.22 (0.06) 0.22 (0.06)

GBLUP-ADE 5015.53 129.79 (48.38) 0.00 (0.00)* 13.76 (125.13) 0.00 (0.00)* 0.00 (0.00)* 461.83 (99.53) 0.21 (0.08) 0.24 (0.18)

DBH2 PBLUP-A 5216.79 161.69 (57.95) – – – – 625.69 (51.62) 0.21 (0.07) –

PBLUP-AD 5217.50 152.87 (59.02) 115.72 (111.27) – – – 519.30 (109.33) 0.19 (0.07) 0.34 (0.14)

GBLUP-A 5219.67 158.20 (40.75) – – – – 627.20 (49.879) 0.20 (0.06) –

GBLUP-AD 5221.43 151.11 (52.86) 28.06 (55.45) – – – 606.24 (63.89) 0.19 (0.06) 0.23 (0.08)

GBLUP-ADE 5225.99 107.21 (61.39) 7.22 (56.47) 239.73 (193.79) 0.00 (0.00)* 0.00 (0.00)* 449.86 (138.42) 0.13 (0.08) 0.44 (0.18)

MFA PBLUP-A 2541.56 4.88 (1.51) – – – – 11.44 (1.14) 0.30 (0.08) –

PBLUP-AD 2541.56 4.88 (1.51) 0.00 (0.00)* – – – 11.44 (1.14) 0.30 (0.08) 0.30 (0.08)

GBLUP-A 2547.74 5.47 (1.39) – – – – 11.06 (1.07) 0.33 (0.07) –

GBLUP-AD 2549.74 5.47 (1.39) 0.00 (0.00)* – – – 11.06 (1.07) 0.33 (0.07) 0.33 (0.07)

GBLUP-ADE 2555.74 5.47 (1.39) 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)* 11.06 (1.07) 0.33 (0.07) 0.33 (0.07)

MOEs PBLUP-A 1377.57 1.31 (0.37) – – – – 1.81 (0.24) 0.42 (0.10) –

PBLUP-AD 1379.57 1.31 (0.37) 0.00 (0.00)* – – – 1.81 (0.24) 0.42 (0.10) 0.42 (0.10)

GBLUP-A 1383.02 1.34 (0.28) – – – – 1.78 (0.19) 0.43 (0.07) –

GBLUP-AD 1385.02 1.34 (0.28) 0.00 (0.00)* – – – 1.78 (0.19) 0.43 (0.07) 0.43 (0.07)

GBLUP-ADE 1391.02 1.34 (0.28) 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)* 1.78 (0.19) 0.43 (0.07) 0.43 (0.07)

DEN PBLUP-A 5233.81 407.20 (110.34) – – – – 497.16 (70.32) 0.45 (0.10) –

PBLUP-AD 5235.81 407.20 (110.34) 0.00 (0.00)* – – – 497.16 (70.32) 0.45 (0.10) 0.45 (0.10)

GBLUP-A 5232.72 376.82 (75.66) – – – – 506.02 (52.22) 0.43 (0.07) –

GBLUP-AD 5234.72 376.81 (75.66) 0.00 (0.00)* – – – 506.03 (52.22) 0.43 (0.07) 0.43 (0.07)

GBLUP-ADE 5239.82 341.84 (83.2) 0.00 (0.00)* 176.33 (183.68) 0.00 (0.00)* 0.00 (0.00)* 378.78 (138.75) 0.38 (0.08) 0.58 (0.17)

MOEd PBLUP-A 932.29 0.81 (0.22) – – – – 0.86 (0.13) 0.48 (0.10) –

(Continued)
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TABLE 2 | Goodness-of-fit: correlation between phenotypes (yfull ) and additive

genetic value (̂Afull ) or total genetic value (Ĝfull ) of full data set, for each trait and

each genomic or pedigree BLUP model.

Trait Genetic GBLUP PBLUP

effects r(Âfull, yfull) r(Ĝfull, yfull) r(Âfull, yfull) r(Ĝfull, yfull)

Ht1 A 0.721 – 0.680 –

AD 0.721 0.720 0.680 0.950

ADE 0.721 0.830 – –

Ht2 A 0.794 – 0.840 –

AD 0.794 0.808 0.840 0.905

ADE 0.783 0.966 – –

DBH1 A 0.732 – 0.736 –

AD 0.732 0.732 0.736 0.736

ADE 0.732 0.763 – –

DBH2 A 0.721 – 0.705 –

AD 0.719 0.772 0.705 0.889

ADE 0.712 0.947 – –

MFA A 0.813 – 0.776 –

AD 0.813 0.813 0.776 0.776

ADE 0.813 0.813 – –

MOEs A 0.860 – 0.853 –

AD 0.860 0.860 0.853 0.853

ADE 0.860 0.860 – –

DEN A 0.856 – 0.869 –

AD 0.856 0.856 0.869 0.869

ADE 0.852 0.945 – –

MOEd A 0.848 – 0.884 –

AD 0.848 0.848 0.884 0.884

ADE 0.838 0.973 – –

Correlations are statistically significant at 0.01.

(0.59), DEN (0.58), and MOEd (0.67), whereas low or moderate
estimated Ĥ2 were observed for the remaining traits.

The PBLUP-AD model estimated a considerable amount of
dominance variance particularly for Ht1 and DBH2, accounting,
respectively, for 28.16 and 14.69% of the total variance (Figure 1
and Table 1). Nevertheless, by using GBLUP-AD, the dominance
variance for these three traits shrunk and even more when the
epistatic effects were included in the model (Figure 1). Additive
genetic and residual variance components decreased for GBLUP
when estimating epistatic effects for growth, DEN and MOEd.
For DEN, MOEd, and all growth traits, the epistatic variance was
observed but their percentages of the total variance depended on
the trait, being lower at the first assessment of Ht and DBH. No
epistatic variance, due to additive × dominance or dominance
× dominance interactions, was determined for any of the traits.
There were two wood stiffness traits (MFA and MOEs) that did
not show any nonadditive genetic variation at all.

3.3. Predictive Ability, Predictive Accuracy,
and Spearman Rank Correlations
Wood traits showed higher r1 than growth traits, and they
were similar among all models, whatsoever genetic effects were
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TABLE 3 | Basic descriptive statistics estimated for SEPs (SE Error of Predictions)

of each trait, and pedigree- and genomic-based models.

Trait Statistic PBLUP-A PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE

Ht1 SEPs 13.18 19.96 14.38 14.38 16.47

maxSEPs 16.17 20.98 19.33 19.33 22.87

minSEPs 13.38 19.60 12.56 12.56 13.60

SDSEPs 0.51 0.27 0.82 0.82 1.02

Ht2 SEPs 40.92 43.82 38.86 39.51 45.62

maxSEPs 48.36 54.33 50.96 52.51 81.73

minSEPs 40.02 43.01 34.98 35.51 38.88

SDSEPs 1.53 1.18 2.25 2.26 2.29

DBH1 SEPs 9.03 9.03 8.87 8.87 9.22

maxSEPs 12.35 12.35 11.85 11.85 12.47

minSEPs 8.77 8.77 7.82 7.82 7.98

SDSEPs 0.39 0.39 0.52 0.52 0.55

DBH2 SEPs 9.71 12.32 9.83 10.50 13.24

maxSEPs 11.45 14.47 13.18 14.01 17.58

minSEPs 9.43 12.06 8.62 9.20 10.68

SDSEPs 0.37 0.25 0.57 0.61 0.72

MFA SEPs 1.57 1.57 1.64 1.64 1.64

maxSEPs 1.86 1.86 2.41 2.41 2.41

minSEPs 1.53 1.53 1.48 1.48 1.48

SDSEPs 0.06 0.06 0.10 0.10 0.10

MOEs SEPs 0.74 0.74 0.75 0.75 0.75

maxSEPs 0.88 0.88 1.18 1.18 1.18

minSEPs 0.73 0.73 0.67 0.67 0.67

SDSEPs 0.03 0.03 0.04 0.04 0.04

DEN SEPs 12.82 12.82 12.59 12.59 13.55

maxSEPs 15.39 15.39 19.70 19.70 25.33

minSEPs 12.56 12.56 11.23 11.23 11.97

SDSEPs 0.47 0.47 0.73 0.73 0.74

MOEd SEPs 0.56 0.56 0.54 0.54 0.58

maxSEPs 0.68 0.68 0.84 0.84 1.23

minSEPs 0.55 0.55 0.48 0.48 0.51

SDSEPs 0.02 0.02 0.03 0.03 0.03

SEPs, maxSEPs, minSEPs and SDSEPs respectively represent mean, max, min, and

standard deviation (SD) values of SEPs.

considered in each model, apart from Ht2 and DBH1 for which
r1 was slightly higher for both PBLUP models (Figure 2A and
Table 4). For Ht2, DBH1, and DBH2, r1 was to some extent lower
for total genetic values compared with additive genetic values
when estimated with PBLUP.

Conversely, r2 varied depending on the genetic effects
included in the GBLUP or PBLUP model for some traits
(Figure 2B and Table 4). Using additive genetic effects estimated
from GBLUP-ADE showed the highest r2 for Ht2, DBH2, DEN,
and MOEd, whereas for the total genetic effects, this model
exhibited the lowest values for almost all traits. In the cases
that dominance effects were present and genetic values were
used to estimate r2, both GBLUP-AD and PBLUP-AD produced
similar values.

In general, r1 was similar among all models regardless of the
genetic effects considered, whereas r2 was higher for additive
genetic effects of growth traits than for the total genetic effects
model used, being slightly higher when GBLUP-ADE was used
for Ht2, DBH2, DEN, and MOEd.

Spearman ranking correlations revealed generally high
correlations between EBVs or EGVs from GBLUP and PBLUP
models (0.845–0.876), being even higher between both PBLUP
models (0.998–1.000) and between the three GBLUP models
(0.994–1.000; Table 5).

3.4. Expected Response of GS
The expected percentage response of GS per year (RGS/year)
was compared with the response to phenotypic selection per
year (RPS/year), by assuming that the Scots pine breeding cycle
could be shortened by 50% (from 23 to 11 years) by reducing
field test periods and by stimulating early female flowering.
To estimate RGS and RPS per year, different proportions of
individuals were selected (Figure 3). The results showed that
RGS/year was considerably higher than RPS/year for all traits,
i.e., a relatively higher percentage of response to selection were
obtained with genomic-based models for all traits and they were
particularly noteworthy for wood traits. Indeed, for the top 7%
of individuals (50 selected individuals), the RGS expected for
wood traits ranged between 0.32 and 1.33% higher per year than
with PBLUPmodels. The RGS/year for growth traits was between
0.26 and 0.82% higher than RPS/year, except for PBLUP-AD that
was only 0.05% lower than GBLUP-AD, for Ht2. Generally, the
GBLUP-ADE presented the largest RGS/year, while RPS/year for
PBLUP models, was lower in all cases.

3.5. Expected Genetic Gain
Expected genetic gains were estimated for traits that showed
substantial nonadditive genetic effects in the GBLUP model,
i.e., growth traits, DEN, and MOEd. For the first deployment
strategy based on conventional testing, results from the PBLUP
model with additive effects were used, whereas for the second
strategy, i.e., early GS, results from GBLUP-ADE model were
used to account for the total genetic effects. A common selection
intensity of 1% was used for both strategies. Expected genetic
gains (1Gĥ2 ) for the first deployment strategy, based on only
additive effects, varied from 8.1 to 25.1%, and for the early GS
strategy, based on total genetic effects, 1GĤ2 ranged from 9.0
to 35.1% (Table 6). Thus, expected genetic gains were higher for
all traits with the genomic deployment strategy, with the only
exception of DBH1. However, for DBH1 ĥ2 estimated from
PBLUP model was higher than Ĥ2 obtained with GBLUP-ADE
model (Table 1), which resulted in slightly higher genetic gains
(9.4%) from conventional pedigree selection than early GS (9.0%)
for this specific trait.

4. DISCUSSION

One of the greatest benefits of GS is the possibility of reducing
the breeding cycle length with the consequent increase of genetic
gain per year, but an additional advantage is the possibility to
decompose the genetic variance into additive and nonadditive
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FIGURE 1 | Percentages of the different variance components for each genomic- and pedigree-based BLUP model and trait. σ 2
a , σ 2

aa, σ 2
d , and σ 2

e denotes additive,

epistatic additive × additive, dominance, and residual variances, respectively.

(both dominance and epistatic) effects more precisely without
performing specific mating designs to generate full-sib families
for clonal selection (El-Dien et al., 2016; Grattapaglia et al., 2018;
Lebedev et al., 2020).

4.1. Model Fit With Additive and
Nonadditive Effects
Based on AIC, GBLUP models performed better than PBLUP
models in eucalypt hybrids (Tan et al., 2018), however in loblolly
pine (Munoz et al., 2014) andNorway spruce (Chen et al., 2019)
no obvious superiority of any model based on differences in
AIC could be observed. On the contrary for Scots pine, AIC
slightly increased when dominance and epistatic variance were
accounted for in the models, similarly to the results reported for
white spruce (El-Dien et al., 2016).

Our genomic marker-based models with the epistatic effects
generally resulted in the highest correlations between the
phenotypes and total genetic values (goodness-of-fit). Similar
results were described in eucalypt hybrids (Bouvet et al.,
2016; Tan et al., 2018) or simulation studies (Nazarian and
Gezan, 2016), suggesting that total genetic values (i.e., including

nonadditive effects) were more similar to phenotypes than only
breeding values.

In the current study, PBLUP-A was only clearly advantageous
for growth traits, and PBLUP-AD and GBLUP-ADE showed
the highest SEPs. Hence, GBLUP-A and GBLUP-AD models
produced good estimates of genetic values and breeding values,
especially for wood traits. Two studies in interior spruce, Picea
glauca (Moench) Voss × Picea engelmannii Parry ex Engelm.,
(El-Dien et al., 2018) and white spruce (El-Dien et al., 2016)
reported the clear superiority of GBLUP models compared
with PBLUP, based on the SEPs of breeding values, exhibiting
the GBLUP-ADE model the lowest SEPs. Similar results were
observed in loblolly pine (Munoz et al., 2014), but in Norway
spruce (Chen et al., 2019) GBLUP models were distinctly better
for wood traits.

4.2. Variance Components and Heritability
Narrow-sense heritability estimates in the current study were
alike to previous studies in pines, generally higher for wood
quality than growth traits (Haapanen et al., 1997; Fries and
Ericsson, 2006; Baltunis et al., 2010). PBLUP model with
only additive effects resulted in prominent higher estimates of
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FIGURE 2 | Boxplots of the (A) predictive abilities (r1) and (B) predictive accuracies (r2) assessed for all traits and genomic- and pedigree-based models with

cross-validated estimated total genetic (ĜVP ) or additive (̂AVP ) values.

narrow-sense heritability than GBLUP for height at 30 years
old and MOEd, but very similar or superior with GBLUP
models for the remaining traits evaluated in the current study.
This could be explained by the genomic relationship matrix
accounting for Mendelian sampling as based on realized genetic
covariances between individuals that are identical by descent or
by state (Visscher et al., 2006; VanRaden, 2008; Hayes et al.,
2009). Either inflation or deflation of heritability estimates using
PBLUP has been reported in earlier studies for other conifer
species (El-Dien et al., 2015; Lenz et al., 2017; Chen et al.,
2019). Increased accuracy of genetic parameters is well studied in
genomic marker-based evaluations (Hayes et al., 2009; Resende
et al., 2012; Resende Jr et al., 2012; El-Dien et al., 2018) which
will lead to the more precise selection and increased genetic
gains. Overestimation of narrow-sense heritability can be a

consequence of inadequate estimation power of pedigree-based
methods in full-sib families due to confounding of environmental
effects (Baltunis et al., 2007) and nonadditive genetic effects
confounded with additive genetic and nongenetic effects (Lee
et al., 2010) and with epistatic effects (Munoz et al., 2014; Tan
et al., 2018).

We could observe that growth traits were the only traits
presenting dominance variation. When models also could
account for a considerable epistatic variance, the dominance
variance reduced along with the additive and residual variance
components, thus lower narrow-sense heritabilities and
higher broad-sense heritabilities were reached. For the
traits not exhibiting any dominance effects, GBLUP-AD
resulted in equal estimates of heritability as GBLUP-A but
that may change by increasing the number of genotypes
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TABLE 4 | Predictive ability (r1) and predictive accuracy (r2) estimated with total genetic values of the validation population (ĜVP ) and additive genetic values of the

validation population (̂AVP ) for all pedigree and genomic BLUP models and traits.

Trait Genetic GBLUP PBLUP

effects r1(ÂVP, y) r1(ĜVP, y) r2(ÂVP, y) r2(ĜVP, y) r1(ÂVP, y) r1(ĜVP, y) r2(ÂVP, y) r2(ĜVP, y)

Ht1 A 0.20 (0.03) – 0.46 (0.08) – 0.22 (0.03) – 0.53 (0.08) –

AD 0.20 (0.03) 0.19 (0.03) 0.46 (0.08) 0.44(0.08) 0.22 (0.03) 0.22 (0.03) 0.57 (0.08) 0.54 (0.04)

ADE 0.20 (0.03) 0.19 (0.03) 0.47 (0.08) 0.38 (0.06) – – – –

Ht2 A 0.33 (0.03) – 0.59 (0.06) – 0.38 (0.03) – 0.61 (0.05) –

AD 0.33 (0.03) 0.33 (0.03) 0.60 (0.06) 0.58 (0.06) 0.38 (0.03) 0.37(0.03) 0.61 (0.05) 0.55 (0.04)

ADE 0.33 (0.03) 0.34 (0.03) 0.71 (0.07) 0.44 (0.04) – – – –

DBH1 A 0.26 (0.03) – 0.54 (0.07) – 0.30 (0.04) – 0.58 (0.07) –

AD 0.26 (0.03) 0.25 (0.03) 0.54 (0.07) 0.54 (0.07) 0.30 (0.04) 0.29 (0.03) 0.59 (0.07) 0.58 (0.07)

ADE 0.26 (0.03) 0.25 (0.03) 0.56 (0.07) 0.52 (0.07) – – – –

DBH2 A 0.23 (0.02) – 0.50 (0.05) – 0.25 (0.04) – 0.55 (0.08) –

AD 0.23 (0.02) 0.22 (0.02) 0.52 (0.06) 0.46 (0.05) 0.25 (0.04) 0.24 (0.03) 0.58 (0.08) 0.42 (0.05)

ADE 0.23 (0.04) 0.23 (0.04) 0.63 (0.07) 0.35 (0.04) – – – –

MFA A 0.32 (0.04) – 0.56 (0.06) – 0.33 (0.04) – 0.60 (0.06) –

AD 0.32 (0.04) 0.32 (0.04) 0.56 (0.06) 0.56 (0.06) 0.33 (0.04) 0.33 (0.04) 0.60 (0.06) 0.60 (0.06)

ADE 0.32 (0.04) 0.32 (0.04) 0.56 (0.06) 0.56 (0.06) – – – –

MOEs A 0.40 (0.04) – 0.62 (0.06) – 0.41 (0.04) – 0.63 (0.06) –

AD 0.40 (0.04) 0.40 (0.04) 0.62 (0.06) 0.62 (0.06) 0.41 (0.04) 0.41 (0.04) 0.63 (0.06) 0.63 (0.06)

ADE 0.40 (0.04) 0.40 (0.04) 0.62 (0.06) 0.62 (0.06) – – – –

DEN A 0.40 (0.05) – 0.62 (0.07) – 0.41 (0.04) – 0.61 (0.06) –

AD 0.40 (0.05) 0.40 (0.05) 0.62 (0.07) 0.62 (0.07) 0.41 (0.04) 0.41 (0.04) 0.61 (0.06) 0.61 (0.06)

ADE 0.40 (0.04) 0.41 (0.05) 0.66 (0.07) 0.54 (0.06) – – – –

MOEd A 0.42 (0.05) – 0.65 (0.08) – 0.43 (0.05) – 0.63 (0.07) –

AD 0.42 (0.05) 0.42 (0.05) 0.65 (0.08) 0.65 (0.08) 0.43 (0.05) 0.43 (0.05) 0.63 (0.07) 0.63 (0.07)

ADE 0.42 (0.05) 0.42 (0.05) 0.74 (0.09) 0.52 (0.06) – – – –

Standard errors (SEs). A, AD, and ADE are respectively the acronyms of additive, additive + dominance, and additive + dominance + epistatic effects.

per family (El-Dien et al., 2016). Similar indications of
dominance variation contributing to growth have been
reported earlier with pedigree-based methods in a full-sib
population of loblolly pine (Isik et al., 2003; Baltunis et al.,
2007).

Interestingly, two wood quality traits, DEN and MOEd
showed epistatic variance using GBLUP. This resulted in the
increased estimates of broad-sense heritabilities and reduced
additive and dominance variance components compared to the
dominance model. Epistatic effects explaining an important part
of the variation have been noticed for different traits in other
tree species (Bouvet et al., 2016; Tan et al., 2018). In Scots pine,
these are the first results indicating that not only dominance,
but also epistatic effects may have a role in contributing to
the variation. Similar effects of decreasing additive genetic
variance when using genomic marker-based methods to estimate
nonadditive genetic effects have been observed in loblolly pine
(Munoz et al., 2014). Similar to our results, in an open-
pollinated white spruce population, genomic-marker based
model including epistatic effects, was able to distinguish
the variance component more effectively, accounting for a
considerable amount of variation for height and wood density,
whereas pedigree-based models resulted in overestimated
additive genetic variances as being confounded mainly with

additive × additive epistatic effects (El-Dien et al., 2016).
Also in eucalypts hybrids, adding the dominance and epistatic
effects had a decreasing effect in both additive and dominance
variances (Bouvet et al., 2016).

Despite the low number of individuals per family in the
current study, we were able to estimate non-null epistatic
variances. However, it may be expected that increasing the
number of individuals per family would result in further
improved estimates of nonadditive effects (Chen et al., 2020).
In our study, the nature of epistatic variation was only type
additive × additive for all traits which can be an indication
of more information required to discern between the epistatic
components. Epistatic variance falling into one component only
has been observed earlier as well (Munoz et al., 2014; El-Dien
et al., 2016, 2018).

4.3. Predictive Ability, Predictive Accuracy,
and Spearman Rank Correlations
In forest tree breeding studies, accuracies of genomic models
had been estimated with four methods, for example, predictive
ability (r1) in Norway spruce (Chen et al., 2018) or eucaltyp
hybrids (Tan et al., 2017); predictive accuracy (r2) in radiata pine
(Klápšte et al., 2020) or Populus nigra L. (Pégard et al., 2020);
theoretical accuracy (r3) in Eucalyptus nitens (Suontama et al.,
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TABLE 5 | Spearman’s rank correlations between estimated total genetic values (EGV) and additive genetic values (EBV), for each trait and genomic- or pedigree-based

BLUP model.

Ht1 Ht2

PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE

PBLUP-A 0.998 0.856 0.857 0.855 1.000 0.875 0.876 0.869

PBLUP-AD 0.854 0.854 0.853 0.875 0.876 0.869

GBLUP-A 1.000 0.998 1.000 0.995

GBLUP-AD 0.998 0.995

DBH1 DBH2

PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE

PBLUP-A 1.000 0.869 0.868 0.867 0.999 0.855 0.854 0.847

PBLUP-AD 0.869 0.868 0.867 0.853 0.853 0.846

GBLUP-A 1.000 0.999 0.999 0.993

GBLUP-AD 0.999 0.994

MFA MOEs

PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE

PBLUP A 1.000 0.851 0.851 0.852 1.000 0.845 0.845 0.845

PBLUP AD 0.851 0.851 0.852 0.845 0.845 0.845

GBLUP A 1.000 1.000 1.000 1.000

GBLUP AD 1.000 1.000

DEN MOEd

PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE PBLUP-AD GBLUP-A GBLUP-AD GBLUP-ADE

PBLUP-A 1.000 0.861 0.861 0.859 1.000 0.864 0.864 0.856

PBLUP-AD 0.861 0.861 0.859 0.864 0.864 0.856

GBLUP-A 1.000 0.999 1.000 0.997

GBLUP-AD 0.999 0.997

2018) or white spruce (Lenz et al., 2020), and prediction accuracy
(r4) in Pseudotsuga menziesii (Mirb.) Franco (Thistlethwaite
et al., 2017), Pinus pinaster Ait. (Bartholomé et al., 2016) or
Pinus contortaDougl. ex. Loud. (Ukrainetz andMansfield, 2020).
Given that the correlation between an individual phenotype and
its true breeding value cannot be larger than the square root
of heritability, r2 is recognized as an unbiased estimation of
accuracy of selection from n-fold-cross validation (Legarra et al.,
2008; Meuwissen et al., 2013), thus r2 has begun to be more
standard used in forest tree GS studies (Lenz et al., 2019, 2020;
Calleja-Rodríguez et al., 2020; Klápšte et al., 2020; Pégard et al.,
2020; Zhou et al., 2020).

Similar r1 were observed, for all models and traits evaluated
for Scots pine, which agrees with previous studies (Bouvet et al.,
2016; de Almeida Filho et al., 2016; Chen et al., 2019), but
differs from other eucalyptus reports in which the genomic
models performed better (Tan et al., 2018), yet in the same study
inconsistencies in the original pedigree were detected, and a
pseudo-pedigree was used. In a black poplar study, r2 did not
improve when dominance effects were added to the additive
effect models (Pégard et al., 2020), which is congruent with our
results. However, in our case, the genomic model with epistatic
effects performed better to predict additive values for growth

and wood quality traits. These results suggest that considering
epistatic variation in full-sib families in this population, and
especially for some of the traits will result in better estimations
of total genetic values.

Spearman’s rank correlations may have amplified the benefits
of genomic models in black poplar (Pégard et al., 2020) whereas
in Norway spruce they were similar between pedigree-based
and genomic-based models (Chen et al., 2019), coinciding with
our results.

4.4. Expected Response of GS and Genetic
Gains
Higher response of GS was detected as the ratio of individuals
selected decrease in eucalypt hybrids (Resende et al., 2017)
or Norway spruce (Chen et al., 2019). Congruent with those
studies the same pattern was noticed, and a higher response was
observed for GS models compared with traditional phenotypic
selection, increasing proportionally to the ratio of individuals
selected reaching the maximum when the best 50 individuals
were selected. The reduction of 50% in the breeding cycle length
assumed for Scots pine in the present study will only be possible
by combining it with greenhouse flowering stimulation that will
aid to produce female flowers at earlier ages (Almqvist, 2018;
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FIGURE 3 | Percentages of the response of genomic selection (RGS) and conventional phenotypic selection (RPS) per year, for genomic- and pedigree-based models

for all traits and different proportions of individuals selected (7, 25, 50, 75, and 100% individuals).

TABLE 6 | Expected genetic gains (%1G), for growth traits (Ht1, Ht2, DBH1, and

DBH2) and two different deployment strategies, with a selection intensity of

i = 2.67 (1% of the population selected).

%1G Ht1 Ht2 DBH1 DBH2 DEN MOEd

1G
ĥ2

8.6 9.0 9.4 8.6 8.1 25.1

1G
Ĥ2 12.2 13.6 9.0 18.1 10.4 35.1

Calleja-Rodríguez et al., 2020), than the current flowering age for
the species between 15 and 18 years of age (Matyas et al., 2004).

The GBLUP epistatic model outperformed the PBLUP and
GBLUP additive and dominance models, in genomic response
estimations for almost all traits. This increased response to
selection was particularly striking for wood quality traits that
did not show dominance effects neither with pedigree-based nor
genomic-marker-based models. It can be considered something
that should be further investigated in Scots pine with more
genotyping and phenotyping for wood properties to get more
confidence whether epistatic variation play an important role in
wood quality traits.

Genetic gains are expected to increase with the use of GS
by shortening breeding cycle lengths, increasing selection
intensities, and estimating more accurate breeding or genetic
values (Grattapaglia et al., 2018; Lebedev et al., 2020). To
date, the Scots pine breeding program in Sweden comprises
conventional progeny testing and breeding value prediction
based on pedigree information (Rosvall, 2011) for which
decomposition of variance in additive and nonadditive effects
is not possible in most cases due to a limited number of full-sib
or clonal individuals to evaluate. In the current study, expected
genetic gains from conventional progeny testing were lower than
those from GS, which accounted for the total genetic variance,
unveiling that clonal deployment could be a desirable alternative
for the species.

5. CONCLUSIONS

Pedigree-based models (PBLUP) resulted in the overestimation
of additive genetic and dominance variance and larger residual
error variances for most of the growth traits, wood density,
and dynamic modulus of elasticity, compared to genomic-
based models (GBLUP). For the GBLUP model with epistatic
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effects, only type additive × additive variance was noticed
for growth traits, wood density, and dynamic modulus of
elasticity. This partition of variance components decreased
estimates of narrow-sense heritability, but higher broad-sense
heritabilities were reached compared to the models with
dominance effects. Dominance variation was not observed for
wood quality traits. These results indicate that nonadditive
genetic effects may have an important role in the variation of
objective traits in the Swedish Scots pine breeding program
and that the GS model would be more able to detect
nonadditive genetic variance. GBLUP model with the epistatic
effects exhibited the higher predictive ability of additive values
and outperformed other models in terms of correlations
between phenotypes and total estimated genetic values, which
was especially noticeable for height at age 30, DBH at
age 36, wood density, and modulus of elasticity. Future
studies with more extensive phenotypic data and further
developed genotyping platform would extend our knowledge
on the role of nonadditive genetic effects in the breeding of
Scots pine.
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